JP5327531B2 - Nonaqueous electrolyte battery electrode and nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery electrode and nonaqueous electrolyte battery Download PDF

Info

Publication number
JP5327531B2
JP5327531B2 JP2009121749A JP2009121749A JP5327531B2 JP 5327531 B2 JP5327531 B2 JP 5327531B2 JP 2009121749 A JP2009121749 A JP 2009121749A JP 2009121749 A JP2009121749 A JP 2009121749A JP 5327531 B2 JP5327531 B2 JP 5327531B2
Authority
JP
Japan
Prior art keywords
potential
positive electrode
electrode
aqueous electrolyte
electrolyte battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009121749A
Other languages
Japanese (ja)
Other versions
JP2010272281A (en
Inventor
淳 深谷
裕 永田
恭平 宇佐美
学 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009121749A priority Critical patent/JP5327531B2/en
Publication of JP2010272281A publication Critical patent/JP2010272281A/en
Application granted granted Critical
Publication of JP5327531B2 publication Critical patent/JP5327531B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、非水電解液電池用電極及び非水電解液電池に関する。   The present invention relates to a nonaqueous electrolyte battery electrode and a nonaqueous electrolyte battery.

ノート型コンピュータ、携帯電話、デジタルカメラ等電子機器の普及に伴い、これら電子機器を駆動するための二次電池の需要が拡大している。近年、これら電子機器は高機能化の進展に伴い消費電力が増大していることや、小型化が期待されていることから、二次電池に対しては高エネルギー密度・高出力密度化が求められている。高エネルギー密度・高出力密度を達成できる二次電池としては、リチウムイオン電池等の非水電解液二次電池が有力視されている。   With the widespread use of electronic devices such as notebook computers, mobile phones, and digital cameras, the demand for secondary batteries for driving these electronic devices is increasing. In recent years, the power consumption of these electronic devices has increased with the progress of higher functionality, and miniaturization is expected, so high energy density and high output density are required for secondary batteries. It has been. As secondary batteries that can achieve high energy density and high output density, non-aqueous electrolyte secondary batteries such as lithium ion batteries are considered promising.

しかし、リチウムイオン電池では、化学的活性の高いリチウム、可燃性の高い電解液、過充電状態での安定性が低いリチウム遷移金属複合酸化物を電池材料として用いていることから、過充電状態において更に充電を継続すると、電池材料間の化学反応が急激に進行し、電池が発熱又は発火(熱暴走)を起こすといった安全上の問題があることが知られている。このため、過充電状態に至る前に速やかに充電を停止する必要がある。   However, lithium-ion batteries use highly chemically active lithium, highly flammable electrolytes, and lithium transition metal composite oxides with low stability in overcharged states as battery materials. Furthermore, it is known that when charging is continued, a chemical reaction between the battery materials proceeds rapidly, and there is a safety problem that the battery generates heat or ignites (thermal runaway). For this reason, it is necessary to stop charging promptly before reaching the overcharged state.

このような問題から、リチウムイオン電池の過充電を抑止する様々な手法が検討されており、たとえば、特許文献1〜2に開示されている。   From such a problem, various methods for suppressing overcharge of the lithium ion battery have been studied, and disclosed in, for example, Patent Documents 1 and 2.

特許文献1には、過充電に伴う温度上昇により電極の抵抗を上昇させ、充電電流を遮断し過充電を抑止する手法として、正極材料又は負極材料からなる電極合剤層と、集電体との積層構造を有する電極において、電極合剤層中又は電極合剤層と集電体との界面に沿って熱膨張性マイクロカプセルを含有させる電極が開示されている。   In Patent Document 1, as a technique for increasing the resistance of an electrode due to a temperature rise associated with overcharging, cutting off a charging current and suppressing overcharging, an electrode mixture layer made of a positive electrode material or a negative electrode material, a current collector, In the electrode having the laminated structure, an electrode containing thermally expandable microcapsules in the electrode mixture layer or along the interface between the electrode mixture layer and the current collector is disclosed.

また、特許文献2には、過充電に伴う電位上昇により正極と負極との間で内部短絡を発生させ、充電電流をリークすることで過充電を抑止する手法として、正極集電体の露出部で、かつ負極集電体の露出部と対向する部分の表面に、電池電圧が所定電圧を超えると非水電解液に溶解する金属を設けた二次電池が開示されている。   Patent Document 2 discloses an exposed portion of a positive electrode current collector as a technique for suppressing an overcharge by causing an internal short circuit between a positive electrode and a negative electrode due to a potential increase accompanying overcharge and leaking a charge current. And the secondary battery which provided the metal which melt | dissolves in a non-aqueous electrolyte when the battery voltage exceeds a predetermined voltage on the surface of the part facing the exposed part of the negative electrode current collector is disclosed.

しかしながら、特許文献1に記載された電極は、電極合剤層中又は電極合剤層と集電体との界面に沿って含有されているマイクロカプセルが温度上昇により膨張し、電極合剤と集電体を剥離させることで電極の抵抗を上昇させ、充電電流を遮断し過充電を抑止するものであるが、実施例にあるように、マイクロカプセルは発泡開始(電流遮断)温度が125℃以上と高温であることから、マイクロカプセルの発泡開始前にセパレータとして一般的に用いられているポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔質合成樹脂膜が収縮・溶融し、正負極間で内部短絡し、電池が発熱・熱暴走を引き起す可能性がある。また発泡温度に到達するまで、リチウム遷移金属複合酸化物の過充電が進行し、リチウム遷移金属複合酸化物の安定性が更に低下してしまうという点においても、安全性向上効果としては不十分である。   However, in the electrode described in Patent Document 1, the microcapsules contained in the electrode mixture layer or along the interface between the electrode mixture layer and the current collector expand due to temperature rise, and the electrode mixture and the collector are collected. By peeling the electric body, the resistance of the electrode is increased, the charging current is cut off, and overcharging is suppressed. As in the example, the microcapsule has a foaming start (current cut-off) temperature of 125 ° C. or higher. Because of the high temperature, the porous synthetic resin film of polyolefin polymer (polyethylene, polypropylene) generally used as a separator shrinks and melts before the start of foaming of microcapsules, causing internal short circuit between the positive and negative electrodes However, the battery may cause heat generation and thermal runaway. In addition, the lithium transition metal composite oxide is overcharged until the foaming temperature is reached, and the stability of the lithium transition metal composite oxide is further reduced. is there.

特許文献2に記載された二次電池は、所定電位を超え過充電状態になると正極集電体の露出部に設けられた金属が電解液に溶解し、溶解した金属が対向する負極集電体の露出部に析出して、正極と負極との間に内部短絡を発生させ、充電電流をリークする経路を形成することで過充電を抑止するものであるが、充電電流の大きさ等により金属の析出状態が異なり、内部短絡の状態を制御することが困難であるため、内部短絡の程度が大きい場合、電池が発熱・熱暴走を引き起す可能性がある。   In the secondary battery described in Patent Document 2, when the overcharged state exceeds a predetermined potential, the metal provided at the exposed portion of the positive electrode current collector is dissolved in the electrolyte, and the negative electrode current collector facing the dissolved metal It is deposited on the exposed portion of the metal to cause an internal short circuit between the positive electrode and the negative electrode, thereby forming a path for leaking the charging current, thereby preventing overcharging. Since the deposition state differs and it is difficult to control the state of the internal short circuit, if the degree of the internal short circuit is large, the battery may cause heat generation and thermal runaway.

特開2001−332245号公報JP 2001-332245 A 特開2006−222077号公報JP 2006-222077 A

本発明は上記実情に鑑み完成したものであり、過充電の抑止が可能な非水電解液電池に用いられる非水電解液電池用電極及び非水電解液電池を提供することを解決すべき課題とする。   SUMMARY OF THE INVENTION The present invention has been completed in view of the above circumstances, and a problem to be solved is to provide a nonaqueous electrolyte battery electrode and a nonaqueous electrolyte battery used in a nonaqueous electrolyte battery capable of suppressing overcharge. And

上記課題を解決するために、本発明者らは電極について検討を重ねた結果、本発明をなすに到った。   In order to solve the above-mentioned problems, the present inventors have studied the electrode, and as a result, have come to make the present invention.

すなわち、本発明の請求項1に記載の非水電解液電池用電極は、正極活物質を有する正極合剤層が集電体上に形成された正極と、負極活物質を有する負極合剤層が集電体上に形成された負極と、非水電解液と、を備えた非水電解液電池に用いる非水電解液電池用電極であって、正極は、正極合剤層と集電体の間に、正極活物質が示す上限電位以上の電位である所定の電位で溶解する電位溶解剤を有する電位溶解剤層を有しており、電位溶解剤が、下記化6式又は化10式で表される化合物であることを特徴とする。 That is, the electrode for a non-aqueous electrolyte battery according to claim 1 of the present invention includes a positive electrode in which a positive electrode mixture layer having a positive electrode active material is formed on a current collector, and a negative electrode mixture layer having a negative electrode active material. there a non-aqueous electrolyte battery electrode for use in non-aqueous electrolyte battery comprising a negative electrode formed on a current collector, a non-aqueous electrolyte, a positive electrode, a positive electrode mixture layer and the current collector between, it has a potential dissolution agent layer having a potential dissolving agent which dissolves at a predetermined potential, which is the upper limit voltage or a potential indicated by the positive electrode active material, the potential dissolution agent, the following formula 6 formula or formula 10 formula It is a compound represented by these.

請求項1によると、本発明の非水電解液電池用電極は、所定の電位で溶解する電位溶解剤よりなる電位溶解剤層が、電極合剤層と集電体との間に形成されている。この電位溶解剤層を形成する電位溶解剤は、所定の電位で溶解する物質であるため、過充電等により電極の電位が所定の電位以上となると溶解する。電位溶解剤が溶解すると、電極合剤層と集電体との間の電気的な導通が得られなくなる。すなわち、電位溶解剤が溶解すると、電極合剤層と集電体とが剥離して接触しなくなり、電極の抵抗が上昇する。電極の抵抗が上昇すると、電極を通過する電流(充電電流)が遮断される。この結果、電極の電位のさらなる上昇や充電の更なる進行(過充電)が抑えられる。これにより、本発明の非水電解液電池用電極は、過充電・発熱・熱暴走を生じなくなる。このように、本発明の非水電解液電池用電極は、過充電による不具合の発生が抑えられる効果を発揮する。   According to claim 1, in the electrode for a non-aqueous electrolyte battery of the present invention, a potential solubilizer layer made of a potential solubilizer that dissolves at a predetermined potential is formed between the electrode mixture layer and the current collector. Yes. The potential solubilizer that forms this potential solubilizer layer is a substance that dissolves at a predetermined potential, and therefore dissolves when the potential of the electrode exceeds a predetermined potential due to overcharge or the like. When the potential dissolving agent dissolves, electrical conduction between the electrode mixture layer and the current collector cannot be obtained. That is, when the potential dissolving agent is dissolved, the electrode mixture layer and the current collector are peeled off and are not in contact with each other, and the resistance of the electrode is increased. When the resistance of the electrode increases, the current passing through the electrode (charging current) is interrupted. As a result, further increase in the potential of the electrode and further progress of charging (overcharge) can be suppressed. Thereby, the nonaqueous electrolyte battery electrode of the present invention does not cause overcharge, heat generation, and thermal runaway. Thus, the electrode for nonaqueous electrolyte batteries of the present invention exhibits the effect of suppressing the occurrence of problems due to overcharging.

請求項2に記載の非水電解液電池用電極は、請求項1において、リチウムイオンを吸蔵・放出可能な正極活物質を有する正極に用いられることを特徴とする。すなわち、請求項2によると、本発明の非水電解液電池用電極は、リチウムイオン電池の正極に用いられることで、より効果を発揮できる。   The electrode for a non-aqueous electrolyte battery according to claim 2 is used for a positive electrode having a positive electrode active material capable of occluding and releasing lithium ions in claim 1. That is, according to claim 2, the nonaqueous electrolyte battery electrode of the present invention can be more effective when used for the positive electrode of a lithium ion battery.

本発明の非水電解液電池用電極は、前記電位溶解剤が溶解する所定の電位は、前記正極活物質が示す上限電位以上の電位である。電位溶解剤が溶解する所定の電位が、正極活物質が示す上限電位以上であることで、本発明の非水電解液電池用電極が正極として使用されたときに、所定の電位以上に上昇することを抑えることができる効果を発揮する。ここで、所定の電位は、正極活物質が示す上限電位から0.1V以上の電位であることが好ましく、0.2V以上の電位であることがさらに好ましい。 In the non-aqueous electrolyte battery electrode according to the present invention , the predetermined potential at which the potential dissolving agent is dissolved is a potential equal to or higher than the upper limit potential indicated by the positive electrode active material . The predetermined potential at which the potential solubilizer dissolves is equal to or higher than the upper limit potential indicated by the positive electrode active material, so that when the nonaqueous electrolyte battery electrode of the present invention is used as a positive electrode, the potential increases to a predetermined potential or higher. The effect which can suppress that is exhibited. Here, the predetermined potential is preferably a potential of 0.1 V or more from the upper limit potential indicated by the positive electrode active material, and more preferably a potential of 0.2 V or more.

本発明の非水電解液電池用電極は、前記電位溶解剤が下記化6式又は化10式で表される化合物である。 In the electrode for a non-aqueous electrolyte battery of the present invention, the potential solubilizer is a compound represented by the following chemical formula 6 or chemical formula 10 .

Figure 0005327531
(X及びYは、硫黄原子、酸素原子、メチレン基から選択され、XとYは同じであっても異なっていてもよい。)
Figure 0005327531
(X and Y are selected from a sulfur atom, an oxygen atom, and a methylene group, and X and Y may be the same or different.)

電位溶解剤が化6式に示された化合物よりなることで、上記の効果をより発揮できる。なお、電位溶解剤は、化6式に示された一般式で表される化合物(たとえば、下記の化7〜9式の化合物)を単独で用いても、複数種を混合して用いても、いずれでもよい。 When the potential dissolving agent is composed of the compound represented by the chemical formula (6), the above effect can be more exhibited. The potential solubilizer may be a compound represented by the general formula shown in Chemical Formula 6 (for example, a compound of the following Chemical Formulas 7 to 9) or a mixture of a plurality of types. Any of them may be used.

Figure 0005327531
Figure 0005327531

Figure 0005327531
Figure 0005327531

Figure 0005327531
Figure 0005327531

請求項3に記載の非水電解液電池用電極は、請求項1において、電位溶解剤は、ビスエチレンジチオテトラチアフルバレンであることを特徴とする。請求項3によると、電位溶解剤がビスエチレンジチオテトラチアフルバレン(上記の化8の化合物)であることで、上記の効果をより発揮できる。 The electrode for a nonaqueous electrolyte battery according to claim 3 is characterized in that, in claim 1 , the potential dissolving agent is bisethylenedithiotetrathiafulvalene. According to the third aspect , when the potential dissolving agent is bisethylenedithiotetrathiafulvalene (compound of the above chemical formula 8), the above effect can be more exhibited.

Figure 0005327531
(R1〜R4のそれぞれは、水素、炭素数1〜4のアルキル基より独立して選択され、R1〜R4の少なくともひとつは、下記化11式で表される構造のいずれかである。nは、自然数であり、独立して選択可能である。)
Figure 0005327531
(Each of R1 to R4 is independently selected from hydrogen and an alkyl group having 1 to 4 carbon atoms, and at least one of R1 to R4 is any one of structures represented by the following formula 11. It is a natural number and can be selected independently.)

Figure 0005327531
(化11(1)〜(3)は、化学式中の*の部分が、化10式中のベンゼン環中の炭素原子と結合する。化11(1)〜(3)中のRは、−H、−OH、−CH、−NHのいずれかである。化11(1)〜(3)中のYは、−(CH)m−基(mは、0〜10の整数)であり、mが1以上のときは、Yを構成するメチレン基の一つ以上が、下記化12(1)〜(10)で表される基の少なくともひとつに置換されていてもよい。)
Figure 0005327531
(In the chemical formulas 11 (1) to (3), the part * in the chemical formula is bonded to the carbon atom in the benzene ring in the chemical formula 10. R in the chemical formulas 11 (1) to (3) is- Any one of H, —OH, —CH 3 , and —NH 2 Y in Chemical Formulas 11 (1) to (3) is a — (CH 2 ) m— group (m is an integer of 0 to 10); And when m is 1 or more, one or more of the methylene groups constituting Y may be substituted with at least one of the groups represented by the following chemical formulas 12 (1) to (10).

Figure 0005327531
Figure 0005327531

請求項4に記載の非水電解液電池用電極は、請求項1において、前記電位溶解剤が下記化13式で表される化合物であることを特徴とする。 The electrode for a non-aqueous electrolyte battery according to claim 4 is characterized in that, in claim 1 , the potential solubilizer is a compound represented by the following chemical formula (13).

Figure 0005327531
Figure 0005327531

請求項4によると、電位溶解剤が化13式に示された化合物よりなることで、請求項1に記載の効果をより発揮できる。 According to Claim 4 , the effect of Claim 1 can be exhibited more because the potential dissolving agent is composed of the compound represented by Formula 13.

請求項5に記載の非水電解液電池用電極は、請求項1〜4のいずれかにおいて、前記電位溶解剤層は、50μm以下の厚さであることを特徴とする。請求項5によると、電位溶解剤層の厚さが50μm以下である。これにより、本発明の非水電解液電池用電極の抵抗が大きくなることが抑えられる。具体的には、電位溶解剤は、集電体よりも大きな抵抗値を有しており、その厚さが厚くなるほど、電位溶解剤層の抵抗が大きくなり、非水電解液電池用電極の抵抗が大きくなる。そして、電位溶解剤層の厚さが50μmを超えると、電極自身の抵抗が過剰に大きくなる。電位溶解剤層は、溶解した後にできる空隙により電極合剤層と集電体との接触が規制できる程度の厚さ以上であればよく、1μm程度以上の厚さであることが好ましい。 The electrode for a non-aqueous electrolyte battery according to claim 5 is characterized in that in any one of claims 1 to 4 , the potential dissolving agent layer has a thickness of 50 μm or less. According to the fifth aspect , the thickness of the electric potential dissolving agent layer is 50 μm or less. Thereby, it is suppressed that resistance of the electrode for nonaqueous electrolyte batteries of the present invention becomes large. Specifically, the potential solubilizer has a larger resistance value than the current collector, and as the thickness thereof increases, the resistance of the potential solubilizer layer increases and the resistance of the electrode for the nonaqueous electrolyte battery increases. Becomes larger. And when the thickness of the potential dissolving agent layer exceeds 50 μm, the resistance of the electrode itself becomes excessively large. The potential solubilizer layer may be at least as thick as the contact between the electrode mixture layer and the current collector can be regulated by the gap formed after dissolution, and is preferably about 1 μm or more.

請求項6に記載の非水電解液電池用電極は、請求項1〜5のいずれかにおいて、正極活物質は、構造式Li1−Zα(αはCoO、MnO、Mn、NiO)又はLi1−ZβPO(βはFe、Mn)(Zは0〜1の数)で示される化合物が1種以上含まれるリチウム遷移金属複合酸化物を有することを特徴とする。請求項6によると、本発明の非水電解液電池用電極をリチウムイオン電池の正極に用いることで、請求項1〜5に記載の効果をより発揮できる。 The electrode for a nonaqueous electrolyte battery according to claim 6 is the electrode according to any one of claims 1 to 5 , wherein the positive electrode active material has the structural formula Li 1-Z α (α is CoO 2 , MnO 2 , Mn 2 O 4. , NiO 2 ) or Li 1-Z βPO 4 (β is Fe, Mn) (Z is a number of 0 to 1), and has a lithium transition metal composite oxide containing one or more compounds. . According to Claim 6 , the effect of Claims 1-5 can be exhibited more by using the electrode for nonaqueous electrolyte batteries of this invention for the positive electrode of a lithium ion battery.

請求項7に記載の非水電解液電池は、請求項1〜6の何れか1項に記載の非水電解液電池用電極よりなる正極と、負極と、非水電解液と、を有することを特徴とする。 Nonaqueous electrolyte battery according to claim 7, further comprising a positive electrode of a non-aqueous electrolyte battery electrode according to any one of claims 1 to 6, a negative electrode, a nonaqueous electrolytic solution, the It is characterized by.

上記したように、請求項1〜5の何れか1項に記載の非水電解液電池用電極は、過充電による不具合の発生が抑えられた電極であり、本発明の電池は、この電極を用いた電池であることから、過充電による不具合の発生が抑えられる効果を発揮する。

As described above, the electrode for a non-aqueous electrolyte battery according to any one of claims 1 to 5 is an electrode in which occurrence of problems due to overcharging is suppressed, and the battery of the present invention includes the electrode. Since it is the battery used, the effect which suppresses generation | occurrence | production of the malfunction by overcharge is exhibited.

実施例1のリチウムイオン二次電池用正極の構成を示す模式図である。2 is a schematic diagram illustrating a configuration of a positive electrode for a lithium ion secondary battery according to Example 1. FIG. 実施例1のコイン型のリチウムイオン二次電池の構成を示す模式図である。1 is a schematic diagram showing a configuration of a coin-type lithium ion secondary battery of Example 1. FIG.

以下、本発明の非水電解液電池用電極及び非水電解液電池について説明する。   Hereinafter, the nonaqueous electrolyte battery electrode and the nonaqueous electrolyte battery of the present invention will be described.

本発明の非水電解液電池用電極は、正極活物質を有する正極合剤層が集電体上に形成された正極と、負極活物質を有する負極合剤層が集電体上に形成された負極と、非水電解液と、を備えた非水電解液電池に用いる電極である。   The electrode for a non-aqueous electrolyte battery of the present invention has a positive electrode mixture layer having a positive electrode active material formed on a current collector and a negative electrode mixture layer having a negative electrode active material formed on the current collector. An electrode used for a non-aqueous electrolyte battery comprising a negative electrode and a non-aqueous electrolyte.

(正極)
正極合剤層に含まれる正極活物質は、特に限定されるものではなく、従来公知の正極活物質を用いることができる。正極活物質としては、たとえば、リチウムイオンを放出できるリチウム遷移金属複合酸化物をあげることができる。リチウム遷移金属複合酸化物としては、請求項8に記載の化合物をあげることができ、その一例として、LiNiO2 、LiMnO2 、LiMn24 、Li(CoO2 、LiFeO2 、LiFePO4 、LiMnPO4等の化合物をあげることができる。ここで、正極活物質は、これらの化合物だけに限定されるものではない。また、上記リチウム遷移金属複合酸化物は、単独で用いるだけでなく、これらを複数種類混合して用いることもできる。中でもリチウム遷移金属複合酸化物としてリチウムマンガン含有複合酸化物、リチウムニッケル含有複合酸化物、リチウムコバルト含有複合酸化物及びリチウム鉄含有複合酸化物のうちの1種以上であることが好ましい。
(Positive electrode)
The positive electrode active material contained in the positive electrode mixture layer is not particularly limited, and a conventionally known positive electrode active material can be used. Examples of the positive electrode active material include a lithium transition metal composite oxide capable of releasing lithium ions. Examples of the lithium transition metal composite oxide include the compounds described in claim 8, and examples thereof include LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , Li ( CoO 2 , LiFeO 2 , LiFePO 4 , LiMnPO 4. Here, the positive electrode active material is not limited to these compounds, and the lithium transition metal composite oxide is not only used alone, but also a plurality of them. One or more of lithium manganese-containing composite oxide, lithium nickel-containing composite oxide, lithium cobalt-containing composite oxide, and lithium iron-containing composite oxide can be used. It is preferable that

正極合剤層は、上記の正極活物質と結着材、導電助剤等を水、NMP等の溶媒中で混合した後、集電体の表面上(電位溶解剤層上)に塗布して形成することができる。結着材としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアクリル酸リチウム、EPDM、SBR、NBR、フッ素ゴム等をあげることができる。また、導電助剤としては、ケッチェンブラック、アセチレンブラック、カーボンブラック、グラファイト、カーボンナノチューブ、非晶質炭素等などをあげることができる。   The positive electrode mixture layer is prepared by mixing the positive electrode active material, the binder, and the conductive additive in a solvent such as water or NMP, and then applying the mixture on the surface of the current collector (on the potential solubilizer layer). Can be formed. Examples of the binder include polyvinylidene fluoride, polytetrafluoroethylene, lithium polyacrylate, EPDM, SBR, NBR, and fluororubber. Examples of the conductive assistant include ketjen black, acetylene black, carbon black, graphite, carbon nanotube, and amorphous carbon.

集電体は、特に限定されるものではなく、従来公知の材質よりなる集電体を用いることができる。たとえば、アルミニウム、ステンレス鋼、ニッケルメッキ鋼等をあげることができる。   The current collector is not particularly limited, and a current collector made of a conventionally known material can be used. For example, aluminum, stainless steel, nickel plated steel, etc. can be mentioned.

(負極)
負極合剤層に含まれる負極活物質は、特に限定されるものではなく、従来公知の負極活物質を用いることができる。負極活物質としては、たとえば、リチウムイオンを吸蔵・放出できる化合物を単独乃至は組み合わせて用いることができる。リチウムイオンを吸蔵・放出できる化合物としては、リチウム等の金属材料、ケイ素、スズ等を含有する合金材料、グラファイト、コークス、有機高分子化合物焼成体又は非晶質炭素等の炭素材料をあげることができる。これらの活物質は単独で用いるだけでなく、これらを複数種類混合して用いることもできる。例えば、負極活物質としてリチウム金属箔を用いる場合、銅等の金属からなる集電体の表面にリチウム箔を圧着することで形成できる。また負極活物質として合金材料、炭素材料を用いる場合は、負極活物質と結着材、導電助剤等を水、NMP等の溶媒中で混合した後、銅等の金属からなる集電体上に塗布され形成することができる。
(Negative electrode)
The negative electrode active material contained in the negative electrode mixture layer is not particularly limited, and a conventionally known negative electrode active material can be used. As the negative electrode active material, for example, compounds capable of inserting and extracting lithium ions can be used alone or in combination. Examples of the compound capable of inserting and extracting lithium ions include metal materials such as lithium, alloy materials containing silicon and tin, graphite, coke, organic polymer compound fired bodies, and carbon materials such as amorphous carbon. it can. These active materials can be used not only alone but also as a mixture of two or more thereof. For example, when a lithium metal foil is used as the negative electrode active material, it can be formed by pressure bonding the lithium foil to the surface of a current collector made of a metal such as copper. On the other hand, when an alloy material or a carbon material is used as the negative electrode active material, the negative electrode active material, a binder, a conductive additive, etc. are mixed in a solvent such as water or NMP, and then on a current collector made of a metal such as copper. It can be applied and formed.

結着材としては、高分子材料から形成されることが望ましく、二次電池内の雰囲気において化学的・物理的に安定な材料であることが好ましい。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアクリル酸リチウム、EPDM、SBR、NBR、フッ素ゴム等をあげることができる。また、導電助剤としては、ケッチェンブラック、アセチレンブラック、カーボンブラック、グラファイト、カーボンナノチューブ、非晶質炭素等をあげることができる。   The binder is desirably formed of a polymer material, and is preferably a material that is chemically and physically stable in the atmosphere in the secondary battery. For example, polyvinylidene fluoride, polytetrafluoroethylene, lithium polyacrylate, EPDM, SBR, NBR, fluororubber, and the like can be given. Examples of the conductive assistant include ketjen black, acetylene black, carbon black, graphite, carbon nanotube, and amorphous carbon.

集電体は、特に限定されるものではなく、従来公知の材質よりなる集電体を用いることができる。たとえば、アルミニウム、ステンレス鋼、ニッケルメッキ鋼等をあげることができる。   The current collector is not particularly limited, and a current collector made of a conventionally known material can be used. For example, aluminum, stainless steel, nickel plated steel, etc. can be mentioned.

(非水電解液)
非水電解液は、特に限定されるものではなく、従来公知の非水電解液を用いることができる。非水電解液は、有機溶媒などの溶媒に支持塩を溶解させたもの、自身が液体状であるイオン液体、そのイオン液体に対して更に支持塩を溶解させたものを例示することができる。
(Nonaqueous electrolyte)
The nonaqueous electrolytic solution is not particularly limited, and a conventionally known nonaqueous electrolytic solution can be used. Examples of the non-aqueous electrolyte include a solution in which a supporting salt is dissolved in a solvent such as an organic solvent, an ionic liquid that is liquid itself, and a solution in which the supporting salt is further dissolved in the ionic liquid.

有機溶媒としては、たとえば、リチウム二次電池の電解液に用いられる有機溶媒をあげることができる。この有機溶媒としては、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。特に、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等及びそれらの混合溶媒が適当である。例にあげたこれらの有機溶媒のうち、特に、カーボネート類、エーテル類からなる群より選ばれた1種以上の非水溶媒を用いることが、支持塩の溶解性、誘電率及び粘度、安定性において優れ、電池の充放電効率も高いので、好ましい。   As an organic solvent, the organic solvent used for the electrolyte solution of a lithium secondary battery can be mention | raise | lifted, for example. As the organic solvent, carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, lactones, oxolane compounds and the like can be used. In particular, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and the like, and mixed solvents thereof are suitable. Among these organic solvents mentioned in the examples, in particular, it is possible to use one or more non-aqueous solvents selected from the group consisting of carbonates and ethers, so that the solubility, dielectric constant, viscosity, and stability of the supporting salt are increased. And the battery charge / discharge efficiency is also high.

イオン液体は、通常リチウム二次電池の電解液に用いられるイオン液体であれば特に限定されるものではない。例えば、イオン液体のカチオン成分としては、N−メチル−N−プロピルピペリジニウムや、ジメチルエチルメトキシアンモニウムカチオン等があげられ、アニオン成分としは、BF 、N(SOCF 等があげられる。 An ionic liquid will not be specifically limited if it is an ionic liquid normally used for the electrolyte solution of a lithium secondary battery. For example, examples of the cation component of the ionic liquid include N-methyl-N-propylpiperidinium and dimethylethylmethoxyammonium cation, and examples of the anion component include BF 4 , N (SO 2 CF 3 ) 2 —. Etc.

非水電解液において用いられる支持塩としては、特に限定されるものではない。例えば、LiPF、LiBF、LiAsF、LiCFSO、LiN(CFSO、LiC(CFSO、LiSbF、LiSCN、LiClO、LiAlCl、NaClO、NaBF、NaI、これらの誘導体等の塩化合物をあげることができる。これらの中でも、LiPF、LiBF、LiClO、LiAsF、LiCFSO、LiN(CFSO、LiC(CFSO、LiN(FSO、LiN(CFSO)(CSO)、LiCFSOの誘導体、LiN(CFSOの誘導体及びLiC(CFSOの誘導体からなる群から選ばれる1種以上の塩を用いることが、電気特性の観点からは好ましい。 The supporting salt used in the nonaqueous electrolytic solution is not particularly limited. For example, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiSbF 6 , LiSCN, LiClO 4 , LiAlCl 4 , NaClO 4 , BClO 4 And salt compounds such as NaI and derivatives thereof. Among these, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiN (FSO 2 ) 2 , LiN (CF 3 One or more selected from the group consisting of a derivative of SO 2 ) (C 4 F 9 SO 2 ), a derivative of LiCF 3 SO 3, a derivative of LiN (CF 3 SO 2 ) 2 and a derivative of LiC (CF 3 SO 2 ) 3 It is preferable to use a salt from the viewpoint of electrical characteristics.

(電池)
正極と負極との間には電気的な絶縁作用とイオン伝導作用とを両立する部材であるセパレータを介装することが好ましい。電解質が液状である場合にはセパレータは、液状の電解質を保持する役割をも果たす。セパレータとしては、多孔質合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)やガラス繊維からなる多孔質膜、不織布が例示できる。更に、セパレータは、正極及び負極の間の絶縁を担保する目的で、正極及び負極よりも更に大きい形態を採用することが好ましい。
(battery)
It is preferable to interpose a separator that is a member that achieves both electrical insulation and ion conduction between the positive electrode and the negative electrode. When the electrolyte is liquid, the separator also serves to hold the liquid electrolyte. Examples of the separator include porous synthetic resin films, particularly porous films made of polyolefin polymers (polyethylene, polypropylene) and glass fibers, and nonwoven fabrics. Furthermore, it is preferable that the separator has a larger size than the positive electrode and the negative electrode for the purpose of ensuring the insulation between the positive electrode and the negative electrode.

正極、負極、非水電解液、セパレータ等の構成要素は、何らかのケース内に収納されて非水電解液電池が形成される。このとき、ケースは、特に限定されるものではなく、公知の材料、形態で作成することができる。   Components such as a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator are housed in some case to form a non-aqueous electrolyte battery. At this time, the case is not particularly limited, and can be made of a known material and form.

(製造方法)
本発明の非水電解液電池用電極及び非水電解液電池の製造方法は、特に限定されるものではない。たとえば、集電体の表面に電位溶解剤を含むペーストを塗布・乾燥して電位溶解剤層を形成し、その表面上に電極合剤層を形成することで、電極を製造することができる。その後、この電極を用いて従来公知の方法で電池を製造することができる。
(Production method)
The manufacturing method of the electrode for nonaqueous electrolyte batteries and the nonaqueous electrolyte battery of the present invention is not particularly limited. For example, an electrode can be manufactured by applying and drying a paste containing a potential solubilizer on the surface of the current collector to form a potential solubilizer layer, and forming an electrode mixture layer on the surface. Then, a battery can be manufactured by a conventionally known method using this electrode.

電位溶解剤層は、上記の電位溶解剤と結着材、導電助剤等を水、NMP等の溶媒中で混合した後、集電体上に塗布し、乾燥することで形成される。電位溶解剤層に使用される結着材としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアクリル酸リチウム、EPDM、SBR、NBR、フッ素ゴム等をあげることができる。また、導電助剤としては、ケッチェンブラック、アセチレンブラック、カーボンブラック、グラファイト、カーボンナノチューブ、非晶質炭素等などを例示できる。   The potential solubilizer layer is formed by mixing the above-described potential solubilizer, a binder, a conductive additive and the like in a solvent such as water and NMP, and then applying the mixture on a current collector and drying. Examples of the binder used for the potential solubilizer layer include polyvinylidene fluoride, polytetrafluoroethylene, lithium polyacrylate, EPDM, SBR, NBR, and fluororubber. Examples of the conductive assistant include ketjen black, acetylene black, carbon black, graphite, carbon nanotube, and amorphous carbon.

より具体的に、本発明の非水電解液電池用電極をリチウムイオン電池の正極に用いた場合で説明する。   More specifically, the case where the electrode for a non-aqueous electrolyte battery of the present invention is used for a positive electrode of a lithium ion battery will be described.

まず、電位溶解剤(ビスエチレンジチオテトラチアフルバレン)、結着材(PTFE)、導電助剤(CMC)を、溶媒(水)に分散させてペーストを調整する。調整されたペーストを正極集電体(アルミニウム集電箔)の表面(片面あるいは両面)に、塗布・乾燥し、圧縮する。これにより、所定の厚さの電位溶解剤層をもつ正極集電体が製造される。   First, a paste is prepared by dispersing a potential dissolving agent (bisethylenedithiotetrathiafulvalene), a binder (PTFE), and a conductive additive (CMC) in a solvent (water). The prepared paste is applied to the surface (one side or both sides) of the positive electrode current collector (aluminum current collector foil), dried, and compressed. Thereby, a positive electrode current collector having a potential dissolving agent layer having a predetermined thickness is manufactured.

その後、正極活物質(リチウム遷移金属複合酸化物)、結着材(アセチレンブラック)、導電助剤(PVDF)を、溶媒(NMP)に分散させてペーストを調整する。調整されたペーストを上記の正極集電体の電位溶解剤層の表面上に、塗布・乾燥し、圧縮する。これにより、電位溶解剤層の表面上に、正極合剤層が形成された。すなわち、本発明の非水電解液電池用電極(リチウムイオン電池用正極)が製造される。   Thereafter, a paste is prepared by dispersing a positive electrode active material (lithium transition metal composite oxide), a binder (acetylene black), and a conductive additive (PVDF) in a solvent (NMP). The prepared paste is applied, dried and compressed on the surface of the potential solubilizer layer of the positive electrode current collector. As a result, a positive electrode mixture layer was formed on the surface of the potential dissolving agent layer. That is, the nonaqueous electrolyte battery electrode (lithium ion battery positive electrode) of the present invention is produced.

次に、リチウムよりなる金属箔(負極活物質)を、負極集電体(銅箔)の表面に配置した状態で押圧して、圧着させた。これにより、負極が製造された。   Next, the metal foil (negative electrode active material) which consists of lithium was pressed and crimped | bonded in the state arrange | positioned on the surface of the negative electrode collector (copper foil). Thereby, the negative electrode was manufactured.

上記の正極及び負極を、所定の大きさに裁断し、セパレータを介して積層した状態で、非水電解液と共にケース内に封入する。これにより、リチウムイオン電池が製造される。   The positive electrode and the negative electrode are cut into a predetermined size and sealed in a case together with a non-aqueous electrolyte in a state of being laminated via a separator. Thereby, a lithium ion battery is manufactured.

以下、実施例を用いて本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to examples.

(実施例1)
まず、上記の化8式で表されるビスエチレンジチオテトラチアフルバレン(東京化成工業株式会社製)を94質量部と、ポリテトラフルオロエチレン(PTFE)を3質量部と、カルボキシメチルセルロース(CMC)を3質量部と、を準備し、水を加えて混合、分散させて均質なペーストを調製した。このペーストをアルミニウム製の集電体(50μm)の表面(片面)に塗布し、乾燥、プレスして集電体の表面上に電位溶解剤層を作製した。作製した電位溶解剤層の厚みは集電体の厚さを含めて80μmであった。すなわち、電位溶解剤層の厚さは、30μmであった。
Example 1
First, 94 parts by mass of bisethylenedithiotetrathiafulvalene (manufactured by Tokyo Chemical Industry Co., Ltd.) represented by the above chemical formula 8, 3 parts by mass of polytetrafluoroethylene (PTFE), and carboxymethylcellulose (CMC) 3 parts by mass were prepared, and water was added to mix and disperse to prepare a homogeneous paste. This paste was applied to the surface (one side) of an aluminum current collector (50 μm), dried and pressed to produce a potential solubilizer layer on the surface of the current collector. The thickness of the prepared potential solubilizer layer was 80 μm including the thickness of the current collector. That is, the thickness of the potential dissolving agent layer was 30 μm.

次に、LiFePO4を82質量部と、アセチレンブラックを10質量部と、ポリフッ化ビニリデン(PVDF)8質量部と、を準備し、ノルマルメチルピロリドン(NMP)を加えて混合、分散させて均質なペーストを調製した。このペーストを上記で作製した電位溶解剤層の上に塗布し、乾燥、プレス後、所定のサイズに裁断することで正極を作製した。作製した正極の厚みは、アルミニウム製の集電体及び電位溶解剤層を含めて170μmであった。本実施例の正極は、、図1に断面を示したように、厚さ50μmの集電体、集電体上に形成された厚さ30μmの電位溶解剤層、電位溶解剤層上に形成された厚さ90μmの正極合剤層、からなる。 Next, 82 parts by mass of LiFePO 4 , 10 parts by mass of acetylene black, and 8 parts by mass of polyvinylidene fluoride (PVDF) were prepared, and normal methylpyrrolidone (NMP) was added, mixed, dispersed, and homogeneous A paste was prepared. This paste was applied on the potential solubilizer layer prepared above, dried, pressed, and then cut into a predetermined size to produce a positive electrode. The thickness of the produced positive electrode including the aluminum current collector and the potential solubilizer layer was 170 μm. The positive electrode of this example was formed on a current collector having a thickness of 50 μm, a potential solubilizer layer having a thickness of 30 μm formed on the current collector, and a potential solubilizer layer as shown in FIG. And a positive electrode mixture layer having a thickness of 90 μm.

(負極の作製)
300μmの厚さのリチウム金属箔を銅製の集電体に圧着し、所定のサイズに裁断することで負極を作製した。
(Preparation of negative electrode)
A lithium metal foil with a thickness of 300 μm was pressure-bonded to a copper current collector and cut into a predetermined size to produce a negative electrode.

(非水電解液の調製)
エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比3:7にて混合し、その混合有機溶媒中に支持電解質としてのLiPFを1モル/Lの濃度となるように溶解して非水電解液とした。
(Preparation of non-aqueous electrolyte)
Ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 3: 7, and LiPF 6 as a supporting electrolyte is dissolved in the mixed organic solvent so as to have a concentration of 1 mol / L. A water electrolyte was used.

(正極の評価)
正極の評価として、電位溶解剤層の溶解挙動の確認を行った。具体的には、まず、上記の正極を作用極、負極を対極、参照極にリチウム金属を用いた3極セルを作製し、ポテンショ/ガルバノスタット装置(solartron社製、1480型マルチスタット)を用いて、掃引速度10mV/s、電位範囲2.5から4.2Vで掃引した。
(Evaluation of positive electrode)
As the evaluation of the positive electrode, the dissolution behavior of the potential solubilizer layer was confirmed. Specifically, first, a three-electrode cell using the positive electrode as a working electrode, a negative electrode as a counter electrode, and lithium metal as a reference electrode was prepared, and a potentio / galvanostat device (manufactured by solartron, model 1480 multistat) was used. Thus, the sweep was performed at a sweep rate of 10 mV / s and a potential range of 2.5 to 4.2 V.

掃引時に、約3.7Vで正極表面より青色の溶解物の発生が確認できた。この溶解物は、電位溶解剤層を構成する電位溶解剤である。つまり、電位溶解剤層を構成する電位溶解剤(ビスエチレンジチオテトラチアフルバレン)は、およそ3.7Vの電位で溶解する。そして、電位溶解剤層の溶解により正極合剤層が集電体から剥がれて浮き上がった状態となった。この結果、正極合剤層が集電体から浮き上がる(剥離した)ことで、本実施例の正極は、正極合剤層と集電体間の抵抗が上昇することが確認できた。   At the time of sweeping, generation of a blue melt was confirmed from the positive electrode surface at about 3.7V. This lysate is a potential solubilizer constituting the potential solubilizer layer. That is, the potential solubilizer (bisethylenedithiotetrathiafulvalene) constituting the potential solubilizer layer dissolves at a potential of approximately 3.7V. Then, the positive electrode mixture layer was peeled off from the current collector due to the dissolution of the potential solubilizer layer, and was brought up. As a result, it was confirmed that the positive electrode mixture layer was lifted (peeled) from the current collector, whereby the positive electrode of this example had increased resistance between the positive electrode mixture layer and the current collector.

(コイン型電池の作製)
上記の正極及び負極を、ポリプロピレン製セパレータを介して積層させることで、平板形状の電極体を形成した。このとき、正極及び負極は、それぞれの合剤層がセパレータを介して対向した状態で積層した。得られた平板形状の電極体をケースの内部に挿入し、ケース内に保持した。その後、平板形状の電極体を保持したケース内に上記電解液を注入した後、ケースを密閉、封止した。これにより、本実施例のコイン型電池が製造された。本実施例のコイン型電池の構成を図2に示した。
(Production of coin-type battery)
A plate-shaped electrode body was formed by laminating the positive electrode and the negative electrode with a polypropylene separator interposed therebetween. At this time, the positive electrode and the negative electrode were laminated in a state where the respective mixture layers were opposed to each other with a separator interposed therebetween. The obtained flat electrode body was inserted into the case and held in the case. Then, after inject | pouring the said electrolyte solution in the case holding the flat electrode body, the case was sealed and sealed. Thereby, the coin-type battery of this example was manufactured. The configuration of the coin-type battery of this example is shown in FIG.

本実施例の電池1において、セパレータ7には、厚さ25μmのポリエチレン製の多孔質膜を用いた。本実施例の電池1において、電極体等が収納されるケースは、正極ケース50と負極ケース51から構成され、それぞれはステンレスで形成されている。正極ケース50と負極ケース51とは正極端子と負極端子としても機能する。正極ケース50と負極ケース51との間にはポリプロピレン製のガスケット6を介装することで、密閉性と両極ケース50,51の間の絶縁性とを担保した。   In the battery 1 of this example, a polyethylene porous film having a thickness of 25 μm was used as the separator 7. In the battery 1 of the present embodiment, the case in which the electrode body and the like are accommodated includes a positive electrode case 50 and a negative electrode case 51, each of which is formed of stainless steel. The positive electrode case 50 and the negative electrode case 51 also function as a positive electrode terminal and a negative electrode terminal. Between the positive electrode case 50 and the negative electrode case 51, a gasket 6 made of polypropylene is interposed to ensure sealing and insulation between the bipolar cases 50 and 51.

本実施例の電池1は、以上により構成されたφ19mm、厚さ3mmのコイン型電池である。   The battery 1 of the present embodiment is a coin type battery having a diameter of 19 mm and a thickness of 3 mm, which is configured as described above.

(初期容量)
本実施例の電池1の初期放電容量は、0.1mA/cmの電流値にて3.6Vまで定電流充電し、0.1mA/cmの電流値にて2.0Vまで定電流放電することを5回繰返し、最後の放電で得られた容量を初期容量とした。
(Initial capacity)
The initial discharge capacity of the battery 1 of the present embodiment, 3.6V until a constant current charge at a current value of 0.1 mA / cm 2, a constant current discharge at a current value of 0.1 mA / cm 2 to 2.0V This was repeated five times, and the capacity obtained in the last discharge was defined as the initial capacity.

(電池の評価)
本実施例の電池の評価として、電池の過充電時の電流遮断効果を観察した。電池の過充電時の電流遮断効果は、充電時の上限電圧を変化させた場合の電池の放電容量特性及び充放電挙動を確認することで実施した。
(Battery evaluation)
As an evaluation of the battery of this example, the current interruption effect during battery overcharge was observed. The current interruption effect at the time of overcharge of the battery was implemented by confirming the discharge capacity characteristics and charge / discharge behavior of the battery when the upper limit voltage at the time of charge was changed.

具体的には、0.1mA/cmの電流値にて3.6Vまで24h定電流定電圧充電を行った後、0.1mA/cmの電流値にて定電流放電した。この放電時の放電容量は、初期容量とほぼ変わらず、試験後も再度充放電をすることが可能であった。 Specifically, after performing constant current constant voltage charging to 3.6 V at a current value of 0.1 mA / cm 2 for 24 hours, constant current discharge was performed at a current value of 0.1 mA / cm 2 . The discharge capacity at the time of discharge was almost the same as the initial capacity, and it was possible to charge and discharge again after the test.

そして、0.1mA/cmの電流値にて4.2Vまで24h定電流定電圧充電を行った後、0.1mA/cmの電流値にて定電流放電した。このときの放電容量は、初期容量の0.8%しか得られなかった。 And after performing the constant current constant voltage charge to 4.2V for 24 h with the electric current value of 0.1 mA / cm < 2 >, the constant current discharge was carried out with the electric current value of 0.1 mA / cm < 2 >. The discharge capacity at this time was only 0.8% of the initial capacity.

上記の結果によると、本実施例の電池の正極(正極活物質)の上限電位(3.6V)以下の電圧である3.6Vで充電を行う場合には、放電容量の低下が見られず、リチウムイオン電池としての高い電池性能を発揮できた。そして、本実施例の電池の正極(正極活物質)の上限電位より大きな電位(電圧)である4.2Vで充電を行うと、以後、放電容量がなくなり、電池として機能しなくなった。このことは、正極の電位が電位溶解剤層が溶解する電位以上となり、電位溶解剤層が溶解することによる。つまり、正極合剤層が集電体から剥離して接触しなくなり、正極として機能しなくなる。この結果、以後の充放電が不能となった。   According to the above results, when charging was performed at 3.6 V, which is a voltage equal to or lower than the upper limit potential (3.6 V) of the positive electrode (positive electrode active material) of the battery of this example, no decrease in discharge capacity was observed. High battery performance as a lithium ion battery could be demonstrated. Then, when charging was performed at 4.2 V, which is a potential (voltage) larger than the upper limit potential of the positive electrode (positive electrode active material) of the battery of this example, the discharge capacity disappeared and the battery did not function. This is because the potential of the positive electrode becomes equal to or higher than the potential at which the potential solubilizer layer dissolves, and the potential solubilizer layer dissolves. That is, the positive electrode mixture layer peels off from the current collector and does not come into contact, and does not function as the positive electrode. As a result, subsequent charging / discharging became impossible.

上記のように、本実施例の電池は、通常の充放電時には、リチウムイオン電池としての性能を発揮できる、過充電の抑止が可能な電池となっていることが確認された。   As described above, it was confirmed that the battery of this example was a battery capable of exhibiting performance as a lithium ion battery and capable of suppressing overcharge during normal charging and discharging.

(実施例2)
まず、ビスエチレンジチオテトラチアフルバレン(実施例1と同じ)を90質量部と、アセチレンブラックを4質量部と、PTFEを3質量部と、CMCを3質量部と、を準備し、水を加えて混合、分散させて均質なペーストを調製した。このペーストをアルミニウム製の集電体(50μm)の表面(片面)に塗布し、乾燥、プレスして集電体の表面上に電位溶解剤層を作製した。作製した電位溶解剤層の厚みは集電体の厚さを含めて80μmであった。すなわち、電位溶解剤層の厚さは、30μmであった。
(Example 2)
First, 90 parts by mass of bisethylenedithiotetrathiafulvalene (same as Example 1), 4 parts by mass of acetylene black, 3 parts by mass of PTFE, and 3 parts by mass of CMC were prepared, and water was added. Were mixed and dispersed to prepare a homogeneous paste. This paste was applied to the surface (one side) of an aluminum current collector (50 μm), dried and pressed to produce a potential solubilizer layer on the surface of the current collector. The thickness of the prepared potential solubilizer layer was 80 μm including the thickness of the current collector. That is, the thickness of the potential dissolving agent layer was 30 μm.

次に、LiFePO4を82質量部と、アセチレンブラックを10質量部と、PVDFを8質量部と、を準備し、NMPを加えて混合、分散させて均質なペーストを調製した。このペーストを上記の電位溶解剤層の上に塗布し、乾燥、プレス後、所定のサイズに裁断することで正極を作製した。作製した正極の厚みはアルミニウム製の集電体及び電位溶解剤層を含め170μmであった。すなわち、図1に断面を示したように、本実施例の正極は、厚さ50μmの集電体、集電体上に形成された厚さ30μmの電位溶解剤層、電位溶解剤層上に形成された厚さ90μmの正極合剤層、からなる。 Next, 82 parts by mass of LiFePO 4 , 10 parts by mass of acetylene black, and 8 parts by mass of PVDF were prepared, and NMP was added and mixed and dispersed to prepare a homogeneous paste. This paste was applied on the above-mentioned potential solubilizer layer, dried, pressed, and then cut into a predetermined size to produce a positive electrode. The thickness of the produced positive electrode was 170 μm including the aluminum current collector and the potential solubilizer layer. That is, as shown in the cross-section of FIG. 1, the positive electrode of this example has a current collector with a thickness of 50 μm, a potential solubilizer layer with a thickness of 30 μm formed on the current collector, and a potential solubilizer layer. The formed positive electrode mixture layer having a thickness of 90 μm.

その後、上記の正極を用いた以外は、実施例1と同様の方法で電池を作製した。そして、実施例1の時と同様に、過充電時の電流遮断効果の評価を実施した。その結果、0.1mA/cmの電流値にて3.6Vまで24h定電流定電圧充電を行った後、0.1mA/cmの電流値にて定電流放電した際の放電容量は初期容量とほぼ変わらず、試験後も再度充放電をすることが可能であった。しかし、0.1mA/cmの電流値にて4.2Vまで24h定電流定電圧充電を行った後、0.1mA/cmの電流値にて定電流放電した際の放電容量は初期容量の2.1%しか得られず、試験後は再度充放電をすることがほぼできず電池の機能を消失していることが確認できた。つまり、過充電時に、電流遮断効果が働いていることが確認できた。すなわち、本実施例においても、実施例1の時と同様に、過充電の抑止が可能な電池となっていることが確認された。 Thereafter, a battery was produced in the same manner as in Example 1 except that the above positive electrode was used. Then, in the same manner as in Example 1, the current interruption effect during overcharging was evaluated. As a result, after performing constant current / constant voltage charging to 3.6V at a current value of 0.1 mA / cm 2 for 24 hours, the discharge capacity at the time of constant current discharge at a current value of 0.1 mA / cm 2 is initial. Almost the same as the capacity, it was possible to charge and discharge again after the test. However, after performing constant current / constant voltage charging to 4.2 V at a current value of 0.1 mA / cm 2 for 24 hours, the discharge capacity when the constant current is discharged at a current value of 0.1 mA / cm 2 is the initial capacity. Thus, it was confirmed that the battery function was lost after the test. That is, it was confirmed that the current interruption effect was working during overcharge. That is, also in the present example, as in the case of Example 1, it was confirmed that the battery can suppress overcharge.

(実施例3)
ビスエチレンジチオテトラチアフルバレン(実施例1と同じ)を94質量部と、PTFEを3質量部と、CMCを3質量部と、を準備し、水を加えて混合、分散させて均質なペーストを調製した。このペーストをアルミニウム製の集電体(50μm)の片面に塗布し、乾燥、プレスし電位溶解剤層を作製した。作製した電位溶解剤層の厚みはアルミニウム集電体を含め80μmであった。すなわち、電位溶解剤層の厚さは、30μmであった。
(Example 3)
Prepare 94 parts by mass of bisethylenedithiotetrathiafulvalene (same as Example 1), 3 parts by mass of PTFE, and 3 parts by mass of CMC, add water to mix and disperse, and prepare a homogeneous paste. Prepared. This paste was applied to one side of an aluminum current collector (50 μm), dried and pressed to prepare a potential dissolving agent layer. The thickness of the prepared potential solubilizer layer was 80 μm including the aluminum current collector. That is, the thickness of the potential dissolving agent layer was 30 μm.

次に、LiNiO2を82質量部と、アセチレンブラックを10質量部と、PVDFを8質量部と、を準備し、NMPを加えて混合、分散させて均質なペーストを調製した。このペーストを上記の電位溶解剤層の上に塗布し、乾燥、プレス後、所定のサイズに裁断することで正極を作製した。作製した正極の厚みはアルミニウム製の集電体及び電位溶解剤層を含め140μmであった。すなわち、本実施例の正極は、厚さ50μmの集電体、集電体上に形成された厚さ30μmの電位溶解剤層、電位溶解剤層上に形成された厚さ60μmの正極合剤層、からなる。 Next, 82 parts by mass of LiNiO 2 , 10 parts by mass of acetylene black, and 8 parts by mass of PVDF were prepared, and NMP was added and mixed and dispersed to prepare a homogeneous paste. This paste was applied on the above-mentioned potential solubilizer layer, dried, pressed, and then cut into a predetermined size to produce a positive electrode. The thickness of the produced positive electrode including the current collector made of aluminum and the potential solubilizer layer was 140 μm. That is, the positive electrode of this example is a 50 μm thick current collector, a 30 μm thick potential solubilizer layer formed on the current collector, and a 60 μm thick positive electrode mixture formed on the potential solubilizer layer. Layer.

その後、上記の正極を用いた以外は、実施例1と同様の方法で電池を作製した。そして、実施例1の時と同様に、過充電時の電流遮断効果の評価を実施した。その結果、0.1mA/cmの電流値にて3.6Vまで24h定電流定電圧充電を行った後、0.1mA/cmの電流値にて定電流放電した際の放電容量は初期容量とほぼ変わらず、試験後も再度充放電をすることが可能であった。しかし、0.1mA/cmの電流値にて4.2Vまで24h定電流定電圧充電を行った後、0.1mA/cmの電流値にて定電流放電した際の放電容量は初期容量の1.2%しか得られず、試験後は再度充放電をすることがほぼできず電池の機能を消失していることが確認できた。つまり、過充電時に、電流遮断効果が働いていることが確認できた。すなわち、本実施例においても、実施例1の時と同様に、過充電の抑止が可能な電池となっていることが確認された。 Thereafter, a battery was produced in the same manner as in Example 1 except that the above positive electrode was used. Then, in the same manner as in Example 1, the current interruption effect during overcharging was evaluated. As a result, after performing constant current / constant voltage charging to 3.6V at a current value of 0.1 mA / cm 2 for 24 hours, the discharge capacity at the time of constant current discharge at a current value of 0.1 mA / cm 2 is initial. Almost the same as the capacity, it was possible to charge and discharge again after the test. However, after performing constant current / constant voltage charging to 4.2 V at a current value of 0.1 mA / cm 2 for 24 hours, the discharge capacity when the constant current is discharged at a current value of 0.1 mA / cm 2 is the initial capacity. Thus, it was confirmed that the battery function was lost after the test. That is, it was confirmed that the current interruption effect was working during overcharge. That is, also in the present example, as in the case of Example 1, it was confirmed that the battery can suppress overcharge.

(比較例1)
LiFePO4を82質量部と、アセチレンブラックを10質量部と、PVDFを8質量部と、を準備し、NMPを加えて混合、分散させて均質なペーストを調製した。このペーストをアルミニウム製の集電体(50μm)の片面に塗布し、乾燥、プレス後、所定のサイズに裁断することで正極を作製した。作製した正極の厚みはアルミニウム製の集電体、電位溶解剤層を含め140μmであった。
(Comparative Example 1)
82 parts by mass of LiFePO 4 , 10 parts by mass of acetylene black, and 8 parts by mass of PVDF were prepared, and NMP was added and mixed and dispersed to prepare a homogeneous paste. This paste was applied to one side of an aluminum current collector (50 μm), dried, pressed, and then cut into a predetermined size to produce a positive electrode. The thickness of the positive electrode produced was 140 μm including the aluminum current collector and the potential solubilizer layer.

その後、上記の正極を用いた以外は、実施例1と同様の方法で電池を作製した。そして、実施例1の時と同様に、過充電時の電流遮断効果の評価を実施した。その結果、0.1mA/cmの電流値にて3.6Vまで24h定電流定電圧充電を行った後、0.1mA/cmの電流値にて定電流放電した際の放電容量は初期容量とほぼ変わらず、試験後も再度充放電をすることが可能であった。また、0.1mA/cmの電流値にて4.2Vまで24h定電流定電圧充電を行った後も、0.1mA/cmの電流値にて定電流放電した際の放電容量は初期容量とほぼ変わらず、試験後も再度充放電をすることが可能であった。 Thereafter, a battery was produced in the same manner as in Example 1 except that the above positive electrode was used. Then, in the same manner as in Example 1, the current interruption effect during overcharging was evaluated. As a result, after performing constant current / constant voltage charging to 3.6V at a current value of 0.1 mA / cm 2 for 24 hours, the discharge capacity at the time of constant current discharge at a current value of 0.1 mA / cm 2 is initial. Almost the same as the capacity, it was possible to charge and discharge again after the test. Moreover, even after 24h constant current constant voltage charging to 4.2V at a current value of 0.1 mA / cm 2, discharge capacity when the constant current discharge at a current value of 0.1 mA / cm 2 initial Almost the same as the capacity, it was possible to charge and discharge again after the test.

本比較例の電池は、実施例の電池のように電位溶解剤層を備えておらず、過充電時の電流遮断効果が確認されなかった。このため、本比較例の電池は、過充電が生じると電池が発熱又は発火(熱暴走)を起こすおそれがある。   The battery of this comparative example was not provided with a potential solubilizer layer like the battery of the example, and the current interruption effect during overcharge was not confirmed. For this reason, the battery of this comparative example may cause heat generation or ignition (thermal runaway) when overcharge occurs.

(比較例2)
ビスエチレンジチオテトラチアフルバレン(実施例1と同じ)を22質量部、LiFePO4を60質量部、アセチレンブラックを10質量部、PVDFを8質量部に対し、NMPを加え、混合、分散させて均質なペーストを調製した。このペーストをアルミニウム製の集電体(50μm)の片面に塗布し、乾燥、プレス後、所定のサイズに裁断することで正極を作製した。作製した正極の厚みはアルミニウム製の集電体、電位溶解剤層を含め140μmであった。
(Comparative Example 2)
NMP is added to 22 parts by mass of bisethylenedithiotetrathiafulvalene (same as Example 1), 60 parts by mass of LiFePO 4 , 10 parts by mass of acetylene black, and 8 parts by mass of PVDF, mixed and dispersed to be homogeneous. Paste was prepared. This paste was applied to one side of an aluminum current collector (50 μm), dried, pressed, and then cut into a predetermined size to produce a positive electrode. The thickness of the positive electrode produced was 140 μm including the aluminum current collector and the potential solubilizer layer.

その後、上記の正極を用いた以外は、実施例1と同様の方法で電池を作製した。そして、実施例1の時と同様に、過充電時の電流遮断効果の評価を実施した。その結果、0.1mA/cmの電流値にて3.6Vまで24h定電流定電圧充電を行った後、0.1mA/cmの電流値にて定電流放電した際の放電容量は初期容量とほぼ変わらず、試験後も再度充放電をすることが可能であったが、0.1mA/cmの電流値にて4.2Vまで24h定電流定電圧充電を行った後、0.1mA/cmの電流値にて定電流放電した際の放電容量は初期容量の82%であり、放電容量が低下しているが試験後も再度充放電をすることが可能であった。 Thereafter, a battery was produced in the same manner as in Example 1 except that the above positive electrode was used. Then, in the same manner as in Example 1, the current interruption effect during overcharging was evaluated. As a result, after performing constant current / constant voltage charging to 3.6V at a current value of 0.1 mA / cm 2 for 24 hours, the discharge capacity at the time of constant current discharge at a current value of 0.1 mA / cm 2 is initial. Although it was almost the same as the capacity, it was possible to charge and discharge again after the test, but after performing constant current constant voltage charging to 4.2 V at a current value of 0.1 mA / cm 2 for 24 hours, the charge was 0. The discharge capacity at the time of constant current discharge at a current value of 1 mA / cm 2 was 82% of the initial capacity, and although the discharge capacity was reduced, it was possible to charge / discharge again after the test.

本比較例の電池は、正極合剤層中に電位溶解剤が分散しており、過充電時に電位溶解剤が溶解を生じても、正極活物質と集電体との電気的な接続量が大きく低下しないものとなっている。つまり、本比較例の電池は、過充電時の電流遮断効果が、電池の過充電を抑制する程度に得られなかった。このため、本比較例の電池は、比較例1と同様に、過充電が生じると電池が発熱又は発火(熱暴走)を起こすおそれがある。   In the battery of this comparative example, the electric potential solubilizer is dispersed in the positive electrode mixture layer, and even if the electric potential solubilizer is dissolved during overcharge, the amount of electrical connection between the positive electrode active material and the current collector is small. It does not drop significantly. That is, in the battery of this comparative example, the current interruption effect at the time of overcharging was not obtained to the extent that the overcharging of the battery was suppressed. For this reason, as in Comparative Example 1, the battery of this comparative example may cause heat generation or ignition (thermal runaway) when overcharge occurs.

(結果)
各実施例及び比較例の評価結果から、正極が電極合剤層と集電体の間に電位溶解剤層をを有することで、過充電時の電位上昇により電位溶解剤層が溶解し、正極合剤層が集電体から剥がれて浮き上がった状態となり、正極合剤層と集電体間の抵抗が上昇することを確認できた。この結果、過充電時に電池に流れる電流を遮断することが可能となり、過充電の進行を抑えられることが確認できた。つまり、各実施例の電池は、安全性に優れた非水電解液電池(リチウムイオン二次電池)となっていることが確認できた。
(result)
From the evaluation results of each Example and Comparative Example, the positive electrode has a potential solubilizer layer between the electrode mixture layer and the current collector, so that the potential solubilizer layer is dissolved by the potential increase during overcharge, and the positive electrode It was confirmed that the mixture layer was peeled off from the current collector and floated, and the resistance between the positive electrode mixture layer and the current collector was increased. As a result, it was possible to cut off the current flowing through the battery during overcharging, and it was confirmed that the progress of overcharging could be suppressed. That is, it was confirmed that the battery of each example was a non-aqueous electrolyte battery (lithium ion secondary battery) excellent in safety.

(実施例4)
まず、下記の化14式に示した化合物を94質量部、PTFEを3質量部、CMCを3質量部に対し、水を加え混合、分散させて均質なペーストを調製した。このペーストをアルミニウム製の集電体(50μm)の表面(片面)に塗布し、乾燥、プレスして集電体の表面上に電位溶解剤層を作製した。作製した電位溶解剤層の厚みは集電体の厚さを含めて70μmであった。すなわち、電位溶解剤層の厚さは、20μmであった。
Example 4
First, 94 parts by mass of the compound shown in the following chemical formula 14, 94 parts by mass of PTFE and 3 parts by mass of CMC were mixed with water and dispersed to prepare a homogeneous paste. This paste was applied to the surface (one side) of an aluminum current collector (50 μm), dried and pressed to produce a potential solubilizer layer on the surface of the current collector. The thickness of the prepared potential solubilizer layer was 70 μm including the thickness of the current collector. That is, the thickness of the potential dissolving agent layer was 20 μm.

Figure 0005327531
次に、LiFePO4を82質量部、アセチレンブラックを10質量部、そしてポリフッ化ビニリデン(PVDF)を8質量部に対し、ノルマルメチルピロリドン(NMP)を加え、混合、分散させて均質なペーストを調製した。このペーストを上記で作製した電位溶解剤層の上に塗布し、乾燥、プレス後、所定のサイズに裁断することで正極を作製した。作製した正極の厚みはアルミニウム製の集電体、電位溶解剤層を含め160μmであった。すなわち、本実施例の正極は、厚さ50μmの集電体、集電体上に形成された厚さ30μmの電位溶解剤層、電位溶解剤層上に形成された厚さ90μmの正極合剤層、からなる。
Figure 0005327531
Next, normal methylpyrrolidone (NMP) is added to 82 parts by mass of LiFePO 4 , 10 parts by mass of acetylene black, and 8 parts by mass of polyvinylidene fluoride (PVDF), and mixed and dispersed to prepare a homogeneous paste. did. This paste was applied on the potential solubilizer layer prepared above, dried, pressed, and then cut into a predetermined size to produce a positive electrode. The thickness of the positive electrode produced was 160 μm including the aluminum current collector and the potential solubilizer layer. That is, the positive electrode of this example is a 50 μm thick current collector, a 30 μm thick potential solubilizer layer formed on the current collector, and a 90 μm thick positive electrode mixture formed on the potential solubilizer layer. Layer.

その後、上記の正極を用いた以外は、実施例1と同様の方法で電池を作製し、本実施例のリチウムイオン二次電池が製造された。   Then, except having used said positive electrode, the battery was produced by the method similar to Example 1, and the lithium ion secondary battery of a present Example was manufactured.

本実施例においても、正極が電極合剤層と集電体の間に電位溶解剤層をを有しており、実施例1〜3と同様に、過充電時に電池に流れる電流を遮断することが可能であり、安全性に優れたリチウムイオン二次電池となっていることが確認できた。   Also in this example, the positive electrode has a potential solubilizer layer between the electrode mixture layer and the current collector, and cuts off the current flowing to the battery during overcharge as in Examples 1-3. Therefore, it was confirmed that the lithium ion secondary battery was excellent in safety.

1:コイン型電池
2:正極 20:正極集電体
21:電位溶解剤層 22:正極合剤層
3:負極 30:負極集電体
4:電解液
50:正極ケース 51:負極ケース
6:ガスケット
7:セパレータ
1: Coin-type battery 2: Positive electrode 20: Positive electrode current collector 21: Potential solubilizer layer 22: Positive electrode mixture layer 3: Negative electrode 30: Negative electrode current collector 4: Electrolytic solution 50: Positive electrode case 51: Negative electrode case 6: Gasket 7: Separator

Claims (7)

正極活物質を有する正極合剤層が集電体上に形成された正極と、負極活物質を有する負極合剤層が集電体上に形成された負極と、非水電解液と、を備えた非水電解液電池に用いる非水電解液電池用電極であって、
前記正極は、前記正極合剤層と前記集電体の間に、前記正極活物質が示す上限電位以上の電位である所定の電位で溶解する電位溶解剤を有する電位溶解剤層を有しており、
前記電位溶解剤が、下記化1式又は化2式で表される化合物であることを特徴とする非水電解液電池用電極。
Figure 0005327531
(X及びYは、硫黄原子、酸素原子、メチレン基から選択され、XとYは同じであっても異なっていてもよい。)
Figure 0005327531
(R1〜R4のそれぞれは、水素、炭素数1〜4のアルキル基より独立して選択され、R1〜R4の少なくともひとつは、下記化3式で表される構造のいずれかである。nは、自然数であり、独立して選択可能である。)
Figure 0005327531
(化3(1)〜(3)は、化学式中の*の部分が、化2式中のベンゼン環中の炭素原子と結合する。化3(1)〜(3)中のRは、−H、−OH、−CH 、−NH のいずれかである。化3(1)〜(3)中のYは、−(CH −基(mは、0〜10の整数)であり、mが1以上のときは、Yを構成するメチレン基の一つ以上が、下記化4(1)〜(10)で表される基の少なくともひとつに置換されていてもよい。)
Figure 0005327531
A positive electrode in which a positive electrode mixture layer having a positive electrode active material is formed on a current collector, a negative electrode in which a negative electrode mixture layer having a negative electrode active material is formed on a current collector, and a non-aqueous electrolyte. An electrode for a non-aqueous electrolyte battery used for a non-aqueous electrolyte battery,
The positive electrode, the between positive electrode mixture layer and the current collector, with a potential dissolution agent layer having a potential dissolving agent which dissolves at a predetermined potential above the positive electrode active upper potential limit potential higher than indicated substance And
The electrode for a non-aqueous electrolyte battery , wherein the potential dissolving agent is a compound represented by the following chemical formula 1 or chemical formula 2 .
Figure 0005327531
(X and Y are selected from a sulfur atom, an oxygen atom, and a methylene group, and X and Y may be the same or different.)
Figure 0005327531
(Each of R1 to R4 is independently selected from hydrogen and an alkyl group having 1 to 4 carbon atoms, and at least one of R1 to R4 is any one of structures represented by the following chemical formula 3. n is It is a natural number and can be selected independently.)
Figure 0005327531
(In the chemical formulas 3 (1) to (3), the part * in the chemical formula is bonded to the carbon atom in the benzene ring in the chemical formula 2. R in the chemical formulas 3 (1) to (3) is- Any one of H, —OH, —CH 3 , and —NH 2 Y in Chemical Formulas 3 (1) to (3) is a — (CH 2 ) m — group (m is an integer of 0 to 10); And when m is 1 or more, one or more of the methylene groups constituting Y may be substituted with at least one of the groups represented by the following chemical formulas 4 (1) to (10).
Figure 0005327531
リチウムイオンを吸蔵・放出可能な正極活物質を有する正極に用いられる請求項1記載の非水電解液電池用電極。   The electrode for a non-aqueous electrolyte battery according to claim 1, which is used for a positive electrode having a positive electrode active material capable of inserting and extracting lithium ions. 前記電位溶解剤は、ビスエチレンジチオテトラチアフルバレンである請求項1記載の非水電解液電池用電極。 The electrode for a non-aqueous electrolyte battery according to claim 1 , wherein the potential solubilizer is bisethylenedithiotetrathiafulvalene. 前記電位溶解剤が下記化5式で表される化合物である請求項1記載の非水電解液電池用電極。
Figure 0005327531
(m,pは、0〜10の整数からそれぞれ独立に選択される。nは、自然数であり、m,pから独立して選択される。)
The electrode for a non-aqueous electrolyte battery according to claim 1, wherein the potential dissolving agent is a compound represented by the following chemical formula (5 ) .
Figure 0005327531
(M and p are each independently selected from integers from 0 to 10. n is a natural number and is independently selected from m and p.)
前記電位溶解剤層は、50μm以下の厚さである請求項1〜4の何れかに記載の非水電解液電池用電極。 The electrode for a non-aqueous electrolyte battery according to claim 1 , wherein the potential solubilizer layer has a thickness of 50 μm or less. 前記正極活物質は、構造式Li1−Zα(αはCoO、MnO、Mn、NiO)又はLi1−ZβPO(βはFe、Mn)(Zは0〜1の数)で示される化合物が1種以上含まれるリチウム遷移金属複合酸化物を有する請求項1〜5の何れか記載の非水電解液電池用電極。 The positive electrode active material has a structural formula of Li 1-Z α (α is CoO 2 , MnO 2 , Mn 2 O 4 , NiO 2 ) or Li 1-Z βPO 4 (β is Fe, Mn) (Z is 0 to 1). The electrode for nonaqueous electrolyte batteries in any one of Claims 1-5 which have a lithium transition metal complex oxide in which 1 or more types of compounds shown by these are included. 請求項1〜6の何れか1項に記載の非水電解液電池用電極よりなる正極と、負極と、非水電解液と、を有することを特徴とする非水電解液電池。 A non-aqueous electrolyte battery comprising: a positive electrode comprising the non-aqueous electrolyte battery electrode according to claim 1 ; a negative electrode; and a non-aqueous electrolyte.
JP2009121749A 2009-05-20 2009-05-20 Nonaqueous electrolyte battery electrode and nonaqueous electrolyte battery Expired - Fee Related JP5327531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009121749A JP5327531B2 (en) 2009-05-20 2009-05-20 Nonaqueous electrolyte battery electrode and nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009121749A JP5327531B2 (en) 2009-05-20 2009-05-20 Nonaqueous electrolyte battery electrode and nonaqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2010272281A JP2010272281A (en) 2010-12-02
JP5327531B2 true JP5327531B2 (en) 2013-10-30

Family

ID=43420160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009121749A Expired - Fee Related JP5327531B2 (en) 2009-05-20 2009-05-20 Nonaqueous electrolyte battery electrode and nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP5327531B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012248478A (en) * 2011-05-30 2012-12-13 Denso Corp Lithium ion secondary battery
CN110148786B (en) * 2019-05-29 2021-08-13 珠海冠宇电池股份有限公司 Electrolyte for widening use temperature of lithium ion battery and lithium ion battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07230809A (en) * 1994-02-18 1995-08-29 Yuasa Corp Battery
JPH08195199A (en) * 1995-01-20 1996-07-30 Toray Ind Inc Electrode for battery and secondary battery using it
JP2000164206A (en) * 1998-11-25 2000-06-16 At Battery:Kk Nonaqueous electrolyte secondary battery for assembled battery
JP2000306610A (en) * 1999-04-21 2000-11-02 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2008135371A (en) * 2006-10-27 2008-06-12 Denso Corp Secondary battery active substance and secondary battery
JP4989985B2 (en) * 2007-02-02 2012-08-01 日東電工株式会社 battery

Also Published As

Publication number Publication date
JP2010272281A (en) 2010-12-02

Similar Documents

Publication Publication Date Title
JP3797197B2 (en) Nonaqueous electrolyte secondary battery
JP5032773B2 (en) Lithium secondary battery using ionic liquid
US10727535B2 (en) Electrolyte system for silicon-containing electrodes
JP5084802B2 (en) Lithium ion secondary battery
JP2001325988A (en) Charging method of non-aqueous electrolyte secondary battery
JP2010225291A (en) Lithium-ion secondary battery and method of manufacturing the same
JP2010192200A (en) Nonaqueous electrolyte secondary battery
KR20210049114A (en) Solid polymer matrix electrolyte (PME) for rechargeable lithium batteries, and batteries made using the same
WO2015046492A1 (en) Electrode for lithium ion secondary batteries, and lithium ion secondary battery
EP3553850A1 (en) Secondary battery
JP2009199960A (en) Lithium-ion battery
JP2013020835A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery
CN111699585A (en) Stack-folding type electrode assembly and lithium metal battery including the same
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP4595205B2 (en) Nonaqueous electrolyte secondary battery
CN110582883B (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
JP2009158335A (en) Negative pole plate for non-aqueous electrolyte secondary cell, manufacturing method therefor, and non-aqueous electrolyte secondary cell
JP2010186689A (en) Nonaqueous electrolyte secondary battery
JP5141572B2 (en) Non-aqueous electrolyte secondary battery
KR101598650B1 (en) Negative-electrode and lithium secondary battery with high capacity comprising the same
JP5424052B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
WO2012043733A1 (en) Method for manufacturing nonaqueous electrolyte secondary battery
EP4362138A1 (en) Electrode sheet, lithium ion battery, battery module, battery pack, and electrical device
JP5327531B2 (en) Nonaqueous electrolyte battery electrode and nonaqueous electrolyte battery
JP2007172947A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130710

R151 Written notification of patent or utility model registration

Ref document number: 5327531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees