JP5329078B2 - Oil leveling system for high pressure shell compressor used in air conditioner - Google Patents

Oil leveling system for high pressure shell compressor used in air conditioner Download PDF

Info

Publication number
JP5329078B2
JP5329078B2 JP2007331226A JP2007331226A JP5329078B2 JP 5329078 B2 JP5329078 B2 JP 5329078B2 JP 2007331226 A JP2007331226 A JP 2007331226A JP 2007331226 A JP2007331226 A JP 2007331226A JP 5329078 B2 JP5329078 B2 JP 5329078B2
Authority
JP
Japan
Prior art keywords
oil
speed compressor
compressor
bypass
variable speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007331226A
Other languages
Japanese (ja)
Other versions
JP2009150628A (en
Inventor
孝 金子
正裕 岸野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2007331226A priority Critical patent/JP5329078B2/en
Priority to KR1020080128562A priority patent/KR101585948B1/en
Priority to CN2008101890166A priority patent/CN101469910B/en
Publication of JP2009150628A publication Critical patent/JP2009150628A/en
Application granted granted Critical
Publication of JP5329078B2 publication Critical patent/JP5329078B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • F25B2600/0261Compressor control by controlling unloaders external to the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Description

この発明は、複数の高圧シェル圧縮機を並列配置した空気調和装置の均油システムに関するものである。   The present invention relates to an oil leveling system for an air conditioner in which a plurality of high-pressure shell compressors are arranged in parallel.

従来、高圧シェル型の可変速圧縮機と定速圧縮機とを並列配置した空気調和装置には、圧縮機間のオイルバランスをとるための均油システムを、圧縮機の高圧側である吐出管及び低圧側である吸入管の間に設けたものが知られている(特許文献1)。   Conventionally, in an air conditioner in which a high-pressure shell type variable speed compressor and a constant speed compressor are arranged in parallel, an oil leveling system for balancing oil between the compressors is provided as a discharge pipe on the high pressure side of the compressor. And what was provided between the suction pipes which are the low voltage | pressure side is known (patent document 1).

具体例を挙げると、例えば図1に示すように、各圧縮機B1、B2の標準油面高さ近傍に設けられた均油口B11、B21と前記吐出管B8とを接続するオイル吐出バイパスB6と、その吐出管B8における前記オイル吐出バイパスB6の接続点よりも下流側と吸入管B7とを接続する均油回路B5とを有したものがある。   For example, as shown in FIG. 1, for example, as shown in FIG. 1, oil discharge bypass B6 connecting oil leveling ports B11, B21 provided near the standard oil level height of each compressor B1, B2 and the discharge pipe B8. And an oil equalizing circuit B5 for connecting the suction pipe B7 to the downstream side of the connection point of the oil discharge bypass B6 in the discharge pipe B8.

前記均油回路B5には、電磁弁B51及び減圧部B52が設けられている。   The oil leveling circuit B5 is provided with an electromagnetic valve B51 and a pressure reducing part B52.

前記吐出管B8には、前記均油回路B5の接続点よりも下流で前記吐出管の合流点よりも上流に逆止弁B3が設けられている。   The discharge pipe B8 is provided with a check valve B3 downstream of the connection point of the oil equalization circuit B5 and upstream of the junction of the discharge pipe.

そして、冷暖房運転時に両方の圧縮機B1、B2が運転している場合には、両方の電磁弁B51は閉じられており、圧縮機B1、B2の余剰オイルは、オイル吐出バイパスB6から吐出管B8へ排出され、各圧縮機B1、B2に分配されることによって、圧縮機B1,B2の間で均油が行われる。   When both the compressors B1 and B2 are operating during the cooling and heating operation, both the solenoid valves B51 are closed, and surplus oil of the compressors B1 and B2 is discharged from the oil discharge bypass B6 to the discharge pipe B8. And is distributed to the compressors B1 and B2, whereby oil equalization is performed between the compressors B1 and B2.

また、冷暖房運転中に定速圧縮機B2が停止している場合には、対応する均油回路B5の電磁弁B51が開放されることによって、余剰オイルが吸入管B7に排出され、その余剰オイルが運転している可変速圧縮機B1に分配されることで有効オイル量を増やすことができる。   Further, when the constant speed compressor B2 is stopped during the air conditioning operation, the surplus oil is discharged to the suction pipe B7 by opening the solenoid valve B51 of the corresponding oil equalizing circuit B5, and the surplus oil Is distributed to the variable speed compressor B1 in operation, the effective oil amount can be increased.

さらに、各圧縮機B1、B2と吐出管B8の合流点の間に逆止弁B3が設けられているので、停止中の定速圧縮機B2への冷媒侵入を防止し、液冷媒滞留を防ぐことができる。   Further, since a check valve B3 is provided between the junctions of the compressors B1 and B2 and the discharge pipe B8, the refrigerant can be prevented from entering the stationary constant speed compressor B2 and liquid refrigerant can be prevented from staying. be able to.

また、可変速圧縮機B1のみが運転し、小能力運転を行っている場合には、対応する均油回路B5の電磁弁B51が閉じられており、均油配管による高低圧バイパスが存在せず、均油配管と可変速圧縮機B1の間のみを循環し続ける冷媒が無いため、小能力運転時の冷暖房効率の低下を防止できる。
特許第3848098号公報
Further, when only the variable speed compressor B1 is operated and the small capacity operation is performed, the electromagnetic valve B51 of the corresponding oil leveling circuit B5 is closed, and there is no high / low pressure bypass by the oil leveling pipe. In addition, since there is no refrigerant that continues to circulate only between the oil leveling pipe and the variable speed compressor B1, it is possible to prevent the cooling and heating efficiency from being reduced during small capacity operation.
Japanese Patent No. 3848098

しかしながら、このように、均油口B11、B21と吐出管B8とがオイル吐出バイパスB6によって接続されていると、可変速圧縮機B1の起動時に、オイル中に溶け込んでいる冷媒が沸騰するオイルフォーミングが発生した場合には、オイル吐出バイパスB6、吐出管B8を介して図示しない室内機側に多量のオイルが流入することになる。   However, when the oil equalization ports B11 and B21 and the discharge pipe B8 are connected by the oil discharge bypass B6 as described above, the oil forming that the refrigerant dissolved in the oil boils when the variable speed compressor B1 is started. When this occurs, a large amount of oil flows into the indoor unit (not shown) through the oil discharge bypass B6 and the discharge pipe B8.

また、仮に電磁弁B51を開放していても、図2の矢印で示されるように、大部分のオイルは均油回路B5よりも配管径が大きい吐出管B8側に流れてしまうため、オイルフォーミングによって多量のオイルが室内機側への流出することを根本的に解決することはできない。   Even if the solenoid valve B51 is opened, as shown by the arrow in FIG. 2, most of the oil flows toward the discharge pipe B8 having a larger pipe diameter than the oil equalizing circuit B5. Therefore, it cannot be fundamentally solved that a large amount of oil flows out to the indoor unit side.

この現象は直管を流れる冷媒流量の式(1)から説明することができる。   This phenomenon can be explained from the equation (1) of the refrigerant flow rate flowing through the straight pipe.

Q=πdΔp/128μL (1) Q = πd 4 Δp / 128 μL (1)

ここで、   here,

Q:冷媒流量 d:配管内径 Δp:圧力損失 μ:冷媒粘度 L:配管長さ   Q: Refrigerant flow rate d: Pipe inner diameter Δp: Pressure loss μ: Refrigerant viscosity L: Pipe length

である。   It is.

(1)式に示されるように直管を流れる冷媒流量は配管内径dに比例し、通常、均油回路B5の内径は、吐出管B8の内径に対して1/2〜1/3に設計されることから、均油回路B5に流れる冷媒流量は吐出管B8に流れる冷媒流量の1/16〜1/81であることが分かる。 (1) the refrigerant flow rate through the straight pipe as shown in equation proportional to the pipe inside diameter d 4, usually the inner diameter of the oil equalizing circuit B5 is a 1 / 2-1 / 3 with respect to the inner diameter of the discharge pipe B8 From the design, it can be seen that the flow rate of refrigerant flowing through the oil equalization circuit B5 is 1/16 to 1/81 of the flow rate of refrigerant flowing through the discharge pipe B8.

そして、オイルは冷媒流量に比例して分配されるので、オイルフォーミングが起こったときには、吐出管B8へ流出したオイルの量の1/16〜1/81しか均油回路B5を経由して吸入管B7に戻らず、残りは室内機側に流入し、長時間、圧縮機B1、B2のオイルが不足するという問題が発生する。   Since the oil is distributed in proportion to the refrigerant flow rate, when oil forming occurs, only 1/16 to 1/81 of the amount of oil flowing out to the discharge pipe B8 is passed through the oil equalization circuit B5 to the suction pipe. Without returning to B7, the remainder flows into the indoor unit, causing a problem that the oil in the compressors B1 and B2 is insufficient for a long time.

さらに、圧縮機B1、B2ごとに均油回路B5が設けられているため、部品点数が多くなり、コストダウンの障害となる。   Furthermore, since the oil equalization circuit B5 is provided for each of the compressors B1 and B2, the number of parts increases, which hinders cost reduction.

本願発明は上記のような問題点を鑑み、既存の均油システムの特長を活かしつつ圧縮機の起動時にオイルフォーミングが発生しても、短時間で各圧縮機のオイルレベルを適正に保つことができ、かつ低コスト化が可能となる空気調和装置を提供することを目的とする。   In view of the above problems, the present invention can maintain the oil level of each compressor properly in a short time even if oil forming occurs at the start of the compressor while taking advantage of the characteristics of the existing oil leveling system. An object of the present invention is to provide an air conditioner capable of reducing the cost.

すなわち、本発明に係る空気調和装置は、可変速圧縮機と定速圧縮機とを含む複数の高圧シェル圧縮機から吐出管を介して冷媒を導出し、前記圧縮機に吸入管を介して冷媒を導入するように構成した空気調和装置において、前記吐出管及び前記吸入管を電磁弁を介して接続する、前記吐出管よりも内径が小さい高低圧調整用のガスバイパスと、前記可変速圧縮機の標準油面高さ近傍に設けられた可変速圧縮機均油口及び前記ガスバイパスの前記電磁弁上流側を接続するオイル吐出バイパスと、前記定速圧縮機の標準油面高さ近傍に設けられた定速圧縮機均油口及び前記吸入管を接続する均油バイパスと、を備えることを特徴とする。   That is, the air conditioner according to the present invention derives refrigerant from a plurality of high-pressure shell compressors including a variable speed compressor and a constant speed compressor via a discharge pipe, and supplies the refrigerant to the compressor via a suction pipe. In the air conditioner configured to introduce a gas bypass, the discharge pipe and the suction pipe are connected via an electromagnetic valve, and a gas bypass for adjusting high and low pressures having an inner diameter smaller than that of the discharge pipe, and the variable speed compressor An oil discharge bypass connecting the variable speed compressor oil leveling port provided near the standard oil level height and the solenoid valve upstream side of the gas bypass, and provided near the standard oil level height of the constant speed compressor And an oil equalization bypass connecting the suction pipe with the constant-speed compressor.

ここで「高圧シェル圧縮機」とは、圧縮機の密閉容器内の圧力が吐出圧力とほぼ等しい圧縮機のことを指す。   Here, the “high pressure shell compressor” refers to a compressor in which the pressure in the hermetic container of the compressor is substantially equal to the discharge pressure.

このようなものであれば、起動時にオイルフォーミングが発生して多量のオイルが可変速圧縮機から流出しても、ガスバイパスを電磁弁によって開放すれば、流出したオイルの大部分をガスバイパスから吸入管を経由して圧縮機に戻すことができ、配管径の大きい吐出管に流出するオイルの量を従来に比べて減らすことができる。その結果、室内機側に流出するオイルの量を減らすことができるので、短時間で圧縮機のオイルレベルを適正に保つことができる。   If this is the case, even if a large amount of oil flows out of the variable speed compressor due to oil forming during start-up, if the gas bypass is opened by a solenoid valve, most of the oil that has flowed out of the gas bypass It can be returned to the compressor via the suction pipe, and the amount of oil flowing out to the discharge pipe having a large pipe diameter can be reduced as compared with the conventional case. As a result, since the amount of oil flowing out to the indoor unit side can be reduced, the oil level of the compressor can be kept appropriate in a short time.

また、通常の冷暖房運転中に、可変速圧縮機及び定速圧縮機がともに運転している場合には、可変速圧縮機の余剰オイルは、オイル吐出バイパスからガスバイパスを経由して吐出管に排出されて、室内機を経由して各圧縮機に分配される一方、定速圧縮機の余剰オイルは、均油バイパスから吸入管に排出され、各圧縮機に分配されるので、各圧縮機間の均油を好適に行うことができる。   Also, when the variable speed compressor and constant speed compressor are both operating during normal air conditioning operation, excess oil from the variable speed compressor is discharged from the oil discharge bypass to the discharge pipe via the gas bypass. While being discharged and distributed to each compressor via the indoor unit, surplus oil of the constant speed compressor is discharged from the oil equalization bypass to the suction pipe and distributed to each compressor. The oil leveling in between can be suitably performed.

さらに、通常の冷暖房運転中に定速圧縮機が停止している場合には、定速圧縮機の余剰オイルが運転中と同様に均油バイパスから吸入管に排出されたのちに、運転を行っている圧縮機に分配されるので、有効オイル量を増やすことができる。   In addition, when the constant speed compressor is stopped during normal air-conditioning operation, operation is performed after excess oil from the constant speed compressor is discharged from the oil equalization bypass to the intake pipe in the same manner as during operation. Since the oil is distributed to the compressor, the effective oil amount can be increased.

加えて、可変速圧縮機のみが運転を行う小能力運転時には、ガスバイパスを電磁弁によって閉塞することにより、可変速圧縮機から吐出された冷媒が、ガスバイパスを経由して可変速圧縮機に戻ることを阻害できるので、小能力運転時の冷暖房効率の低下を防止することができる。   In addition, during small capacity operation where only the variable speed compressor is operated, the gas bypass is closed by a solenoid valve, so that the refrigerant discharged from the variable speed compressor passes through the gas bypass to the variable speed compressor. Since the return can be hindered, it is possible to prevent a decrease in the cooling / heating efficiency during the small capacity operation.

オイルフォーミングが起こっている間は、多量のオイルが室内機側に流出しないようにし、オイルフォーミング終了後には通常の冷暖房運転に移行し、運転効率を向上させるためには、電磁弁を可変速圧縮機の起動から一定時間開放し、その後閉塞する電磁弁制御手段をさらに備えているのが好ましい。   While oil forming is taking place, a large amount of oil does not flow out to the indoor unit side, and after oil forming is completed, the normal air-conditioning operation is shifted to improve the operating efficiency. It is preferable to further include an electromagnetic valve control means that is opened for a predetermined time from the start of the machine and then closed.

可変速圧縮機は、冷暖房中には常時運転しているので、液冷媒の貯留はほとんど起こらない。従って、冷暖房中に停止している圧縮機への吐出管側からの冷媒侵入を防止して、液冷媒滞留を防ぐには、定速圧縮機側の吐出管のみに逆止弁を設けることが望ましい。又、このようにすれば、両方に逆止弁を設けたものと比べてコストダウンを図ることができる。   Since the variable speed compressor is always operated during cooling and heating, liquid refrigerant is hardly stored. Therefore, in order to prevent refrigerant from entering the compressor that is stopped during cooling and heating from the discharge pipe side and to prevent liquid refrigerant from staying, it is necessary to provide a check valve only on the discharge pipe on the constant speed compressor side. desirable. Moreover, if it does in this way, cost reduction can be aimed at compared with what provided the check valve in both.

小能力運転時は定速圧縮機が停止し、逆止弁による高圧回路との遮断と、均油バイパスによる低圧回路への連通で、圧縮機の密閉容器内が吸入圧力と等しくなるため、均油バイパスにより一部の冷媒が循環することはなく、冷暖房効率の低下は発生しない。従って、均油バイパスが定速圧縮機均油口及び吸入管を開閉弁を介さずに直接的に接続するように構成することが好ましく、その結果、開閉弁の省略によるコストダウンを図ることができる。   During small-capacity operation, the constant speed compressor stops and the compressor's sealed container becomes equal to the suction pressure by shutting off the high-pressure circuit with the check valve and communicating with the low-pressure circuit with the oil equalization bypass. Part of the refrigerant does not circulate due to the oil bypass, and the cooling / heating efficiency does not decrease. Therefore, it is preferable that the oil equalization bypass is configured to connect the constant speed compressor oil equalization port and the suction pipe directly without going through the on-off valve. As a result, the cost can be reduced by omitting the on-off valve. it can.

このように構成した本発明に係る空気調和装置は、圧縮機の起動時にオイルフォーミングが発生しても、短時間で各圧縮機のオイルレベルを適正に保つことができ、かつ低コスト化が可能である。さらに、冷暖房運転時に複数の圧縮機が運転している場合には、各圧縮機間の均油を行うことができ、冷暖房運転時に定速圧縮機が停止していても、余剰オイルが排出され、停止中の圧縮機内に液冷媒が滞留することがなく、小能力運転時にも冷暖房効率が低下しないという既存の空気調和装置の特長をも有している。   The air conditioner according to the present invention configured as described above can maintain the oil level of each compressor appropriately in a short time even if oil forming occurs at the time of starting the compressor, and can reduce the cost. It is. Furthermore, when a plurality of compressors are operating during the cooling / heating operation, it is possible to perform oil leveling between the compressors, and even if the constant speed compressor is stopped during the cooling / heating operation, excess oil is discharged. In addition, the liquid refrigerant does not stay in the stopped compressor, and there is also a feature of the existing air conditioner that the cooling / heating efficiency does not decrease even during the small capacity operation.

以下、本発明の一実施形態を、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本実施形態に係る空気調和装置100の室外機Aは、図3に示すように、並列配置した可変速圧縮機1と定速圧縮機2と、冷暖房の切り替えを行う四方弁A1と、外気と冷媒の熱交換を行う熱交換器A3と、室内機に流入する冷媒の状態を調整する可変バルブA4と、冷媒の液成分の分離を行い圧縮機に気体成分のみを送るアキュームレータA2と、を備えており、それぞれの構成部品は配管により接続されている。   As shown in FIG. 3, the outdoor unit A of the air conditioner 100 according to the present embodiment includes a variable speed compressor 1 and a constant speed compressor 2 that are arranged in parallel, a four-way valve A1 that switches between cooling and heating, and outside air. A heat exchanger A3 that performs heat exchange of the refrigerant, a variable valve A4 that adjusts the state of the refrigerant flowing into the indoor unit, and an accumulator A2 that separates the liquid component of the refrigerant and sends only the gas component to the compressor. Each component is connected by piping.

前記可変速圧縮機1と前記定速圧縮機2の周辺の配管について詳述する。   The piping around the variable speed compressor 1 and the constant speed compressor 2 will be described in detail.

前記可変速圧縮機1と前記定速圧縮機2のそれぞれは、冷媒を吐出するための吐出管8と冷媒を吸入するための吸入管7に接続されており、これら前記吐出管8と前記吸入管7との間には、高低圧を調整するためのガスバイパス4を設けている。さらに、各圧縮機1、2の間で均油を行うための配管として、前記可変速圧縮機1の標準油面高さ近傍に設けられた可変速圧縮機均油口11と前記ガスバイパス4とを接続するオイル吐出バイパス6と、前記定速圧縮機2の標準油面高さに設けられた定速圧縮機均油口21と前記吸入管7とを接続する均油バイパスと、を設けている。   Each of the variable speed compressor 1 and the constant speed compressor 2 is connected to a discharge pipe 8 for discharging the refrigerant and a suction pipe 7 for sucking the refrigerant. A gas bypass 4 for adjusting high and low pressure is provided between the pipe 7. Furthermore, the variable speed compressor oil leveling port 11 provided in the vicinity of the standard oil level height of the variable speed compressor 1 and the gas bypass 4 as pipes for leveling the oil between the compressors 1 and 2. And an oil discharge bypass 6 for connecting the suction pipe 7 and the constant speed compressor oil leveling port 21 provided at the standard oil level height of the constant speed compressor 2. ing.

各部について説明する。   Each part will be described.

前記可変速圧縮機1は、吸入した冷媒を圧縮して、吐出するものであり、外部からの信号によってその吐出量を変化させることができるものである。本実施形態では、この可変速圧縮機を冷暖房運転中においては常時動作させるように構成してある。   The variable speed compressor 1 compresses and discharges the sucked refrigerant, and can change the discharge amount by an external signal. In the present embodiment, the variable speed compressor is configured to always operate during the air conditioning operation.

前記定速圧縮機2は、吸入した冷媒を圧縮して、一定の圧力で吐出するものである。本実施形態では、小能力運転時には、停止させるように構成してある。   The constant speed compressor 2 compresses the sucked refrigerant and discharges it with a constant pressure. In the present embodiment, it is configured to stop at the time of small capacity operation.

前記吐出管8は、前記可変速圧縮機1と前記定速圧縮機2とから延出し、合流した後に四方弁A1に接続されるものである。この吐出管8における合流点81と前記定速圧縮機2との間には、当該吐出管8から前記定速圧縮機2に冷媒が逆流しないように逆止弁3が設けられている。   The discharge pipe 8 extends from the variable speed compressor 1 and the constant speed compressor 2 and joins the four-way valve A1 after joining. A check valve 3 is provided between the junction 81 in the discharge pipe 8 and the constant speed compressor 2 so that the refrigerant does not flow back from the discharge pipe 8 to the constant speed compressor 2.

前記吸入管7は、アキュームレータA2から延出し、途中で分岐して、前記可変速圧縮機1と前記定速圧縮機2とにそれぞれ接続されるものである。   The suction pipe 7 extends from the accumulator A2, branches in the middle, and is connected to the variable speed compressor 1 and the constant speed compressor 2, respectively.

前記ガスバイパス4には、前記電磁弁41とガスバイパス減圧部42とが設けられている。このガスバイパス4は、前記吐出管8の合流点11と四方弁A1との間から前記吸入管7のアキュームレータA2と分岐点71との間までを接続するものであり、前記ガスバイパス減圧部42を除く部分の内径は前記吐出管8に対して1/2〜1/3に設定されている。このように、前記吐出管8に対してガスバイパス4の管径を細くするのは、冷暖房に寄与しない冷媒が多量に流れるのを防ぎ、COPが低下するのを防ぐためである。また、ガスバイパス4を用いて高低圧を調整するのは、冷房時の吸入圧力低下、もしくは暖房時の吐出圧力上昇が発生しやすい小能力運転時であり、冷媒循環量が負荷の大きい通常運転時に比べて少ないため、多量の冷媒をバイパスさせる必要がないからでもある。   The gas bypass 4 is provided with the electromagnetic valve 41 and a gas bypass decompression unit 42. This gas bypass 4 connects between the junction point 11 of the discharge pipe 8 and the four-way valve A1 to between the accumulator A2 of the suction pipe 7 and the branch point 71. The gas bypass decompression section 42 The inner diameter of the portion excluding is set to 1/2 to 1/3 with respect to the discharge pipe 8. The reason why the pipe diameter of the gas bypass 4 is made thinner than the discharge pipe 8 is to prevent a large amount of refrigerant that does not contribute to cooling and heating from flowing and to prevent COP from decreasing. Further, the high and low pressures are adjusted using the gas bypass 4 during a small capacity operation in which a suction pressure drop during cooling or a discharge pressure rise during heating is likely to occur, and a normal operation with a large load of refrigerant circulation This is also because there is no need to bypass a large amount of refrigerant because it is less than sometimes.

電磁弁4は、開閉信号を受信して開閉するリモートコントロール可能なものであり、その開閉信号は電磁弁制御手段9から出力される。この前記電磁弁制御手段9は、例えば、専用の電気回路やコンピュータで構成されたものである。   The electromagnetic valve 4 can be remotely controlled to open and close by receiving an open / close signal, and the open / close signal is output from the electromagnetic valve control means 9. The electromagnetic valve control means 9 is constituted by, for example, a dedicated electric circuit or a computer.

前記ガスバイパス減圧部42は、冷媒の流れに対する抵抗となるものであり、このガスバイパス減圧部42によって、例えば小能力運転時の高低圧調整を行うことができる。このガスバイパス減圧部42の流路抵抗は、本来、その内径寸法を小さくするなどして高低圧調整を行うためにガスバイパスを通る冷媒の減圧を行い、小能力運転時に高低圧の調整を行うために必要な最大限の値に設定すべきところ、本実施形態では、起動時に可変速圧縮機から吐出されるオイルを排出できるように、その流路抵抗を小さく設定している。ただし、このようにすると、必要量以上の冷媒が吐出管8から吸入管7に流れてしまい、小能力運転中の高低圧調整時における効率低下が著しくなるため、その際の電磁弁41の開放時間を、前記ガスバイパス減圧部42を本来の流路抵抗値に設定した場合に比べて短く設定するようにしている。   The gas bypass pressure-reducing unit 42 serves as a resistance to the flow of the refrigerant, and the gas bypass pressure-reducing unit 42 can perform, for example, high-low pressure adjustment during small capacity operation. The flow path resistance of the gas bypass decompression unit 42 is originally to reduce the refrigerant passing through the gas bypass in order to adjust the high and low pressures by reducing the inner diameter dimension, etc., and adjust the high and low pressures during small capacity operation. Therefore, in this embodiment, the flow path resistance is set to be small so that oil discharged from the variable speed compressor at the time of startup can be discharged. However, if this is done, more refrigerant than necessary will flow from the discharge pipe 8 to the suction pipe 7, and the efficiency will be significantly reduced during high-low pressure adjustment during small capacity operation. The time is set to be shorter than when the gas bypass pressure reducing unit 42 is set to the original flow path resistance value.

前記オイル吐出バイパス6は、前記可変速圧縮機均油口11と前記ガスバイパスの電磁弁41の上流とを接続し、前記ガスバイパス4のガスバイパス減圧部42を除く部分の配管径と同じ配管径を有したものである。   The oil discharge bypass 6 connects the variable speed compressor oil equalizing port 11 and the upstream side of the solenoid valve 41 of the gas bypass, and has the same pipe diameter as that of the portion of the gas bypass 4 excluding the gas bypass decompression section 42. It has a diameter.

前記均油バイパス5は、その一端が、前記定速圧縮機均油口21に接続されたもので、この定速圧縮機均油口21よりも上に貯留された余剰オイルを、可変速圧縮機1側の吸入管7に排出するように構成されている。この均油バイパス5の流量容量は、前記可変速圧縮機1が大容量運転を行っている場合などの前記定速圧縮機2のオイル量が増加する条件で設定される。前記均油バイパス5の途中には弁等は設けられておらず、前記定速圧縮機2から流れてくる冷媒の減圧を行う均油バイパス減圧部51のみが設けられている。   One end of the oil equalization bypass 5 is connected to the constant speed compressor oil equalization port 21, and variable oil compression is performed on excess oil stored above the constant speed compressor oil equalization port 21. It is configured to discharge to the suction pipe 7 on the machine 1 side. The flow rate capacity of the oil equalization bypass 5 is set on the condition that the oil amount of the constant speed compressor 2 increases, such as when the variable speed compressor 1 is operating at a large capacity. A valve or the like is not provided in the middle of the oil equalization bypass 5, and only the oil equalization bypass pressure reducing unit 51 for reducing the pressure of the refrigerant flowing from the constant speed compressor 2 is provided.

次に、圧縮機起動時の空気調和装置100の動作を図4を用いてオイルの挙動と合わせて説明する。   Next, operation | movement of the air conditioning apparatus 100 at the time of a compressor starting is demonstrated with the behavior of oil using FIG.

圧縮機起動時には、前記可変速圧縮機1のみが運転を行い、前記電磁弁41が前記電磁弁制御手段9によって開放される。前記可変速圧縮機1が起動したときに、特に外気温が低い場合には、オイルフォーミングが発生し、多量のオイルが前記可変速圧縮機1から流出する。この多量のオイルはオイル吐出バイパス6を介してガスバイパス4に流入する。   When the compressor is activated, only the variable speed compressor 1 operates, and the electromagnetic valve 41 is opened by the electromagnetic valve control means 9. When the variable speed compressor 1 is started, particularly when the outside air temperature is low, oil forming occurs and a large amount of oil flows out of the variable speed compressor 1. This large amount of oil flows into the gas bypass 4 through the oil discharge bypass 6.

このとき、前記吐出管8のほうが前記吸入管7よりも高圧であるため、ガスバイパス4に流入したオイルの一部は前記吸入管7へ流れ、従来の配管方法と比べて多量のオイルが圧縮機に戻される。   At this time, since the discharge pipe 8 has a higher pressure than the suction pipe 7, a part of the oil flowing into the gas bypass 4 flows to the suction pipe 7, and a large amount of oil is compressed as compared with the conventional piping method. Returned to the machine.

可変速圧縮機1からオイルフォーミングによって多量のオイルが流出しなくなる時間になると、前記電磁弁41は閉じ、通常の冷暖房運転に切り替わる。   When it is time to stop a large amount of oil from flowing out of the variable speed compressor 1 due to oil forming, the solenoid valve 41 is closed and the operation is switched to the normal air conditioning operation.

このオイルフォーミングによって多量のオイルが流出しなくなる時間はあらかじめ実験的に求めておき、前記電磁弁制御手段9に記憶させておく。例えば、圧縮機シェルか吐出管にオイル挙動を監視することができるサイトグラスを設けておき、低気温で長時間放置しておいた圧縮機を起動させ、オイルフォーミングや多量のオイル流動が終わるまでの時間を測定すればよい。   The time during which a large amount of oil does not flow out by this oil forming is experimentally determined in advance and stored in the electromagnetic valve control means 9. For example, install a sight glass that can monitor the oil behavior in the compressor shell or discharge pipe, start the compressor that has been left at low temperature for a long time, until oil forming and a large amount of oil flow finish It is sufficient to measure the time.

冷暖房運転時の空気調和装置100の動作と、オイル挙動について説明する。   The operation of the air conditioner 100 during the air conditioning operation and the oil behavior will be described.

冷暖房運転中には、前記ガスバイパス4の前記電磁弁41は閉じられているため、前記可変速圧縮機1の余剰オイルは前記吐出管8に排出され、図示しない室内機を経由して各圧縮機1、2に分配される。   During the cooling / heating operation, the solenoid valve 41 of the gas bypass 4 is closed, so that excess oil of the variable speed compressor 1 is discharged to the discharge pipe 8 and is compressed through an indoor unit (not shown). It is distributed to machines 1 and 2.

前記定速圧縮機2の余剰オイルは、前記定速圧縮機2が運転しているときには、前記均油バイパス5から前記吸入管7へ排出され、各圧縮機1、2に分配される。   Excess oil of the constant speed compressor 2 is discharged from the oil equalization bypass 5 to the suction pipe 7 and distributed to the compressors 1 and 2 when the constant speed compressor 2 is operating.

前記定速圧縮機2が運転していないときには、運転しているときと同様に前記均油バイパス5から前記吸入管7へ余剰オイルが排出され、運転を行っている前記可変速圧縮機1に分配される。   When the constant speed compressor 2 is not in operation, excess oil is discharged from the oil equalization bypass 5 to the suction pipe 7 in the same manner as when the constant speed compressor 2 is in operation. Distributed.

また、小能力運転時に、暖房の設定温度が標準的な使用条件よりも高く、前記吐出管8側の圧力が規定値よりも高い、あるいは、冷房の設定温度が標準的な使用条件よりも低く前記吸入管7の圧力が規定値よりも低い場合には、前記吐出管8と前記吸入管7との間の圧力調整を行うために、前記電磁弁41を一定時間開放する。   In the small capacity operation, the heating set temperature is higher than the standard use condition, the pressure on the discharge pipe 8 side is higher than the specified value, or the cooling set temperature is lower than the standard use condition. When the pressure in the suction pipe 7 is lower than a specified value, the electromagnetic valve 41 is opened for a certain period of time in order to adjust the pressure between the discharge pipe 8 and the suction pipe 7.

このように、本実施形態に係る空気調和装置100によれば、オイル吐出バイパス6が吐出管8に接続されるのではなく、吐出管6よりも内径の小さい高低圧調整用のガスバイパス4に直接接続されており、起動時にオイルフォーミングが発生して多量のオイルが可変速圧縮機1から流出しても、電磁弁41が開放されて、流出したオイルの量の一部をガスバイパス4を経由して吸入管7側に戻し、各圧縮機1、2に戻すことができる。その結果、室内機側に流出するオイルの量を大幅に減らすことができるので、短時間で圧縮機のオイルレベルを適正に保つことができる。   As described above, according to the air conditioner 100 according to the present embodiment, the oil discharge bypass 6 is not connected to the discharge pipe 8, but the high-low pressure adjustment gas bypass 4 having an inner diameter smaller than that of the discharge pipe 6. Even if a large amount of oil flows out of the variable speed compressor 1 due to the occurrence of oil forming at the time of start-up, the solenoid valve 41 is opened and a part of the amount of oil that has flowed out is passed through the gas bypass 4. It can return to the suction pipe 7 side via, and can return to each compressor 1,2. As a result, the amount of oil flowing out to the indoor unit can be significantly reduced, so that the oil level of the compressor can be kept appropriate in a short time.

さらに、オイルフォーミングが起こったときに流出したオイルを吸入管7に戻すために、吐出管8及び吸入管7の間の高低圧調整用に設けられている既存のガスバイパス4を利用しているので、新たに均油を行うための配管を設ける必要が無く、新たなコストアップを招くことがない。   Furthermore, in order to return the oil that has flowed out when oil forming occurs to the suction pipe 7, the existing gas bypass 4 provided for high and low pressure adjustment between the discharge pipe 8 and the suction pipe 7 is used. Therefore, there is no need to newly provide piping for oil equalization, and a new cost increase is not caused.

電磁弁制御手段9が可変速圧縮機1の起動時に電磁弁41を開放し、オイルフォーミングによって多量のオイルが流出しなくなる時間になると電磁弁41を閉じるように構成されているので、起動時に多量のオイルが図示しない室内機側に流出するのを防ぎつつ、オイルフォーミングが終われば通常の冷暖房運転に切り替えて、運転効率を向上させることができる。   The solenoid valve control means 9 is configured to open the solenoid valve 41 when the variable speed compressor 1 is started, and close the solenoid valve 41 when a large amount of oil does not flow out due to oil forming. It is possible to improve the operation efficiency by switching to the normal air conditioning operation after the oil forming is completed while preventing the oil from flowing out to the indoor unit (not shown).

通常の冷暖房運転中に、可変圧縮機1及び定速圧縮機2がともに運転している場合には、可変速圧縮機1の余剰オイルは、オイル吐出バイパス6からガスバイパス4を経由して、吐出管8に排出されて、図示しない室内機を経由して各圧縮機1、2に分配され、定速圧縮機2の余剰オイルは、均油バイパス5から吸入管7に排出されて各圧縮機1、2に分配されるので、圧縮機1、2間の均油を行うことができる。   When both the variable compressor 1 and the constant speed compressor 2 are operating during normal air conditioning operation, surplus oil in the variable speed compressor 1 passes from the oil discharge bypass 6 via the gas bypass 4, The oil is discharged to the discharge pipe 8 and distributed to the compressors 1 and 2 via an indoor unit (not shown). Excess oil of the constant speed compressor 2 is discharged from the oil equalization bypass 5 to the suction pipe 7 and compressed. Since the oil is distributed to the machines 1 and 2, the oil leveling between the compressors 1 and 2 can be performed.

冷暖房運転中に、定速圧縮機2が運転していない場合には、定速圧縮機2の余剰オイルは均油バイパス5から吸入管7に排出されて、運転している可変速圧縮機1に分配されるので、有効オイル量を増やすことができる。   When the constant speed compressor 2 is not in operation during the cooling / heating operation, surplus oil in the constant speed compressor 2 is discharged from the oil equalization bypass 5 to the suction pipe 7, and the variable speed compressor 1 in operation is operating. Therefore, the effective oil amount can be increased.

小能力運転時に運転を行う可変速圧縮機1には、標準的な使用条件では電磁弁41は閉じられているので、ガスバイパス4を経由して冷媒が圧縮機1、2に戻らない。したがって、ガスバイパス4と可変速圧縮機1との間のみを循環する冷媒が存在しないため、小能力運転時の冷暖房効率低下を防止することができる。   In the variable speed compressor 1 that operates during the small capacity operation, the solenoid valve 41 is closed under standard use conditions, so that the refrigerant does not return to the compressors 1 and 2 via the gas bypass 4. Therefore, since there is no refrigerant that circulates only between the gas bypass 4 and the variable speed compressor 1, it is possible to prevent the cooling and heating efficiency from being reduced during the small capacity operation.

定速圧縮機2の吐出管8には逆止弁3が設置されているので、冷暖房運転中に定速圧縮機2が停止している場合でも、高圧側の吐出管8から定速圧縮機の内部に冷媒が侵入せず、圧縮機内部に液冷媒が滞留するのを防ぐことができる。   Since the check valve 3 is installed in the discharge pipe 8 of the constant speed compressor 2, even when the constant speed compressor 2 is stopped during the cooling and heating operation, the constant speed compressor is discharged from the discharge pipe 8 on the high pressure side. It is possible to prevent liquid refrigerant from staying in the compressor without entering the interior of the compressor.

可変速圧縮機1は、冷暖房中は常時運転しており、吐出管8から可変速圧縮機1へ液冷媒が侵入しにくいので、可変速圧縮機1側の吐出管8には逆止弁を設けていない。つまり、定速圧縮機2側の吐出管8にのみ逆止弁3を設けているので、可変速圧縮機と定速圧縮機の両方に逆止弁を設けている空気調和装置に比べて部品点数を減らすことができる。   The variable speed compressor 1 is always operated during cooling and heating, and liquid refrigerant is unlikely to enter the variable speed compressor 1 from the discharge pipe 8. Therefore, a check valve is provided on the discharge pipe 8 on the variable speed compressor 1 side. Not provided. That is, since the check valve 3 is provided only in the discharge pipe 8 on the constant speed compressor 2 side, it is a component compared to an air conditioner in which check valves are provided in both the variable speed compressor and the constant speed compressor. The score can be reduced.

定速圧縮機2は、小能力運転時に停止しているため、定速圧縮機2に高低圧をバイパスする均油バイパス5が設けられていても、全く冷暖房効率を下げないので、均油バイパス5には開閉弁を設けていない。つまり、定速圧縮機均油口2及び吸入管7を開閉弁を介さずに接続しているので、部品点数をさらに減らし、コストダウンを図ることができる。   Since the constant speed compressor 2 is stopped during the small capacity operation, even if the constant speed compressor 2 is provided with the oil equalization bypass 5 for bypassing high and low pressure, the air conditioning efficiency is not lowered at all. No open / close valve is provided in 5. That is, since the constant speed compressor oil equalizing port 2 and the suction pipe 7 are connected without using the on-off valve, the number of parts can be further reduced and the cost can be reduced.

なお、本発明は前記図示例や実施形態に限られず、その主旨を逸脱しない範囲で種々の変形が可能である。   The present invention is not limited to the illustrated examples and embodiments, and various modifications can be made without departing from the spirit of the invention.

例えば、電磁弁41を常に開放しておくようにしても、起動時のオイルフォーミングによる室内機側へのオイル流出を防ぐことはできる。   For example, even if the solenoid valve 41 is always opened, it is possible to prevent oil from flowing out to the indoor unit due to oil forming at the time of startup.

可変速圧縮機1側の吐出管8にも、逆止弁3を設けたものであっても構わない。このようなものであれば、例えば、空気調和装置100が停止しているときに、可変速圧縮機1に吐出管8から冷媒が逆流し、可変速圧縮機1の内部に冷媒が貯留されることを防ぐことができる。   The discharge pipe 8 on the variable speed compressor 1 side may also be provided with the check valve 3. If it is such, for example, when the air conditioner 100 is stopped, the refrigerant flows backward from the discharge pipe 8 to the variable speed compressor 1, and the refrigerant is stored in the variable speed compressor 1. Can be prevented.

均油バイパス5に開閉弁が設けられたものであれば、定速圧縮機2の運転時に均油する必要が無いときには、開閉弁を閉じておくことで、前記均油バイパス5と前記定速圧縮機2との間を循環する冷媒を無くすことができ、冷暖房の効率を上げることができる。   If the oil equalization bypass 5 is provided with an opening / closing valve, when there is no need to equalize oil during operation of the constant speed compressor 2, the oil equalization bypass 5 and the constant speed are closed by closing the opening / closing valve. The refrigerant circulating between the compressor 2 can be eliminated, and the efficiency of air conditioning can be increased.

従来の空気調和装置の模式図。The schematic diagram of the conventional air conditioning apparatus. 従来の空気調和装置の起動時のオイル挙動の模式図。The schematic diagram of the oil behavior at the time of starting of the conventional air conditioning apparatus. 本発明の一実施形態に係る空気調和装置の模式図。The schematic diagram of the air conditioning apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る空気調和装置の起動時のオイル挙動の模式図。The schematic diagram of the oil behavior at the time of starting of the air conditioning apparatus which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

100・・・空気調和装置
1・・・可変速圧縮機
11・・・可変速圧縮機均油口
2・・・定速圧縮機
22・・・定速圧縮機均油口
3・・・逆止弁
4・・・ガスバイパス
41・・・電磁弁
5・・・均油バイパス
6・・・オイル吐出バイパス
7・・・吸入管
8・・・吐出管
9・・・電磁弁制御手段

DESCRIPTION OF SYMBOLS 100 ... Air conditioning apparatus 1 ... Variable speed compressor 11 ... Variable speed compressor oil equalizing port 2 ... Constant speed compressor 22 ... Constant speed compressor oil equalizing port 3 ... Reverse Stop valve 4 ... Gas bypass 41 ... Solenoid valve 5 ... Oil equalization bypass 6 ... Oil discharge bypass 7 ... Suction pipe 8 ... Discharge pipe 9 ... Solenoid valve control means

Claims (4)

可変速圧縮機と定速圧縮機とを含む複数の高圧シェル圧縮機から吐出管を介して冷媒を導出し、前記圧縮機に吸入管を介して冷媒を導入するように構成した空気調和装置において、
前記吐出管及び前記吸入管を電磁弁を介して接続する、前記吐出管よりも内径が小さい高低圧調整用のガスバイパスと、
前記可変速圧縮機の標準油面高さ近傍に設けられた可変速圧縮機均油口及び前記ガスバイパスの前記電磁弁上流側を接続するオイル吐出バイパスと、
前記定速圧縮機の標準油面高さ近傍に設けられた定速圧縮機均油口及び前記吸入管を接続する均油バイパスと、を備え
前記電磁弁が閉じられている状態で、前記可変速圧縮機の余剰オイルが可変速均油口からオイル吐出バイパス、ガスバイパス、吐出管、室内機をこの順番で経由して各圧縮機に分配されるように構成されていることを特徴とする空気調和装置。
In an air conditioner configured to derive a refrigerant from a plurality of high-pressure shell compressors including a variable speed compressor and a constant speed compressor via a discharge pipe and introduce the refrigerant to the compressor via a suction pipe ,
Connecting the discharge pipe and the suction pipe via a solenoid valve, a gas bypass for high and low pressure adjustment having a smaller inner diameter than the discharge pipe;
An oil discharge bypass for connecting a variable speed compressor oil leveling port provided near the standard oil level height of the variable speed compressor and the solenoid valve upstream side of the gas bypass;
A constant speed compressor oil leveling port provided near the standard oil level height of the constant speed compressor, and an oil leveling bypass connecting the suction pipe ,
With the solenoid valve closed, excess oil of the variable speed compressor is distributed from the variable speed oil distribution port to each compressor via the oil discharge bypass, gas bypass, discharge pipe, and indoor unit in this order. It is comprised so that it may be performed . The air conditioning apparatus characterized by the above-mentioned .
前記電磁弁を前記可変速圧縮機の起動から一定時間開放する電磁弁制御手段をさらに備えている請求項1記載の空気調和装置。   The air conditioning apparatus according to claim 1, further comprising electromagnetic valve control means for opening the electromagnetic valve for a predetermined time from the start of the variable speed compressor. 前記定速圧縮機側の吐出管にのみ逆止弁が設けられている請求項1又は2記載の空気調和装置。   The air conditioner according to claim 1 or 2, wherein a check valve is provided only in the discharge pipe on the constant speed compressor side. 前記均油バイパスが前記定速圧縮機均油口及び前記吸入管を開閉弁を介さずに直接的に接続するものである請求項1、2又は3記載の空気調和装置。
The air conditioner according to claim 1, 2 or 3, wherein the oil equalization bypass directly connects the constant speed compressor oil equalization port and the suction pipe without an on-off valve.
JP2007331226A 2007-12-22 2007-12-22 Oil leveling system for high pressure shell compressor used in air conditioner Expired - Fee Related JP5329078B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007331226A JP5329078B2 (en) 2007-12-22 2007-12-22 Oil leveling system for high pressure shell compressor used in air conditioner
KR1020080128562A KR101585948B1 (en) 2007-12-22 2008-12-17 Air conditioner
CN2008101890166A CN101469910B (en) 2007-12-22 2008-12-19 Air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007331226A JP5329078B2 (en) 2007-12-22 2007-12-22 Oil leveling system for high pressure shell compressor used in air conditioner

Publications (2)

Publication Number Publication Date
JP2009150628A JP2009150628A (en) 2009-07-09
JP5329078B2 true JP5329078B2 (en) 2013-10-30

Family

ID=40827619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007331226A Expired - Fee Related JP5329078B2 (en) 2007-12-22 2007-12-22 Oil leveling system for high pressure shell compressor used in air conditioner

Country Status (3)

Country Link
JP (1) JP5329078B2 (en)
KR (1) KR101585948B1 (en)
CN (1) CN101469910B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117674A (en) * 2009-12-03 2011-06-16 Samsung Electronics Co Ltd Fluid circuit and refrigerating cycle device using the same
CN105492227B (en) 2013-03-13 2017-11-21 博格思众公司 Use the air-conditioning system for fresh air supply and the recuperation of heat ventilation blower of climate controlling
EP3065959B1 (en) 2013-11-04 2020-06-10 Bergstrom, Inc. Low profile air conditioning system
US9783024B2 (en) 2015-03-09 2017-10-10 Bergstrom Inc. System and method for remotely managing climate control systems of a fleet of vehicles
JP2016166719A (en) * 2015-03-10 2016-09-15 株式会社富士通ゼネラル Air conditioning device
US9874384B2 (en) 2016-01-13 2018-01-23 Bergstrom, Inc. Refrigeration system with superheating, sub-cooling and refrigerant charge level control
US10589598B2 (en) 2016-03-09 2020-03-17 Bergstrom, Inc. Integrated condenser and compressor system
US10081226B2 (en) 2016-08-22 2018-09-25 Bergstrom Inc. Parallel compressors climate system
US10562372B2 (en) 2016-09-02 2020-02-18 Bergstrom, Inc. Systems and methods for starting-up a vehicular air-conditioning system
US10675948B2 (en) 2016-09-29 2020-06-09 Bergstrom, Inc. Systems and methods for controlling a vehicle HVAC system
US10369863B2 (en) 2016-09-30 2019-08-06 Bergstrom, Inc. Refrigerant liquid-gas separator with electronics cooling
US10724772B2 (en) 2016-09-30 2020-07-28 Bergstrom, Inc. Refrigerant liquid-gas separator having an integrated check valve
US11448441B2 (en) 2017-07-27 2022-09-20 Bergstrom, Inc. Refrigerant system for cooling electronics
JP6938321B2 (en) * 2017-10-12 2021-09-22 三菱重工サーマルシステムズ株式会社 Centrifugal chiller and its start control method
US11420496B2 (en) 2018-04-02 2022-08-23 Bergstrom, Inc. Integrated vehicular system for conditioning air and heating water

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0784971B2 (en) * 1989-04-11 1995-09-13 ダイキン工業株式会社 Operation control device for air conditioner
JPH0772647B2 (en) * 1989-12-14 1995-08-02 ダイキン工業株式会社 Pressure equalizer for air conditioner
JPH05141792A (en) * 1991-11-15 1993-06-08 Nippondenso Co Ltd High-humidity refrigerator
JPH06288656A (en) * 1993-04-01 1994-10-18 Mitsubishi Electric Corp Refrigeration cycle in air conditioner
JP2002242833A (en) * 2001-02-15 2002-08-28 Toshiba Kyaria Kk Refrigerating cycle device
JP3848098B2 (en) * 2001-05-01 2006-11-22 株式会社日立製作所 Air conditioner
JP2004205175A (en) * 2002-12-26 2004-07-22 Toshiba Kyaria Kk Refrigerator
ES2407651T3 (en) * 2003-02-27 2013-06-13 Toshiba Carrier Corporation Refrigeration cycle apparatus
JP2007248001A (en) * 2006-03-17 2007-09-27 Mitsubishi Electric Corp Refrigeration air conditioner

Also Published As

Publication number Publication date
CN101469910A (en) 2009-07-01
KR20090068136A (en) 2009-06-25
JP2009150628A (en) 2009-07-09
CN101469910B (en) 2012-09-05
KR101585948B1 (en) 2016-01-15

Similar Documents

Publication Publication Date Title
JP5329078B2 (en) Oil leveling system for high pressure shell compressor used in air conditioner
JP4108957B2 (en) Refrigeration equipment
CN109595846B (en) Heat pump unit and method for controlling heat pump unit
JP2011208860A (en) Air conditioner
US11060771B2 (en) Air conditioner with a refrigerant ratio adjustor
US8221104B2 (en) Screw compressor having a slide valve with hot gas bypass port
JP2008267707A (en) Refrigerant system having multi-speed scroll compressor and economizer circuit
JP7330367B2 (en) Heat source unit, refrigeration cycle device and refrigerator
JP4046136B2 (en) Refrigeration equipment
US20110138827A1 (en) Improved operation of a refrigerant system
JP7116346B2 (en) Heat source unit and refrigerator
CN110779237B (en) Hybrid cooling system
JP3984258B2 (en) Air conditioner
JP4031560B2 (en) Air conditioner
JP2017150689A (en) Air conditioner
JP2017116136A (en) Air conditioner
CN114659238B (en) Air conditioning system and low-temperature starting control method thereof
JP2012149834A (en) Heat pump
US11506427B2 (en) Air conditioning apparatus
JP4278229B2 (en) Air conditioner
JP2012233640A (en) Air conditioner
JP2016095045A (en) Air conditioning device
JP5573741B2 (en) Air conditioner
JP4779609B2 (en) Refrigeration equipment
US11959676B2 (en) Method for controlling a vapour compression system at a reduced suction pressure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120910

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120913

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121012

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121017

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121107

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130724

R150 Certificate of patent or registration of utility model

Ref document number: 5329078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees