JP5326501B2 - Selection method of multilayer ceramic capacitors - Google Patents

Selection method of multilayer ceramic capacitors Download PDF

Info

Publication number
JP5326501B2
JP5326501B2 JP2008282516A JP2008282516A JP5326501B2 JP 5326501 B2 JP5326501 B2 JP 5326501B2 JP 2008282516 A JP2008282516 A JP 2008282516A JP 2008282516 A JP2008282516 A JP 2008282516A JP 5326501 B2 JP5326501 B2 JP 5326501B2
Authority
JP
Japan
Prior art keywords
multilayer ceramic
ceramic capacitor
energizing
voltage
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008282516A
Other languages
Japanese (ja)
Other versions
JP2010109299A (en
Inventor
剛志 岸川
章浩 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2008282516A priority Critical patent/JP5326501B2/en
Publication of JP2010109299A publication Critical patent/JP2010109299A/en
Application granted granted Critical
Publication of JP5326501B2 publication Critical patent/JP5326501B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、積層セラミックコンデンサの選別方法、さらに詳細には、絶縁抵抗値測定による積層セラミックコンデンサの選別方法に関するものである。   The present invention relates to a method for selecting a multilayer ceramic capacitor, and more particularly to a method for selecting a multilayer ceramic capacitor by measuring an insulation resistance value.

積層セラミックコンデンサの製造時に良品/不良品の選別を行う方法として特許文献1が開示されている。
特許文献1の積層セラミックコンデンサの選別方法は、内部電極間のセラミック層に微小な構造欠陥が存在するか否かを短時間に選別するものである。その方法は、第1の選別で、使用温度範囲を超えた高温下で積層セラミックコンデンサの定格電圧の数倍の電圧を一定時間印加して絶縁抵抗値を測定し、第2の選別で、定格電圧内の電圧を第1の選別における印加時間より短時間印加し、再び絶縁抵抗値を測定し、第1の選別の基準となる絶縁抵抗値より高い第2の基準の絶縁抵抗値によって選別する、といったものである。
特開2003−59784号公報
Patent Document 1 is disclosed as a method for selecting non-defective / defective products when manufacturing a multilayer ceramic capacitor.
The method for selecting a multilayer ceramic capacitor disclosed in Patent Document 1 is for selecting in a short time whether or not a minute structural defect exists in a ceramic layer between internal electrodes. In the first screening, the insulation resistance value is measured by applying a voltage several times the rated voltage of the multilayer ceramic capacitor for a certain period of time at a high temperature exceeding the operating temperature range. The voltage within the voltage is applied for a shorter time than the application time in the first selection, the insulation resistance value is measured again, and the selection is performed based on the second reference insulation resistance value higher than the insulation resistance value serving as the first selection reference. And so on.
JP 2003-59784 A

特許文献1に示されている方法で積層セラミックコンデンサを選別すれば、不良品の積層セラミックコンデンサを高精度に選別することができる。しかしながら、ある条件下で選別精度にばらつきが生じることが分かった。   If the multilayer ceramic capacitors are selected by the method disclosed in Patent Document 1, defective multilayer ceramic capacitors can be selected with high accuracy. However, it was found that the sorting accuracy varies under certain conditions.

発明者等は、実際には良品であるにもかかわらず不良品として選別されたケースがあることを見いだし、このような選別誤りの原因を詳細に究明したところ、予備充電端子によって積層セラミックコンデンサに予備充電が行われる際、予備充電端子において接触不良が発生することが原因であることを突き止めた。   The inventors found that there were cases where the product was actually classified as a defective product even though it was a non-defective product, and the cause of such a selection error was investigated in detail. When preliminary charging was performed, it was ascertained that this was caused by poor contact at the preliminary charging terminal.

そこで、この発明の目的は、端子との接触不良による選別誤りを低減させる積層セラミックコンデンサの選別方法を提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for selecting a multilayer ceramic capacitor that reduces selection errors due to poor contact with terminals.

上記予備充電端子における接触不良の元々の原因は、積層セラミックコンデンサの外部電極表面に付着している絶縁皮膜またはその絶縁皮膜が測定端子表面に付着することにあると推測される。   It is estimated that the original cause of the contact failure in the precharge terminal is that the insulating film attached to the surface of the external electrode of the multilayer ceramic capacitor or the insulating film adheres to the surface of the measurement terminal.

すなわち、積層セラミックコンデンサの外部電極にはCuの焼き付けによる下地電極があり、その表面に半田くわれ防止用のNiメッキ層が形成され、最外層に半田濡れ性改善及び酸化防止のためのSnメッキ膜を形成される。この最外層のメッキ膜に例えばSn(OH)4等の水酸化膜、SnO2等の酸化膜、またはSnSなどの硫化膜が生じ、これらが接触不良の原因であると考えられる。 That is, the external electrode of the multilayer ceramic capacitor has a base electrode by baking of Cu, a Ni plating layer for preventing soldering is formed on the surface, and Sn plating for improving solder wettability and preventing oxidation on the outermost layer. A film is formed. For example, a hydroxide film such as Sn (OH) 4, an oxide film such as SnO 2 , or a sulfide film such as SnS is formed on the outermost plating film, which is considered to be the cause of contact failure.

そこで、この発明の積層セラミックコンデンサの選別方法は、複数の内部電極がセラミック層を介して積層された積層セラミックコンデンサの選別方法であって、複数の積層セラミックコンデンサを順に搬送し、前記積層セラミックコンデンサの外面に設けられる一組みの外部電極のうちの一方が、回転自在な第1の通電ローラの周面に当接し、前記外部電極のうちの他方が前記第1の通電ローラに対向する第1の通電電極に当接する位置で、前記第1の通電ローラと前記第1の通電電極との間に前記積層セラミックコンデンサの定格電圧の数倍の電圧である前処理電圧の印加を行い、その直後に前記積層セラミックコンデンサを放電させて前記外部電極に生じた絶縁被膜を除去する第1の前処理工程と、前記前第1の処理工程の直後に、前記積層セラミックコンデンサを前記第1の通電ローラと前記第1の通電電極とに当接させたまま、前記積層セラミックコンデンサの定格電圧の数倍の電圧である予備充電電圧を印加して前記積層セラミックコンデンサを予備充電する予備充電工程と、前記予備充電工程により予備充電された積層セラミックコンデンサの前記外部電極のうちの一方が、回転自在な第2の通電ローラの周面に当接し、前記外部電極のうちの他方が前記第2の通電ローラに対向する第2の通電電極に当接する位置で、前記第2の通電ローラと前記第2の通電電極との間の絶縁抵抗値を測定し、該絶縁抵抗値が基準絶縁抵抗値よりも低い積層セラミックコンデンサを不良品として選別する測定工程と、を含む。 Therefore, screening method of a multilayer ceramic capacitor of the present invention, a plurality of internal electrodes to a screening method of a multilayer ceramic capacitor are laminated via ceramic layers, it conveys a plurality of laminated ceramic capacitors in this order, the multilayer ceramic capacitor One of the set of external electrodes provided on the outer surface of the first electrode is in contact with the peripheral surface of the rotatable first energizing roller, and the other of the external electrodes is opposed to the first energizing roller. A pretreatment voltage that is several times the rated voltage of the multilayer ceramic capacitor is applied between the first energizing roller and the first energizing electrode at a position in contact with the energizing electrode. wherein the first pretreatment step laminated ceramic capacitor discharges to remove the insulating film generated in the external electrode, immediately after the previous first process step, prior to The multilayer ceramic capacitor while keeping in contact with the said first powered electrode and said first current supply rollers, the multilayer ceramic capacitor by applying a pre-charge voltage is several times the rated voltage of the multilayer ceramic capacitor One of the external electrodes of the multilayer ceramic capacitor that has been precharged in the preliminary charging step is in contact with the peripheral surface of the rotatable second energizing roller, An insulation resistance value between the second energizing roller and the second energizing electrode is measured at a position where the other of them abuts on the second energizing electrode facing the second energizing roller , and the insulation And a measuring step of selecting a multilayer ceramic capacitor having a resistance value lower than a reference insulation resistance value as a defective product.

これにより、積層セラミックコンデンサの外部電極表面に付着している絶縁皮膜が前処理工程で実質的に消失(焼損・溶発)するため、予備充電端子で発生する接触不良が低減される。   As a result, the insulating film adhering to the surface of the external electrode of the multilayer ceramic capacitor substantially disappears (burnout and ablation) in the pretreatment step, so that contact failure occurring at the precharge terminal is reduced.

また、前記測定工程の前に、前記積層セラミックコンデンサを前記測定端子に当接させて、当該測定端子に前記積層セラミックコンデンサの定格電圧の数倍の電圧である前処理電圧の印加を行い、その直後に放電する前処理工程を行うようにしてもよい。   Before the measurement step, the multilayer ceramic capacitor is brought into contact with the measurement terminal, and a pretreatment voltage that is several times the rated voltage of the multilayer ceramic capacitor is applied to the measurement terminal. You may make it perform the pre-processing process discharged immediately.

予備充電工程と測定工程とでは、積層セラミックコンデンサに当接する端子が別であるので、予備充電端子の当接位置と測定端子の当接位置とが異なることもある。上記のとおり、測定工程の前にも前処理工程を行うことによって、測定端子における接触不良についても同様に解消されて、正しい選別が行える。   In the preliminary charging step and the measuring step, since the terminals that contact the multilayer ceramic capacitor are different, the contact position of the preliminary charging terminal and the contact position of the measurement terminal may be different. As described above, by performing the pretreatment step before the measurement step, the contact failure at the measurement terminal is similarly eliminated, and correct selection can be performed.

また、予備充電端子と測定端子を兼ねる場合には、複数の積層セラミックコンデンサを順に搬送し、前記積層セラミックコンデンサの外面に設けられる一組みの外部電極のうちの一方が、回転自在な第1の通電ローラの周面に当接し、前記外部電極のうちの他方が前記第1の通電ローラに対向する第1の通電電極に当接する位置で、前記第1の通電ローラと前記第1の通電電極との間に前記積層セラミックコンデンサの定格電圧の数倍の電圧である前処理電圧の印加を行い、その直後に前記積層セラミックコンデンサを放電させて前記外部電極に生じた絶縁被膜を除去する前処理工程と、前記前処理工程の直後に、前記積層セラミックコンデンサを前記第1の通電ローラと前記第1の通電電極とに当接させたまま、前記積層セラミックコンデンサの定格電圧の数倍の電圧である予備充電電圧を印加して前記積層セラミックコンデンサを予備充電する予備充電工程と、前記予備充電工程に続いて、前記積層セラミックコンデンサを前記第1の通電ローラと前記第1の通電電極とに当接させたまま、前記積層セラミックコンデンサの絶縁抵抗値を測定し、該絶縁抵抗値が基準絶縁抵抗値よりも低い積層セラミックコンデンサを不良品として選別する測定工程と、を含む方法とする。


Further, when the precharge terminal serves as the measurement terminal, a plurality of multilayer ceramic capacitors are sequentially conveyed, and one of the set of external electrodes provided on the outer surface of the multilayer ceramic capacitor is rotatable first. The first energizing roller and the first energizing electrode at a position that abuts on the peripheral surface of the energizing roller and the other of the external electrodes abuts on the first energizing electrode facing the first energizing roller. A pretreatment voltage that is a voltage several times the rated voltage of the multilayer ceramic capacitor, and immediately after that, the multilayer ceramic capacitor is discharged to remove the insulating film formed on the external electrode a step, immediately after the pretreatment step, while the multilayer ceramic capacitor is brought into contact with said first powered electrode and said first conducting roller, the laminated ceramic capacitor A pre-charging step of pre-charging the laminated ceramic capacitor by applying a pre-charge voltage is several times the rated voltage of service, the following the pre-charging step, said first energizing rollers the laminated ceramic capacitor And measuring the insulation resistance value of the multilayer ceramic capacitor while being in contact with the first current-carrying electrode, and selecting the multilayer ceramic capacitor having the insulation resistance value lower than the reference insulation resistance value as a defective product And a method including:


これにより、端子での接触不良が低減されて、より正しい選別が可能となる。   Thereby, the contact failure in a terminal is reduced and more correct selection becomes possible.

前記前処理工程の放電時間は前記前処理工程の電圧印加時間より短く定めると、放電時の放電エネルギーを高めることができ、前記絶縁皮膜の消失を効果的に行うことができる。   If the discharge time of the pretreatment process is set shorter than the voltage application time of the pretreatment process, the discharge energy at the time of discharge can be increased, and the insulation film can be effectively eliminated.

また、前記予備充電工程で、前記予備充電電圧を印加して絶縁抵抗値を測定し、該絶縁抵抗値が第1の基準絶縁抵抗値よりも低い積層セラミックコンデンサを不良品として選別し、前記測定工程では、予備充電工程で不良品として選別されなかった積層セラミックコンデンサについて、前記第1の基準絶縁抵抗値より高い第2の基準絶縁抵抗値との比較によって不良品を選別するようにしてもよい。   Further, in the preliminary charging step, the insulation resistance value is measured by applying the preliminary charging voltage, and the multilayer ceramic capacitor having the insulation resistance value lower than the first reference insulation resistance value is selected as a defective product, and the measurement is performed. In the process, for the multilayer ceramic capacitor that has not been selected as a defective product in the pre-charging process, the defective product may be selected by comparison with a second reference insulation resistance value that is higher than the first reference insulation resistance value. .

これにより、予備充電工程での第1の選別で、欠陥が表面化している不良品を、欠陥が内在する不良品または良品から選別し、測定工程での第2の選別で、前記第1の選別において選別できなかった、欠陥を内在する不良品を検出することができる。   Thereby, in the first sorting in the precharging process, the defective product whose defect is surfaced is sorted out from the defective product or the non-defective product in which the defect is inherent, and in the second sorting in the measuring process, the first screening is performed. It is possible to detect a defective product having a defect that could not be selected in the selection.

この発明によれば、前処理工程で、積層セラミックコンデンサの外部電極表面に付着している絶縁皮膜が前処理工程の放電により実質的に消失(焼損・溶発)するため、接触不良が低減される。そのため、予備充電工程で積層セラミックコンデンサに内在する欠陥が劣化して、不良品であればその選別を確実に行うことができる。   According to the present invention, in the pretreatment process, the insulating film adhering to the surface of the external electrode of the multilayer ceramic capacitor substantially disappears (burnout and ablation) due to the discharge in the pretreatment process. The Therefore, the defects inherent in the multilayer ceramic capacitor are deteriorated in the precharging step, and if it is a defective product, the selection can be performed reliably.

図1はこの発明の実施形態に係る積層セラミックコンデンサの選別方法で用いる装置の構成図である。図1(A)は装置の平面図である。円板状の搬送テーブル1には周回方向に複数列のワーク収納孔2が形成されている。積層セラミックコンデンサ(ワーク)はこれらのワーク収納孔2に収納されて、図中矢印方向に搬送テーブル1が回転することによって搬送される。   FIG. 1 is a block diagram of an apparatus used in a method for selecting a multilayer ceramic capacitor according to an embodiment of the present invention. FIG. 1A is a plan view of the apparatus. The disc-shaped transfer table 1 is formed with a plurality of rows of work storage holes 2 in the circumferential direction. The multilayer ceramic capacitor (workpiece) is accommodated in these work accommodation holes 2 and conveyed by the conveyance table 1 rotating in the direction of the arrow in the figure.

前記ワーク収納孔2に収納された積層セラミックコンデンサが予備処理部3に搬送された時、後述する前処理工程及び予備充電工程の処理を行い、その後、搬送テーブル1の搬送によって、予備充電された積層セラミックコンデンサが測定部4に達した時、後述する測定工程の処理を行う。   When the multilayer ceramic capacitor housed in the workpiece housing hole 2 is transported to the pretreatment unit 3, the pretreatment process and the precharge process described later are performed, and then precharged by the transport of the transport table 1. When the multilayer ceramic capacitor reaches the measurement unit 4, the measurement process described later is performed.

図1(B)は、図1(A)における予備処理部3における積層セラミックコンデンサ10に対する通電部の構造を示す断面図である。搬送テーブル1の回転によってワーク収納孔2が通過する部分に、予備充電端子である通電電極11及び通電ローラ12が対向配置されていて、ワーク収納孔2に収納されている積層セラミックコンデンサ10が通電電極11と通電ローラ12とに挟まれることにより、積層セラミックコンデンサ10の外部電極が通電電極11及び通電ローラ12と電気的に導通する。この状態で、搬送テーブル1の回転を一時停止し、前処理工程での充放電及び予備充電工程での充電処理を行う。   FIG. 1B is a cross-sectional view showing the structure of the energization section for the multilayer ceramic capacitor 10 in the pretreatment section 3 in FIG. An energizing electrode 11 and an energizing roller 12 which are preliminary charging terminals are arranged opposite to each other in a portion where the work housing hole 2 passes due to the rotation of the transfer table 1, and the multilayer ceramic capacitor 10 housed in the work housing hole 2 is energized. When sandwiched between the electrode 11 and the energizing roller 12, the external electrode of the multilayer ceramic capacitor 10 is electrically connected to the energizing electrode 11 and the energizing roller 12. In this state, the rotation of the transfer table 1 is temporarily stopped, and the charging process in the pretreatment process and the charging process in the preliminary charging process are performed.

図1(A)に示した測定部4の構造も、図1(B)と基本的に同様であり、測定端子である通電電極と通電ローラとで積層セラミックコンデンサ10を挟むことによって電気的に導通し、測定を行う。
前記積層セラミックコンデンサは、複数の内部電極がセラミック層を介して積層されている。積層セラミックコンデンサの外部電極にはCuの焼き付けによる下地電極があり、その表面に半田くわれ防止用のNiメッキ層が形成され、最外層に半田濡れ性改善及び酸化防止のためのSnメッキ膜が形成されている。この最外層のメッキ膜に、接触不良の原因である例えばSn(OH)4等の水酸化膜、SnO2等の酸化膜、またはSnS等の硫化膜が形成されている場合がある。
The structure of the measurement unit 4 shown in FIG. 1A is also basically the same as that in FIG. 1B, and is electrically connected by sandwiching the multilayer ceramic capacitor 10 between a current-carrying electrode and a current-carrying roller as measurement terminals. Conduct and measure.
In the multilayer ceramic capacitor, a plurality of internal electrodes are laminated via ceramic layers. The external electrode of the multilayer ceramic capacitor has a base electrode by baking of Cu, a Ni plating layer for preventing soldering is formed on the surface, and an Sn plating film for improving solder wettability and preventing oxidation is formed on the outermost layer. Is formed. In some cases, the outermost plating film is formed with a hydroxide film such as Sn (OH) 4, an oxide film such as SnO 2 , or a sulfide film such as SnS, which causes contact failure.

図2は、3つのタイプについて、各工程における電圧印加の様子を示す波形図である。図2(A)の例では、まず、選別対象である積層セラミックコンデンサが通電電極11及び通電ローラ12に当接した状態で、To(例えば4ms)の間、積層セラミックコンデンサの定格電圧の数倍の大きさの前処理電圧Va(例えば200V)を印加して充電を行う。その後、T1(例えば1ms)の時間で放電を行う。すなわちこの時間To,T1で前処理工程を行う。 FIG. 2 is a waveform diagram showing the state of voltage application in each step for three types. In the example of FIG. 2A , first, the multilayer ceramic capacitor to be selected is in contact with the energizing electrode 11 and the energizing roller 12, and is several times the rated voltage of the multilayer ceramic capacitor for To (for example, 4 ms). Is applied by applying a pre-processing voltage Va (for example, 200 V) having a magnitude of. Thereafter, discharge is performed at a time of T1 (for example, 1 ms). That is, the pretreatment process is performed at the times To and T1.

続いて、搬送テーブル1を停止させたまま、すなわち積層セラミックコンデンサが通電電極11及び通電ローラ12に当接しているそのままの状態で、時間T2(例えば10〜1000ms)だけ予備充電電圧Vaを印加して予備充電を行う。また、この充電電圧の印加とともに、積層セラミックコンデンサの絶縁抵抗値を測定する。この絶縁抵抗値が第1の基準絶縁抵抗値よりも低い積層セラミックコンデンサを不良品として選別する。すなわち第1の選別を行う。   Subsequently, the precharge voltage Va is applied for a time T2 (for example, 10 to 1000 ms) while the conveyance table 1 is stopped, that is, with the multilayer ceramic capacitor in contact with the energizing electrode 11 and the energizing roller 12 as it is. To precharge. Further, along with the application of the charging voltage, the insulation resistance value of the multilayer ceramic capacitor is measured. A multilayer ceramic capacitor having an insulation resistance value lower than the first reference insulation resistance value is selected as a defective product. That is, the first sorting is performed.

その後、搬送テーブル1を回転させ、充電済みの積層セラミックコンデンサを測定部4の位置まで搬送し、時間T3(例えば10〜1000ms)で、測定部の通電電極と通電ローラとによって積層セラミックコンデンサに対して測定用電圧Vaを印加し、絶縁抵抗値を測定する。   After that, the transport table 1 is rotated, and the charged multilayer ceramic capacitor is transported to the position of the measuring unit 4. Then, the measurement voltage Va is applied, and the insulation resistance value is measured.

前記予備充電工程で測定した絶縁抵抗値が第2の基準絶縁抵抗値より低ければ、その積層セラミックコンデンサを不良品として選別し、また測定工程で絶縁抵抗値が第2の基準絶縁抵抗値よりも低い積層セラミックコンデンサを不良品として選別する。すなわち第2の選別を行う。   If the insulation resistance value measured in the preliminary charging step is lower than the second reference insulation resistance value, the multilayer ceramic capacitor is selected as a defective product, and the insulation resistance value is less than the second reference insulation resistance value in the measurement step. Select low-layer ceramic capacitors as defective. That is, the second sorting is performed.

前記第2の基準絶縁抵抗値は前記第1の基準絶縁抵抗値よりも高く設定する。これにより、予備充電工程での第1の選別で、欠陥が表面化している不良品を、欠陥が内在する不良品または良品から選別し、測定工程での第2の選別で、前記第1の選別において選別できなかった、欠陥を内在する不良品を検出することができる。   The second reference insulation resistance value is set higher than the first reference insulation resistance value. Thereby, in the first sorting in the precharging process, the defective product whose defect is surfaced is sorted out from the defective product or the non-defective product in which the defect is inherent, and in the second sorting in the measuring process, the first screening is performed. It is possible to detect a defective product having a defect that could not be selected in the selection.

このように、積層セラミックコンデンサの外部電極表面に付着している絶縁皮膜が前処理工程の放電により実質的に消失(焼損・溶発)するため、予備充電端子で発生する接触不良が低減され、予備充電が確実に行われる。そのため、実際には絶縁抵抗が規定値を超えているにもかかわらず測定工程で不良品として選別される問題が解消できる。また、予備充電端子で発生する接触不良が低減されるため、予備充電工程で積層セラミックコンデンサに内在する欠陥が劣化して、不良品であればその選別を確実に行うことができる。   Thus, since the insulating film adhering to the external electrode surface of the multilayer ceramic capacitor substantially disappears (burnout and ablation) due to the discharge in the pretreatment step, the contact failure occurring at the precharge terminal is reduced, Precharge is performed reliably. Therefore, it is possible to solve the problem of being classified as a defective product in the measurement process even though the insulation resistance actually exceeds the specified value. Moreover, since the contact failure which generate | occur | produces in a precharge terminal is reduced, the defect inherent in a multilayer ceramic capacitor deteriorates in a precharge process, and if it is inferior goods, the selection can be performed reliably.

また、前記前処理工程の放電時間を充電時間より短くすることによって、放電時の放電エネルギーを高めることができ、前記絶縁皮膜の消失を効果的に行うことができる。   Moreover, by making the discharge time of the said pre-processing process shorter than the charge time, the discharge energy at the time of discharge can be raised, and the loss | disappearance of the said insulating film can be performed effectively.

以上に示した例で、サイズが0.5×0.5×1.0mmの積層セラミックコンデンサ40万個について、予備充電端子で発生する接触不良の発生率を求めたところ、前処理工程を適用しない場合に、発生率が1.15%であったが、前処理工程を適用することによって、発生率が0.01%にまで低減した。   In the example shown above, when the occurrence rate of contact failure occurring at the precharging terminal was determined for 400,000 multilayer ceramic capacitors having a size of 0.5 × 0.5 × 1.0 mm, the pretreatment process was applied. In the case of not performing, the occurrence rate was 1.15%, but the occurrence rate was reduced to 0.01% by applying the pretreatment process.

図2(B)の例では、時間T3で示す測定工程の手前で、積層セラミックコンデンサが測定部4の通電電極及び通電ローラに当接した状態でTo(例えば4ms)の間、積層セラミックコンデンサの定格電圧の数倍の大きさの前処理電圧Va(例えば200V)を印加して充電を行う。その後、T1(例えば1ms)の時間で放電を行う。すなわちこの時間To,T1で、測定工程前の前処理工程を行う。時間T2で示す予備充電工程及びその手前の時刻T0,T1での前処理工程については図2(A)で示したものと同様である。
このように、測定工程の前に前処理工程を行うことによって、測定端子における接触不良についても同様に解消されて、正しい選別が行える。
In the example of FIG. 2B, the multilayer ceramic capacitor is in contact with the energizing electrode and energizing roller of the measuring unit 4 for To (for example, 4 ms) before the measurement step indicated by time T3. Charging is performed by applying a pretreatment voltage Va (for example, 200 V) that is several times the rated voltage. Thereafter, discharge is performed at a time of T1 (for example, 1 ms). That is, the pretreatment process before the measurement process is performed at the times To and T1. The pre-charging process shown at time T2 and the pre-processing process at times T0 and T1 before that are the same as those shown in FIG.
As described above, by performing the pretreatment step before the measurement step, the contact failure at the measurement terminal is similarly eliminated, and correct selection can be performed.

図2(C)の例は、予備処理部3と測定部4とを分けずに、同じ端子で予備充電工程と測定工程を行う例である。これは、比較的低容量の積層セラミックコンデンサに適用する例である。比較的低容量の積層セラミックコンデンサは強誘電性が少ない誘電体材料から構成されるので、充分に強い予備充電を行わなくても選別可能である。このような場合には、予備充電専用の端子を設けずに、同じ端子で予備充電と測定を行う。   The example of FIG. 2C is an example in which the preliminary charging process and the measurement process are performed at the same terminal without separating the preliminary processing unit 3 and the measurement unit 4. This is an example applied to a relatively low capacity multilayer ceramic capacitor. Since the relatively low capacity multilayer ceramic capacitor is made of a dielectric material with low ferroelectricity, it can be selected without performing sufficiently strong pre-charging. In such a case, preliminary charging and measurement are performed at the same terminal without providing a dedicated terminal for preliminary charging.

まず、選別対象である積層セラミックコンデンサが通電電極及び通電ローラに当接した状態でTo(例えば4ms)の間、積層セラミックコンデンサの定格電圧の数倍の大きさの前処理電圧Va(例えば200V)を印加して充電を行う。その後、T1(例えば1ms)の時間で放電を行う。すなわちこの時間To,T1で前処理工程を行う。 First, a pre-processing voltage Va (for example, 200 V) that is several times the rated voltage of the multilayer ceramic capacitor for To (for example, 4 ms) while the multilayer ceramic capacitor to be selected is in contact with the energizing electrode and the energizing roller. To charge the battery. Thereafter, discharge is performed at a time of T1 (for example, 1 ms). That is, the pretreatment process is performed at the times To and T1.

続いて、搬送テーブル1を停止させたまま、すなわち積層セラミックコンデンサが通電電極及び通電ローラに当接しているそのままの状態で、時間T2(例えば10〜1000ms)だけ予備充電電圧Vaを印加して予備充電を行う。   Subsequently, with the transport table 1 stopped, that is, with the multilayer ceramic capacitor in contact with the energizing electrode and the energizing roller, the preliminary charging voltage Va is applied for the time T2 (for example, 10 to 1000 ms) and the preparatory voltage Va is applied. Charge the battery.

上記予備充電工程で、積層セラミックコンデンサの絶縁抵抗値を測定し、絶縁抵抗値が第1の基準絶縁抵抗値よりも低い積層セラミックコンデンサを不良品として選別(第1の選別)を行ってもよい。   In the preliminary charging step, the insulation resistance value of the multilayer ceramic capacitor may be measured, and the multilayer ceramic capacitor having an insulation resistance value lower than the first reference insulation resistance value may be selected as a defective product (first selection). .

予備充電に要する時間T2が経過した後、搬送テーブル1を停止させたまま、すなわち積層セラミックコンデンサが通電電極及び通電ローラに当接しているそのままの状態で、時間T3(例えば10〜1000ms)で、測定部の通電電極と通電ローラとによって積層セラミックコンデンサに対して測定用電圧Vaを印加し、絶縁抵抗値を測定する。   After the time T2 required for the preliminary charging has elapsed, with the conveyance table 1 stopped, that is, with the multilayer ceramic capacitor in contact with the energizing electrode and the energizing roller, at time T3 (for example, 10 to 1000 ms), The measurement voltage Va is applied to the multilayer ceramic capacitor by the energizing electrode and energizing roller of the measuring unit, and the insulation resistance value is measured.

このように、積層セラミックコンデンサの外部電極表面に付着している絶縁皮膜が前処理工程の放電により実質的に消失(焼損・溶発)するため、端子で発生する接触不良が低減される。そのため、実際には絶縁抵抗が規定値を超えているにもかかわらず測定工程で不良品として選別される問題が解消できる。また、予備充電工程で積層セラミックコンデンサに内在する欠陥が劣化して、不良品であればその選別を確実に行うことができる。   Thus, since the insulating film adhering to the surface of the external electrode of the multilayer ceramic capacitor substantially disappears (burnout and ablation) due to the discharge in the pretreatment step, the contact failure generated at the terminal is reduced. Therefore, it is possible to solve the problem of being classified as a defective product in the measurement process even though the insulation resistance actually exceeds the specified value. In addition, if the defects inherent in the multilayer ceramic capacitor are deteriorated in the precharging step and the product is defective, it is possible to reliably select the defective product.

なお、図2に示した例では、前処理電圧、予備充電電圧、及び測定用電圧をいずれも同一の電圧Vaとしたが、測定電圧を前処理電圧及び予備充電電圧とは異なった値にしてもよい。また、すべての電圧を異なった値に設定してもよい。   In the example shown in FIG. 2, the pretreatment voltage, the precharge voltage, and the measurement voltage are all the same voltage Va, but the measurement voltage is set to a value different from the pretreatment voltage and the precharge voltage. Also good. Also, all voltages may be set to different values.

さらに、以上に示した例では、予備充電工程で絶縁抵抗値を測定して第1の選別を行うようにしたが、予備充電工程では単に積層セラミックコンデンサに内在する欠陥を劣化させるだけとし、測定工程で絶縁抵抗値を測定して一回で選別を行うようにしてもよい。   Further, in the example shown above, the first selection is performed by measuring the insulation resistance value in the precharging process. However, in the precharging process, only the defects inherent in the multilayer ceramic capacitor are deteriorated. The insulation resistance value may be measured in the process and the selection may be performed once.

この発明の実施形態に係る積層セラミックコンデンサの選別方法で用いる装置の構成図である。It is a block diagram of the apparatus used with the selection method of the multilayer ceramic capacitor which concerns on embodiment of this invention. この発明の実施形態に係る積層セラミックコンデンサの、3つのタイプの選別方法について、各工程における電圧印加の様子を示す波形図である。It is a wave form diagram which shows the mode of the voltage application in each process about the three types of selection methods of the multilayer ceramic capacitor which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1…搬送テーブル
10…積層セラミックコンデンサ
11…通電電極(予備充電端子)
12…通電ローラ(予備充電端子)
2…ワーク収納孔
3…予備処理部
4…測定部
DESCRIPTION OF SYMBOLS 1 ... Transfer table 10 ... Multilayer ceramic capacitor 11 ... Current carrying electrode (preliminary charge terminal)
12 ... Electric roller (preliminary charging terminal)
2 ... Work storage hole 3 ... Preliminary processing part 4 ... Measurement part

Claims (5)

複数の内部電極がセラミック層を介して積層された積層セラミックコンデンサの選別方法であって、
複数の積層セラミックコンデンサを順に搬送し、前記積層セラミックコンデンサの外面に設けられる一組みの外部電極のうちの一方が、回転自在な第1の通電ローラの周面に当接し、前記外部電極のうちの他方が前記第1の通電ローラに対向する第1の通電電極に当接する位置で、前記第1の通電ローラと前記第1の通電電極との間に前記積層セラミックコンデンサの定格電圧の数倍の電圧である前処理電圧の印加を行い、その直後に前記積層セラミックコンデンサを放電させて前記外部電極に生じた絶縁被膜を除去する第1の前処理工程と、
前記第1の前処理工程の直後に、前記積層セラミックコンデンサを前記第1の通電ローラと前記第1の通電電極とに当接させたまま、前記積層セラミックコンデンサの定格電圧の数倍の電圧である予備充電電圧を印加して前記積層セラミックコンデンサを予備充電する予備充電工程と、
前記予備充電工程により予備充電された積層セラミックコンデンサの前記外部電極のうちの一方が、回転自在な第2の通電ローラの周面に当接し、前記外部電極のうちの他方が前記第2の通電ローラに対向する第2の通電電極に当接する位置で、前記第2の通電ローラと前記第2の通電電極との間の絶縁抵抗値を測定し、該絶縁抵抗値が基準絶縁抵抗値よりも低い積層セラミックコンデンサを不良品として選別する測定工程と、
を含む積層セラミックコンデンサの選別方法。
A method of selecting a multilayer ceramic capacitor in which a plurality of internal electrodes are laminated via a ceramic layer,
A plurality of multilayer ceramic capacitors are conveyed in order, and one of a set of external electrodes provided on the outer surface of the multilayer ceramic capacitor is in contact with the peripheral surface of the rotatable first energizing roller, Of the multilayer ceramic capacitor is several times the rated voltage of the multilayer ceramic capacitor between the first energizing roller and the first energizing electrode at a position where the other of the first abutting electrode and the first energizing electrode faces the first energizing roller. A first pretreatment step of applying a pretreatment voltage that is the voltage of the first electrode, and immediately after that , discharging the multilayer ceramic capacitor to remove the insulating film formed on the external electrode ;
Immediately after the first pretreatment step, the multilayer ceramic capacitor is kept in contact with the first energization roller and the first energization electrode at a voltage several times the rated voltage of the multilayer ceramic capacitor. A precharging step of precharging the monolithic ceramic capacitor by applying a precharge voltage;
One of the external electrodes of the multilayer ceramic capacitor that has been precharged in the precharging step is in contact with a peripheral surface of a rotatable second energization roller, and the other of the external electrodes is the second energization. An insulation resistance value between the second energizing roller and the second energizing electrode is measured at a position in contact with the second energizing electrode facing the roller, and the insulation resistance value is greater than a reference insulation resistance value. A measurement process for selecting low-density multilayer ceramic capacitors as defective products;
Of a multilayer ceramic capacitor including
前記測定工程の前に、前記予備充電工程により予備充電された積層セラミックコンデンサの前記外部電極のうちの一方が、前記第2の通電ローラの周面に当接し、前記外部電極のうちの他方が前記第2の通電電極に当接する位置で、前記第2の通電ローラと前記第2の通電電極との間に前記積層セラミックコンデンサの定格電圧の数倍の電圧である前処理電圧の印加を行い、その直後に前記積層セラミックコンデンサを放電させる第2の前処理工程を含む、請求項1に記載の積層セラミックコンデンサの選別方法。 Prior to the measurement step, one of the external electrodes of the multilayer ceramic capacitor precharged in the precharge step contacts the peripheral surface of the second energizing roller, and the other of the external electrodes A pretreatment voltage that is a voltage several times the rated voltage of the multilayer ceramic capacitor is applied between the second energizing roller and the second energizing electrode at a position in contact with the second energizing electrode. The method for selecting a multilayer ceramic capacitor according to claim 1, further comprising a second pretreatment step of discharging the multilayer ceramic capacitor immediately after that. 複数の内部電極がセラミック層を介して積層された積層セラミックコンデンサの選別方法であって、
複数の積層セラミックコンデンサを順に搬送し、前記積層セラミックコンデンサの外面に設けられる一組みの外部電極のうちの一方が、回転自在な第1の通電ローラの周面に当接し、前記外部電極のうちの他方が前記第1の通電ローラに対向する第1の通電電極に当接する位置で、前記第1の通電ローラと前記第1の通電電極との間に前記積層セラミックコンデンサの定格電圧の数倍の電圧である前処理電圧の印加を行い、その直後に前記積層セラミックコンデンサを放電させて前記外部電極に生じた絶縁被膜を除去する前処理工程と、
前記前処理工程の直後に、前記積層セラミックコンデンサを前記第1の通電ローラと前記第1の通電電極とに当接させたまま、前記積層セラミックコンデンサの定格電圧の数倍の電圧である予備充電電圧を印加して前記積層セラミックコンデンサを予備充電する予備充電工程と、
前記予備充電工程に続いて、前記積層セラミックコンデンサを前記第1の通電ローラと前記第1の通電電極とに当接させたまま、前記積層セラミックコンデンサの絶縁抵抗値を測定し、該絶縁抵抗値が基準絶縁抵抗値よりも低い積層セラミックコンデンサを不良品として選別する測定工程と、
を含む積層セラミックコンデンサの選別方法。
A method of selecting a multilayer ceramic capacitor in which a plurality of internal electrodes are laminated via a ceramic layer,
A plurality of multilayer ceramic capacitors are conveyed in order, and one of a set of external electrodes provided on the outer surface of the multilayer ceramic capacitor is in contact with the peripheral surface of the rotatable first energizing roller, Of the multilayer ceramic capacitor is several times the rated voltage of the multilayer ceramic capacitor between the first energizing roller and the first energizing electrode at a position where the other of the first abutting electrode and the first energizing electrode faces the first energizing roller. A pre-treatment step of applying a pre-treatment voltage that is a voltage of, and immediately after that , discharging the multilayer ceramic capacitor to remove the insulating film formed on the external electrode ;
Immediately after the pretreatment step, precharging is performed with a voltage several times the rated voltage of the multilayer ceramic capacitor while the multilayer ceramic capacitor is in contact with the first energizing roller and the first energizing electrode. A precharging step of precharging the multilayer ceramic capacitor by applying a voltage;
Subsequent to the preliminary charging step, the insulation resistance value of the multilayer ceramic capacitor is measured while the multilayer ceramic capacitor is in contact with the first energization roller and the first energization electrode, and the insulation resistance value is measured. A measurement process in which a multilayer ceramic capacitor having a lower than the standard insulation resistance value is selected as a defective product,
Of a multilayer ceramic capacitor including
前記前処理工程の放電時間は前記前処理工程の電圧印加時間より短い、請求項1〜3のいずれかに記載の積層セラミックコンデンサの選別方法。   The method for selecting a multilayer ceramic capacitor according to claim 1, wherein a discharge time of the pretreatment step is shorter than a voltage application time of the pretreatment step. 前記予備充電工程で、前記予備充電電圧を印加して絶縁抵抗値を測定し、該絶縁抵抗値が第1の基準絶縁抵抗値よりも低い積層セラミックコンデンサを不良品として選別し、
前記測定工程では、予備充電工程で不良品として選別されなかった積層セラミックコンデンサについて、前記第1の基準絶縁抵抗値より高い第2の基準絶縁抵抗値との比較によって不良品を選別する、請求項1〜4のいずれかに記載の積層セラミックコンデンサの選別方法。
In the preliminary charging step, the insulation resistance value is measured by applying the preliminary charging voltage, and the multilayer ceramic capacitor having the insulation resistance value lower than the first reference insulation resistance value is selected as a defective product,
The said measurement process WHEREIN: About the multilayer ceramic capacitor which was not sorted out as a defect in the preliminary charging process, a defect is selected by comparison with a second reference insulation resistance value higher than the first reference insulation resistance value. 5. A method for selecting a multilayer ceramic capacitor according to any one of 1 to 4.
JP2008282516A 2008-10-31 2008-10-31 Selection method of multilayer ceramic capacitors Active JP5326501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008282516A JP5326501B2 (en) 2008-10-31 2008-10-31 Selection method of multilayer ceramic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008282516A JP5326501B2 (en) 2008-10-31 2008-10-31 Selection method of multilayer ceramic capacitors

Publications (2)

Publication Number Publication Date
JP2010109299A JP2010109299A (en) 2010-05-13
JP5326501B2 true JP5326501B2 (en) 2013-10-30

Family

ID=42298413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008282516A Active JP5326501B2 (en) 2008-10-31 2008-10-31 Selection method of multilayer ceramic capacitors

Country Status (1)

Country Link
JP (1) JP5326501B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7243175B2 (en) * 2018-12-20 2023-03-22 株式会社村田製作所 Apparatus for Determining Quality of Multilayer Ceramic Capacitor and Method for Determining Quality Thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10115651A (en) * 1996-08-20 1998-05-06 Nec Corp Inspection method for leak current characteristic of capacitor
JP3642456B2 (en) * 1998-02-24 2005-04-27 株式会社村田製作所 Electronic component inspection method and apparatus
US6714028B2 (en) * 2001-11-14 2004-03-30 Electro Scientific Industries, Inc. Roller contact with conductive brushes

Also Published As

Publication number Publication date
JP2010109299A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
JP2760263B2 (en) Screening method for early failure products of ceramic capacitors
JP2014153364A (en) Electronic component inspection device
US7239147B2 (en) Method and device for inspecting secondary battery precursor and method for manufacturing secondary battery using the inspection method
KR102168907B1 (en) Method of inspection of chip electronic components and inspection device
JP2008160040A (en) Manufacturing method of capacitor
JP5326501B2 (en) Selection method of multilayer ceramic capacitors
WO2000046820A1 (en) Method of screening laminated ceramic capacitor
CN111521957B (en) Failure analysis method for solid tantalum electrolytic capacitor with built-in fuse
JP3077122B2 (en) Capacitor insulation resistance measurement method
JP4313625B2 (en) Secondary battery manufacturing method and secondary battery precursor inspection apparatus
KR101136949B1 (en) Apparatus and method for removing battery short circuit portion and apparatus and method for determining battery short circuit portion removing voltage
JP7243175B2 (en) Apparatus for Determining Quality of Multilayer Ceramic Capacitor and Method for Determining Quality Thereof
JP6392404B1 (en) Liquid leak detection device and liquid leak inspection system
JPH08227826A (en) Method for screening laminated ceramic capacitor
JP3835333B2 (en) Inspection method and inspection device for printed wiring board
WO2012121039A1 (en) Device for inspecting thin-film solar cell, method for inspecting thin-film solar cell, method for producing thin-film solar cell, and system for producing thin-film solar cell
US6509741B2 (en) Method for screening multi-layer ceramic electronic component
JP7168436B2 (en) Device
JP2002168897A (en) Screening method for ceramic electronic part
JP3144224B2 (en) Screening method for ceramic capacitors
JPH07211599A (en) Aging inspection apparatus for capacitor
JP2023117672A (en) Poor insulation part specification method
KR100771885B1 (en) Dipping detecting device of semiconductor device, dipping equipment of semiconductor device comprising the same detecting device, and method of detecting dipping state of semiconductor device using the same detecting device
JP2001035758A (en) Method and apparatus for screening laminated ceramic electronic component
JPH0714742A (en) Screening method for ceramic electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R150 Certificate of patent or registration of utility model

Ref document number: 5326501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150