JP5327143B2 - Check valve - Google Patents

Check valve Download PDF

Info

Publication number
JP5327143B2
JP5327143B2 JP2010133757A JP2010133757A JP5327143B2 JP 5327143 B2 JP5327143 B2 JP 5327143B2 JP 2010133757 A JP2010133757 A JP 2010133757A JP 2010133757 A JP2010133757 A JP 2010133757A JP 5327143 B2 JP5327143 B2 JP 5327143B2
Authority
JP
Japan
Prior art keywords
flow path
air
main flow
valve
temperature gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010133757A
Other languages
Japanese (ja)
Other versions
JP2011256975A (en
Inventor
承治 瓜生
将之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2010133757A priority Critical patent/JP5327143B2/en
Publication of JP2011256975A publication Critical patent/JP2011256975A/en
Application granted granted Critical
Publication of JP5327143B2 publication Critical patent/JP5327143B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Check Valves (AREA)
  • Indication Of The Valve Opening Or Closing Status (AREA)
  • Details Of Valves (AREA)

Description

本発明は、温度が氷点下である気体を流通させる配管内に設けられる逆止弁に関する。   The present invention relates to a check valve provided in a pipe for circulating a gas whose temperature is below freezing.

近年、航空機用空調装置においては、高い除湿効率を達成することによって少ない供給空気流量で大きな冷却能力を得ることが可能な高圧除湿式エアサイクルシステムが広く使用されてきている。この高圧除湿式エアサイクルシステムにおいては、出口の温度がしばしば氷点下に達するので、高温のトリム空気や機内再循環空気と混合するミキシングチャンバを介して機内に供給するのに適切な温度に調節される(例えば、特許文献1を参照)。   In recent years, high-pressure dehumidification air cycle systems capable of obtaining a large cooling capacity with a small supply air flow rate by achieving high dehumidification efficiency have been widely used in aircraft air conditioners. In this high-pressure dehumidification air cycle system, the outlet temperature often reaches below freezing point, so that it is adjusted to an appropriate temperature to be supplied into the aircraft through a mixing chamber that mixes with hot trim air and recirculation air in the aircraft. (For example, see Patent Document 1).

一方、この高圧除湿式エアサイクルシステムの出口の相対湿度は100%を超えることがあり、温度が氷点下となることから、前記温度調節部の上流の配管内において氷が生成されることがある。   On the other hand, the relative humidity at the outlet of the high-pressure dehumidifying air cycle system may exceed 100%, and the temperature is below freezing point, so ice may be generated in the piping upstream of the temperature control unit.

ここで、前記配管内に機内からの空気の逆流を防止するための逆止弁を設けている場合において、配管内で生成された氷が逆止弁の弁体等に付着すると、圧力損失の増大、エアサイクルシステムの性能低下、機内に供給される空気量の不足といった問題が生じることがある。   Here, in the case where a check valve for preventing the backflow of air from inside the machine is provided in the pipe, if ice generated in the pipe adheres to the valve body of the check valve, the pressure loss is reduced. Problems such as an increase, performance degradation of the air cycle system, and a shortage of air supplied to the aircraft may occur.

この問題に対処するための手段として、従来は、逆止弁に高温空気を吹き付ける方法や、逆止弁を電気ヒータ等で加熱して氷を融解させる方法などが知られているが、これらの方法では、逆止弁を通過する空気もともに加熱されるので、冷却能力が低下するという別の問題が生じる。   As means for coping with this problem, conventionally, a method of blowing hot air to the check valve or a method of melting the ice by heating the check valve with an electric heater or the like is known. In the method, since the air passing through the check valve is also heated, there arises another problem that the cooling capacity is lowered.

上述した冷却能力の低下という問題を回避するには、氷の付着を検知するための差圧センサや差圧スイッチ等の着氷検知装置を別途設け、この着氷検知装置が氷の付着を検知した場合にのみ、高温空気を吹き付けるための配管に設けた弁を開放することや電気ヒータに電力を供給することを行うという方法が考えられるが、このように着氷検知装置を別途設けると機構が複雑なものとなり、また重量が増大するというさらに別の問題が生じる。   In order to avoid the above-mentioned problem of reduced cooling capacity, a separate icing detection device such as a differential pressure sensor or a differential pressure switch for detecting the adhesion of ice is provided, and this icing detection device detects the adhesion of ice. In such a case, a method of opening a valve provided in a pipe for blowing high-temperature air or supplying electric power to an electric heater can be considered. However, there is another problem in that it becomes complicated and the weight increases.

以上の問題は、空調装置において、氷点下かつ相対湿度が100%を超える気体が流通する配管内の逆止弁全般に共通に生じる。   The above-mentioned problems commonly occur in all check valves in piping in which a gas having a freezing point and a relative humidity exceeding 100% flows in an air conditioner.

特開2004−90778号公報JP 2004-90778 A

本発明は以上の点に着目し、冷房能力を大きく低下させることなく、また、機構の複雑化を招くことなく、圧力損失の増大等を抑制するという課題を解決することを所期の目的とする。   The present invention focuses on the above points and aims to solve the problem of suppressing an increase in pressure loss without greatly reducing the cooling capacity and without complicating the mechanism. To do.

すなわち本発明に係る逆止弁は、気体を一定方向に流通させる主流路を内部に形成するハウジングと、その主流路を開閉すべくハウジング内に配設される弁機構と、弁機構の付近に高温気体を流入するための高温気体流路と、圧力室及び弁機構の付近に設けられ主流路の上流側に向かって開口し主流路内の気体を圧力室内に導くポートとを有する着氷検知機構と、前記圧力室内の圧力と外部圧力との差圧を利用し、着氷検知機構が着氷を検知した場合に高温気体流路から高温気体を導入可能な開放状態をとり、他の場合に高温気体を遮断する遮断状態をとる制御弁とを具備することを特徴とする。   That is, the check valve according to the present invention includes a housing that internally forms a main flow path for flowing gas in a certain direction, a valve mechanism that is disposed in the housing to open and close the main flow path, and a valve mechanism in the vicinity of the valve mechanism. Ice accretion detection having a high-temperature gas flow path for inflowing high-temperature gas and a port provided near the pressure chamber and the valve mechanism and opening toward the upstream side of the main flow path to guide the gas in the main flow path to the pressure chamber. Using the differential pressure between the mechanism and the pressure in the pressure chamber and the external pressure, when the icing detection mechanism detects icing, it takes an open state in which hot gas can be introduced from the hot gas channel, and in other cases And a control valve in a shut-off state for shutting off high-temperature gas.

このような構成であれば、弁体付近に着氷した場合にのみ制御弁制御機構が作動することにより制御弁が開放状態となり氷を融解させるべく高温気体が弁機構の付近に導入され、他の場合には制御弁が遮断状態となり高温気体は主流路の弁機構の付近に導入されない。従って、簡単な機構により、冷房能力を大きく低下させることなく圧力損失の増大等を抑制することができる。   In such a configuration, the control valve control mechanism operates only when icing near the valve body, so that the control valve is opened and high-temperature gas is introduced in the vicinity of the valve mechanism to melt the ice. In this case, the control valve is shut off and the high temperature gas is not introduced near the valve mechanism of the main flow path. Therefore, an increase in pressure loss or the like can be suppressed by a simple mechanism without greatly reducing the cooling capacity.

本発明の逆止弁の構成によれば、冷房能力を大きく低下させることなく、機構の複雑化を招くことなく、圧力損失の増大等を抑制することができる。   According to the configuration of the check valve of the present invention, it is possible to suppress an increase in pressure loss and the like without greatly reducing the cooling capacity and without causing a complicated mechanism.

本発明の一実施形態に係る逆止弁を概略的に示す図。The figure which shows schematically the non-return valve which concerns on one Embodiment of this invention. 図1におけるA−A断面図。AA sectional drawing in FIG.

本発明の一実施形態を、図1及び図2を参照して説明する。   An embodiment of the present invention will be described with reference to FIGS. 1 and 2.

本実施形態に係る逆止弁は、主に高圧除湿式エアサイクルシステムを使用した航空機用空調装置の出口に設けられる。   The check valve according to the present embodiment is provided at the outlet of an aircraft air conditioner that mainly uses a high-pressure dehumidifying air cycle system.

この逆止弁は、図1及び図2に示すように、気体を一定方向すなわち図1の矢印X方向に流通させる主流路1aを内部に形成するハウジング1と、その主流路1aを開閉すべくハウジング1内に配設される弁機構2と、弁機構2の付近に高温気体を流入するための高温気体流路6xと、圧力室7b、及び弁機構2の付近に設けられ主流路1aの上流側に向かって開口し主流路1a内の気体を圧力室7b内に導くポート7aを有する着氷検知機構7と、前記圧力室7b内の圧力と外部圧力との差圧を利用し、着氷検知機構7が着氷を検知した場合に高温気体流路6から高温気体を導入可能な開放状態をとり他の場合に高温気体を遮断する遮断状態をとる制御弁8とを具備する。   As shown in FIGS. 1 and 2, the check valve includes a housing 1 that internally forms a main flow path 1a through which a gas flows in a certain direction, that is, an arrow X direction in FIG. 1, and the main flow path 1a. A valve mechanism 2 disposed in the housing 1, a high-temperature gas flow path 6x for allowing a high-temperature gas to flow in the vicinity of the valve mechanism 2, a pressure chamber 7b, and the main flow path 1a provided in the vicinity of the valve mechanism 2. Using an icing detection mechanism 7 having a port 7a that opens toward the upstream side and guides the gas in the main flow path 1a into the pressure chamber 7b, and the differential pressure between the pressure in the pressure chamber 7b and the external pressure, When the ice detection mechanism 7 detects icing, the control valve 8 is in an open state in which high-temperature gas can be introduced from the high-temperature gas flow path 6, and in other cases, the control valve 8 is in a shut-off state that shuts off the high-temperature gas.

より具体的には、ハウジング1は、図1に示すように、航空機用空調装置から客室等の与圧室へ空気を供給する給気ライン中に設けられる。   More specifically, as shown in FIG. 1, the housing 1 is provided in an air supply line that supplies air from an air conditioner for an aircraft to a pressurized chamber such as a cabin.

弁機構2は、図1及び図2に示すように、ハウジング1内に設けられた軸4を中心に、給気ラインの上流側と下流側とを連通する開放位置Oと、前記ハウジング及び支柱に当接する給気ラインの上流側と下流側とを遮蔽する遮蔽位置Sとの間を回動可能に設けられる弁体3と、その一部をハウジング1内に収納しており、遮蔽位置Sに位置する前記弁体3と当接する弁座たる支柱5とを具備する。ここで、前記弁体3は、前記ハウジング1及び支柱5から離間させて設けている。ここで、弁体3は図示しないねじりコイルばねにより遮蔽位置S側に向けて付勢されており、上流から下流へ向かう気体の流れに由来する圧力を受けた場合に、付勢力に抗して開放位置Oに向けて移動する。   As shown in FIGS. 1 and 2, the valve mechanism 2 includes an open position O that connects the upstream side and the downstream side of the air supply line around the shaft 4 provided in the housing 1, the housing and the support column. The valve body 3 is rotatably provided between a shielding position S that shields the upstream side and the downstream side of the air supply line in contact with the air supply line, and a part of the valve body 3 is housed in the housing 1. And a support column 5 that is a valve seat that abuts the valve body 3 positioned at the center. Here, the valve body 3 is provided apart from the housing 1 and the support column 5. Here, the valve body 3 is urged toward the shield position S by a torsion coil spring (not shown), and resists the urging force when receiving pressure derived from the flow of gas from upstream to downstream. Move toward the open position O.

支柱5の内部には、前記着氷検知機構7を設けている。この着氷検知機構7は、上述したように、また、図1及び図2に示すように、圧力室7bと、主流路1aの上流側に向かって開口し主流路1a内の気体を圧力室7b内に導くポート7aとを有する。前記圧力室7bは、前記高温気体流路6x、弁体2に高温気体を導入するための第1の高温気体供給路6a、及びポート7a付近に高温気体を導入するための第2の高温気体供給路6bとも連通している。   The icing detection mechanism 7 is provided inside the column 5. As described above and as shown in FIGS. 1 and 2, the icing detection mechanism 7 opens toward the upstream side of the pressure chamber 7b and the main flow path 1a, and allows the gas in the main flow path 1a to flow into the pressure chamber. 7b leading into 7b. The pressure chamber 7b includes the high-temperature gas flow path 6x, a first high-temperature gas supply path 6a for introducing a high-temperature gas into the valve body 2, and a second high-temperature gas for introducing a high-temperature gas in the vicinity of the port 7a. It also communicates with the supply path 6b.

前記制御弁8は、図1に示すように、前記圧力室7b内に設けられ、高温気体流路6xから高温気体を導入可能な状態すなわち前記高温気体流路6xと前記第1及び第2の高温気体供給路6a、6bとを連通させる開放状態と、高温気体を遮断する状態すなわち前記高温気体流路6xと前記第1及び第2の高温気体供給路6a、6bとの間を遮断する遮断状態との間で切り替え可能である。より具体的には、この制御弁8は、前記ポート7a側に設けられる第1のスライド91、この第1のスライド91からポート7aと反対側に離間して設けられ第1及び第2の高温気体供給路6a、6bを閉塞する遮断位置SSと第1及び第2の高温気体供給路6a、6bを開放する開放位置OOとの間で移動可能な第2のスライド92、及びこの第2のスライド92からポート7aと反対側に離間して設けられる第3のスライド93とを一体に有する弁体たるスプール9を、圧力室7b内を摺動可能に形成してなるスプール弁である。前記第1のスライド91には、ポート7a側と反対側とを連通する連通路91aが設けられている。そして、スプール9は、圧縮コイルばねSPにより、ポート7a側すなわち第2のスライド92が開放位置OOとなる側に向けて付勢されている。なお、圧力室7b内には、第2のスライド92が開放位置OOとなる位置を越えてスプール9が移動することを規制すべく、内壁から内側に向けて複数本のスプール支持突起7b1を設けている。なお、前記図1においては、第2のスライド92が遮断位置SSをとる状態を想像線に示しているとともに、第2のスライド92が開放位置OOをとる状態を実線に示している。   As shown in FIG. 1, the control valve 8 is provided in the pressure chamber 7b and is capable of introducing a high temperature gas from the high temperature gas flow path 6x, that is, the high temperature gas flow path 6x and the first and second. An open state in which the high-temperature gas supply paths 6a and 6b communicate with each other, and a state in which the high-temperature gas is blocked, that is, a block between the high-temperature gas flow path 6x and the first and second high-temperature gas supply paths 6a and 6b. It is possible to switch between states. More specifically, the control valve 8 includes a first slide 91 provided on the port 7a side, a first slide 91 provided on the opposite side of the port 7a from the first slide 91, and first and second high temperatures. A second slide 92 movable between a blocking position SS for closing the gas supply paths 6a, 6b and an open position OO for opening the first and second high-temperature gas supply paths 6a, 6b, and the second slide 92; This is a spool valve in which a spool 9 as a valve body integrally having a third slide 93 provided to be separated from the slide 7 on the opposite side to the port 7a is formed to be slidable in the pressure chamber 7b. The first slide 91 is provided with a communication path 91a that communicates the port 7a side and the opposite side. The spool 9 is biased by the compression coil spring SP toward the port 7a side, that is, the side where the second slide 92 becomes the open position OO. In the pressure chamber 7b, a plurality of spool support protrusions 7b1 are provided inward from the inner wall so as to restrict the movement of the spool 9 beyond the position where the second slide 92 becomes the open position OO. ing. In FIG. 1, the state in which the second slide 92 takes the blocking position SS is shown by an imaginary line, and the state in which the second slide 92 takes the open position OO is shown by a solid line.

具体的には、弁体3及び支柱4に着氷しておらず、主流路1a内に空気の流れが存在している場合には、主流路1a内からポート7aを経て圧力室7b内にこの空気の流れが導入される。このとき、この空気の流れに由来する総圧は周囲の圧力と比較して大きくなり、スプール9がこの総圧に由来して受ける力が圧縮コイルばねSPのバネ力を上回る。従って、スプール9は前記バネ力に抗してポート7aから離間する方向に移動し、第2のスライド92は遮断位置SSをとる。このとき、高温空気供給路6xと主流路1aとの間は遮断され、高温空気は主流路1a内に導入されない。   Specifically, when the valve body 3 and the support column 4 are not icing and there is an air flow in the main flow path 1a, the main flow path 1a passes through the port 7a and enters the pressure chamber 7b. This air flow is introduced. At this time, the total pressure derived from the air flow becomes larger than the surrounding pressure, and the force received by the spool 9 due to the total pressure exceeds the spring force of the compression coil spring SP. Accordingly, the spool 9 moves in a direction away from the port 7a against the spring force, and the second slide 92 takes the blocking position SS. At this time, the high temperature air supply path 6x and the main flow path 1a are blocked, and the high temperature air is not introduced into the main flow path 1a.

一方、弁体3及び支柱4に着氷すると、氷によりポート7aが閉塞されるので、主流路1aの空気の流れは圧力室7b内に導入されなくなる。このとき、圧力室7b内の圧力は周囲の圧力と等しくなり、スプール9は圧縮コイルばねSPのバネ力を受けてポート7a側に移動する。そして、スプール9はスプール支持突起7b1に衝き当たる。すると、第2のスライド92は開放位置OOをとり、高温空気供給路6xと第1及び第2の高温気体供給路6a、6bとの間が連通する。これを受けて、着氷した氷を融解すべく高温空気がハウジング1内の弁体3及びポート7aに向けて噴射される。   On the other hand, when the icing on the valve body 3 and the support column 4, the port 7 a is closed by the ice, so that the air flow in the main flow path 1 a is not introduced into the pressure chamber 7 b. At this time, the pressure in the pressure chamber 7b becomes equal to the surrounding pressure, and the spool 9 moves to the port 7a side under the spring force of the compression coil spring SP. Then, the spool 9 hits the spool support protrusion 7b1. Then, the second slide 92 takes the open position OO, and the high temperature air supply path 6x and the first and second high temperature gas supply paths 6a and 6b communicate with each other. In response to this, high-temperature air is injected toward the valve body 3 and the port 7a in the housing 1 in order to melt the icing ice.

そして、主流路1a内に空気の流れが存在している状態でポート7aに付着した氷が融解すると、主流路1a内からポート7aを経て再び圧力室7b内にこの空気の流れが導入されるので、第2のスライド92が遮断位置SSをとる位置までスプール9が圧縮コイルばねSPのバネ力に抗して移動し、高温空気供給路6xと主流路1aとの間が再び遮断される。   When the ice adhering to the port 7a is melted in the state where the air flow is present in the main flow path 1a, the air flow is again introduced into the pressure chamber 7b from the main flow path 1a through the port 7a. Therefore, the spool 9 moves against the spring force of the compression coil spring SP until the second slide 92 takes the blocking position SS, and the high-temperature air supply path 6x and the main flow path 1a are blocked again.

また、主流路1a内に空気の流れが存在していない状態では、高温空気供給路6x内に高温空気が導入されないので、高温空気が主流路1a内に達することはない。   In addition, in a state where there is no air flow in the main flow path 1a, the high temperature air does not reach the main flow path 1a because the high temperature air is not introduced into the high temperature air supply path 6x.

以上のように、本実施形態に係る逆止弁の構成によれば、主流路1a内に空気の流れが存在している状態でポート7aに着氷した際にのみ、スプール9が圧縮コイルばねSPからのバネ力のみを受ける状態となって第2のスライドが開放位置OOをとり、高温空気供給路6xと第1及び第2の高温気体供給路6a、6bとの間が連通し、氷を融解させるべく弁体3及びポート7aに向けて高温空気が供給される。一方、主流路1a内に空気の流れが存在し、ポート7aに着氷していない場合には、主流路1a内の空気の流れがポート7aを経て圧力室7b内に導入され、スプール9が受ける総圧が圧縮コイルばねSPから受けるバネ力を上回ることによりスプール9がポート7aから離間する方向に移動して第2のスライド92が遮断位置SSをとり、高温空気供給路6xと第1及び第2の高温気体供給路6a、6bとの間が遮断される。すなわち、着氷検知機構が着氷を検知していない場合には、高温空気供給路6xと主流路1aとの間は遮断される。従って、冷房能力を大きく低下させることなく、弁体3及び支柱4への氷の付着に伴う圧力損失の増大等の不具合の発生を抑制することができる。   As described above, according to the configuration of the check valve according to the present embodiment, the spool 9 is the compression coil spring only when the port 7a is iced in the state where the air flow exists in the main flow path 1a. Only the spring force from the SP is received, the second slide takes the open position OO, the high temperature air supply path 6x and the first and second high temperature gas supply paths 6a and 6b communicate with each other, and ice Hot air is supplied toward the valve body 3 and the port 7a to melt the air. On the other hand, when there is an air flow in the main flow path 1a and the port 7a is not icing, the air flow in the main flow path 1a is introduced into the pressure chamber 7b through the port 7a, and the spool 9 is When the total pressure received exceeds the spring force received from the compression coil spring SP, the spool 9 moves in a direction away from the port 7a, the second slide 92 takes the blocking position SS, and the high temperature air supply path 6x and the first and The second hot gas supply paths 6a and 6b are disconnected. That is, when the icing detection mechanism does not detect icing, the high temperature air supply path 6x and the main flow path 1a are blocked. Accordingly, it is possible to suppress the occurrence of problems such as an increase in pressure loss due to the adhesion of ice to the valve body 3 and the support column 4 without greatly reducing the cooling capacity.

なお、本発明は以上に述べた実施形態に限らない。   The present invention is not limited to the embodiment described above.

例えば、エアサイクルシステム内に設けられ、氷点下の気体が流通することがあるバイパス通路中に設けられる逆止弁に、本発明の構成を採用してもよい。   For example, the configuration of the present invention may be adopted in a check valve provided in an air cycle system and provided in a bypass passage in which a gas below freezing point may flow.

また、圧縮コイルばねを設ける代わりに、例えばポートに氷が付着した場合には弁体が自重により鉛直下方に移動し高温空気流路からの高温空気を弁機構近傍に供給するようにするとともに、その他の場合にはポートを介して圧力室に供給される空気の流れにより弁体を押し上げて高温空気流路からの高温空気を遮断する態様を採用してもよい。この場合、弁体の上端を紐等の落下防止手段により弁座等に接続し、弁体が自重により鉛直下方に移動する場合に紐により弁体を所定の下端位置に保持するようにするとよい。   Further, instead of providing a compression coil spring, for example, when ice adheres to the port, the valve body moves vertically downward by its own weight so that high temperature air from the high temperature air flow path is supplied to the vicinity of the valve mechanism, In other cases, a mode may be adopted in which the valve body is pushed up by the flow of air supplied to the pressure chamber via the port to block the high-temperature air from the high-temperature air flow path. In this case, the upper end of the valve body is connected to the valve seat or the like by means of fall prevention means such as a string, and when the valve body moves vertically downward by its own weight, the valve body may be held at a predetermined lower end position by the string. .

加えて、弁機構内又は弁機構内の近傍であれば、弁座たる支柱に限らず、他の箇所に着氷検知機構及び制御弁を設けるようにしてもよい。   In addition, as long as it is in the valve mechanism or in the vicinity of the valve mechanism, the icing detection mechanism and the control valve may be provided not only in the column as the valve seat but also in other places.

その他、本発明の趣旨を損ねない範囲で種々に変形してよい。   In addition, various modifications may be made without departing from the spirit of the present invention.

1…ハウジング
1a…主流路
2…弁機構
6…高温気体流路
7…着氷検知機構
7a…ポート
7b…圧力室
8…制御弁
DESCRIPTION OF SYMBOLS 1 ... Housing 1a ... Main flow path 2 ... Valve mechanism 6 ... High temperature gas flow path 7 ... Icing detection mechanism 7a ... Port 7b ... Pressure chamber 8 ... Control valve

Claims (1)

気体を一定方向に流通させる主流路を内部に形成するハウジングと、その主流路を開閉すべくハウジング内に配設される弁機構と、弁機構の付近に高温気体を流入するための高温気体流路と、圧力室、及び弁機構の付近に設けられ主流路の上流側に向かって開口し主流路内の気体を圧力室内に導くポートを有する着氷検知機構と、前記圧力室内の圧力と外部圧力との差圧を利用し、着氷検知機構が着氷を検知した場合に高温気体流路から高温気体を導入可能な開放状態をとり他の場合に高温気体を遮断する遮断状態をとる制御弁とを具備することを特徴とする逆止弁。 A housing that internally forms a main flow path that allows gas to flow in a certain direction, a valve mechanism that is disposed in the housing to open and close the main flow path, and a high-temperature gas flow that flows in the vicinity of the valve mechanism An icing detection mechanism having a port, a pressure chamber, and a port provided in the vicinity of the valve mechanism and opening toward the upstream side of the main flow path to guide the gas in the main flow path to the pressure chamber; Control that uses the pressure difference from the pressure to open the state where high temperature gas can be introduced from the high temperature gas flow path when the icing detection mechanism detects icing, and to block the high temperature gas in other cases And a check valve.
JP2010133757A 2010-06-11 2010-06-11 Check valve Expired - Fee Related JP5327143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010133757A JP5327143B2 (en) 2010-06-11 2010-06-11 Check valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010133757A JP5327143B2 (en) 2010-06-11 2010-06-11 Check valve

Publications (2)

Publication Number Publication Date
JP2011256975A JP2011256975A (en) 2011-12-22
JP5327143B2 true JP5327143B2 (en) 2013-10-30

Family

ID=45473349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010133757A Expired - Fee Related JP5327143B2 (en) 2010-06-11 2010-06-11 Check valve

Country Status (1)

Country Link
JP (1) JP5327143B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52154111A (en) * 1976-06-17 1977-12-21 Mitsubishi Electric Corp Damper for blasting path break
JPH01109683U (en) * 1988-01-19 1989-07-25
US6357475B1 (en) * 2001-01-11 2002-03-19 Vat Holding Ag Pneumatic sequential control valve
JP2004090778A (en) * 2002-08-30 2004-03-25 Shimadzu Corp Air conditioner for aircraft
JP4285357B2 (en) * 2004-08-02 2009-06-24 株式会社島津製作所 Air conditioning system for aircraft

Also Published As

Publication number Publication date
JP2011256975A (en) 2011-12-22

Similar Documents

Publication Publication Date Title
JP5425043B2 (en) Oil-cooled compressor
CA2555940A1 (en) Water recovery systems and control valves
US20100213010A1 (en) Automatic Shut-Off Valve For The Oil Circuit In An Airplane Engine
WO2010117973A3 (en) Refrigerant vapor compression system with hot gas bypass
US8794268B2 (en) Voting hydraulic dump system
CN106322860A (en) Unloading valve component for air conditioner and air conditioner
JP2016079894A (en) Heat recovery system
JP5327143B2 (en) Check valve
CN205978750U (en) Actuator and actuator that is used together with fluid control device
US20080066807A1 (en) Hot water supply device
CN101586895A (en) Variable refrigerant expansion device with pressure relief
CN106016764B (en) Temperature adjusting device of electrical box, electrical box and air energy water heater
JP6016416B2 (en) Gas supply system
KR101373498B1 (en) Electric power generation plant
WO2010125392A1 (en) Fluid flow regulator with automatic shut off valve
JP7493353B2 (en) Gas-based fire extinguishing equipment
CN209385787U (en) Drain valve and air-pressure brake gas receiver
JP3224961U (en) Exhaust gas flow control system for metal hydride air conditioning unit
JP6502326B2 (en) System for conditioning liquid in circuit
JP2011222467A (en) Gaseous-fuel supply system for fuel cell
JP2011236980A (en) Flow control valve
BR112012026469B1 (en) Pneumatically controlled quick shut off valve system, vent valve for a pneumatically controlled valve system, method for a pneumatic control of a quick shut off valve and method for replacing a pneumatically controlled quick shut off valve
JP6800790B2 (en) Vehicle fuel cell system
JP6773364B2 (en) Room pressure control system
CN212407941U (en) Double-side efficient vortex tube heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

LAPS Cancellation because of no payment of annual fees