JP5327608B2 - Disc material polishing method and polishing apparatus - Google Patents

Disc material polishing method and polishing apparatus Download PDF

Info

Publication number
JP5327608B2
JP5327608B2 JP2009049444A JP2009049444A JP5327608B2 JP 5327608 B2 JP5327608 B2 JP 5327608B2 JP 2009049444 A JP2009049444 A JP 2009049444A JP 2009049444 A JP2009049444 A JP 2009049444A JP 5327608 B2 JP5327608 B2 JP 5327608B2
Authority
JP
Japan
Prior art keywords
polishing
disk material
concentration
abrasive
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009049444A
Other languages
Japanese (ja)
Other versions
JP2010205336A5 (en
JP2010205336A (en
Inventor
昇 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2009049444A priority Critical patent/JP5327608B2/en
Publication of JP2010205336A publication Critical patent/JP2010205336A/en
Publication of JP2010205336A5 publication Critical patent/JP2010205336A5/ja
Application granted granted Critical
Publication of JP5327608B2 publication Critical patent/JP5327608B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ディスク材の研磨方法および研磨装置に関する。 The present invention relates to a disk material polishing method and a polishing apparatus .

各種磁気記録装置に搭載され、磁気抵抗型ヘッドあるいは大型磁気抵抗型ヘッド等対応の磁気記録媒体すなわち磁気ディスク(例えばハードディスク)用基板の内のガラス基板は、例えば、次の工程を経ることで作製される。まず、ガラス材料を半溶融状態にしてプレス成形して円板状の板材(メルトプレス材)とするか、あるいはシート成形したものを規定サイズに切断することにより、角板状の板材が得られる。そして、その円板状の板材の中心部に円孔をあける、あるいは中心部と外周部を丸く切り抜くことで、中心部に円孔を有する円板すなわちドーナツ状のガラスディスク材が得られる。次いで、そのドーナツ状のガラスディスク材の外周部および内周部といった周辺部の稜角部分に対して、面取り加工(チャンファー(chamfer)加工)が施される。これらの工程を通じて、ほぼ所定の寸法を有するドーナツ状のガラスディスク材が得られる。さらに、ほぼ所定の寸法を有するドーナツ状のガラスディスク材の主表面に対してラッピング加工が施される。そしてこのようにして得られたガラスディスク材に対して、その端面(外周端面および内周端面)や主表面を鏡面にするべく、仕上げ研磨を含む研磨が行われる。このようにして、磁気ディスクの作製に用いられるガラス基板としてのガラスディスク材が得られる。   A glass substrate mounted on various magnetic recording devices and corresponding to a magnetoresistive head or a large magnetoresistive head or the like, that is, a substrate for a magnetic disk (for example, hard disk) is produced by, for example, the following steps Is done. First, a glass material is press-molded in a semi-molten state to form a disk-shaped plate material (melt press material), or a sheet-shaped material is cut into a specified size to obtain a square plate-shaped plate material. . Then, by making a circular hole in the central part of the disk-shaped plate material or by cutting out the central part and the outer peripheral part, a circular plate having a circular hole in the central part, that is, a donut-shaped glass disk material can be obtained. Next, chamfering (chamfer processing) is performed on the ridge corner portions of the peripheral portion such as the outer peripheral portion and the inner peripheral portion of the doughnut-shaped glass disk material. Through these steps, a donut-shaped glass disk material having a substantially predetermined dimension is obtained. Further, lapping is performed on the main surface of the donut-shaped glass disk material having a substantially predetermined dimension. Then, the glass disk material thus obtained is subjected to polishing including finish polishing so that the end surfaces (outer peripheral end surface and inner peripheral end surface) and the main surface are mirror surfaces. In this manner, a glass disk material as a glass substrate used for manufacturing a magnetic disk is obtained.

この他、磁気ディスク用基板には、非磁性基板としてのアルミニウム基板、セラミックス基板などがある。しかし、これらには、ある程度以上の平滑性を有する表面を有するように、いずれも仕上げ研磨を含む研磨加工が施される。   In addition, examples of the magnetic disk substrate include an aluminum substrate and a ceramic substrate as a nonmagnetic substrate. However, these are all subjected to a polishing process including finish polishing so as to have a surface having a certain level of smoothness.

例えば、特許文献1には、表面に研磨剤の残存等に起因する突起がない平滑な面を有する基板を得るべく創案された製造方法が開示されている。この方法に関する記載によれば、そのような基板を得るための研磨液および研磨パッドによる仕上げ研磨加工では、研磨液の研磨剤濃度を徐々に或いは段階的に低下させ、最終的には研磨剤濃度を略ゼロにすることが行われる。具体的には、まず、研磨加工圧力30〜100g/cm2等の条件下で、酸化セリウムを水で溶いて濃度2重量%とした研磨液を用いた研磨が行われ、その後、研磨剤を含む研磨液の供給を遮断し、水のみを研磨液として垂れ流し式に供給して研磨が行われる。 For example, Patent Document 1 discloses a manufacturing method that has been devised to obtain a substrate having a smooth surface free from protrusions due to residual abrasive or the like on the surface. According to the description relating to this method, in the final polishing process using the polishing liquid and the polishing pad to obtain such a substrate, the polishing agent concentration of the polishing liquid is gradually or stepwise reduced, and finally the polishing agent concentration Is made substantially zero. Specifically, first, polishing is performed using a polishing solution in which cerium oxide is dissolved in water to a concentration of 2% by weight under conditions of a polishing processing pressure of 30 to 100 g / cm 2 , and then the polishing agent is added. Polishing is performed by shutting off the supply of the polishing liquid, and supplying only water as a polishing liquid.

他方、特許文献2には、高記録密度、特に50Gビット/平方インチ以上の高記録密度の磁気ディスクに必要な高平滑な基板を得るために、2つの工程で研磨することが開示されている。特許文献2の記載によれば、平均粒径0.05〜0.5μmのアルミナ砥粒と酸化剤とを含む研磨液を用いた研磨加工が行われ、その後、平均粒径0.005〜0.1μmのシリカ粒子を含む研磨液を用いた最終研磨加工が行われる。   On the other hand, Patent Document 2 discloses that polishing is performed in two steps in order to obtain a high-smooth substrate necessary for a magnetic disk having a high recording density, particularly 50 Gbit / in 2 or more. . According to the description in Patent Document 2, polishing using a polishing liquid containing alumina abrasive grains having an average particle size of 0.05 to 0.5 μm and an oxidizing agent is performed, and thereafter, an average particle size of 0.005 to 0 is performed. A final polishing process using a polishing liquid containing 1 μm silica particles is performed.

特開2000−53450号公報JP 2000-53450 A 特開2005−63530号公報JP 2005-63530 A

磁気ディスクは、コンピュータ等の情報処理装置で一般に用いられるが、その使用環境は多岐に渡る。例えば、磁気ディスクは、据え置きタイプの記憶装置やモバイルタイプの記憶装置で用いられる。磁気ディスクが据え置きタイプの記憶装置で大容量のハードディスクとして用いられる場合、その磁気ディスクの作製に用いられる基板の表面には、実質的に鏡面平滑度が求められる。これに対して、磁気ディスクがモバイルタイプの記憶装置の小型ドライブで用いられる場合、その磁気ディスクの径が小さいので、磁気ヘッドの浮上性を適切に確保するために、その磁気ディスクの作製に用いられる基板の表面には、微少な凹凸を形成することが求められる。   A magnetic disk is generally used in an information processing apparatus such as a computer, but its usage environment is diverse. For example, magnetic disks are used in stationary type storage devices and mobile type storage devices. When a magnetic disk is used as a large-capacity hard disk in a stationary type storage device, the surface of a substrate used for manufacturing the magnetic disk is required to have a substantially smooth surface. On the other hand, when a magnetic disk is used in a small drive of a mobile type storage device, the diameter of the magnetic disk is small. It is required to form minute irregularities on the surface of the substrate to be formed.

このように、ハードディスクおよび媒体のタイプ等によって磁気ディスク用基板の表面粗さを変える必要が生じている。それ故、従来、それぞれ要求される所定の表面粗さに応じて、基板用ディスク材の作成過程での研磨用研磨液に含まれる研磨剤の大きさを適宜変えることが必要とされていた。   Thus, it is necessary to change the surface roughness of the magnetic disk substrate depending on the type of hard disk and medium. Therefore, conventionally, it has been necessary to appropriately change the size of the abrasive contained in the polishing polishing liquid in the process of producing the substrate disk material in accordance with the respective required surface roughness.

一般的に、基板用ディスク材作製過程での研磨には、ディスク材の両面を同時並行して研磨することを可能にする研磨装置すなわち両面研磨装置が用いられる。この両面研磨装置は、研磨布等の研磨媒体が貼られた円盤状の水平な上定盤と下定盤とを備えてなる。そして、その両定盤の間に基板用ディスク材を把持して回転させた状態で、アルミナ系スラリー、コロイダルシリカ系スラリー等である、遊離砥粒といった研磨剤を含む研磨液を流しつつ、研磨対象となるディスク材の面に研磨媒体を接触させて、その面の研磨がなされる(なお、砥粒などの研磨剤と溶媒との混合体をスラリーと称する。)。   In general, a polishing apparatus that can simultaneously polish both sides of a disk material, that is, a double-side polishing apparatus, is used for polishing in the process of manufacturing a disk material for a substrate. This double-side polishing apparatus includes a disk-shaped horizontal upper surface plate and a lower surface plate to which a polishing medium such as a polishing cloth is attached. Then, while holding and rotating the substrate disk material between both surface plates, polishing is performed while flowing a polishing liquid containing an abrasive such as free abrasive grains, such as alumina-based slurry, colloidal silica-based slurry, etc. A polishing medium is brought into contact with the surface of the target disc material, and the surface is polished (a mixture of an abrasive such as abrasive grains and a solvent is referred to as slurry).

このような研磨装置において、ディスク材の研磨に用いられる研磨液を、ディスク材の表面に対して要求された所定の表面粗さに応じて、ある研磨液から、この研磨液に含まれる研磨剤と異なる大きさの研磨剤を含む研磨液にとりかえる際には、研磨媒体を取り換えること等が必要とされる。これは、使用する研磨液に、含まれる研磨剤と特性の異なる研磨剤が混ざると、ディスク材の表面粗さを所定の表面粗さにすることが困難になるからである。しかしながら、例えば、このような作業工程の存在は、ディスク材の研磨工程を複雑にし、それ故にコスト面での障害になり得る。   In such a polishing apparatus, the polishing liquid used for polishing the disk material is changed from a certain polishing liquid to the polishing agent contained in the polishing liquid according to the predetermined surface roughness required for the surface of the disk material. When replacing with a polishing liquid containing an abrasive having a different size from the above, it is necessary to replace the polishing medium. This is because it becomes difficult to make the surface roughness of the disk material a predetermined surface roughness when an abrasive having a characteristic different from that of the contained abrasive is mixed in the polishing liquid to be used. However, for example, the existence of such a work process complicates the polishing process of the disk material and can therefore be a cost obstacle.

そこで、本発明はかかる点に鑑みて創案されたものであり、その目的は、簡便な方法で、種々異なる表面粗さの表面を有するディスク材を得ることにある。   Accordingly, the present invention has been made in view of such a point, and an object thereof is to obtain a disk material having surfaces with different surface roughnesses by a simple method.

本発明は、上記目的を達成するように、ディスク材に対する要求表面粗さ(ディスク材に対して要求されるその表面の表面粗さ)に基づいて設定された濃度分の研磨剤を含む研磨液を用いてディスク材を研磨する構成を備える。好ましくは、本発明は、第1濃度分の研磨剤を含む研磨液を用いてディスク材を研磨する第1研磨工程と、研磨剤濃度と仕上げ面粗さの相関に基づいて、前記第1研磨工程の仕上げ面粗さより大きな仕上げ面粗さとなる、前記第1濃度よりも低濃度の第2濃度分の同研磨剤を含む研磨液を用いて第1研磨工程で研磨されたディスク材を研磨する第2研磨工程とを含む。ただし、第2濃度は、ディスク材に対する要求表面粗さに基づいて設定されるとよい。また、第1濃度は、ディスク材に対する要求研磨速度に基づいて設定されるとよい。ただし、本発明は、この第1研磨工程と第2研磨工程以外の1つまたは複数の研磨工程を、これら両研磨工程の前、間、後に有する研磨方法を許容する。なお、第2研磨工程は、最終研磨工程すなわち仕上げ研磨工程であることが望ましい。 In order to achieve the above object, the present invention provides a polishing liquid containing an abrasive having a concentration set based on a required surface roughness for a disk material (a surface roughness of the surface required for the disk material). The disc material is polished using Preferably, according to the present invention, the first polishing is performed based on a correlation between a polishing agent concentration and a finished surface roughness , and a first polishing step of polishing the disk material using a polishing liquid containing a first concentration of polishing agent. The disk material polished in the first polishing step is polished by using a polishing liquid containing a second concentration of the second concentration lower than the first concentration and having a finished surface roughness larger than the finished surface roughness of the step. A second polishing step. However, the second concentration may be set based on the required surface roughness for the disk material. The first concentration may be set based on the required polishing rate for the disk material. However, the present invention allows a polishing method having one or a plurality of polishing steps other than the first polishing step and the second polishing step before, during, and after these two polishing steps. The second polishing step is preferably a final polishing step, that is, a final polishing step.

このような構成を有することにより、ディスク材、特にディスク材の主表面を、研磨液に含まれる研磨剤の特性(大きさ、形状、硬さ等)等を変えずに、少なくともその濃度を変えて研磨するだけで、実質的に鏡面に仕上げたり、所望の粗さを有する状態にしたりすることができる。したがって、研磨液を異なる研磨剤を含む研磨液に研磨工程で変える必要がなく、これにより、ディスク材の研磨段階での研磨媒体の貼り換えや研磨液中の研磨剤の種類等に応じた複数台の研磨装置の使用を排除することが可能になる。 By having such a configuration, at least the concentration of the disk material, particularly the main surface of the disk material, is changed without changing the characteristics (size, shape, hardness, etc.) of the abrasive contained in the polishing liquid. By simply polishing, the surface can be substantially mirror-finished or have a desired roughness. Therefore, it is not necessary to change the polishing liquid to a polishing liquid containing a different polishing agent in the polishing step, and thereby, a plurality of polishing media can be replaced depending on the type of polishing agent in the polishing liquid. It becomes possible to eliminate the use of a polishing apparatus of the table.

上記第1研磨工程は、例えば、ディスク材の仕上げ研磨の前段階での研磨工程に相当する。したがって、第1研磨工程では、第2研磨工程におけるディスク材に対する要求表面粗さを考慮しつつも、速い研磨速度の達成が望まれる。この点を考慮して、第1研磨工程で用いられる研磨液の研磨剤の第1濃度は、ディスク材に対する要求研磨速度に基づいて設定されるとよい。なお、ここでいう要求研磨速度は、要求される研磨速度であり得る。   The first polishing step corresponds to, for example, a polishing step in the previous stage of final polishing of the disk material. Therefore, in the first polishing step, it is desired to achieve a high polishing rate while considering the required surface roughness for the disk material in the second polishing step. Considering this point, the first concentration of the polishing agent used in the first polishing step may be set based on the required polishing rate for the disk material. Here, the required polishing rate can be a required polishing rate.

これに対して上記第2研磨工程は、第1研磨工程で研磨されたディスク材に対して行われる、例えば仕上げ段階での研磨工程に相当する。したがって、第2研磨工程では、ディスク材の表面の精度を、所望の粗さつまり要求表面粗さにすることが求められる。この点を考慮して、第2研磨工程で用いられる研磨液の研磨剤の第2濃度は、ディスク材に対する要求表面粗さに基づいて設定されるとよい。   On the other hand, the second polishing step corresponds to, for example, a polishing step in the finishing stage, which is performed on the disk material polished in the first polishing step. Therefore, in the second polishing process, it is required that the accuracy of the surface of the disk material be a desired roughness, that is, a required surface roughness. Considering this point, the second concentration of the polishing agent used in the second polishing step may be set based on the required surface roughness of the disk material.

このように、含有する研磨剤を同じままにしてディスク材の研磨用の研磨液に含まれる研磨剤の濃度を段階的に減らし、第2研磨工程でディスク材に対する要求表面粗さに基づいて設定された第2濃度分の研磨剤を含む研磨液を用いることで、ディスク材の表面粗さを適切な粗さにすることができる。したがって、ディスク材の研磨作業から、複数種類の研磨剤の使用や、ディスク材の研磨過程での研磨媒体の貼り換え作業や、研磨液に含まれる研磨剤の違いに応じた複数台の装置の使用を排除することができる。つまり、簡便な方法で、種々異なる表面粗さの表面を有するディスク材を得ることが可能になる。こうした過程を経て製造されたディスク材は、例えば、磁気ディスク用基板として用いられる。つまり、上記した如き簡便な方法で、種々異なる表面粗さの表面を有する磁気ディスク用基板を作製することができる。   In this way, the concentration of the abrasive contained in the polishing liquid for polishing the disk material is decreased step by step while keeping the same abrasive, and set based on the required surface roughness for the disk material in the second polishing step. By using the polishing liquid containing the second concentration abrasive, the surface roughness of the disk material can be made appropriate. Therefore, from the disk material polishing operation, the use of multiple types of abrasives, the replacement work of the polishing medium during the disk material polishing process, and the multiple devices according to the difference in the abrasive contained in the polishing liquid Use can be eliminated. That is, it is possible to obtain a disk material having surfaces with different surface roughnesses by a simple method. The disk material manufactured through such a process is used as a magnetic disk substrate, for example. That is, a magnetic disk substrate having surfaces with different surface roughnesses can be produced by a simple method as described above.

なお、本発明は、こうして作製された磁気ディスク用基板を含む磁気ディスクにも存する。   The present invention also resides in a magnetic disk including the magnetic disk substrate thus manufactured.

本発明によれば、研磨液中の研磨剤の濃度を、ディスク材に対する要求表面粗さに基づいて設定される濃度にまで段階的に変えて、ディスク材を研磨することで、種々異なる表面粗さの表面を有するディスク材を簡便にかつ生産性よく提供することができ、これにより例えば低コストで磁気ディスク用基板や磁気ディスクを提供することが可能になる。   According to the present invention, by changing the concentration of the abrasive in the polishing liquid stepwise to a concentration set based on the required surface roughness for the disk material, and polishing the disk material, various surface roughnesses are obtained. Thus, it is possible to easily provide a disk material having a surface with good productivity, and for example, it is possible to provide a magnetic disk substrate or a magnetic disk at low cost.

本発明に係る実施形態のディスク材の研磨装置の模式図である。It is a mimetic diagram of a disc material polisher of an embodiment concerning the present invention. ディスク材の研磨の流れを表すフローチャートである。It is a flowchart showing the flow of grinding | polishing of a disk material. 研磨液の研磨剤濃度とディスク材の表面の仕上げ面粗さとの関係例を表したグラフである。It is a graph showing the example of relationship between the abrasive | polishing agent density | concentration of polishing liquid, and the finishing surface roughness of the surface of a disk material. 研磨液の研磨剤濃度とディスク材の研磨加工速度との関係例を表したグラフである。It is a graph showing the example of a relationship between the abrasive | polishing agent density | concentration of polishing liquid, and the polishing process speed of a disk material.

一般的に、従来装置および方法を用いたディスク材の研磨では、砥粒といった研磨剤の軌跡をディスク材に転写するようにしてディスク材の研磨が行われている。それ故、研磨液には、例えば20重量%といった十分な量の研磨剤濃度が必要とされていた。また、一般に、ディスク材の研磨に用いられる砥粒といった研磨剤の大きさによって、ディスク材の仕上げ面粗さが大きく変化すると考えられていた。例えば、ディスク材の表面の仕上げ面粗さを大きくする場合すなわち粗い仕上げ面を得ようとする場合、比較的大きな研磨剤を含む研磨液が用いられていた。それ故、複数のディスク材間において異なる仕上げ面粗さが求められる場合、研磨されるディスク材に応じて、含有する研磨剤の大きさが主に異なる複数の研磨液の内から最適の大きさの研磨剤を含む研磨液が選択されて、それがその研磨に用いられていた。これは、含有する研磨剤の大きさが互いに異なる複数の研磨液を用いることであるので、用いられる研磨液が変わる毎に専用の研磨パッド等の研磨媒体を用意したり、研磨液が変わる毎に研磨装置を替えたりすることが必要とされていた。これは、複数個の部材等を用意する必要から、コスト面で高価であり、また作業性の面で複雑である。   In general, in the disk material polishing using the conventional apparatus and method, the disk material is polished such that the locus of the abrasive such as abrasive grains is transferred to the disk material. Therefore, a sufficient amount of abrasive concentration such as 20% by weight is required for the polishing liquid. In general, it has been considered that the finished surface roughness of the disk material varies greatly depending on the size of the abrasive such as abrasive grains used for polishing the disk material. For example, when increasing the finished surface roughness of the surface of the disk material, that is, when obtaining a rough finished surface, a polishing liquid containing a relatively large abrasive has been used. Therefore, when different finish surface roughness is required among a plurality of disk materials, the optimum size is selected from among a plurality of polishing liquids mainly containing different abrasives depending on the disk material to be polished. A polishing liquid containing an abrasive was selected and used for the polishing. This is because a plurality of polishing liquids having different sizes of abrasives are used, so that a polishing medium such as a dedicated polishing pad is prepared every time the polishing liquid used is changed, or each time the polishing liquid is changed. It was necessary to change the polishing apparatus. This is expensive in terms of cost because it is necessary to prepare a plurality of members and the like, and is complicated in terms of workability.

本発明者らは、これらを考慮しつつ、種々の実験等を通じてディスク材の研磨に関して種々検討し、ディスク材の研磨に用いられる研磨液中の研磨剤の濃度が、研磨されたディスク材の表面の粗さに大きく影響することを見出した。具体的には、ある加工圧力下で研磨液の研磨剤濃度を減少させると、ディスク材の表面粗さはある濃度をピークにもつように増減するので、研磨液中の研磨剤の濃度を適切に調節してディスク材を研磨することで、ディスク材の表面を所望の表面粗さを有する表面にすることができるという知見を得た。また、それに関連して、研磨液中の研磨剤の濃度を適切に調節してディスク材を研磨することで、種々の研磨剤を用いて高速でディスク材を研磨できるという知見を得た。そこで、本発明者らは、これら知見に基づいて、低コストで、種々異なる表面粗さの表面を有するディスク材を得ることを可能にする本発明を完成させた。   In consideration of these, the present inventors have made various studies on the polishing of the disk material through various experiments and the like, and the concentration of the abrasive in the polishing liquid used for polishing the disk material is determined by the surface of the polished disk material. It was found that it greatly affects the roughness. Specifically, if the polishing agent concentration in the polishing liquid is reduced under a certain processing pressure, the surface roughness of the disk material increases or decreases so as to have a certain concentration at the peak, so the concentration of the polishing agent in the polishing liquid is set appropriately. It was found that the surface of the disk material can be changed to a surface having a desired surface roughness by polishing the disk material while adjusting to. Further, in connection with this, the inventors have found that the disk material can be polished at high speed using various abrasives by appropriately adjusting the concentration of the abrasive in the polishing liquid and polishing the disk material. Based on these findings, the present inventors have completed the present invention that makes it possible to obtain disk materials having surfaces with various surface roughnesses at low cost.

そうした本発明は、要するに、ディスク材の要求表面粗さに基づいて設定された濃度分の研磨剤を含む研磨液を用いてディスク材を研磨する構成を備え得る。好ましくは、それは、第1濃度分の研磨剤を含む研磨液を用いてディスク材を研磨する第1研磨工程と、前記第1濃度よりも低濃度の第2濃度分の同研磨剤を含む研磨液を用いて第1研磨工程で研磨されたディスク材を研磨する第2研磨工程とを含んで構成され得る。ただし、好ましくは、第2濃度は、ディスク材に対する要求表面粗さに基づいて設定される。   In short, the present invention may comprise a configuration in which the disk material is polished using a polishing liquid containing an abrasive having a concentration set based on the required surface roughness of the disk material. Preferably, it includes a first polishing step of polishing the disk material with a polishing liquid containing a first concentration of abrasive, and a polishing containing the same concentration of the second concentration lower than the first concentration. And a second polishing step of polishing the disk material polished in the first polishing step using the liquid. However, preferably, the second concentration is set based on the required surface roughness for the disk material.

以下に、本発明の好適な実施形態を添付図面を参照しながら説明する。ただし、以下、説明される実施形態は、磁気ディスク用ガラス基板の製造途中のガラスディスク材Dに適用される例である。しかしながら、本発明の対象となるディスク材には、ガラスディスク材以外の種々のディスク材、例えばアルミニウム製、セラミックス製のものが含まれ得る。なお、本明細書では、原料から例えば磁気ディスク用基板(基板)である製品になるまでの間の半加工品を、そのような製品として用いることができる完成品と区別するべく、原則、ディスク材と称する。しかしながら、これは、そのようなディスク材を基板と称することを排除するものではなく、また全ての加工が施された状態のもの(例えば製品)をディスク材と称することをも排除するものではない。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. However, the embodiment described below is an example applied to the glass disk material D in the process of manufacturing the magnetic disk glass substrate. However, the disk material that is the subject of the present invention may include various disk materials other than the glass disk material, such as those made of aluminum or ceramics. In this specification, in order to distinguish a semi-processed product from a raw material to a product that is, for example, a magnetic disk substrate (substrate) from a finished product that can be used as such a product, in principle, a disc It is called a material. However, this does not exclude that such a disk material is referred to as a substrate, nor does it exclude that all processed materials (for example, products) are referred to as disk materials. .

まず、ディスク材の研磨装置10について、図1の模式図に基づいて説明する。研磨装置10は、研磨媒体としての研磨布12を装着した下定盤14と、この上方位置に研磨媒体としての研磨布16を研磨布12と対向するように装着した上定盤18と、これら両定盤14、18間にディスク材Dを相対運動可能に保持する保持手段20と、両研磨布12、16とディスク材Dとの接触部に流れるように研磨液を供給する研磨液供給手段22とを備えて構成される。   First, a disk material polishing apparatus 10 will be described with reference to the schematic view of FIG. The polishing apparatus 10 includes a lower surface plate 14 on which a polishing cloth 12 as a polishing medium is mounted, an upper surface plate 18 on which a polishing cloth 16 as a polishing medium is mounted so as to face the polishing cloth 12, and both A holding means 20 for holding the disk material D between the surface plates 14 and 18 so as to be capable of relative movement, and a polishing liquid supply means 22 for supplying a polishing liquid so as to flow to the contact portion between the polishing cloths 12 and 16 and the disk material D. And is configured.

下定盤14は、モータ等を含む回転手段により水平方向に回転可能に設置され、その上面に位置付けられた研磨布12を水平方向に回転させることができる。上定盤18は、下定盤14の上方位置に下定盤14と対向同軸状に配置される。さらに、上定盤18は、モータ等を含む回転手段により水平方向に回転可能にされると共に昇降手段により垂直方向に昇降可能に保持される。なお、研磨布12、16は、それぞれ、ドーナツ形状を有する。   The lower surface plate 14 is installed so as to be horizontally rotatable by a rotating means including a motor or the like, and can rotate the polishing cloth 12 positioned on the upper surface thereof in the horizontal direction. The upper surface plate 18 is disposed on the upper position of the lower surface plate 14 so as to face the lower surface plate 14 in a coaxial manner. Further, the upper surface plate 18 can be rotated in the horizontal direction by rotating means including a motor or the like and can be moved up and down in the vertical direction by lifting means. The polishing cloths 12 and 16 each have a donut shape.

保持手段20は、相対運動手段24と、保持部材26とを有する。相対運動手段24は、実質的に両研磨布12、16間において研磨布12、16の軸心位置に配置される太陽歯車28の径方向外方位置に同心状に配置される内歯歯車30を有する。そして、保持部材26は、ディスク材Dを保持するように形成され、かつ、それら内歯歯車30および太陽歯車28の両歯車に歯合いされて下定盤14の研磨布12上に載置された状態で両歯車28、30間に配置される外歯歯車にて形成される。   The holding unit 20 includes a relative movement unit 24 and a holding member 26. The relative movement means 24 is an internal gear 30 disposed concentrically at a radially outward position of the sun gear 28 disposed substantially at the axial center position of the polishing cloths 12, 16 between the both polishing cloths 12, 16. Have The holding member 26 is formed to hold the disk material D, and is placed on the polishing cloth 12 of the lower surface plate 14 in mesh with both the internal gear 30 and the sun gear 28. In this state, it is formed by an external gear disposed between the two gears 28 and 30.

研磨液供給手段22は、所定濃度の研磨剤を含む基準研磨液32を供給するための第1バルブ34と、水あるいは純水36を供給するための第2バルブ38と、基準研磨液32と水36とをそれぞれ流すための2つの流路の共通通路の一部を構成する液溜め40と、液溜め40に連通するように共通通路の一部を形成するパイプ42とを有する。タンクに貯留された基準研磨液32は、第1バルブ34の開弁により液溜め40に流入することができる。また、タンクに貯留された水36は、第2バルブ38の開弁により液溜め40に流入することができる。そして、液溜め40からの流体は、パイプ42を介して、上定盤18からディスク材Dの上面に供給される。なお、基準研磨液32および/または水36は研磨装置10内で循環されてもよく、必要に応じてそのための循環装置が研磨装置10に設けられ得る。ただし、循環装置が設けられる場合、基準研磨液32と水36とを適切にあたかも分離可能にするように、循環装置はフィルタ等の分離部材を備えるとよい。ただし、ここでは、基準研磨液32の溶媒は、水である。 The polishing liquid supply means 22 includes a first valve 34 for supplying a reference polishing liquid 32 containing a predetermined concentration of abrasive, a second valve 38 for supplying water or pure water 36, and a reference polishing liquid 32. It has a liquid reservoir 40 that constitutes a part of a common passage of two flow paths for flowing water 36 and a pipe 42 that forms a part of the common passage so as to communicate with the liquid reservoir 40. The reference polishing liquid 32 stored in the tank can flow into the liquid reservoir 40 by opening the first valve 34. Further, the water 36 stored in the tank can flow into the liquid reservoir 40 by opening the second valve 38. Then, the fluid from the liquid reservoir 40 is supplied from the upper surface plate 18 to the upper surface of the disk material D via the pipe 42. The reference polishing liquid 32 and / or the water 36 may be circulated in the polishing apparatus 10, and a circulator for that purpose may be provided in the polishing apparatus 10 as necessary. However, when a circulation device is provided, the circulation device may include a separation member such as a filter so that the reference polishing liquid 32 and the water 36 can be appropriately separated. However, here, the solvent of the reference polishing liquid 32 is water.

このような構成を有するディスク材Dの研磨装置10の動作に関して説明する。ただし、上記種々の手段の制御や、両バルブ34、38駆動用のアクチュエータ等の制御は、電子制御装置等の制御手段からの電気信号に基づいて行われる。ただし、それら全ての駆動あるいは一部の駆動が、手動であるいは機械的機構により行われてもよい。   The operation of the polishing apparatus 10 for the disk material D having such a configuration will be described. However, the control of the above various means and the control of the actuators for driving both valves 34 and 38 are performed based on electric signals from the control means such as an electronic control unit. However, all or some of the driving may be performed manually or by a mechanical mechanism.

上記のように構成された研磨装置10において、ディスク材Dが図1に示すように保持部材26のディスク材装着用穴に配置される。そして、ディスク材Dの上下面に上下の研磨布12、16を押し当てた状態にするように上記昇降手段が駆動される。他方、基準研磨液32、水36、あるいはこれらの混合液をディスク材Dに向けて供給するように、バルブ34、38が制御される。例えば、基準研磨液32のみを供給する場合には第1バルブ34のみが開かれ、水36のみを供給する場合には第2バルブ38のみが開かれる。そして、基準研磨液32と水36との混合液からなる研磨液Mを供給する場合には、両バルブ34、38が開かれるが、それらのそれぞれの開度は、混合液すなわちディスク材Dに対して供給される研磨液Mに求められる研磨剤濃度に基づいて調節される。なお、これら両バルブ34、38の各開度は、予め実験に基づいて定められた混合液の研磨剤濃度と関係付けられたデータに基づいて調節される。好ましくは、上記制御手段の記憶部に、そのデータは利用可能に記憶される。   In the polishing apparatus 10 configured as described above, the disk material D is disposed in the disk material mounting hole of the holding member 26 as shown in FIG. Then, the elevating means is driven so that the upper and lower polishing cloths 12 and 16 are pressed against the upper and lower surfaces of the disk material D. On the other hand, the valves 34 and 38 are controlled so as to supply the reference polishing liquid 32, the water 36, or a mixture thereof toward the disc material D. For example, when only the reference polishing liquid 32 is supplied, only the first valve 34 is opened, and when only the water 36 is supplied, only the second valve 38 is opened. When supplying the polishing liquid M composed of the mixed liquid of the reference polishing liquid 32 and the water 36, both valves 34 and 38 are opened. On the other hand, it is adjusted based on the polishing agent concentration required for the polishing liquid M supplied. Note that the opening degree of both the valves 34 and 38 is adjusted based on data related to the abrasive concentration of the liquid mixture previously determined based on experiments. Preferably, the data is stored in the storage unit of the control means so as to be usable.

ディスク材Dの上下面に上下の研磨布12、16を押し当てることが行われると共に研磨液32等が供給される一方で、太陽歯車28が回転駆動されると共に、上下の定盤14、18が相互に同方向にあるいは逆方向に回転駆動される。これにより、保持部材26を自転させながら太陽歯車28の周りで公転させて、ディスク材Dの両面が研磨加工される。   The upper and lower polishing cloths 12 and 16 are pressed against the upper and lower surfaces of the disk material D and the polishing liquid 32 and the like are supplied, while the sun gear 28 is rotated and the upper and lower surface plates 14 and 18 are rotated. Are driven to rotate in the same direction or in opposite directions. Thereby, the holding member 26 is rotated around the sun gear 28 while rotating, and both surfaces of the disk material D are polished.

特に、ここでは、研磨装置10でのディスク材Dの研磨は、研磨液の研磨剤濃度を段階的に変えつつ行われる。この研磨の流れを図2のフローチャートに基づいて説明する。   In particular, here, the polishing of the disk material D by the polishing apparatus 10 is performed while changing the polishing agent concentration of the polishing liquid stepwise. The flow of this polishing will be described based on the flowchart of FIG.

まず、ステップS201で上記の如く研磨装置10にディスク材Dが設置される。この設置されたディスク材Dに対して、ステップS203で第1段階での仕上げ前研磨すなわち第1研磨加工が行われる。第1研磨加工として、基準研磨液32そのものを研磨液として用いて、ディスク材Dの研磨が行われる。この第1段階では、第2バルブ38を閉状態に維持しつつ、第1バルブ34が開かれる。これにより、基準研磨液32そのものである、所定濃度分の研磨剤を含む研磨液がディスク材Dに供給されてディスク材Dは研磨される。この第1研磨加工ではディスク材Dの仕上げ前研磨加工が目的とされるので、ディスク材Dへの研磨加工速度に着目して、種々の研磨条件が設定される。砥粒等である研磨剤の大きさあるいは平均粒径は、直径で1nmから10μm、好ましくは5nmから1μm、さらに好ましくは5nmから100nmの間の範囲の大きさにされる。ただし、この研磨剤の大きさは、通常の研磨剤濃度、例えば8から20重量%(wt%)濃度分の研磨剤を含む研磨液(溶媒は例えば水、アルコール)で、所定圧力下でディスク材Dを所定厚さにまである程度高速で研磨可能にするように、選定される。そして、この研磨剤の大きさは、後述するディスク材Dの仕上げ研磨において、適切に要求表面粗さを実現できるように選定される。   First, in step S201, the disc material D is set in the polishing apparatus 10 as described above. The pre-finish polishing in the first stage, that is, the first polishing process is performed on the installed disk material D in step S203. As the first polishing process, the disk material D is polished using the reference polishing liquid 32 itself as the polishing liquid. In this first stage, the first valve 34 is opened while the second valve 38 is kept closed. As a result, the polishing liquid containing a predetermined concentration of abrasive, which is the reference polishing liquid 32 itself, is supplied to the disk material D, and the disk material D is polished. Since this first polishing process is intended for pre-finish polishing of the disk material D, various polishing conditions are set by paying attention to the polishing speed of the disk material D. The size or average particle size of the abrasive, such as abrasive grains, is 1 nm to 10 μm in diameter, preferably 5 nm to 1 μm, and more preferably 5 nm to 100 nm. However, the size of the abrasive is a polishing liquid (solvent is, for example, water or alcohol) containing a normal abrasive concentration, for example, 8 to 20% by weight (wt%), and the disc is subjected to a predetermined pressure. The material D is selected so that it can be polished to a predetermined thickness at a certain high speed. The size of the abrasive is selected so that the required surface roughness can be appropriately realized in the finish polishing of the disk material D described later.

ステップS203での第1研磨加工が施されたディスク材Dに対して、ステップS205で第2段階での研磨すなわち第2研磨加工が行われる。ただし、第2段階での研磨は、ここでは仕上げ研磨に相当する。第2研磨加工では、第1バルブ34が開かれた状態で第2バルブ38が開かれる。これにより、基準研磨液32と水36との混合液である研磨液Mが形成されて、その研磨液Mがディスク材Dに供給されてディスク材Dは研磨される。この第2研磨加工ではディスク材Dは仕上げ研磨加工されるので、第2研磨加工で用いられる研磨液Mは、基準研磨液32中の研磨剤と同じ大きさ、同じ種類の研磨剤を含むが、基準研磨液32における研磨剤濃度と異なる研磨剤濃度分の研磨剤を含む。ただし、この第2段階で用いられる研磨液Mの研磨剤濃度は、第1段階での基準研磨液32に対する研磨剤濃度よりも低い研磨剤濃度であり、仕上げ研磨加工完了時のディスク材Dにその要求表面粗さを実現できるように設定される。例えば第2段階での研磨剤濃度は、0.2から5wt%濃度範囲に含まれる。なお、第2段階での研磨剤濃度の調整は、水を供給する代わりに別途濃度の薄い研磨液を供給することで行うことも可能である。   The disc material D subjected to the first polishing process in step S203 is subjected to the second stage polishing, that is, the second polishing process, in step S205. However, the polishing in the second stage corresponds to finish polishing here. In the second polishing process, the second valve 38 is opened while the first valve 34 is opened. As a result, a polishing liquid M that is a mixed liquid of the reference polishing liquid 32 and the water 36 is formed, and the polishing liquid M is supplied to the disk material D, and the disk material D is polished. In this second polishing process, the disk material D is finish-polished, so that the polishing liquid M used in the second polishing process contains the same size and type of abrasive as the abrasive in the reference polishing liquid 32. In addition, an abrasive having an abrasive concentration different from the abrasive concentration in the reference polishing liquid 32 is included. However, the polishing agent concentration of the polishing liquid M used in the second stage is lower than the polishing agent concentration with respect to the reference polishing liquid 32 in the first stage. It is set so that the required surface roughness can be realized. For example, the abrasive concentration in the second stage is included in the concentration range of 0.2 to 5 wt%. It should be noted that the adjustment of the abrasive concentration in the second stage can be performed by supplying a polishing solution having a low concentration separately instead of supplying water.

そして、ここでは、ステップS205で第2研磨加工が行われたディスク材は、ステップS207で研磨装置10から取り外されて、場合によっては別途洗浄工程等を経て、磁気ディスク用基板とされる。ただし、ステップS205とステップS207との間に、第1バルブ34を閉じると共に第2バルブ38を開きつつ、第2研磨加工での研磨の如くディスク材Dに対して研磨布12、16を動かすことで、ディスク材D表面から研磨剤等を取り除くようにする洗浄工程が設けられてもよい。   In this case, the disk material that has been subjected to the second polishing process in step S205 is removed from the polishing apparatus 10 in step S207, and in some cases, a magnetic disk substrate is obtained through a separate cleaning process or the like. However, between steps S205 and S207, the first cloth 34 is closed and the second valve 38 is opened, and the polishing cloths 12 and 16 are moved with respect to the disk material D as in the polishing in the second polishing process. Thus, a cleaning process may be provided to remove the abrasive and the like from the surface of the disk material D.

このように、ここでは、実質的に2段階の研磨工程(ステップS203およびS205)で、ディスク材Dの研磨が行われる。そして、それらの2つの研磨工程での研磨条件の違いは、研磨液に対する研磨剤濃度のみであるので(さらに圧力等が変えられてもよい。)、ディスク材Dの研磨作業の間、同一研磨装置10を継続して用いることができる。したがって、低コストで、簡単にディスク材Dの研磨を行うことができる。また、このように研磨液の研磨剤濃度のみを変えることで足りるので、準備する研磨液は実質上1つである。したがって、この点でも低コストでかつ研磨作業の簡易化を図ることができる。   Thus, here, the disk material D is polished in a substantially two-step polishing process (steps S203 and S205). Since the difference in the polishing conditions in these two polishing steps is only the concentration of the abrasive with respect to the polishing liquid (and the pressure may be changed), the same polishing is performed during the polishing operation of the disk material D. The device 10 can be used continuously. Therefore, the disk material D can be easily polished at low cost. Moreover, since it is sufficient to change only the polishing agent concentration of the polishing liquid in this way, the number of polishing liquids to be prepared is substantially one. Therefore, also in this respect, the polishing operation can be simplified at low cost.

次に、この研磨に関して、実験結果に基づいて説明する。ただし、以下では、アモルファスガラス製のディスク材に対する実験結果を説明する。また、以下では、ラッピング加工が施されたディスク材Dは、3つの研磨工程を経ることで研磨される。この内、最後の2つの研磨工程での研磨が、上記第1および第2研磨加工に相当する。なお、説明に際して、ディスク材Dがどの製造段階のものであるのかをより適切に明確にするために、ディスク材を符号「D1、D2、D3、・・・」を用いて指し示す。   Next, this polishing will be described based on experimental results. However, below, the experimental result with respect to the disk material made from an amorphous glass is demonstrated. In the following description, the lapping disk material D is polished through three polishing steps. Among these, the polishing in the last two polishing steps corresponds to the first and second polishing processes. In the description, the disk material is indicated by reference numerals “D1, D2, D3,...” In order to clarify appropriately which manufacturing stage the disk material D is from.

まず、研磨工程前のディスク材の作製に関して具体的に説明する。アモルファスガラス原料に対して内外形加工等を施して、中心軸周りに孔を有すると共に所定の寸法の円盤状の板厚約1mmのディスク材D1を作製した。ディスク材D1に対して、次の条件下でラッピング加工を施し、ディスク材D2を得た。ただし、ディスク材D2の厚さは約0.53mmであると共にその仕上げ面粗さはRa0.3μmであった。なお、ここでは、ディスク材D2は、ラッピング加工後、洗浄および乾燥処理が施された。ラッピング加工は、鋳鉄製の定盤を有するスピードファム社製のラッピング加工機(両面9B研磨機)を用いて、GC#1500を10wt%濃度(純水希釈)で分散させた加工液、9.8kPaの加工圧力といった加工条件下で行われた。   First, the production of the disk material before the polishing process will be specifically described. The amorphous glass material was subjected to inner / outer shape processing or the like, and a disk material D1 having a hole around the central axis and having a disk shape with a predetermined dimension of about 1 mm was produced. The disk material D1 was lapped under the following conditions to obtain a disk material D2. However, the thickness of the disk material D2 was about 0.53 mm, and the finished surface roughness was Ra 0.3 μm. Here, the disc material D2 was subjected to washing and drying after lapping. A lapping process uses a lapping machine (both sides 9B polishing machine) manufactured by Speed Fam Co., Ltd. having a cast iron surface plate, and a working fluid in which GC # 1500 is dispersed at a concentration of 10 wt% (pure water dilution); It was performed under processing conditions such as a processing pressure of 8 kPa.

こうしてラッピング加工が施されたディスク材D2に対して荒研磨加工を施した。荒研磨加工を、愛媛フジボー社製発泡ウレタン研磨用パッドが研磨布として用いられた、上記研磨装置10と同様の構成のスピードファム社製の両面9B研磨機研磨装置を用いて行った。研磨液32として三井金属社製のミレーク(登録商標)(平均粒径:約1.5μm)を10wt%濃度(純水希釈)で分散させた研磨液を用い、9.8kPaの加工圧力下で荒研磨加工を行った。ここでは、荒研磨加工後のディスク材D3に対して、第1バルブ34を閉じると共に第2バルブ38を開いて、水36のみを供給して、ディスク材D3の洗浄を行った。
なお、荒研磨加工は、このような加工条件下で行われ、荒研磨加工後のディスク材D3の表面の仕上げ面粗さはRa0.6nmであった。
The disk material D2 thus lapped was subjected to rough polishing. Rough polishing was performed using a double-sided 9B polishing machine polishing apparatus manufactured by Speed Fam Co., Ltd. having the same configuration as the polishing apparatus 10 described above, in which a foamed urethane polishing pad manufactured by Ehime Fujibo Co., Ltd. was used as the polishing cloth. As the polishing liquid 32, a polishing liquid in which Millek (registered trademark) (average particle diameter: about 1.5 μm) manufactured by Mitsui Kinzoku Co., Ltd. was dispersed at a concentration of 10 wt% (pure water dilution) was used under a processing pressure of 9.8 kPa. Rough polishing was performed. Here, with respect to the disk material D3 after the rough polishing, the first valve 34 is closed and the second valve 38 is opened, and only the water 36 is supplied to clean the disk material D3.
The rough polishing process was performed under such processing conditions, and the finished surface roughness of the surface of the disk material D3 after the rough polishing process was Ra 0.6 nm.

こうして荒研磨加工が施されたディスク材D3に対して、厚さが0.5mmになるように、種々の条件下で仕上げ前研磨加工(上記第1研磨加工に相当)および仕上げ研磨加工(上記第2研磨加工に相当)を行った。なお、これら仕上げ前研磨加工と仕上げ研磨加工とは実質的に連続して行われる。   The disk material D3 thus subjected to the rough polishing process is subjected to a pre-finish polishing process (corresponding to the first polishing process) and a final polishing process (described above) under various conditions so that the thickness is 0.5 mm. Equivalent to the second polishing process). Note that the pre-finish polishing and the finish polishing are performed substantially continuously.

仕上げ前研磨加工および仕上げ研磨加工では、上記荒研磨加工で用いたのと同じ種類の研磨布および研磨装置を研磨布12、16および研磨装置10として用いた。研磨液32としては、日産化学社製のST-ZL2(平均粒径:80nm)を純水希釈した研磨液を用いた。ただし、研磨液32の研磨剤濃度を、15wt%とした。そして、研磨装置10にディスク材D3を設置して(ステップS201参照)、そのディスク材D3に対して、9.8kPaの加工圧力下で仕上げ前研磨加工(ステップS203参照)および仕上げ研磨加工(ステップS205参照)を行った。   In the pre-finish polishing process and the final polishing process, the same type of polishing cloth and polishing apparatus as those used in the rough polishing process were used as the polishing cloths 12 and 16 and the polishing apparatus 10. As the polishing liquid 32, a polishing liquid obtained by diluting ST-ZL2 (average particle diameter: 80 nm) manufactured by Nissan Chemical Industries with pure water was used. However, the abrasive concentration of the polishing liquid 32 was 15 wt%. Then, the disk material D3 is installed in the polishing apparatus 10 (see step S201), and the pre-finishing polishing process (see step S203) and the final polishing process (step S203) are performed on the disk material D3 under a processing pressure of 9.8 kPa. (See S205).

仕上げ前研磨工程では、第2バルブ38が閉じた状態で第1バルブ34のみを開けて、つまりST−ZL2を研磨剤として含むと共に研磨剤濃度を15wt%にした研磨液32をディスク材D3に供給しつつ、ディスク材D3の研磨を10分間行った。そして、その後、好ましくはそれに続けて、第1バルブ34が開いた状態で第2バルブ38を所定開度に開けて、仕上げ前研磨加工が施されたディスク材D4に対して5分間、仕上げ研磨加工を行った。ただし、この第2バルブ38の所定開度を、研磨液Mの研磨剤濃度が1、3、4あるいは15wt%となるように4つの開度にした場合に関して実験を行って、その結果を比較した。なお、仕上げ研磨加工が施されたディスク材D5に対して、表面の砥粒などの研磨剤や研磨屑などを除去してディスク材D5を清浄な状態にするように洗浄を行った。なお、この洗浄は、第1バルブ34を閉じて第2バルブ38を開いたままにすることで行われてもよい。このように研磨剤濃度を異ならせて作製した4種類のディスク材の仕上げ面粗さRaを表1に示す。なお、仕上げ面粗さRaはAFM(atomic force microscope)で、10μm2の領域を測定して得られたものである。 In the pre-finish polishing step, only the first valve 34 is opened with the second valve 38 closed, that is, the polishing liquid 32 containing ST-ZL2 as an abrasive and having an abrasive concentration of 15 wt% is applied to the disk material D3. While supplying, the disk material D3 was polished for 10 minutes. Then, preferably after that, the second valve 38 is opened to a predetermined opening while the first valve 34 is opened, and the disc material D4 subjected to the pre-finish polishing process is finished for 5 minutes. Processing was performed. However, an experiment was conducted with respect to the case where the predetermined opening of the second valve 38 was set to four openings so that the abrasive concentration of the polishing liquid M was 1, 3, 4, or 15 wt%, and the results were compared. did. Note that the disc material D5 that had been subjected to the final polishing process was cleaned so as to remove the polishing agent such as abrasive grains on the surface and polishing debris, and to make the disc material D5 into a clean state. This cleaning may be performed by closing the first valve 34 and keeping the second valve 38 open. Table 1 shows the finished surface roughness Ra of the four types of disc materials produced with different abrasive concentrations. The finished surface roughness Ra is obtained by measuring an area of 10 μm 2 with an AFM (atomic force microscope).

Figure 0005327608
Figure 0005327608

この表1の結果から、仕上げ研磨加工(ステップS205参照)を行うために用いられる研磨液の研磨剤濃度を種々変えることで、異なる表面粗さを有するディスク材を得ることが出来ることが明らかである。そこで、どのような研磨条件でディスク材D4を仕上げ研磨加工するとどのような仕上げ面粗さを有するディスク材D5が得られるのかをより詳しく検討するために、研磨剤濃度を種々変えて実験を行った。その実験結果を図3のグラフに示す。図3には、研磨圧力を、2kPa、3kPa、9kPa、15kPaと種々変えた4つの場合に関する結果が表わされている。なお、研磨条件は、研磨剤濃度、研磨圧力、そして研磨剤としてコロイダルシリカ(平均粒径:80nm)を用いることの他の点では、上記実験例における仕上げ研磨加工のそれと同じである。ただし、仕上げ前研磨加工(ステップS203参照)のディスク材D3の研磨条件は、研磨剤の種類以外の点では、上で説明した実験のそれと同じである。   From the results of Table 1, it is clear that disk materials having different surface roughnesses can be obtained by variously changing the abrasive concentration of the polishing liquid used for performing the finish polishing process (see step S205). is there. Therefore, in order to examine in more detail what kind of polishing condition the disk material D5 having the finished surface can be obtained when the disk material D4 is subjected to finish polishing under various polishing conditions, experiments were performed with various concentrations of the abrasive. It was. The experimental results are shown in the graph of FIG. FIG. 3 shows the results for four cases where the polishing pressure was variously changed to 2 kPa, 3 kPa, 9 kPa, and 15 kPa. The polishing conditions are the same as those of the final polishing process in the above experimental example except that the polishing agent concentration, the polishing pressure, and the use of colloidal silica (average particle size: 80 nm) as the polishing agent. However, the polishing conditions for the disk material D3 in the pre-finish polishing process (see step S203) are the same as those in the experiment described above, except for the type of abrasive.

図3のグラフから、研磨剤濃度が約1wt%濃度であるときに、ディスク材D5の仕上げ面粗さRaが最も粗いピークを示すことが理解できる。また、研磨剤濃度が0.2から5wt%濃度範囲にあるときに、仕上げ面粗さRaがそのピーク値を境に大きく増減することが分かる。つまり、研磨液の研磨剤濃度をこの濃度範囲内の濃度に適切に調節してディスク材D4に対して上記の如き仕上げ研磨加工を行うことで、所定の表面粗さの表面を有するディスク材D5を得ることができることが理解される。ただし、ここでは、この研磨剤濃度の0.2から5wt%濃度範囲を、仕上げ研磨に用いられ得る研磨領域と称する。なお、図3のグラフから、研磨圧力を大きくするほど、仕上げ面粗さRaの増減幅が大きくなることも分かる。   From the graph of FIG. 3, it can be understood that the finished surface roughness Ra of the disk material D5 shows the roughest peak when the abrasive concentration is about 1 wt%. It can also be seen that when the abrasive concentration is in the range of 0.2 to 5 wt%, the finished surface roughness Ra greatly increases and decreases with the peak value as a boundary. That is, the disc material D5 having a surface with a predetermined surface roughness is obtained by performing the above-described finish polishing on the disc material D4 while appropriately adjusting the abrasive concentration of the polishing liquid to a concentration within this concentration range. It is understood that can be obtained. However, here, the concentration range of 0.2 to 5 wt% of the abrasive concentration is referred to as a polishing region that can be used for finish polishing. 3 that the increase / decrease width of the finished surface roughness Ra increases as the polishing pressure is increased.

これに対して、研磨剤濃度が5wt%を超えた領域、好ましくは8wt%以上の領域(図3では15wt%までの領域に関する結果が示されている。)では、仕上げ面粗さに大きな差は認められなくなる。これは、研磨剤濃度がこのような領域に属する研磨液での研磨では、研磨剤の大きさに応じた粗さがディスク材D5の表面に実現できることを意味している。   On the other hand, in the region where the abrasive concentration exceeds 5 wt%, preferably in the region of 8 wt% or more (in FIG. 3, the results regarding the region up to 15 wt% are shown), there is a large difference in the finished surface roughness. Is no longer allowed. This means that in polishing with a polishing liquid having an abrasive concentration belonging to such a region, roughness corresponding to the size of the abrasive can be realized on the surface of the disk material D5.

他方、どのような研磨条件のときにどのような加工速度を実現できるのかを検討するために、実験を行った。その実験結果を図4のグラフに示す。なお、図4には、研磨圧力を、3kPa、9kPa、15kPaと種々変えた3つの場合に関する結果が表わされている。なお、この実験では、研磨剤としてコロイダルシリカ(平均粒径:50nm)を用い、それをPH9.8のNaOH水溶液に分散させた液を研磨液として用いた。ここでの研磨条件は、その研磨剤濃度を種々変化させることや研磨圧力の点を除いて、上記実験例における仕上げ前研磨工程(上記ステップS203参照)のそれと同じである。   On the other hand, an experiment was conducted to examine what processing speed can be realized under what polishing conditions. The experimental results are shown in the graph of FIG. FIG. 4 shows the results for three cases where the polishing pressure was variously changed to 3 kPa, 9 kPa, and 15 kPa. In this experiment, colloidal silica (average particle diameter: 50 nm) was used as an abrasive, and a liquid in which it was dispersed in an aqueous NaOH solution having a pH of 9.8 was used as an abrasive. The polishing conditions here are the same as those in the pre-finish polishing step (see step S203 above) in the above experimental example, except that the concentration of the abrasive is variously changed and the polishing pressure is changed.

図4のグラフから、研磨剤濃度が約5wt%濃度以上、好ましくは6から15wt%濃度領域、さらに好ましくは8から15wt%濃度領域にあるときに、加工速度を速くすることが出来ることが理解できる。そして、それは、研磨圧力が高いほど、加工速度が早くなることが分かる。なお、ここでは、この研磨剤濃度の領域を、研磨速度の速い高速領域と称する。上記図3の実験結果を参照しつつこの実験結果から、研磨剤濃度を高速領域に属するように調節することで、仕上げ研磨用の微細な研磨剤を含む研磨液を用いて、ディスク材D3の高速研磨を行うことが可能であることが理解できる。   From the graph of FIG. 4, it is understood that the processing speed can be increased when the abrasive concentration is about 5 wt% concentration or more, preferably 6 to 15 wt% concentration region, more preferably 8 to 15 wt% concentration region. it can. It can be seen that the higher the polishing pressure, the faster the processing speed. Here, this abrasive concentration region is referred to as a high-speed region where the polishing rate is high. From this experimental result referring to the experimental result of FIG. 3 above, by adjusting the abrasive concentration so as to belong to the high speed region, a polishing liquid containing a fine polishing agent for final polishing can be used. It can be understood that high-speed polishing can be performed.

以上より、少ない、好ましくは一種類の研磨剤を含む研磨液の研磨剤濃度を種々変えて、好ましくは、高速領域の研磨剤濃度の研磨液を用いて研磨し、その後、研磨領域の研磨剤濃度にまで薄めた研磨液を用いてディスク材Dを研磨することで、高速で高精度の仕上げ面を有するディスク材Dを得ることが可能であることが明らかになった。このように、仕上げ研磨用の研磨剤を含む研磨液の研磨剤濃度を変えるだけで、研磨速度や仕上げ面粗さを所望の値に調節することが出来るので、同一の研磨媒体や同一の装置を長い間、仕上げ研磨加工工程で用いることができる。したがって、用いる研磨媒体や研磨装置の種類を低減できるので、研磨工程を簡易化することが可能になるとともに、研磨工程にかかるコストも低減することが可能になる。   As described above, the polishing agent concentration of the polishing liquid containing a small amount, preferably one kind of polishing agent, is changed variously, and preferably, polishing is performed using the polishing liquid having the polishing agent concentration in the high-speed region, and then the polishing agent in the polishing region. It has been clarified that it is possible to obtain a disk material D having a high-precision finished surface at high speed by polishing the disk material D using a polishing liquid diluted to a concentration. In this way, the polishing rate and the finished surface roughness can be adjusted to desired values by simply changing the polishing agent concentration of the polishing liquid containing the polishing agent for finish polishing. Can be used in the finish polishing process for a long time. Therefore, since the types of polishing media and polishing apparatuses to be used can be reduced, the polishing process can be simplified and the cost for the polishing process can be reduced.

なお、上記のように、ある研磨圧力下で、研磨液の研磨剤濃度を減少させていくと、仕上げ面表面粗さはある濃度をピークにもつように増減することから、このような研磨剤濃度の制御がディスク材の表面粗さの制御に有効である。これは、研磨時の研磨剤の運動挙動がディスク材の表面を幾何学的創造することから、研磨剤の密度が表面粗さに影響を与えるためであると考えられる。   Note that, as described above, when the polishing agent concentration of the polishing liquid is decreased under a certain polishing pressure, the surface roughness of the finished surface increases or decreases to have a certain concentration at the peak. Concentration control is effective for controlling the surface roughness of the disk material. This is thought to be because the density of the abrasive affects the surface roughness because the movement behavior of the abrasive during polishing creates the geometrical surface of the disk material.

故に、ディスク材Dの研磨装置10を用いて説明された上記研磨方法により、良好のディスク材を得ることができ、それにより良好の磁気ディスク用ガラス基板が得られることが分かった。そして、こうして得られた基板に対して、密着層、下地層磁性層およびカーボン保護層等を種々の手段および方法、例えばスパッタリング法やCVD法により成膜し、その上に液体潤滑材を塗布することで、磁気ディスクを得ることができる。ただし、その過程で、テクスチャ加工、ポリッシュ加工等が任意に施され得る。なお、このように作製される磁気ディスクは、長手磁気記録方式の磁気ディスクであっても、垂直磁気記録方式の磁気ディスクであってもよい。   Therefore, it has been found that the above-described polishing method described using the polishing apparatus 10 for the disk material D can provide a good disk material, thereby obtaining a good glass substrate for a magnetic disk. Then, an adhesion layer, an underlayer magnetic layer, a carbon protective layer, and the like are formed on the substrate thus obtained by various means and methods such as sputtering or CVD, and a liquid lubricant is applied thereon. Thus, a magnetic disk can be obtained. However, in the process, texture processing, polishing processing, or the like can be arbitrarily performed. The magnetic disk manufactured in this way may be a longitudinal magnetic recording magnetic disk or a perpendicular magnetic recording magnetic disk.

なお、ディスク材の研磨に用いられた研磨剤は、上記研磨剤に限定されず、コロイダルシリカ、アルミナ、ダイヤモンド、酸化ジルコニア、酸化セリウム等であり得る。また、研磨液の溶媒は、水やNaOH水溶液等に限定されず、種々の液体、例えばアルカリ性液体や酸性性質の液体等であり得る。また、研磨圧力は、上記記載に限定されず、4.9kPaから14.7kPaの圧力、好ましくは7.84kPaから11.8kPaの圧力に例えば設定される。また、第1研磨加工および第2研磨加工で実質的に共通して用いられる研磨液に含まれる研磨剤の大きさは、要求表面粗さすなわち仕上げ研磨加工後のディスク材Dの表面に要求される仕上げ面粗さを実現可能なように、種々選定され得る。   In addition, the abrasive | polishing agent used for grinding | polishing of disk material is not limited to the said abrasive | polishing agent, Colloidal silica, an alumina, a diamond, a zirconia oxide, a cerium oxide etc. may be sufficient. Moreover, the solvent of polishing liquid is not limited to water, NaOH aqueous solution, etc., It can be various liquids, for example, an alkaline liquid, an acidic liquid, etc. The polishing pressure is not limited to the above description, and is set to, for example, a pressure of 4.9 kPa to 14.7 kPa, preferably a pressure of 7.84 kPa to 11.8 kPa. Further, the size of the abrasive contained in the polishing liquid used substantially in common in the first polishing process and the second polishing process is required for the required surface roughness, that is, the surface of the disk material D after the finish polishing process. Various finishes can be selected so that the finished surface roughness can be realized.

なお、上記実施形態およびその変形例等では、本発明をある程度の具体性をもって説明したが、本発明については、特許請求の範囲に記載された発明の精神や範囲から離れることなしに、さまざまな改変や変更が可能であることは理解されなければならない。すなわち、本発明は特許請求の範囲およびその等価物の範囲および趣旨に含まれる修正および変更を包含するものである。   Although the present invention has been described with a certain degree of specificity in the above-described embodiments and modifications thereof, various modifications can be made to the present invention without departing from the spirit and scope of the invention described in the claims. It should be understood that modifications and changes are possible. That is, the present invention includes modifications and changes that fall within the scope and spirit of the appended claims and their equivalents.

10 研磨装置
12、16 研磨布
14 下定盤
18 上定盤
20 保持手段
22 研磨液供給手段
32 基準研磨液
34 第1バルブ
36 水
38 第2バルブ
D ディスク材
DESCRIPTION OF SYMBOLS 10 Polishing apparatus 12, 16 Polishing cloth 14 Lower surface plate 18 Upper surface plate 20 Holding means 22 Polishing liquid supply means 32 Standard polishing liquid 34 1st valve 36 Water 38 2nd valve D Disc material

Claims (2)

第1濃度分の研磨剤を含む研磨液を用いてディスク材を研磨する第1研磨工程と、
研磨剤濃度と仕上げ面粗さの相関に基づいて、前記第1研磨工程の仕上げ面粗さより大きな仕上げ面粗さとなる、前記第1濃度よりも低濃度の第2濃度分の前記研磨剤を含む研磨液を用いて、前記第1研磨工程で研磨されたディスク材を研磨する第2研磨工程と
を含み、
前記第1濃度は、前記ディスク材に対する要求研磨速度に基づいて設定され、
前記第2濃度は、ディスク材に対する要求表面粗さに基づいて設定されることを特徴とするディスク材の研磨方法。
A first polishing step of polishing the disk material using a polishing liquid containing a first concentration of abrasive;
Based on the correlation between the polishing agent concentration and the finished surface roughness, the polishing agent contains a second concentration lower than the first concentration and having a finished surface roughness larger than the finished surface roughness of the first polishing step. Using a polishing liquid, and a second polishing step for polishing the disk material polished in the first polishing step,
The first concentration is set based on a required polishing rate for the disk material,
The disk material polishing method, wherein the second concentration is set based on a required surface roughness of the disk material.
第1濃度分の研磨剤を含む研磨液を用いてディスク材を研磨する第1研磨手段と、
研磨剤濃度と仕上げ面粗さの相関に基づいて、前記第1研磨手段の研磨による仕上げ面粗さより大きな仕上げ面粗さとなる、前記第1濃度よりも低濃度の第2濃度分の前記研磨液を含む研磨液を用いて、前記第1研磨手段で研磨されたディスク材を研磨する第2研磨手段と
を含み、
前記第1濃度は、前記ディスク材に対する要求研磨速度に基づいて設定され、
前記第2濃度は、ディスク材に対する要求表面粗さに基づいて設定されることを特徴とするディスク材の研磨装置。
First polishing means for polishing the disk material using a polishing liquid containing a first concentration of abrasive;
Based on the correlation between the abrasive concentration and the finished surface roughness, the polishing liquid corresponding to the second concentration lower than the first concentration has a finished surface roughness larger than the finished surface roughness by the polishing of the first polishing means. Second polishing means for polishing the disk material polished by the first polishing means using a polishing liquid containing
Including
The first concentration is set based on a required polishing rate for the disk material,
The disk material polishing apparatus, wherein the second concentration is set based on a required surface roughness of the disk material.
JP2009049444A 2009-03-03 2009-03-03 Disc material polishing method and polishing apparatus Expired - Fee Related JP5327608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009049444A JP5327608B2 (en) 2009-03-03 2009-03-03 Disc material polishing method and polishing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009049444A JP5327608B2 (en) 2009-03-03 2009-03-03 Disc material polishing method and polishing apparatus

Publications (3)

Publication Number Publication Date
JP2010205336A JP2010205336A (en) 2010-09-16
JP2010205336A5 JP2010205336A5 (en) 2011-04-07
JP5327608B2 true JP5327608B2 (en) 2013-10-30

Family

ID=42966670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009049444A Expired - Fee Related JP5327608B2 (en) 2009-03-03 2009-03-03 Disc material polishing method and polishing apparatus

Country Status (1)

Country Link
JP (1) JP5327608B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114806413A (en) * 2022-04-21 2022-07-29 大连理工大学 Green visible light catalysis-assisted diamond chemical mechanical polishing solution

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3671649B2 (en) * 1997-11-27 2005-07-13 コニカミノルタオプト株式会社 Polishing method and polishing apparatus
JP4372237B2 (en) * 1997-12-24 2009-11-25 花王株式会社 Polishing method for magnetic recording medium substrate
JP2000053450A (en) * 1998-08-06 2000-02-22 Nikon Corp Production of substrate for information recording medium and substrate for information recording medium
JP4707311B2 (en) * 2003-08-08 2011-06-22 花王株式会社 Magnetic disk substrate
JP2006315160A (en) * 2005-05-16 2006-11-24 Fuji Electric Holdings Co Ltd Finish polishing method for glass substrate of magnetic disk

Also Published As

Publication number Publication date
JP2010205336A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
JP4189384B2 (en) Manufacturing method and polishing apparatus for glass substrate for information recording medium
JP5622481B2 (en) Method for manufacturing substrate for magnetic recording medium
JP5428793B2 (en) Glass substrate polishing method and method for producing glass substrate for magnetic recording medium
JP2012155785A (en) Method for manufacturing substrate for magnetic recording medium
JP5586293B2 (en) Method for manufacturing substrate for magnetic recording medium
JP4234991B2 (en) Manufacturing method of glass substrate for information recording medium and glass substrate for information recording medium manufactured by the manufacturing method
JP2008142802A (en) Manufacturing method for substrate and substrate
JP6141636B2 (en) Substrate manufacturing method, magnetic disk glass substrate manufacturing method, and magnetic disk manufacturing method
JP2023052035A (en) Polishing liquid, manufacturing method of glass substrate, and, manufacturing method of magnetic disc
JP5294596B2 (en) Magnetic disk glass substrate manufacturing method, magnetic disk manufacturing method, magnetic disk glass substrate, magnetic disk, and magnetic disk glass substrate grinding apparatus
JP2012142044A (en) Method for manufacturing glass substrate for information recording medium and information recording medium
JP6645935B2 (en) Substrate manufacturing method, substrate end surface processing apparatus, substrate end surface processing method, and grinding wheel
JP5327608B2 (en) Disc material polishing method and polishing apparatus
JP2007098483A (en) Glass substrate for magnetic disk, manufacturing method of magnetic disk and end face grinder
JP5227132B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
CN108564970B (en) Method for manufacturing glass substrate, and method for manufacturing glass substrate for magnetic disk
JP5947221B2 (en) Manufacturing method of glass substrate for information recording medium
JP2010115731A (en) Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
CN104625939A (en) Glass substrate manufacturing method
JP4223983B2 (en) Mask blank substrate manufacturing method
JP2012130988A (en) Dresser for polishing pad, manufacturing method thereof, glass substrate, manufacturing method thereof, glass substrate for magnetic recording medium, and manufacturing method thereof
JP5483530B2 (en) Manufacturing method of magnetic disk substrate
WO2012133374A1 (en) Method for producing magnetic-disk glass substrate
JP3880976B2 (en) Mask blank substrate manufacturing method
JP5731245B2 (en) Manufacturing method of glass substrate for magnetic disk

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110217

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130711

R150 Certificate of patent or registration of utility model

Ref document number: 5327608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees