JP5330088B2 - Cylinder head water jacket structure - Google Patents

Cylinder head water jacket structure Download PDF

Info

Publication number
JP5330088B2
JP5330088B2 JP2009118882A JP2009118882A JP5330088B2 JP 5330088 B2 JP5330088 B2 JP 5330088B2 JP 2009118882 A JP2009118882 A JP 2009118882A JP 2009118882 A JP2009118882 A JP 2009118882A JP 5330088 B2 JP5330088 B2 JP 5330088B2
Authority
JP
Japan
Prior art keywords
cooling water
wall
cylinder head
valve hole
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009118882A
Other languages
Japanese (ja)
Other versions
JP2010265839A (en
Inventor
一人 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009118882A priority Critical patent/JP5330088B2/en
Publication of JP2010265839A publication Critical patent/JP2010265839A/en
Application granted granted Critical
Publication of JP5330088B2 publication Critical patent/JP5330088B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、多気筒エンジンのシリンダヘッドの内部に複数の燃焼室の周囲を冷却する冷却水通路を形成したシリンダヘッドのウオータジャケット構造に関する。   The present invention relates to a water jacket structure for a cylinder head in which a cooling water passage for cooling the periphery of a plurality of combustion chambers is formed inside a cylinder head of a multi-cylinder engine.

エンジンのシリンダヘッドの燃焼室の上壁に、2個の排気弁の周囲を囲む一対のウオータジャケットと、1個の点火プラグの周囲を囲むウオータジャケットとが形成され、排気弁の周囲を囲む一対のウオータジャケットと点火プラグの周囲を囲むウオータジャケットとが接続されているものが、下記特許文献1により公知である。   A pair of water jackets surrounding the periphery of two exhaust valves and a water jacket surrounding the periphery of one spark plug are formed on the upper wall of the combustion chamber of the cylinder head of the engine. Japanese Patent Application Laid-Open Publication No. 2004-228707 discloses a water jacket that is connected to a water jacket that surrounds a spark plug.

特表2007−530851号公報Special Table 2007-530851

ところでシリンダヘッドの燃焼室まわりの高温部分を冷却するウオータジャケットが、冷却水が同方向に流れる2本の主冷却水通路と、これらの主冷却水通路を相互に連通させる1本の連通水路とを含む場合、2本の主冷却水通路および1本の連通水路の形状が中心線を挟んで左右対称形状であり、かつ2本の主冷却水通路を流れる冷却水の流量が同一であると、連通水路が主冷却水通路に連通する開口部の圧力が拮抗してしまい、連通水路の冷却水が淀んでしまってスムーズに流れなくなり、連通水路が燃焼室まわりの高温部分の冷却に充分に寄与しないという問題がある。   By the way, a water jacket that cools the high-temperature portion around the combustion chamber of the cylinder head includes two main cooling water passages through which cooling water flows in the same direction, and one communication water passage that connects these main cooling water passages to each other. When the shape of the two main cooling water passages and one communication water passage are symmetrical with respect to the center line, and the flow rate of the cooling water flowing through the two main cooling water passages is the same , The pressure of the opening communicating with the main cooling water passage is antagonized, and the cooling water in the communication water passage becomes stagnant and does not flow smoothly, and the communication water passage is sufficient for cooling the high temperature part around the combustion chamber. There is a problem of not contributing.

本発明は前述の事情に鑑みてなされたもので、シリンダヘッドの燃焼室まわりの高温部分を冷却するウオータジャケットの2本の主冷却水通路を1本の連通水路で接続した場合、連通水路における冷却水の淀みを解消することを目的とする。   The present invention has been made in view of the above-described circumstances. When the two main cooling water passages of the water jacket that cools the high-temperature portion around the combustion chamber of the cylinder head are connected by one communication water passage, The purpose is to eliminate the stagnation of cooling water.

上記目的を達成するために、請求項1に記載された発明によれば、複数の燃焼室がシリンダ列線方向に配列された多気筒エンジンのシリンダヘッドに、前記燃焼室を区画する燃焼室上壁と、前記燃焼室上壁の近傍を冷却すべく吸排気方向であって吸気側から排気側あるいは排気側から吸気側に冷却水を流す冷却水通路とが設けられ、前記燃焼室上壁には、冷却水の流れ方向上流側に位置する上流側弁孔と、冷却水の流れ方向下流側に位置する下流側弁孔と、前記両弁孔に挟まれた位置で点火プラグおよび燃料噴射弁の少なくとも一方が挿通される被冷却部材挿通孔とが形成され、前記冷却水通路は、前記上流側弁孔が形成される壁部と、前記被冷却部材挿通孔が形成される壁部と、前記下流側弁孔が形成される壁部とを通過して吸排気方向に延び、前記上流側弁孔が形成される壁部と、前記被冷却部材挿通孔が形成される壁部との間には、シリンダ列線方向に隣接する一対の前記冷却水通路を接続するように連通水路が形成されるシリンダヘッドのウオータジャケット構造であって、前記連通水路が一対の前記冷却水通路に開口する一方の開口部の近傍において、前記上流側弁孔が形成される壁部に前記冷却水通路の冷却水の流れ方向下流側に向かって突出する突出部を設けたことを特徴とするシリンダヘッドのウオータジャケット構造が提案される。 In order to achieve the above object, according to the first aspect of the present invention, a combustion chamber that divides the combustion chamber into a cylinder head of a multi-cylinder engine in which a plurality of combustion chambers are arranged in a cylinder row direction. And a cooling water passage for flowing cooling water from the intake side to the exhaust side or from the exhaust side to the intake side to cool the vicinity of the upper wall of the combustion chamber. Are an upstream valve hole located upstream in the flow direction of cooling water, a downstream valve hole located downstream in the flow direction of cooling water, and a spark plug and a fuel injection valve at a position sandwiched between the valve holes. A cooling member insertion hole into which at least one of the cooling member passage is inserted, and the cooling water passage includes a wall portion in which the upstream valve hole is formed, a wall portion in which the cooling member insertion hole is formed, In the intake and exhaust direction through the wall portion where the downstream valve hole is formed And a pair of cooling water passages adjacent to each other in the cylinder row direction are connected between the wall portion where the upstream valve hole is formed and the wall portion where the member insertion hole is formed. A water jacket structure of a cylinder head in which a communication water passage is formed in a wall portion where the upstream valve hole is formed in the vicinity of one opening portion where the communication water passage opens into the pair of cooling water passages. A water jacket structure for a cylinder head is proposed in which a protrusion is provided that protrudes toward the downstream side of the cooling water passage in the cooling water flow direction.

また請求項2に記載された発明によれば、請求項1の構成に加えて、前記一対の冷却水通路のうちの冷却水の流速が低い側の前記壁部に前記突出部を設けたことを特徴とするシリンダヘッドのウオータジャケット構造が提案される。   According to the invention described in claim 2, in addition to the configuration of claim 1, the protruding portion is provided on the wall portion of the pair of cooling water passages on the side where the flow rate of cooling water is low. A water jacket structure of a cylinder head characterized by the above is proposed.

尚、実施の形態の吸気弁孔14は本発明の上流側弁孔に対応し、実施の形態の排気弁孔15は本発明の下流側弁孔に対応し、実施の形態の点火プラグ挿通孔16は本発明の被冷却部材挿通孔に対応し、実施の形態の主冷却水通路20aは本発明の冷却水通路に対応する。   The intake valve hole 14 of the embodiment corresponds to the upstream valve hole of the present invention, the exhaust valve hole 15 of the embodiment corresponds to the downstream valve hole of the present invention, and the spark plug insertion hole of the embodiment. 16 corresponds to the member to be cooled insertion hole of the present invention, and the main cooling water passage 20a of the embodiment corresponds to the cooling water passage of the present invention.

請求項1の構成によれば、多気筒エンジンのシリンダヘッドの燃焼室上壁に、吸排気方向であって吸気側から排気側あるいは排気側から吸気側に冷却水を流す冷却水通路と、上流側弁孔と、下流側弁孔と、被冷却部材挿通孔とを形成し、冷却水通路は上流側弁孔、被冷却部材挿通孔および下流側弁孔が形成される壁部を通過して吸排気方向に延び、上流側弁孔が形成される壁部と被冷却部材挿通孔が形成される壁部との間に、シリンダ列線方向に隣接する一対の冷却水通路を接続するように連通水路を形成したので、一対の冷却水通路を流れる冷却水で上流側弁孔、被冷却部材挿通孔および下流側弁孔が形成される壁部を冷却することができ、しかも連通水路を流れる冷却水で上流側弁孔および被冷却部材挿通孔が形成される壁部を冷却することができる。このとき、一対の冷却水通路を流れる冷却水の流量が拮抗していると、それらを接続する連通水路の冷却水が淀んで冷却に寄与しなくなるが、連通水路が一対の冷却水通路に開口する一方の開口部の近傍において、上流側弁孔が形成される壁部に冷却水通路の冷却水の流れ方向下流側に向かって突出する突出部を設けたので、連通水路の両端の開口部における一対の冷却水通路の冷却水の流れがアンバランスになり、連通水路における冷却水の淀みが解消して冷却効果が高められる。 According to the configuration of the first aspect of the present invention, on the upper wall of the combustion chamber of the cylinder head of the multi-cylinder engine, in the intake and exhaust direction , the cooling water passage for flowing the cooling water from the intake side to the exhaust side or from the exhaust side to the intake side , The side valve hole, the downstream side valve hole, and the cooled member insertion hole are formed, and the cooling water passage passes through the wall portion where the upstream side valve hole, the cooled member insertion hole and the downstream side valve hole are formed. A pair of cooling water passages adjacent to each other in the cylinder row direction are connected between the wall portion in the intake / exhaust direction and the wall portion in which the upstream valve hole is formed and the wall portion in which the member insertion hole is formed. Since the communication water passage is formed, the wall portion in which the upstream valve hole, the member insertion hole to be cooled and the downstream valve hole are formed can be cooled by the cooling water flowing through the pair of cooling water passages, and the flow through the communication water passage Cooling the wall portion in which the upstream valve hole and the member insertion hole to be cooled are formed with cooling water Door can be. At this time, if the flow rate of the cooling water flowing through the pair of cooling water passages is antagonized, the cooling water in the communication water channel connecting them stagnate and does not contribute to cooling, but the communication water channel opens to the pair of cooling water passages In the vicinity of the one opening portion, the wall portion where the upstream valve hole is formed is provided with a protruding portion protruding toward the downstream side in the cooling water flow direction of the cooling water passage. The flow of the cooling water in the pair of cooling water passages becomes unbalanced, and the stagnation of the cooling water in the communication water channel is eliminated, and the cooling effect is enhanced.

また請求項2の構成によれば、一対の冷却水通路のうちの冷却水の流速が低い側の壁部に突出部を設けたので、冷却水の流速が低い側の冷却水通路の通路断面積を壁部の突出部により狭めて流速を増加させることで、一対の冷却水通路の冷却水の流速を均一化して燃焼室上壁を効果的に冷却することができる。   According to the second aspect of the present invention, since the protrusion is provided on the wall portion of the pair of cooling water passages where the flow rate of the cooling water is low, the passage of the cooling water passage where the flow rate of the cooling water is low is interrupted. By narrowing the area by the protruding portion of the wall portion and increasing the flow velocity, the flow velocity of the cooling water in the pair of cooling water passages can be made uniform to effectively cool the upper wall of the combustion chamber.

直列四気筒エンジンのシリンダヘッドのシリンダ軸線に直交する方向の断面図。Sectional drawing of the direction orthogonal to the cylinder axis line of the cylinder head of an in-line four cylinder engine. 図1の2−2線拡大断面図。FIG. 2 is an enlarged sectional view taken along line 2-2 in FIG. 1. 図2の3−3線断面図。FIG. 3 is a sectional view taken along line 3-3 in FIG. 2. 図2の4−4線断面図。FIG. 4 is a cross-sectional view taken along line 4-4 of FIG. 図2の5方向矢視図。FIG. シリンダヘッドのウオータジャケットを成形する中子の上面図。The top view of the core which shape | molds the water jacket of a cylinder head. シリンダヘッドのウオータジャケットを成形する中子の下面図。The bottom view of the core which shape | molds the water jacket of a cylinder head. 図6の8部拡大図。FIG.

以下、図1〜図8に基づいて本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は直列四気筒エンジンのシリンダヘッド11を、シリンダブロックとの結合面と平行な平面で切断した断面を上方(ヘッドカバー側)から見た図であり、紙面の下側が吸気側であり、紙面の上側が排気側である。シリンダヘッド11の下面(紙面の裏側)にはシリンダ列線L1に沿って4個の燃焼室12…が配置されており、断面で示される燃焼室上壁13…には2個の吸気弁孔14,14と、2個の排気弁孔15,15と、それらに囲まれた点火プラグ挿通孔16とが形成される。   FIG. 1 is a cross-sectional view of a cylinder head 11 of an in-line four-cylinder engine cut along a plane parallel to a coupling surface with a cylinder block, as viewed from above (head cover side). The upper side is the exhaust side. Four combustion chambers 12 are arranged along the cylinder line L1 on the lower surface (the back side of the paper surface) of the cylinder head 11, and two intake valve holes are formed in the combustion chamber upper wall 13 shown in cross section. 14, two exhaust valve holes 15, 15 and a spark plug insertion hole 16 surrounded by them are formed.

シリンダヘッド11の内部には、吸気側側壁11a、タイミングチェーン室側側壁11b、排気側側壁11cおよびトランスミッション側側壁11dにより囲まれたウオータジャケットJが白地で示される。図6および図7はシリンダヘッド11を鋳造する際に使用する中子17の形状を示すもので、この中子17の形状はウオータジャケットJの形状と同一である。以下、図1、図6および図7に基づいてウオータジャケットJの構造を説明する。   Inside the cylinder head 11, a water jacket J surrounded by an intake side wall 11a, a timing chain chamber side wall 11b, an exhaust side wall 11c and a transmission side wall 11d is shown in white. 6 and 7 show the shape of the core 17 used when casting the cylinder head 11, and the shape of the core 17 is the same as the shape of the water jacket J. FIG. Hereinafter, the structure of the water jacket J will be described with reference to FIGS. 1, 6, and 7.

ウオータジャケットJは、シリンダヘッド11の吸気側側壁11aに沿う吸気側ギャラリ18と、シリンダヘッド11の排気側側壁11cに沿う排気側ギャラリ19と、吸気側ギャラリ18および排気側ギャラリ19を接続する3個の通路拡張部20…とを備える。3個の通路拡張部20…はシリンダ列線L1上であって、4個の燃焼室12…に挟まれる位置に配置される。シリンダヘッド11の低い位置にある吸気側ギャラリ18および排気側ギャラリ19は図1に実線で示されているが、3個の通路拡張部20…は吸気側ギャラリ18および排気側ギャラリ19よりも高い位置にあるために図1に想像線で示されている。   The water jacket J connects the intake side gallery 18 along the intake side side wall 11 a of the cylinder head 11, the exhaust side gallery 19 along the exhaust side side wall 11 c of the cylinder head 11, and the intake side gallery 18 and the exhaust side gallery 19. Individual passage expansion portions 20... The three passage expansion portions 20 are arranged on the cylinder row line L1 and at positions sandwiched between the four combustion chambers 12. The intake side gallery 18 and the exhaust side gallery 19 at the lower position of the cylinder head 11 are indicated by solid lines in FIG. 1, but the three passage expansion portions 20 are higher than the intake side gallery 18 and the exhaust side gallery 19. Because of its position, it is shown in phantom in FIG.

吸気側ギャラリ18の下面には、シリンダブロックに設けた冷却水ポンプから冷却水が供給される冷却水入口18aが設けられており、4本のシリンダ軸線L2…から吸気側にずれた4個のa位置…に向かって冷却水入口18aから4本の第1冷却水通路18b…が延びている。4個のa位置…からは、各2本の第2冷却水通路18c…がシリンダ列線L1に向かって延びており、相互に集合する3対6本の第2冷却水通路18c…は、4個の燃焼室12…の間の3個のb位置…で3個の通路拡張部20…に連通する。   A cooling water inlet 18a to which cooling water is supplied from a cooling water pump provided in the cylinder block is provided on the lower surface of the intake side gallery 18, and the four cylinder axes L2,. Four first cooling water passages 18b extend from the cooling water inlet 18a toward the position a. From the four a positions, each of the two second cooling water passages 18c extends toward the cylinder row line L1, and the three to six second cooling water passages 18c that gather together are The three passage positions 20 between the four combustion chambers 12 communicate with the three passage extensions 20.

計8本の第2冷却水通路18c…には、シリンダブロック側のウオータジャケットに連通する連通孔18d…がそれぞれ形成されており、吸気側ギャラリ18を流れる冷却水の一部は連通孔18d…を通過してシリンダブロック側のウオータジャケットに分配される。また排気側ギャラリ19には、4本のシリンダ軸線L2…から排気側にずれた位置に4個の連通孔19a…がそれぞれ形成されており、排気側ギャラリ19を流れる冷却水の一部は連通孔19a…を通過してシリンダブロック側のウオータジャケットに分配される。排気側ギャラリ19のトランスミッション側側壁11dに近い位置に2個の冷却水出口19b,19bが形成されており、ウオータジャケットJを最後まで流れた冷却水は冷却水出口19b,19bを通過してシリンダブロック側のウオータジャケットに戻される。   A total of eight second cooling water passages 18c are formed with communication holes 18d communicating with the water jacket on the cylinder block side, and a part of the cooling water flowing through the intake side gallery 18 is formed with the communication holes 18d. Is distributed to the water jacket on the cylinder block side. Further, the exhaust side gallery 19 is formed with four communication holes 19a at positions shifted from the four cylinder axis lines L2 to the exhaust side, and a part of the cooling water flowing through the exhaust side gallery 19 is in communication. It passes through the holes 19a and is distributed to the water jacket on the cylinder block side. Two cooling water outlets 19b and 19b are formed at a position near the transmission side wall 11d of the exhaust side gallery 19, and the cooling water that has flowed through the water jacket J to the end passes through the cooling water outlets 19b and 19b to form a cylinder. Returned to the water jacket on the block side.

次に、図6〜図8に基づいて通路拡張部20の構造を説明する。   Next, the structure of the channel | path extension part 20 is demonstrated based on FIGS.

シリンダ列線L1上において4個の燃焼室12…に挟まれた位置にある3個の通路拡張部20…は実質的に同一構造を有するため、以下、その一つの通路拡張部20について説明する。   Since the three passage expansion portions 20 at positions sandwiched by the four combustion chambers 12 on the cylinder line L1 have substantially the same structure, the one passage expansion portion 20 will be described below. .

通路拡張部20は吸気側ギャラリ18と排気側ギャラリ19とを連通させるものであり、その中央部にリブ21を上下方向に形成することで、冷却水を左右方向(通路拡張部20を挟む二つの燃焼室12,12の方向)に分流させるための二つの主冷却水通路20a,20aが形成される。従って、通路拡張部20を流れる冷却水は、吸気側のb位置においてリブ21を迂回する二つの主冷却水通路20a,20aに分岐した後、排気側のc位置において再び合流して排気側ギャラリ19に流入する。   The passage expanding portion 20 communicates the intake side gallery 18 and the exhaust side gallery 19, and by forming a rib 21 in the vertical direction at the center thereof, the cooling water can be moved in the left and right direction (two Two main cooling water passages 20a, 20a are formed for diversion in the direction of the two combustion chambers 12, 12. Accordingly, the cooling water flowing through the passage expanding portion 20 branches to the two main cooling water passages 20a and 20a that bypass the rib 21 at the b position on the intake side, and then merges again at the c position on the exhaust side to form the exhaust side gallery. 19 flows into.

即ち、図8から明らかなように、b位置において通路拡張部20に流入した冷却水がリブ21に阻止されて左右の主冷却水通路20a,20aに分岐し、吸気弁孔14,14が形成された壁部11e,11eと、点火プラグ挿通孔16が形成された壁部11fと、排気弁孔15,15が形成された壁部11g,11gとを冷却した後、排気側のc位置において再び合流して排気側ギャラリ19に流入する。   That is, as is apparent from FIG. 8, the cooling water flowing into the passage expanding portion 20 at the position b is blocked by the rib 21 and branches into the left and right main cooling water passages 20a and 20a, and the intake valve holes 14 and 14 are formed. After cooling the wall portions 11e and 11e, the wall portion 11f in which the spark plug insertion hole 16 is formed, and the wall portions 11g and 11g in which the exhaust valve holes 15 and 15 are formed, at the position c on the exhaust side. It merges again and flows into the exhaust side gallery 19.

シリンダ列線L1方向に隣り合う二つの通路拡張部20,20の相互に対向する二つの主冷却水通路20a,20aが、吸気弁孔14,14が形成された壁部11e,11eと、点火プラグ挿通孔11fが形成された壁部11fとの間に配置された連通水路20bで接続されており、この連通水路20bを流れる冷却水で吸気弁孔14,14の壁部11e,11eおよび点火プラグ挿通孔16の壁部11fを更に冷却する。   Two main cooling water passages 20a, 20a opposite to each other of two passage expansion portions 20, 20 adjacent to each other in the direction of the cylinder line L1 are provided with wall portions 11e, 11e in which intake valve holes 14, 14 are formed, and ignition. It is connected by a communication water passage 20b disposed between the wall portion 11f in which the plug insertion hole 11f is formed, and the wall portions 11e and 11e of the intake valve holes 14 and 14 and the ignition by the cooling water flowing through the communication water passage 20b. The wall portion 11f of the plug insertion hole 16 is further cooled.

図8において、左側の通路拡張部20の主冷却水通路20aを流れる冷却水(矢印A1参照)の流量と、右側の通路拡張部20の主冷却水通路20aを流れる冷却水(矢印A2参照)の流量とが拮抗していると、両主冷却水通路20a,20aを連通させる連通水路20bに冷却水が滞留してしまい、この連通水路20bが臨む吸気弁孔14,14の壁部11e,11eおよび点火プラグ挿通孔16の壁部11fの冷却効果が低下する問題がある。   In FIG. 8, the flow rate of the cooling water (see arrow A1) flowing through the main cooling water passage 20a of the left passage expansion portion 20 and the cooling water flowing through the main cooling water passage 20a of the right passage expansion portion 20 (see arrow A2). If the flow rate of the refrigerant is antagonized, the cooling water stays in the communication water passage 20b that allows the two main cooling water passages 20a and 20a to communicate with each other, and the wall portions 11e of the intake valve holes 14 and 14 that the communication water passage 20b faces. 11e and the cooling effect of the wall portion 11f of the spark plug insertion hole 16 are reduced.

この問題を解決すべく、本実施の形態では、連通水路20bの両端開口部に臨む左右の吸気弁孔14,14の壁部11e,11eの何れか一方(実施の形態では図8の右側の吸気弁孔14の壁部11e)に、吸気側から排気側に向かって突出する突出部11hが形成される。   In order to solve this problem, in the present embodiment, one of the wall portions 11e and 11e of the left and right intake valve holes 14 and 14 facing the opening portions at both ends of the communication water channel 20b (in the embodiment, on the right side of FIG. 8). A protruding portion 11h that protrudes from the intake side toward the exhaust side is formed in the wall portion 11e) of the intake valve hole 14.

この突出部11hを形成したことにより、図中右側の主冷却水通路20aを流れる冷却水(矢印A2参照)が排気側を指向するようになって連通水路20bの右端開口部に流入し難くなるのに対し、図中左側の主冷却水通路20aを流れる冷却水(矢印A1参照)は突出部11hが存在しないために連通水路20bの左端開口部に流入し易くなり、そのバランスの崩れによって連通水路20bに矢印A3で示す左から右に向かう冷却水の流れを発生させ、吸気弁孔14,14の壁部11e,11eおよび点火プラグ挿通孔16の壁部11fの冷却効果を高めることができる。   By forming this protrusion 11h, the cooling water (see arrow A2) flowing through the main cooling water passage 20a on the right side in the figure is directed to the exhaust side and hardly flows into the right end opening of the communication water passage 20b. On the other hand, the cooling water (see arrow A1) flowing through the main cooling water passage 20a on the left side in the figure is likely to flow into the left end opening of the communication water passage 20b because there is no protrusion 11h, and the communication is lost due to the loss of the balance. The flow of the cooling water from the left to the right indicated by the arrow A3 is generated in the water channel 20b, and the cooling effect of the wall portions 11e, 11e of the intake valve holes 14, 14 and the wall portion 11f of the spark plug insertion hole 16 can be enhanced. .

尚、突出部11hを設ける側は、左右の主冷却水通路20a,20aのうち、その冷却水の流速が低い側に設けることが望ましい。その理由は、突出部11hを設けることで主冷却水通路20aが絞られて流速が増加するため、左右の主冷却水通路20a,20aを流れる冷却水の流速を均一化して冷却効果を均一化することができるからである。   In addition, it is desirable to provide the side where the protrusion 11h is provided on the side of the left and right main cooling water passages 20a, 20a where the flow rate of cooling water is low. The reason is that by providing the protrusion 11h, the main cooling water passage 20a is throttled and the flow velocity increases, so the flow velocity of the cooling water flowing in the left and right main cooling water passages 20a, 20a is made uniform, and the cooling effect is made uniform. Because it can be done.

次に、図2〜図5および図8に基づいて通路拡張部20の中央に設けられたリブ21の構造を説明する。   Next, the structure of the rib 21 provided in the center of the channel | path expansion part 20 is demonstrated based on FIGS. 2-5 and FIG.

通路拡張部20の中央に立設されるリブ21は概略円柱状に形成されており、そこをシリンダ列線L1方向に形成された貫通水路20cの両端が、左右の主冷却水通路20a,20aに開口する。また貫通水路20cの中央部から排気側に向かって分岐水路20dが延びており、その出口端が排気側ギャラリ19のc点に開口する。貫通水路20cおよび分岐水路20dは水平断面において略T字状に形成されており(図4および図8参照)、前記水平断面においてリブ21を一つの半円状の部分と二つの扇形の部分とに分離する。従って、左右の主冷却水通路20a,20aを流れる冷却水の一部は貫通水路20cの両端から流入して中央部に向かって流れ、そこから分岐水路20dに流入して排気側ギャラリ19に流出する。   The rib 21 erected at the center of the passage expanding portion 20 is formed in a substantially columnar shape, and both ends of the through water passage 20c formed in the direction of the cylinder row line L1 are left and right main cooling water passages 20a and 20a. Open to. A branch water channel 20 d extends from the central portion of the through water channel 20 c toward the exhaust side, and an outlet end thereof opens at a point c of the exhaust side gallery 19. The through water channel 20c and the branch water channel 20d are formed in a substantially T shape in the horizontal cross section (see FIGS. 4 and 8), and the rib 21 is formed by one semicircular portion and two fan-shaped portions in the horizontal cross section. To separate. Accordingly, a part of the cooling water flowing through the left and right main cooling water passages 20a, 20a flows in from both ends of the through water channel 20c and flows toward the center, then flows into the branch water channel 20d and flows out to the exhaust side gallery 19. To do.

リブ21の上半部には、貫通水路20cおよび分岐水路20dの交差部から上方に延び、シリンダヘッド11の上面へと貫通するピン孔21aが形成される。このピン孔21aの底部、つまり貫通水路20cおよび分岐水路20dの交差部の上側がキャップ22の圧入により閉塞されており、ピン孔21aから冷却水が漏れることが防止される。   In the upper half of the rib 21, a pin hole 21 a that extends upward from the intersection of the through water channel 20 c and the branch water channel 20 d and penetrates to the upper surface of the cylinder head 11 is formed. The bottom of the pin hole 21a, that is, the upper side of the intersecting portion of the through water channel 20c and the branch water channel 20d is closed by the press-fitting of the cap 22, thereby preventing the cooling water from leaking from the pin hole 21a.

シリンダヘッド11を鋳造するとき、ウオータジャケットJを形成するための中子17(図6および図7参照)は金型のキャビティ内に複数の中子ピンを介して支持されるが、そのうちの3本の中子ピン23…(図2および図5参照)の下端がリブ21の中央部に、より具体的には中子17の貫通水路20cおよび分岐水路20dの交差部を成形する部分に当接することで、中子17を金型内に保持するようになっている。   When the cylinder head 11 is cast, the core 17 (see FIGS. 6 and 7) for forming the water jacket J is supported in the cavity of the mold via a plurality of core pins. The lower end of the core pin 23 (see FIGS. 2 and 5) of the book is applied to the center portion of the rib 21, more specifically to the portion where the penetrating water channel 20c and the branch water channel 20d of the core 17 are intersected. By contact, the core 17 is held in the mold.

尚、図3および図4において、符号24…は吸気弁孔14…に連なる吸気ポートであり、符号25…は排気弁孔15…に連なる排気ポートである。   3 and 4, reference numeral 24... Is an intake port connected to the intake valve hole 14..., And 25 is an exhaust port connected to the exhaust valve hole 15.

このように、リブ21の中央部に中子ピン23を挿入してピン孔21aを形成するので、そのピン孔21aの分だけリブ21の駄肉を減らしてシリンダヘッド11の重量を軽減することができる。またリブ21の位置を避けて中子ピン23を配置しようとする、その配置スペースを確保するのが困難になったり、中子ピン23を適切な位置に配置できなくなって中子17を強固に支持できなくなったりするが、本実施の形態によれば上記問題を解決することができる。   As described above, the core pin 23 is inserted into the central portion of the rib 21 to form the pin hole 21a, and therefore the weight of the cylinder head 11 is reduced by reducing the thickness of the rib 21 by the amount of the pin hole 21a. Can do. Further, it is difficult to secure the arrangement space for arranging the core pin 23 while avoiding the position of the rib 21, or it becomes difficult to arrange the core pin 23 at an appropriate position, thereby strengthening the core 17. Although it cannot be supported, according to the present embodiment, the above problem can be solved.

またリブ21の内部に貫通水路20cおよび分岐水路20dを形成したことにより、リブ21の駄肉を減らしてシリンダヘッド11の重量を更に軽減することができ、しかもリブ21の冷却を効果的に行うことができる。   Further, since the through water channel 20c and the branch water channel 20d are formed inside the rib 21, it is possible to further reduce the weight of the cylinder head 11 by reducing the thickness of the rib 21, and to effectively cool the rib 21. be able to.

以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   The embodiments of the present invention have been described above, but various design changes can be made without departing from the scope of the present invention.

例えば、実施の形態のウオータジャケットJはシリンダヘッド11の吸気側から排気側に冷却水を流しているが、排気側から吸気側に冷却水を流すものであっても良い。   For example, in the water jacket J of the embodiment, the cooling water flows from the intake side to the exhaust side of the cylinder head 11, but the cooling water may flow from the exhaust side to the intake side.

また本発明の被冷却部材挿通孔に挿通される被冷却部材は点火プラグであるが、被冷却部材は燃料噴射弁であっても良い。   The member to be cooled inserted into the member to be cooled insertion hole of the present invention is a spark plug, but the member to be cooled may be a fuel injection valve.

また実施の形態では4個の連通水路20b…のうちの3個の連通水路20b…に突出部11h…が設けられているが(図6および図7参照)、少なくとも1個の連通水路20bに突出部11hが設けられていれば良い。   In the embodiment, three of the four communication channels 20b are provided with projections 11h in three communication channels 20b (see FIG. 6 and FIG. 7), but at least one communication channel 20b is provided with at least one communication channel 20b. The protrusion part 11h should just be provided.

11 シリンダヘッド
11e 上流側弁孔が形成される壁部
11f 被冷却部材挿通孔が形成される壁部
11g 下流側弁孔が形成される壁部
11h 突出部
12 燃焼室
13 燃焼室上壁
14 吸気弁孔(上流側弁孔)
15 排気弁孔(下流側弁孔)
16 点火プラグ挿通孔(被冷却部材挿通孔)
20a 主冷却水通路(冷却水通路)
20b 連通水路
L1 シリンダ列線
11 Cylinder head 11e Wall part 11f in which upstream valve hole is formed Wall part 11g in which cooled member insertion hole is formed Wall part 11h in which downstream valve hole is formed Projection part 12 Combustion chamber 13 Combustion chamber upper wall 14 Intake Valve hole (upstream valve hole)
15 Exhaust valve hole (downstream valve hole)
16 Spark plug insertion hole (cooled member insertion hole)
20a Main cooling water passage (cooling water passage)
20b Communication channel L1 Cylinder row line

Claims (2)

複数の燃焼室(12)がシリンダ列線(L1)方向に配列された多気筒エンジンのシリンダヘッド(11)に、前記燃焼室(12)を区画する燃焼室上壁(13)と、前記燃焼室上壁(13)の近傍を冷却すべく吸排気方向であって吸気側から排気側あるいは排気側から吸気側に冷却水を流す冷却水通路(20a)とが設けられ、
前記燃焼室上壁(13)には、冷却水の流れ方向上流側に位置する上流側弁孔(14)と、冷却水の流れ方向下流側に位置する下流側弁孔(15)と、前記両弁孔(14,15)に挟まれた位置で点火プラグおよび燃料噴射弁の少なくとも一方が挿通される被冷却部材挿通孔(16)とが形成され、
前記冷却水通路(20a)は、前記上流側弁孔(14)が形成される壁部(11e)と、前記被冷却部材挿通孔(16)が形成される壁部(11f)と、前記下流側弁孔(15)が形成される壁部(11g)とを通過して吸排気方向に延び、前記上流側弁孔(14)が形成される壁部(11e)と、前記被冷却部材挿通孔(16)が形成される壁部(11f)との間には、シリンダ列線(L1)方向に隣接する一対の前記冷却水通路(20a)を接続するように連通水路(20b)が形成されるシリンダヘッドのウオータジャケット構造であって、
前記連通水路(20b)が一対の前記冷却水通路(20a)に開口する一方の開口部の近傍において、前記上流側弁孔(14)が形成される壁部(11e)に前記冷却水通路(20a)の冷却水の流れ方向下流側に向かって突出する突出部(11h)を設けたことを特徴とするシリンダヘッドのウオータジャケット構造。
A combustion chamber upper wall (13) that partitions the combustion chamber (12) into a cylinder head (11) of a multi-cylinder engine in which a plurality of combustion chambers (12) are arranged in a cylinder row line (L1) direction, and the combustion A cooling water passage (20a) is provided in the intake / exhaust direction to cool the vicinity of the chamber upper wall (13) and allows cooling water to flow from the intake side to the exhaust side or from the exhaust side to the intake side ,
The combustion chamber upper wall (13) has an upstream valve hole (14) positioned upstream in the flow direction of cooling water, a downstream valve hole (15) positioned downstream in the flow direction of cooling water, A cooled member insertion hole (16) into which at least one of the spark plug and the fuel injection valve is inserted is formed at a position sandwiched between both valve holes (14, 15),
The cooling water passage (20a) includes a wall (11e) in which the upstream valve hole (14) is formed, a wall ( 11f ) in which the member insertion hole (16) is formed, and the downstream The wall portion (11e) in which the side valve hole (15) is formed and extending in the intake / exhaust direction through the wall portion (11g) is formed, and the cooled member is inserted into the wall portion (11e) in which the upstream valve hole (14) is formed. A communication water passage (20b) is formed between the wall portion (11f) where the hole (16) is formed so as to connect the pair of cooling water passages (20a) adjacent in the direction of the cylinder row (L1). The water jacket structure of the cylinder head
In the vicinity of one opening where the communication water channel (20b) opens to the pair of cooling water channels (20a), the cooling water channel (11e) is formed in the wall (11e) where the upstream valve hole (14) is formed. A water jacket structure for a cylinder head, which is provided with a protrusion (11h) protruding toward the downstream side in the flow direction of the cooling water 20a).
前記一対の冷却水通路(20a)のうちの冷却水の流速が低い側の前記壁部(11e)に前記突出部(11h)を設けたことを特徴とする、請求項1に記載のシリンダヘッドのウオータジャケット構造。   The cylinder head according to claim 1, wherein the protrusion (11h) is provided on the wall (11e) on the side of the pair of cooling water passages (20a) on which the flow rate of cooling water is low. Water jacket structure.
JP2009118882A 2009-05-15 2009-05-15 Cylinder head water jacket structure Expired - Fee Related JP5330088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009118882A JP5330088B2 (en) 2009-05-15 2009-05-15 Cylinder head water jacket structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009118882A JP5330088B2 (en) 2009-05-15 2009-05-15 Cylinder head water jacket structure

Publications (2)

Publication Number Publication Date
JP2010265839A JP2010265839A (en) 2010-11-25
JP5330088B2 true JP5330088B2 (en) 2013-10-30

Family

ID=43363018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009118882A Expired - Fee Related JP5330088B2 (en) 2009-05-15 2009-05-15 Cylinder head water jacket structure

Country Status (1)

Country Link
JP (1) JP5330088B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103835830B (en) * 2012-11-21 2016-06-01 重庆长安汽车股份有限公司 The watercooling jacket of a kind of staggered form three cylinder engine with supercharger cylinder head
CN105443263B (en) * 2014-08-27 2018-01-05 光阳工业股份有限公司 The Structure of cylinder head of vertical water cooling engine
JP6812866B2 (en) * 2017-03-21 2021-01-13 スズキ株式会社 Cylinder head structure
JP7087862B2 (en) 2018-09-11 2022-06-21 トヨタ自動車株式会社 Internal combustion engine body
CN114962050B (en) * 2021-12-16 2023-10-13 中国船舶集团有限公司第七一一研究所 Cylinder head cooling water cavity structure, cylinder head and diesel engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268849A (en) * 1985-05-24 1986-11-28 Toyota Motor Corp Construction of cooling water passage in cylinder head of internal-combustion engine
JPH11229955A (en) * 1998-02-13 1999-08-24 Daihatsu Motor Co Ltd Cylinder head structure in internal combustion engine
JP4211405B2 (en) * 2003-01-21 2009-01-21 三菱自動車工業株式会社 Engine cooling structure
DE102004015134A1 (en) * 2004-03-27 2005-10-13 Dr.Ing.H.C. F. Porsche Ag Water-cooled cylinder head for a multi-cylinder internal combustion engine
JP4438643B2 (en) * 2005-03-01 2010-03-24 マツダ株式会社 Engine cylinder head structure

Also Published As

Publication number Publication date
JP2010265839A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
US10107171B2 (en) Cooling structure of internal combustion engine
JP4329774B2 (en) Cylinder head manufacturing method and cylinder head
EP2388463B1 (en) Cylinder head for an internal combustion engine, with integrated exhaust manifold
US8671904B2 (en) Cylinder head for an internal combustion engine, with integrated exhaust manifold and subgroups of exhaust conduits merging into manifold portions which are superimposed and spaced apart from each other
US7849683B2 (en) Multiple-cylinder internal combustion engine having cylinder head provided with centralized exhaust passageway
JP5631859B2 (en) Cylinder head for an internal combustion engine having an integrated exhaust manifold and a subgroup of exhaust conduits that merge into overlapping and spaced manifold portions
JP5330088B2 (en) Cylinder head water jacket structure
JP2010265840A (en) Cylinder head water jacket structure
JP2008038838A (en) Internal combustion engine
KR20090018651A (en) Cooling water passage structure of cylinder head
JP2017125445A (en) Cooling structure of multi-cylinder engine
JP5064474B2 (en) Internal combustion engine cooling structure
JP3736339B2 (en) Engine cooling structure
EP1283345A2 (en) Cylinder head cooling structure for an internal combustion engine
RU2677019C1 (en) Head of cylinder block
JP4108868B2 (en) Cylinder head of multi-cylinder internal combustion engine
JP2014208977A (en) Cooling structure of cylinder block
JP7119735B2 (en) internal combustion engine
JP6696125B2 (en) Cylinder head cooling structure
JP2011106387A (en) Cooling structure for internal combustion engine
WO2020129825A1 (en) Cylinder head
EP0984149B1 (en) Cylinder head structure in internal combustion engine
JP7151785B2 (en) cylinder head
WO2020129824A1 (en) Cylinder head
JP2022139765A (en) Monoblock type multi-cylinder internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees