JP5325031B2 - Vacuum film forming apparatus and vacuum film forming method - Google Patents

Vacuum film forming apparatus and vacuum film forming method Download PDF

Info

Publication number
JP5325031B2
JP5325031B2 JP2009151062A JP2009151062A JP5325031B2 JP 5325031 B2 JP5325031 B2 JP 5325031B2 JP 2009151062 A JP2009151062 A JP 2009151062A JP 2009151062 A JP2009151062 A JP 2009151062A JP 5325031 B2 JP5325031 B2 JP 5325031B2
Authority
JP
Japan
Prior art keywords
vacuum
chambers
chamber
differential pressure
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009151062A
Other languages
Japanese (ja)
Other versions
JP2011006737A (en
Inventor
日出美 石田
岡田  卓也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2009151062A priority Critical patent/JP5325031B2/en
Publication of JP2011006737A publication Critical patent/JP2011006737A/en
Application granted granted Critical
Publication of JP5325031B2 publication Critical patent/JP5325031B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、真空成膜装置及び真空成膜方法に関する。   The present invention relates to a vacuum film forming apparatus and a vacuum film forming method.

従来、可撓性帯状シート基材の表面に、連続的に、薄膜太陽電池、有機EL等の機能性膜を積層状に形成する方法として、いわゆるロール・ツウ・ロール(Roll to Roll)方式が提案されている(例えば、特許文献1,2,3参照)。   Conventionally, a so-called roll-to-roll method has been used as a method for continuously forming a functional film such as a thin-film solar cell or organic EL on the surface of a flexible belt-like sheet substrate. It has been proposed (see, for example, Patent Documents 1, 2, and 3).

国際公開WO2006/088024号International Publication No. WO2006 / 088024 特開2009−30754号公報JP 2009-30754 A 特開平8−325732号公報Japanese Patent Laid-Open No. 8-325732

しかしながら、特許文献1,では蒸着等の成膜のための一工程のみを行うに過ぎず、相違する雰囲気や真空度の複数のチャンバ内で、複数の工程を、順次、連続走行させつつ行うことは至難であった。
即ち、チャンバとチャンバの間には、単純にスリットが開口されている構成であるので、隣のチャンバからの雰囲気が混入したり、十分な真空度を達成できず、良質の機能性膜の形成が困難であった。
However, in Patent Documents 1 and 3 , only one process for film formation such as vapor deposition is performed, and a plurality of processes are performed sequentially and continuously in a plurality of chambers having different atmospheres and degrees of vacuum. It was very difficult.
In other words, since the slit is simply opened between the chambers, the atmosphere from the adjacent chamber is mixed in, and a sufficient degree of vacuum cannot be achieved. It was difficult.

そこで、弾性筒体から成るゲートバルブを、各チャンバの入口・出口に夫々設け、複数のチャンバ内を帯状シート基材が走行して、相違する雰囲気・真空度の工程を相互の干渉なく行う方法が提案されている(特許文献2参照)。
しかしながら、薄膜太陽電池や有機ELやフレキシブルデバイスには、接触が許されないから、直接に押圧してシールするゲートバルブは適用が難しい。あるいは、ゲートバルブの弾性筒体が接触する余分な部位を、シート基材に予め設ける必要があり、無駄が発生する。さらに、比較的複雑な構造のゲートバルブとアクチュエータを多く必要とする。
Therefore, a method is provided in which gate valves made of elastic cylinders are respectively provided at the inlet and outlet of each chamber, and the belt-like sheet base material travels in a plurality of chambers to perform different atmosphere / vacuum steps without mutual interference. Has been proposed (see Patent Document 2).
However, since contact is not allowed for thin-film solar cells, organic EL, and flexible devices, it is difficult to apply a gate valve that directly presses and seals. Alternatively, it is necessary to previously provide an extra portion in contact with the elastic cylinder of the gate valve on the seat base material, resulting in waste. Furthermore, many gate valves and actuators having a relatively complicated structure are required.

そこで、本発明は、真空度が相違する複数のチャンバ、及び雰囲気が相違する複数のチャンバを備え、連続的に供給される可撓性帯状シート基材を上記複数のチャンバを貫通走行させて上記シート基材に膜を成形する真空成膜装置であって、隣り合うチャンバ間を、排気機能を有する差圧ユニットを介して連通連結し、該差圧ユニットは、排気減圧される真空室を内部に有する金属製のブロック体と、上記真空室を貫通する平面スリット状パスラインと、該パスラインを通過する上記シート基材を吸着しつつ接触する多孔ローラと、上記シート基材を上記多孔ローラの反対側から部分的に押圧して挟持する押圧ローラと、を備え上記スリット状パスラインは、通過する上記シート基材と接触しない限度内で最小間隔寸法に設定され、隣り合う上記チャンバ間に於て、最小間隔寸法の上記スリット状パスラインと、大きな空間を有する上記真空室とを、交互に配設し、ラビリンス溝効果によって、雰囲気の相違する上記チャンバを相互に遮断し、かつ、真空度の相違する上記チャンバ間の圧力を少しずつ段階的に変化させて真空度を維持するように構成されたものである。
また、真空度が相違する複数のチャンバ、及び、雰囲気が相違する複数のチャンバを備え、連続的に供給される可撓性帯状シート基材を上記複数のチャンバを貫通走行させて上記シート基材に膜を成形する真空成膜装置であって、隣り合うチャンバ間を、排気機能を有する差圧ユニットを介して連通連結し、該差圧ユニットは、排気減圧される真空室を内部に有する金属製のブロック体と、上記真空室を貫通する平面スリット状パスラインと、を備え、該スリット状パスラインは、通過する上記シート基材と接触しない限度内で最小間隔寸法に設定され、隣り合う上記チャンバ間に於て、最小間隔寸法の上記スリット状パスラインと、大きな空間を有する上記真空室とを、交互に配設し、ラビリンス溝効果によって、雰囲気の相違する上記チャンバを相互に遮断し、かつ、真空度の相違する上記チャンバ間の圧力を少しずつ段階的に変化させて真空度を維持するように構成されたものである。
また、上記差圧ユニットの上記排気機能によって、上記チャンバ内で発生する不純物及び異物を排出除去するように構成されたものである。
Accordingly, the present invention includes a plurality of chambers which vacuum is different, and comprises a plurality of chambers atmosphere different, with a flexible belt-like sheet substrate which is continuously fed to penetrate running the plurality of chambers a vacuum deposition apparatus for forming a film on the sheet substrate, between adjacent chambers, communicatively connected via a differential pressure unit having an exhaust function, the differential pressure unit, the vacuum chamber is evacuated under reduced pressure An internal metal block body, a plane slit-like pass line that penetrates the vacuum chamber, a porous roller that contacts the sheet base material passing through the pass line while adsorbing, and the sheet base material through the porous body and a pressing roller for clamping partially pressed from the opposite side of the rollers, the slit-like path line is set to the minimum spacing dimension within limits not in contact with the sheet base material passing, next Between the chambers, the slit-like pass lines having a minimum space dimension and the vacuum chamber having a large space are alternately arranged, and the chambers having different atmospheres are blocked from each other by the labyrinth groove effect. In addition, the degree of vacuum is maintained by gradually changing the pressure between the chambers having different degrees of vacuum.
Further, the sheet base material includes a plurality of chambers having different degrees of vacuum and a plurality of chambers having different atmospheres, and a flexible belt-like sheet base material that is continuously supplied is caused to travel through the plurality of chambers. A vacuum film forming apparatus for forming a film on a metal, wherein adjacent chambers are connected to each other via a differential pressure unit having an exhaust function, and the differential pressure unit is a metal having a vacuum chamber in which exhaust pressure is reduced. A block-shaped block body and a plane slit-like pass line that passes through the vacuum chamber, and the slit-like pass line is set to a minimum interval dimension within a limit that does not come into contact with the sheet substrate that passes therethrough, and is adjacent to each other. Between the chambers, the slit-like pass lines having a minimum interval dimension and the vacuum chamber having a large space are alternately arranged, and the above-described channels having different atmospheres due to the labyrinth groove effect. Nba blocked to each other, and in which is configured to maintain the degree of vacuum in portions gradually changing the pressure between the chambers having different vacuum level.
Further, the exhaust function of the differential pressure unit is configured to discharge and remove impurities and foreign matters generated in the chamber.

そして、本発明に係る真空成膜方法は、排気機能を有する差圧ユニットを介在させて、真空度が相違する複数のチャンバ、及び雰囲気が相違する複数のチャンバを順次連通連結し、可撓性帯状シート基材を、上記チャンバ及び排気中の上記差圧ユニットを貫通して連続的に走行させ、隣り合う上記チャンバ間の上記差圧ユニットに於て、上記シート基材を、該シート基材と接触しない限度内で最小間隔寸法に設定されたスリット状パスラインと、該パスラインと比較して大きな空間を形成する真空室とに、交互に通過させて、ラビリンス溝効果によって、雰囲気の相違する上記チャンバを相互に遮断し、かつ、真空度の相違する上記チャンバ間の圧力を少しずつ段階的に変化させて真空度を維持し、上記シート基材に膜を成形する方法である。 Then, the vacuum deposition method of the present invention, by interposing the differential pressure unit having an exhaust function, a plurality of chambers which vacuum is different, and successively communicatively connected to a plurality of chambers atmosphere different, flexible The strip-shaped sheet base material is continuously run through the chamber and the differential pressure unit in the exhaust, and in the differential pressure unit between the adjacent chambers, the sheet base material is Passing alternately through a slit-like pass line that is set to the minimum distance within the limit that does not contact the material and a vacuum chamber that forms a larger space than the pass line, the labyrinth groove effect causes the atmosphere to pass blocking the differences to the chamber to each other, and, by small portions stepwise change the pressure between the chambers having different vacuum to maintain the vacuum, der method of forming a film on the sheet substrate .

本発明の真空成膜装置によれば、隣り合うチャンバの雰囲気を十分に遮断し、又は、隣り合うチャンバの真空度を各々最適値に維持しつつ連続的に可撓性帯状シート基材を貫通走行させることができる。このようにして、能率的に高い品質(高純度)の機能性膜を積層形成できる。
特に、各チャンバの雰囲気を差圧ユニットにて仕切ることで、隣り合うチャンバの雰囲気の混入を防ぎ、あるいは、チャンバの加工中に生ずる異物が隣のチャンバへ混入することを防ぐことができる。
According to the vacuum film-forming apparatus of the present invention, the atmosphere of adjacent chambers is sufficiently blocked, or the flexible strip-shaped sheet base material is continuously penetrated while maintaining the vacuum degree of adjacent chambers at an optimum value. It can be run. In this way, functional films of high quality (high purity) can be efficiently laminated.
In particular, by dividing the atmosphere in each chamber by the differential pressure unit, it is possible to prevent the atmosphere in the adjacent chambers from being mixed, or to prevent foreign substances generated during the processing of the chamber from entering the adjacent chambers.

本発明の実施の一形態を示す全体構成説明図である。1 is an overall configuration explanatory view showing an embodiment of the present invention. 他の実施の形態を示す全体構成説明図である。It is whole structure explanatory drawing which shows other embodiment. 別の実施の形態を示す全体構成説明図である。It is whole structure explanatory drawing which shows another embodiment. 変形例を示す要部説明図である。It is principal part explanatory drawing which shows a modification. 変形例を示す要部説明図である。It is principal part explanatory drawing which shows a modification. 要部の具体的構成図である。It is a specific block diagram of the principal part. 差圧ユニットの一例を示す断面図である。It is sectional drawing which shows an example of a differential pressure unit. 要部の構成説明図である。It is structure explanatory drawing of the principal part. 多孔ローラとその近傍の部品を例示した斜視図である。It is the perspective view which illustrated the perforated roller and components near it. 差圧ユニットの一例を示す一部分解状態の斜視図である。It is a perspective view of the partial decomposition state which shows an example of a differential pressure unit. 要部の寸法関係説明図である。It is a dimensional relationship explanatory drawing of the principal part. 要部の断面図である。It is sectional drawing of the principal part. 要部の変形例の断面図である。It is sectional drawing of the modification of the principal part. 差圧ユニットの他の例を示す断面図である。It is sectional drawing which shows the other example of a differential pressure unit. 差圧ユニットの別の例を示す断面図である。It is sectional drawing which shows another example of a differential pressure unit. 差圧ユニットのさらに別の例を示す断面図である。It is sectional drawing which shows another example of a differential pressure unit.

以下、図示の実施の形態に基づき本発明を詳説する。
図1又は図2に於て、真空度と雰囲気が相違した、又は、いずれか一方が相違した複数のチャンバC1 ,C2 ,C3 ,C4 ,C5 ,C6 (以下単にチャンバCという場合がある)を備え、さらに、相隣り合うチャンバC,C間を、排気機能を有する差圧ユニットU1 ,U2 ,U3 ,U4 ,U5 (以下単に差圧ユニットUという場合がある)を介して連通連結し、可撓性帯状シート基材1を、送り出し用チャンバC1 から図4に示すように送り出して、差圧ユニットU1 、チャンバC2 、差圧ユニットU2 、チャンバC3 、差圧ユニットU3 、チャンバC4 、差圧ユニットU4 、チャンバC5 、差圧ユニットU5 と順次貫通して連続的に走行させ、シート基材1に機能性膜を形成し、図5に示すように成膜品収納チャンバC6 に送ってロール8に巻取り(図5(a)参照)、若しくは、折畳み(同図(b))、又は、切断しつつ収容器に収容する(同図(c))。
Hereinafter, the present invention will be described in detail based on the illustrated embodiment.
In FIG. 1 or FIG. 2, a plurality of chambers C 1 , C 2 , C 3 , C 4 , C 5 , C 6 (hereinafter simply referred to as chamber C) having different degrees of vacuum and atmosphere or different one of them. In addition, there are differential pressure units U 1 , U 2 , U 3 , U 4 , U 5 (hereinafter simply referred to as differential pressure unit U) having an exhaust function between adjacent chambers C, C. And the flexible belt-like sheet base material 1 is sent out from the delivery chamber C 1 as shown in FIG. 4 to obtain a differential pressure unit U 1 , a chamber C 2 , and a differential pressure unit U 2. , The chamber C 3 , the differential pressure unit U 3 , the chamber C 4 , the differential pressure unit U 4 , the chamber C 5 , and the differential pressure unit U 5 are sequentially passed through to make a functional film on the sheet substrate 1. formed, the roll 8 is sent to the film formation equipment container chamber C 6 as shown in FIG. 5 Taken (see FIG. 5 (a)), or folding (FIG. (B)), or housed in container with cut (FIG. (C)).

図4(a)に於て、第1チャンバC1 はロール6に巻設された可撓性帯状シート基材1を繰出す送り出し用チャンバである。図4(b)に於て、第1チャンバC1 は折畳み状態に収容されたシート基材1を繰出す送り出し用チャンバである。図4(c)に於て、第1チャンバC1 は、プラスチック押出成形機7を収容して、この押出成形機7からシート基材1を繰出す送り出し用チャンバである。 In FIG. 4A, the first chamber C 1 is a delivery chamber for feeding out the flexible belt-like sheet base material 1 wound around the roll 6. Figure 4 Te at (b), the first chamber C 1 is a chamber for feeding the paid out a sheet substrate 1, which is accommodated in the folded state. In FIG. 4C, the first chamber C 1 is a delivery chamber that houses the plastic extruder 7 and feeds the sheet substrate 1 from the extruder 7.

シート基材1は、第1差圧ユニットU1 を通過して、第2チャンバC2 へ送られるが、図1に示した第2チャンバC2 は、DRY式洗浄機を内有し、10〜 100Paの真空に保たれた洗浄用チャンバである。その場合には、送り出し用チャンバC1 は真空に保つのが望ましい。
また、図2に示した第2チャンバC2 は、WET式洗浄機を内有し、大気圧であるので、送り出し用チャンバC1 も大気圧のままとする。
Sheet base material 1 passes through the first differential pressure unit U 1, but fed to the second chamber C 2, a second chamber C 2 of FIG. 1 has inner and DRY washer, 10 A cleaning chamber maintained at a vacuum of ~ 100 Pa. In that case, it is desirable to keep the delivery chamber C 1 in a vacuum.
Further, since the second chamber C 2 shown in FIG. 2 has a WET cleaning machine and is at atmospheric pressure, the delivery chamber C 1 is also kept at atmospheric pressure.

図1,図2に於て、第3チャンバC3 は、水分除去を行うための乾燥機を内有して、真空度が例えば 100Paとした乾燥チャンバであり、第2差圧ユニットU2 にて洗浄用チャンバC2 と連結されている。
第4チャンバC4 は、成膜機を内有し、10-2〜10-3Paの高真空に保った成膜チャンバである。Ar,O2 ,N2 を含む高真空雰囲気にて、シート基材1の表面に、蒸着、スパッタリング、化学気相法等の方法により、(図11に示すように)成膜部2を形成する。
第5チャンバC5 は、レーザー機を内有したパターニングチャンバであり、大気圧とする。
1, At a 2, third chamber C 3 is a inner dryer for performing water removal, a dry chamber and the degree of vacuum example 100 Pa, the second differential pressure unit U 2 Are connected to the cleaning chamber C 2 .
The fourth chamber C 4 is a film forming chamber having a film forming machine and maintained at a high vacuum of 10 −2 to 10 −3 Pa. In a high vacuum atmosphere containing Ar, O 2 , and N 2 , the film forming portion 2 is formed on the surface of the sheet base material 1 by a method such as vapor deposition, sputtering, or chemical vapor deposition (as shown in FIG. 11). To do.
The fifth chamber C 5 is a patterning chamber having a laser machine and is set to atmospheric pressure.

次に、図4に於ては、例えば有機EL封止膜成形方法の主要な工程を示し、ITO膜成形チャンバC41とAl23膜成形チャンバC42とSiO2 膜成形チャンバC43が順に並設され、差圧ユニットU10,U11にて連通連結され、帯状シート基材1は、差圧ユニットU3 ,ITO膜成形チャンバC41,差圧ユニットU10,Al23膜成形チャンバC42,差圧ユニットU11,SiO2 膜成形チャンバC43,差圧ユニットU4 と順次貫通状に送られ、帯状シート基材1の表面にスパッタリングによって複数の膜を形成する。 Next, FIG. 4 shows, for example, main steps of the organic EL sealing film forming method, and an ITO film forming chamber C 41 , an Al 2 O 3 film forming chamber C 42 and a SiO 2 film forming chamber C 43 are provided. turn is arranged, it is communicatively connected at a differential pressure unit U 10, U 11, the belt-like sheet substrate 1, the differential pressure unit U 3, ITO film forming chamber C 41, differential pressure unit U 10, Al 2 O 3 film The forming chamber C 42 , the differential pressure unit U 11 , the SiO 2 film forming chamber C 43 , and the differential pressure unit U 4 are sequentially sent in a penetrating manner, and a plurality of films are formed on the surface of the belt-like sheet substrate 1 by sputtering.

ところで、各チャンバC41,C42,C43の真空度及び雰囲気(但し、チャンバ内のガス流量の値を含んで雰囲気と呼ぶこととする)は、次のように相違している。(なお、ガス流量は、1atm 、0℃に於ける数値で表す。)
(i)ITO膜成形チャンバC41
真空度 0.2Pa
ガス比 Ar:O2 =2:1
2 ガス流量 (1〜2)×10-2 cc/sec
(ii)Al23 膜成形チャンバC42
真空度 0.5Pa
ガス比 Ar:O2 =2:1
2 ガス流量 (1〜3)×10-1 cc/sec
(iii)SiO2 膜成形チャンバ膜成形チャンバC43
真空度 0.3Pa
ガス比 Ar:O2 =2:1
2 ガス流量 (4〜5)×10-1 cc/sec
By the way, the degree of vacuum and atmosphere of each chamber C 41 , C 42 , C 43 (however, including the value of the gas flow rate in the chamber are referred to as atmosphere) are different as follows. (The gas flow rate is expressed by numerical values at 1 atm and 0 ° C.)
(I) ITO film forming chamber C 41
Degree of vacuum 0.2Pa
Gas ratio Ar: O 2 = 2: 1
O 2 gas flow rate (1-2) × 10 -2 cc / sec
(Ii) Al 2 O 3 film forming chamber C 42
Degree of vacuum 0.5Pa
Gas ratio Ar: O 2 = 2: 1
O 2 gas flow rate (1-3) × 10 -1 cc / sec
(iii) SiO 2 film forming chamber Film forming chamber C 43
Degree of vacuum 0.3 Pa
Gas ratio Ar: O 2 = 2: 1
O 2 gas flow rate (4-5) × 10 -1 cc / sec

ところで、差圧ユニットUは、上述の如く、雰囲気が相違したチャンバC,Cを連通連結した場合に、相互に影響しないように遮断し、さらに、真空度が相違した隣り合うチャンバC,C間の圧力を少しずつ段階的に変化させつつ両チャンバC,C間を連通連結して、各チャンバC,C間の圧力を常時安定して規定真空度に維持させる。しかも、差圧ユニットUは、排気機能を具備しており、チャンバC内で発生する不純物や異物を排出除去させる作用も行う。例えば、図1,図2の第5差圧ユニットU5 は、レーザー機によるパターニング加工中に生成される不純物の混じったガスを排出除去する。
上述の図1,図2に於ける高真空の第4のチャンバC4 、及び、その上流・下流側の第3チャンバC3 ,第5チャンバC5 と、差圧ユニットU3 , U4 の具体的構成及び構造を、図6と図8に例示する。また、差圧ユニットU(U3 ,U4 )の一例を図7と図9〜図13に示す。
By the way, as described above, the differential pressure unit U shuts off the chambers C and C having different atmospheres so as not to affect each other, and further, between the adjacent chambers C and C having different degrees of vacuum. The chambers C and C are connected to each other while the pressure of the chambers C is gradually changed step by step so that the pressure between the chambers C and C is constantly maintained at a specified vacuum level. In addition, the differential pressure unit U has an exhaust function, and also performs an action of discharging and removing impurities and foreign matters generated in the chamber C. For example, the fifth differential pressure unit U 5 shown in FIGS. 1 and 2 discharges and removes a gas containing impurities generated during patterning by a laser machine.
The high vacuum fourth chamber C 4 in FIG. 1 and FIG. 2 described above, the third chamber C 3 and the fifth chamber C 5 upstream and downstream thereof, and the differential pressure units U 3 and U 4 . Specific configurations and structures are illustrated in FIGS. 6 and 8. An example of the differential pressure unit U (U 3 , U 4 ) is shown in FIGS. 7 and 9 to 13.

成膜チャンバC4 は10-2〜10-3Paと高真空であって、隣のチャンバC3 ,C5 との圧力差が大きい。そこで、図6に示したように、差圧ユニットU3 を複数個直列に連結して減圧ユニット群4を構成して高真空のチャンバC4 の入口側に設け、他方、出口側には、差圧ユニットU4 を複数個直列に連結して圧力復元ユニット群5を構成して、接続する。
チャンバC(C4 )の入口側には入口フランジ3aが突設され、出口側には出口フランジ3bが突設されている(図6参照)。差圧ユニットU(U3 ,U4 )は、金属製のブロック体11と、このブロック体11から突設された接続フランジ14,14と、を一体に有し、さらに、ブロック体11の内部には、排気孔13にて外部に連通する2個の排気減圧用真空室10,10と、排気孔13´にて外部に連通する3個の駆動ローラ空室16,16,16と、全ての真空室10,10及び空室16,16,16を貫通し、かつ、接続フランジ14,14をも貫通して、平面スリット状パスライン12が、形成されている。
The film forming chamber C 4 is a high vacuum of 10 −2 to 10 −3 Pa, and the pressure difference between the adjacent chambers C 3 and C 5 is large. Therefore, as shown in FIG. 6, a plurality of differential pressure units U 3 are connected in series to form a decompression unit group 4 which is provided on the inlet side of the high vacuum chamber C 4 , while on the outlet side, A plurality of differential pressure units U 4 are connected in series to constitute a pressure restoring unit group 5 and connected.
An inlet flange 3a projects from the inlet side of the chamber C (C 4 ), and an outlet flange 3b projects from the outlet side (see FIG. 6). The differential pressure unit U (U 3 , U 4 ) integrally includes a metal block body 11 and connection flanges 14, 14 projecting from the block body 11. The two exhaust vacuum chambers 10 and 10 communicating with the outside through the exhaust hole 13 and the three drive roller cavities 16, 16 and 16 communicating with the outside through the exhaust hole 13 ′ are all included. The planar slit-like pass line 12 is formed through the vacuum chambers 10 and 10 and the vacant chambers 16, 16 and 16 and also through the connection flanges 14 and 14.

真空室10は側面視断面形状が長円形であって、多孔ローラ20と押圧ローラ22が収納されている。押圧ローラ22は、走行する帯状シート基材1を介して多孔ローラ20へ押圧する作用をなす。駆動ローラ空室16は、側面視断面形状が長円形であって、外部から駆動されて回転する駆動ローラ23,24を有する。
ブロック体11は、SUS材一体加工も可能であるが、鍛造金属(鋳鉄)を用いてもよい。内面には、Niメッキ等を施して、安価な鋳鉄でもって真空性能を維持させるのが好ましい。前記排気孔13,13´は、ブロック体11の内部の真空室10,駆動ローラ空室16と、外部とを連通して外部の排気手段によって排気して、内部を真空とし、あるいは、不純物・異物の排出を行う。
The vacuum chamber 10 has an oval cross-sectional shape when viewed from the side, and houses the porous roller 20 and the pressing roller 22. The pressing roller 22 acts to press the porous roller 20 through the traveling belt-like sheet base material 1. The drive roller vacant chamber 16 has an oval cross-sectional shape when viewed from the side, and has drive rollers 23 and 24 that are driven from the outside to rotate.
The block body 11 can be integrated with SUS material, but forged metal (cast iron) may be used. The inner surface is preferably subjected to Ni plating or the like to maintain vacuum performance with inexpensive cast iron. The exhaust holes 13 and 13 'communicate with the vacuum chamber 10 and the drive roller vacant chamber 16 inside the block body 11 and the outside to exhaust the air by an external exhaust means, and the inside is evacuated. Foreign matter is discharged.

スリット状パスライン12は、ブロック体11内を貫通して同一平面状に形成されている。スリット状パスライン12は、通過するシート基材1と接触しない限度内でコンダクタンスCx が極小となるように最小寸法間隔に設定されている。図11に示すように、最小寸法間隔は、パスライン12の間隔寸法(高さ寸法)H12と使用するシート基材の厚さ寸法H1 の差を1mm〜4mm程度に設定し、スリット状パスライン12の横幅寸法W12と使用するシート基材の幅W1 の差を2mm〜8mm程度に設定したものである。
パスライン12の間隔寸法(高さ寸法)H12と使用するシート基材の厚さ寸法H1 の差を1mmより小さく設定し、スリット状パスライン12の横幅寸法W12と使用するシート基材の幅W1 の差を2mmより小さく設定した場合は、スリット状パスライン12を通過するシート基材1がブロック体11に接触する虞がある。
The slit-like pass line 12 penetrates the block body 11 and is formed in the same plane. The slit-like pass line 12 is set to a minimum dimension interval so that the conductance Cx is minimized within a limit where it does not come into contact with the passing sheet base material 1. As shown in FIG. 11, the minimum dimension interval is set to a slit-like shape by setting the difference between the interval dimension (height dimension) H12 of the pass line 12 and the thickness dimension H1 of the sheet base material to be used to about 1 mm to 4 mm. the difference between the width W 1 of the sheet substrate used as the width dimension W 12 of the pass line 12 is obtained by setting the order of 2 mm to 8 mm.
The thickness difference between the dimension H 1 of the sheet substrate used as the spacing dimension (height) H 12 pass line 12 is set smaller than 1 mm, the sheet substrate used as the width dimension W 12 of the slit-shaped pass line 12 When the difference in width W 1 is set to be smaller than 2 mm, the sheet base material 1 passing through the slit-like pass line 12 may come into contact with the block body 11.

また、パスライン12の間隔寸法(高さ寸法)H12と使用するシート基材の厚さ寸法H1 の差を4mmより大きく設定すると、十分な圧力勾配が得られず、最終的に真空チャンバ3の高真空状態を達成困難となる。
なお、コンダクタンスCx とは、パスライン12の気体の通り抜けやすさを示す係数であり、気体の流量Q、パスライン12両端の圧力差ΔPとすると、Cx =Q/ΔPで表される。
Further, the spacing dimension (height dimension) of the pass line 12 and the thickness difference of the dimension H 1 of the sheet substrate used as H 12 is set to be larger than 4 mm, a sufficient pressure gradient is obtained, and finally vacuum chamber 3 is difficult to achieve.
The conductance Cx is a coefficient indicating the ease of passage of gas through the pass line 12, and is expressed by Cx = Q / ΔP, where the gas flow rate Q and the pressure difference ΔP at both ends of the pass line 12 are used.

図9は、多孔ローラ20を示す斜視図である。
多孔ローラ20は、(枢支孔を有する)取付フランジ26,27を介してブロック体11の蓋板17,17(図10参照)に取外し自在に取着されている。多孔ローラ20は、長円筒状に形成され、空洞中心部から外周面部に連通する多数の小孔21を有している。空洞中心部は、ロータリー継手28に外部から付与された負圧により排気され減圧している。多孔ローラ20は、ドリル等で穿孔して小孔21をラジアル方向に多数形成しても良いが、焼結金属等の連通気孔を有する材料を用いて製作するのが好ましい。
FIG. 9 is a perspective view showing the perforated roller 20.
The perforated roller 20 is detachably attached to the cover plates 17 and 17 (see FIG. 10) of the block body 11 via mounting flanges 26 and 27 (having pivot holes). The perforated roller 20 is formed in a long cylindrical shape, and has a large number of small holes 21 communicating from the center of the cavity to the outer peripheral surface. The hollow central portion is evacuated and decompressed by a negative pressure applied to the rotary joint 28 from the outside. The perforated roller 20 may be drilled with a drill or the like to form a large number of small holes 21 in the radial direction, but is preferably manufactured using a material having continuous air holes such as sintered metal.

図12は、要部断面であって、押圧ローラ22は、長円筒状に形成され、両端縁にシート基材1に接触して押圧する両端側円環部22aと、胴部にシート基材1と接触しない非接触外周面部22bと、を有している。
図7に示す駆動ローラ23,24は、円柱状又は長円筒状に形成されている。図12に示した押圧ローラ22の外周面形状と同様に、一方の駆動ローラ24は両端縁にシート基材1に接触して押圧する両端側円環ガイド部と、胴部にシート基材1と接触しない非接触胴部と、を有している。
FIG. 12 is a cross-sectional view of the main part, in which the pressing roller 22 is formed in a long cylindrical shape, both end side annular portions 22a that press against the sheet base material 1 at both end edges, and the sheet base material at the body part. 1 and a non-contact outer peripheral surface portion 22b that does not come into contact with 1.
The drive rollers 23 and 24 shown in FIG. 7 are formed in a columnar shape or a long cylindrical shape. Similarly to the outer peripheral surface shape of the pressing roller 22 shown in FIG. 12, one drive roller 24 has an annular guide portion at both ends contacting and pressing the sheet substrate 1 at both ends, and a sheet substrate 1 at the body. A non-contact body portion that does not come into contact with.

図7と図10に示すように、同一平面状のスリット状パスライン12がブロック体11に、入口から出口にわたって貫設され、また、入口側と出口側の接続フランジ14,14の形状と寸法は、前記入口フランジ3a,出口フランジ3bと同一に形成するのが好ましい。このようにすれば、図6に示すように、チャンバCに対して、差圧ユニットUを(図示省略のボルト・ナット結合等によって)容易に接続可能であり、かつ、使用条件(真空度や雰囲気等)に対応して、差圧ユニットUの増減も、容易である。
図7に示した排気孔13,13´、及び、(図外の)真空ポンプ及び配管等によって、排気機能が構成され、各差圧ユニットUは排気機能を備えているといえる。
As shown in FIGS. 7 and 10, a slit-like pass line 12 having the same plane is provided through the block body 11 from the inlet to the outlet, and the shapes and dimensions of the connecting flanges 14 and 14 on the inlet side and the outlet side. Is preferably formed in the same manner as the inlet flange 3a and the outlet flange 3b. In this way, as shown in FIG. 6, the differential pressure unit U can be easily connected to the chamber C (by bolt / nut coupling not shown) and the use conditions (degree of vacuum and Corresponding to the atmosphere, etc.), the differential pressure unit U can be easily increased or decreased.
It can be said that the exhaust function is constituted by the exhaust holes 13 and 13 'shown in FIG. 7, the vacuum pump (not shown) and the piping, etc., and each differential pressure unit U has the exhaust function.

次に、図8に例示するように、高真空の成膜チャンバC4 を中心として、その上流側・下流側に、夫々、比較的に小さな真空度のチャンバC3 ,C5 が配設されている場合には、真空室10を上流側に6個、下流側に6個を、成膜チャンバC4 を中心として配設して、圧力勾配を小さくするのが望ましい。
つまり、減圧ユニット群4では、乾燥チャンバC3 の圧力P0 (例えば 100Pa)から複数段階的に高真空P7 へ順次減圧するように、圧力P1 の第1真空室、圧力P2 の第2真空室、圧力P3 の第3真空室〜圧力P6 の第6真空室が列設されている。このように、各真空室10の圧力P1 〜P6 、及び、成膜チャンバC4 の圧力P7 との間に、P0 >P1 >P2 >P3 >P4 >P5 >P6 >Pの関係式が成り立つ。
Next, as illustrated in FIG. 8, chambers C 3 and C 5 having a relatively small degree of vacuum are disposed on the upstream side and the downstream side of the high vacuum film forming chamber C 4 , respectively. In this case, it is desirable to arrange six vacuum chambers 10 on the upstream side and six on the downstream side around the film forming chamber C 4 to reduce the pressure gradient.
That is, in the decompression unit group 4, the first vacuum chamber at the pressure P 1 and the first pressure at the pressure P 2 are sequentially decompressed from the pressure P 0 (for example, 100 Pa) in the drying chamber C 3 to the high vacuum P 7 in a plurality of stages. Two vacuum chambers, a third vacuum chamber having a pressure P 3 to a sixth vacuum chamber having a pressure P 6 are arranged in a line. Thus, P 0 > P 1 > P 2 > P 3 > P 4 > P 5 > between the pressures P 1 to P 6 of each vacuum chamber 10 and the pressure P 7 of the film forming chamber C 4. The relational expression of P 6 > P is established.

圧力復元ユニット群5に於ては、上流側の高真空P7 からパターニングチャンバC5 の圧力P0 ´へ、順次複数段的に圧力が上昇(復元)するように、圧力P6 ´の第7真空室10〜圧力P1 ´の第12真空室10が配設され、大気圧P0 ´のパターニングチャンバC5 へ復元する。 In the pressure restoration unit group 5, the pressure P 6 ′ is increased so that the pressure rises (restores) sequentially in a plurality of stages from the upstream high vacuum P 7 to the pressure P 0 ′ of the patterning chamber C 5 . 7 A vacuum chamber 10 to a twelfth vacuum chamber 10 having a pressure P 1 ′ is disposed and restored to the patterning chamber C 5 having an atmospheric pressure P 0 ′.

なお、図8に於て、成膜チャンバC4 を中心として、その上流側と下流側の真空室10の個数を6個ずつとしたが、これを相違させて配設する場合もあり、さらに、上流側・下流
側の各個数を、増減するも自由である。そして、図1,図2あるいは図3に於て、隣り合うチャンバC,Cの真空度の差が小さい場合やほとんど圧力差が無い場合には、両チャンバC,C間に介在させる真空室10の個数を減少させる。即ち、差圧ユニットUの個数を減少させる。
In FIG. 8, the number of the vacuum chambers 10 on the upstream side and the downstream side of the film forming chamber C 4 is six, but there may be a case where they are arranged differently. You can freely increase or decrease the number of upstream and downstream. In FIG. 1, FIG. 2 or FIG. 3, when the difference in the degree of vacuum between the adjacent chambers C and C is small or there is almost no pressure difference, the vacuum chamber 10 interposed between the chambers C and C is used. Reduce the number of. That is, the number of differential pressure units U is reduced.

さらに、隣り合うチャンバC,Cの雰囲気が余り相違しない場合や、不純物・異物を排出する必要性が低い場合にも、両チャンバC,C間に介在させる差圧ユニットUの個数(真空室10の個数)を減少させ、逆に、隣り合うチャンバC,Cの雰囲気が大幅に相違したり、不純物・異物を排出する必要性があるチャンバCに連通している場合には、両チャンバC,C間に介在させる差圧ユニットUの個数(真空室10の個数)を増加させる。
なお、送り出しチャンバC1 から成膜品収納チャンバC6 の間で、圧力差も無く、雰囲気にも差がなく、不純物・異物を排出する必要性が無ければ、図1,図2等に於けるチャンバCの1個〜2個を省略することも、可能な場合がある。
Further, even when the atmospheres of the adjacent chambers C and C are not so different or when the necessity of discharging impurities / foreign matter is low, the number of differential pressure units U interposed between the chambers C and C (vacuum chamber 10 Conversely, if the atmospheres of the adjacent chambers C and C are significantly different or communicate with the chamber C that needs to discharge impurities / foreign matter, both chambers C and C The number of differential pressure units U interposed between C (the number of vacuum chambers 10) is increased.
If there is no pressure difference, no difference in atmosphere, and no need to discharge impurities / foreign matter between the delivery chamber C 1 and the film-formation product storage chamber C 6 , FIG. It may be possible to omit one to two chambers C.

次に、図13は、図12に代わる他の具体例であって、押圧ローラ22が、両側の接触円環部22a,22a及び中央接触円環部22cを有するように構成し、2個の非接触外周面部22b,22bを凹設しても良いことを示す。つまり、成膜部2,2が2列状に形成されるような場合に、その間の帯状部位を中央接触円環部22cにて(追加的に)押圧保持させる。   Next, FIG. 13 shows another specific example in place of FIG. 12. The pressing roller 22 is configured to have contact ring portions 22a, 22a and a center contact ring portion 22c on both sides, and two pieces are provided. The non-contact outer peripheral surface portions 22b and 22b may be recessed. That is, in the case where the film forming portions 2 and 2 are formed in two rows, the belt-shaped portion between them is (additionally) pressed and held by the central contact ring portion 22c.

図14,図15,図16は、図7に代わる各々別の実施の形態を示す。即ち、図14に示した差圧ユニットUは、1個の多孔ローラ20と1個の押圧ローラ22のみが、ブロック体11の内部に設けられている。図7に示した駆動ローラ23,24を省略し、ブロック体11には、1個の真空室10のみが形成される。
図15に示す差圧ユニットUは、1個の駆動ローラ空室16、及び、1個の真空室10のみが形成され、一対の駆動ローラ23,24、及び、一対の多孔ローラ20・押圧ローラ22が、内有されている。図16では、中央の1個の真空室10と、その上流・下流側の2個の駆動ローラ空室16,16が形成され、一対の多孔ローラ20・押圧ローラ22、及び、2対の駆動ローラ23,24が、内有されている。
この図14,図15,図16に示すようなコンパクトで簡易な差圧ユニットUとすることで、隣り合うチャンバC,Cの圧力差が小さい場合や雰囲気に差異がない場合、さらに、不純物・異物を除去する必要性が低い場合に、好適である。
14, FIG. 15 and FIG. 16 show different embodiments instead of FIG. That is, in the differential pressure unit U shown in FIG. 14, only one perforated roller 20 and one pressing roller 22 are provided inside the block body 11. The drive rollers 23 and 24 shown in FIG. 7 are omitted, and only one vacuum chamber 10 is formed in the block body 11.
The differential pressure unit U shown in FIG. 15 includes only one drive roller empty chamber 16 and one vacuum chamber 10, and includes a pair of drive rollers 23 and 24 and a pair of perforated rollers 20 and a pressure roller. 22 are included. In FIG. 16, one central vacuum chamber 10 and two upstream and downstream drive roller cavities 16 and 16 are formed, a pair of perforated rollers 20, a pressure roller 22, and two pairs of drives. Rollers 23 and 24 are included.
By using a compact and simple differential pressure unit U as shown in FIGS. 14, 15, and 16, when the pressure difference between adjacent chambers C and C is small or there is no difference in atmosphere, impurities / This is suitable when the necessity for removing foreign matter is low.

ところで、図6,図7,図8に於て、パスライン12に沿って上流側から下流側へ、又は、下流側から上流側へ、気体が流れる状況を観察すれば、間隔寸法H12の極めて小さいパスライン12の部分と、大きな空間を形成する真空室10(及び駆動ローラ空室16)を、交互に流れるため、いわゆる「ラビリンス溝効果」によって、流体抵抗が増加して、一方のチャンバCから他方のチャンバCへ、流体が流れ込み難くなり、一層、上述の差圧ユニットUの遮断の作用が増幅する利点がある。 Incidentally, FIG. 6, 7, At a 8, from the upstream side to the downstream side along the pass line 12, or, from the downstream side to the upstream side, by looking at the situation where the gas flows, the spacing dimension H 12 Since the extremely small pass line 12 and the vacuum chamber 10 (and the driving roller vacant chamber 16) forming a large space flow alternately, the fluid resistance is increased by the so-called “labyrinth groove effect” and one chamber is increased. There is an advantage that the fluid does not easily flow from C to the other chamber C, and the above-described blocking action of the differential pressure unit U is further amplified.

図1,図2,図3の実施の形態以外の機能性膜の形成についても本発明は適用自由であるが、図3の実施の形態のように、複数の機能性膜を連続的に積層形成するに際し、異なる雰囲気(及び真空度)の複数のチャンバC…が差圧ユニットUにて有効に遮断され(雰囲気が変更され)、能率的かつ安定して高品質な薄膜太陽電池や有機EL等を製造可能となり、特に、容易かつ確実に、高純度の機能性膜が積層できる。   Although the present invention can be freely applied to the formation of functional films other than the embodiment shown in FIGS. 1, 2 and 3, a plurality of functional films are continuously laminated as in the embodiment shown in FIG. When forming, a plurality of chambers C of different atmospheres (and vacuum degrees) are effectively cut off by the differential pressure unit U (the atmosphere is changed), and an efficient and stable high-quality thin-film solar cell or organic EL In particular, it is possible to stack a high-purity functional film easily and reliably.

以上述べたように、本発明は、真空度、及び/又は、雰囲気が相違する複数のチャンバCを備え、連続的に供給される可撓性帯状シート基材1を上記複数のチャンバCを貫通走行させて上記シート基材1に膜を成形する真空成膜装置であって、隣り合うチャンバCC間を、排気機能を有する差圧ユニットUを介して連通連結した構成であるので、相隣り合うチャンバC,C間の雰囲気,真空度が確実に遮断され、かつ、シート基材1を連続的に送ることが可能となって、各チャンバC内は最適の雰囲気,真空度に維持できて、良質の機能性膜の能率的な積層形成を実現できた。さらに、チャンバC内の不純物や異物を排気機能によって排出除去できて、チャンバC内を清浄に維持し、一層、高品質な機能性膜の積層形成を可能とする。 As described above, the present invention includes a plurality of chambers C having different degrees of vacuum and / or atmosphere, and penetrates the plurality of chambers C through the continuously supplied flexible belt-like sheet base material 1. Since it is a vacuum film forming apparatus for forming a film on the sheet base material 1 by running, the adjacent chambers C 1 and C 2 are connected to each other via a differential pressure unit U having an exhaust function. The atmosphere and degree of vacuum between adjacent chambers C and C are reliably shut off, and the sheet base material 1 can be fed continuously, so that the inside of each chamber C can be maintained at the optimum atmosphere and degree of vacuum. As a result, efficient stacking of high-quality functional films could be realized. Furthermore, impurities and foreign matter in the chamber C can be discharged and removed by the exhaust function, the inside of the chamber C can be kept clean, and a higher quality functional film can be stacked.

また、上記差圧ユニットUは、排気減圧される真空室10を内部に有する金属製のブロック体11と、上記真空室10を貫通する平面スリット状パスライン12と、該パスライン12を通過する上記シート基材1を吸着しつつ接触する多孔ローラ20と、上記シート基材1を上記多孔ローラ20の反対側から部分的に押圧して挟持する押圧ローラ22と、を備えている構成であるので、シート基材1の送りをスムースに行うことができ、特に、機能性膜(成膜部2)に傷を付けずに確実に送ることができる(図12,図13参照)。しかも、ラビリンス溝効果が発揮されることとなり、隣り合うチャンバC,C間を、一層確実に、段階的な圧力変化を付与でき、かつ、雰囲気遮断効果も向上する。   Further, the differential pressure unit U passes through a metal block body 11 having a vacuum chamber 10 in which exhaust pressure is reduced, a plane slit-like pass line 12 penetrating the vacuum chamber 10, and the pass line 12. The structure includes a perforated roller 20 that contacts the sheet base material 1 while adsorbing it, and a pressing roller 22 that presses the sheet base material 1 partially from the opposite side of the perforated roller 20 to sandwich it. Therefore, the sheet base material 1 can be smoothly fed, and in particular, the functional film (deposition unit 2) can be reliably fed without scratching (see FIGS. 12 and 13). Moreover, the labyrinth groove effect is exhibited, and a stepwise pressure change can be more reliably applied between the adjacent chambers C and C, and the atmosphere blocking effect is improved.

また、上記スリット状パスライン12は、通過する上記シート基材1と接触しない限度内で最小間隔寸法H12に設定されているので、コンダクタンスCx が極めて小さくなり、効率のよい排気減圧を行うことができる。
また、上記押圧ローラ22は、上記シート基材1に接触する両端側円環部22aと、上記シート基材1と接触しない非接触外周面部22bと、を有し、上記シート基材1の成膜部2に接触しないように構成されているので、(図12,図13に示したように、)成膜部2を傷つけずに、搬送を確実に行い得る。
また、上記差圧ユニットUは、上記シート基材1が上記パスライン12内を走行するように搬送力を付与する一対の駆動ローラ23,24を内部に有するので、スリット状パスライン12内を走行するシート基材1を正確に保持し、シート基材1にシワや撓みを発生するのを防止できる。
Further, since the slit-like pass line 12 is set to the minimum distance dimension H 12 within a limit that does not contact the sheet base material 1 that passes through, the conductance Cx becomes extremely small, and efficient exhaust pressure reduction is performed. Can do.
Further, the pressing roller 22 includes a both-ends side annular portion 22 a that contacts the sheet base material 1 and a non-contact outer peripheral surface portion 22 b that does not contact the sheet base material 1. Since the film portion 2 is configured not to contact the film portion 2, the film formation portion 2 can be reliably transported (as shown in FIGS. 12 and 13) without being damaged.
Further, the differential pressure unit U has a pair of drive rollers 23 and 24 for applying a conveying force so that the sheet base material 1 travels in the pass line 12. It is possible to accurately hold the traveling sheet base material 1 and prevent the sheet base material 1 from being wrinkled or bent.

また、本発明の真空成膜方法は、排気機能を有する差圧ユニットUを介在させて、真空度、及び/又は、雰囲気が相違する複数のチャンバCを順次連通連結し、可撓性帯状シート基材1を、上記チャンバC及び排気中の上記差圧ユニットUを交互に貫通して連続的に走行させ、上記シート基材1に膜を成形する方法であるので、隣り合ったチャンバC,Cの雰囲気が遮断されて、純度の高い最適の雰囲気に、各チャンバCが保たれる。また、隣り合ったチャンバC,Cの間に真空度が異なったとしても、各チャンバCが安定して所定圧力に維持できる。さらに、チャンバC内の不純物・異物も排出除去できて、清浄空間に保持され、高品質な機能性膜を高能率に連続的に製造できる。   In addition, the vacuum film forming method of the present invention includes a flexible belt-like sheet in which a plurality of chambers C having different degrees of vacuum and / or atmospheres are sequentially connected by interposing a differential pressure unit U having an exhaust function. Since the base material 1 is a method of continuously running the chamber C and the differential pressure unit U in the exhaust gas alternately to form a film on the sheet base material 1, the adjacent chambers C, The atmosphere of C is cut off, and each chamber C is kept in an optimum atmosphere with high purity. Moreover, even if the degree of vacuum differs between the adjacent chambers C and C, each chamber C can be stably maintained at a predetermined pressure. Furthermore, impurities and foreign substances in the chamber C can be discharged and removed, and the high-quality functional film can be continuously manufactured with high efficiency while being kept in a clean space.

1 帯状シート基材
2 成膜部
10 真空室
11 ブロック体
12 パスライン
20 多孔ローラ
22 押圧ローラ
22a 円環部
22b 非接触外周面部
23,24 駆動ローラ
C チャンバ
12 間隔寸法
U 差圧ユニット
DESCRIPTION OF SYMBOLS 1 Band-shaped sheet base material 2 Film-forming part
10 Vacuum chamber
11 blocks
12 Pass line
20 Perforated roller
22 Press roller
22a Torus
22b Non-contact outer peripheral surface
23, 24 Drive roller C Chamber H 12 Spacing dimension U Differential pressure unit

Claims (4)

真空度が相違する複数のチャンバ(C)、及び雰囲気が相違する複数のチャンバ(C)を備え、連続的に供給される可撓性帯状シート基材(1)を上記複数のチャンバ(C)を貫通走行させて上記シート基材(1)に膜を成形する真空成膜装置であって、隣り合うチャンバ(C)(C)間を、排気機能を有する差圧ユニット(U)を介して連通連結し
該差圧ユニット(U)は、排気減圧される真空室(10)を内部に有する金属製のブロック体(11)と、上記真空室(10)を貫通する平面スリット状パスライン(12)と、該パスライン(12)を通過する上記シート基材(1)を吸着しつつ接触する多孔ローラ(20)と、上記シート基材(1)の成膜部(2)に接触しないように上記多孔ローラ(20)の反対側から部分的に押圧して挟持する押圧ローラ(22)と、を備え、上記スリット状パスライン(12)は、通過する上記シート基材(1)と接触しない限度内で最小間隔寸法(H 12 )に設定され、
隣り合う上記チャンバ(C)(C)間に於て、最小間隔寸法(H 12 )の上記スリット状パスライン(12)と、大きな空間を有する上記真空室(10)とを、交互に配設し、ラビリンス溝効果によって、雰囲気の相違する上記チャンバ(C)(C)を相互に遮断し、かつ、真空度の相違する上記チャンバ(C)(C)間の圧力を少しずつ段階的に変化させて真空度を維持するように構成されたことを特徴とする真空成膜装置。
A plurality of chambers which vacuum are different (C), and comprises a plurality of chambers (C) which atmosphere is different, the flexible belt-like sheet substrate (1) a plurality of chambers that are continuously fed (C ) To form a film on the sheet base material (1), and between adjacent chambers (C) and (C) via a differential pressure unit (U) having an exhaust function. communicating Te linked,
The differential pressure unit (U) includes a metal block body (11) having a vacuum chamber (10) in which exhaust pressure is reduced, and a plane slit-like pass line (12) penetrating the vacuum chamber (10). The porous roller (20) that adsorbs and contacts the sheet base material (1) passing through the pass line (12) and the film forming portion (2) of the sheet base material (1) are not contacted with each other. A pressing roller (22) that is partially pressed from the opposite side of the perforated roller (20), and the slit-like pass line (12) does not contact the sheet substrate (1) that passes therethrough. Is set to the minimum gap dimension (H 12 ),
Arranged At a between adjacent said chamber (C) (C), and the slit-shaped pass line of the minimum spacing dimension (H 12) (12), said vacuum chamber having a large space and (10), alternately The chambers (C) and (C) having different atmospheres are shut off from each other by the labyrinth groove effect, and the pressure between the chambers (C) and (C) having different degrees of vacuum is gradually changed step by step. And a vacuum film forming apparatus configured to maintain a degree of vacuum.
真空度が相違する複数のチャンバ(C)、及び、雰囲気が相違する複数のチャンバ(C)を備え、連続的に供給される可撓性帯状シート基材(1)を上記複数のチャンバ(C)を貫通走行させて上記シート基材(1)に膜を成形する真空成膜装置であって、隣り合うチャンバ(C)(C)間を、排気機能を有する差圧ユニット(U)を介して連通連結し、
差圧ユニット(U)は、排気減圧される真空室(10)を内部に有する金属製のブロック体(11)と、上記真空室(10)を貫通する平面スリット状パスライン(12)と、を備え、該スリット状パスライン(12)は、通過する上記シート基材(1)と接触しない限度内で最小間隔寸法(H 12 )に設定され、
隣り合う上記チャンバ(C)(C)間に於て、最小間隔寸法(H 12 )の上記スリット状パスライン(12)と、大きな空間を有する上記真空室(10)とを、交互に配設し、ラビリンス溝効果によって、雰囲気の相違する上記チャンバ(C)(C)を相互に遮断し、かつ、真空度の相違する上記チャンバ(C)(C)間の圧力を少しずつ段階的に変化させて真空度を維持するように構成されたことを特徴とする真空成膜装置。
A plurality of chambers (C) having different degrees of vacuum and a plurality of chambers (C) having different atmospheres are provided, and the flexible belt-like sheet base material (1) that is continuously supplied is replaced with the plurality of chambers (C). ) To form a film on the sheet base material (1), and between adjacent chambers (C) and (C) via a differential pressure unit (U) having an exhaust function. Connected
The differential pressure unit (U) consists of a metal block having an exhaust depressurized by a vacuum chamber (10) inside (11), the vacuum chamber and the flat slit-like path line passing through the (10) (12) The slit-like pass line (12) is set to a minimum distance dimension (H 12 ) within a limit that does not come into contact with the sheet base material (1) that passes therethrough ,
Arranged At a between adjacent said chamber (C) (C), and the slit-shaped pass line of the minimum spacing dimension (H 12) (12), said vacuum chamber having a large space and (10), alternately The chambers (C) and (C) having different atmospheres are shut off from each other by the labyrinth groove effect, and the pressure between the chambers (C) and (C) having different degrees of vacuum is gradually changed step by step. And a vacuum film forming apparatus configured to maintain a degree of vacuum.
上記差圧ユニット(U)の上記排気機能によって、上記チャンバ(C)内で発生する不純物及び異物を排出除去するように構成された請求項1又は2記載の真空成膜装置。 The vacuum film-forming apparatus of Claim 1 or 2 comprised so that the impurity and foreign material which generate | occur | produce in the said chamber (C) may be discharged | emitted and removed by the said exhaust function of the said differential pressure unit (U) . 排気機能を有する差圧ユニット(U)を介在させて、真空度が相違する複数のチャンバ(C)、及び、雰囲気が相違する複数のチャンバ(C)を順次連通連結し、可撓性帯状シート基材(1)を、上記チャンバ(C)及び排気中の上記差圧ユニット(U)を貫通して連続的に走行させ、隣り合う上記チャンバ(C)(C)間の上記差圧ユニット(U)に於て、上記シート基材(1)を、該シート基材(1)と接触しない限度内で最小間隔寸法(H 12 )に設定されたスリット状パスライン(12)と、該パスライン(12)と比較して大きな空間を形成する真空室(10)とに、交互に通過させて、ラビリンス溝効果によって、雰囲気の相違する上記チャンバ(C)(C)を相互に遮断し、かつ、真空度の相違する上記チャンバ(C)(C)間の圧力を少しずつ段階的に変化させて真空度を維持し、上記シート基材(1)に膜を成形することを特徴とする真空成膜方法。 By interposing a differential pressure unit (U) having an exhaust function, a plurality of chambers (C) having different degrees of vacuum and a plurality of chambers (C) having different atmospheres are sequentially connected to each other, thereby forming a flexible belt-like sheet. The base material (1) is continuously run through the chamber (C) and the differential pressure unit (U) in the exhaust, and the differential pressure unit between the adjacent chambers (C) and (C) ( U), a slit-like pass line (12) set to the minimum distance dimension (H 12 ) within the limit of not contacting the sheet base material (1) , and the pass Passing alternately through the vacuum chamber (10) that forms a larger space compared to the line (12), the chambers (C) and (C) having different atmospheres are blocked from each other by the labyrinth groove effect, And the pressure between the chambers (C) and (C) having different vacuum degrees A vacuum film-forming method characterized in that the degree of vacuum is maintained by gradually changing in steps and a film is formed on the sheet substrate (1) .
JP2009151062A 2009-06-25 2009-06-25 Vacuum film forming apparatus and vacuum film forming method Expired - Fee Related JP5325031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009151062A JP5325031B2 (en) 2009-06-25 2009-06-25 Vacuum film forming apparatus and vacuum film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009151062A JP5325031B2 (en) 2009-06-25 2009-06-25 Vacuum film forming apparatus and vacuum film forming method

Publications (2)

Publication Number Publication Date
JP2011006737A JP2011006737A (en) 2011-01-13
JP5325031B2 true JP5325031B2 (en) 2013-10-23

Family

ID=43563711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009151062A Expired - Fee Related JP5325031B2 (en) 2009-06-25 2009-06-25 Vacuum film forming apparatus and vacuum film forming method

Country Status (1)

Country Link
JP (1) JP5325031B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5691940B2 (en) * 2011-08-30 2015-04-01 住友金属鉱山株式会社 Long glass film processing method and processing apparatus
KR20140071058A (en) * 2012-12-03 2014-06-11 코닝정밀소재 주식회사 Roll-to-roll sputtering apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223982A (en) * 1985-07-23 1987-01-31 Ishikawajima Harima Heavy Ind Co Ltd Sealing device for continuous vacuum treatment device
JPS63153268A (en) * 1986-12-17 1988-06-25 Nippon Steel Corp Method for controlling partial pressure of gas in continuous dry coating tank
JPH0672301B2 (en) * 1987-05-20 1994-09-14 川崎製鉄株式会社 Differential pressure seal device
JPS6465259A (en) * 1987-09-04 1989-03-10 Nippon Steel Corp Continuous composite coating equipment for band plate
JPH0240231A (en) * 1988-07-29 1990-02-09 Nippon Steel Corp Pressure difference sealing equipment
JPH0282770U (en) * 1988-12-09 1990-06-26
WO2008139834A1 (en) * 2007-05-14 2008-11-20 Ulvac, Inc. Film conveying device and winding-type vacuum film-forming method
JP5146067B2 (en) * 2008-04-15 2013-02-20 コニカミノルタホールディングス株式会社 Guide roll mechanism, vacuum film forming apparatus using the same, and organic electroluminescence element manufacturing method

Also Published As

Publication number Publication date
JP2011006737A (en) 2011-01-13

Similar Documents

Publication Publication Date Title
JP4896926B2 (en) Multi-layer laminating press
JP5048090B2 (en) Double-side coating device
JP5325031B2 (en) Vacuum film forming apparatus and vacuum film forming method
KR100487010B1 (en) Continuous Vacuum Processing Equipment
JP2016519213A5 (en)
CN102021527B (en) Strip film plating machine
JP2001110729A (en) Apparratus for continuously manufacturing method of semiconductor element
JP6347662B2 (en) Thin film forming equipment
US9803281B2 (en) Nozzle head and apparatus
US4900388A (en) Method for laminating polymeric sheet material
JP5325016B2 (en) Pressure reducing unit and pressure restoring unit
JP4714714B2 (en) Gate valve for maintaining airtightness, film manufacturing apparatus and film manufacturing method using the gate valve
US20120291708A1 (en) Vacuum deposition apparatus
JP5259482B2 (en) SEALING DEVICE AND CONTINUOUS FILM EQUIPMENT PROVIDED WITH THIS SEALING DEVICE
JP5280224B2 (en) Vacuum deposition system
JPS6153377B2 (en)
JP2009179446A (en) Take-up device and manufacturing method of take-up member
JP7481150B2 (en) Vacuum film forming apparatus and vacuum film forming method
JPH0532534Y2 (en)
US4791303A (en) Methods and apparatus for laminating polymeric sheet material
JP6419428B2 (en) Differential exhaust system
KR20170081636A (en) Method for forming sealing film, and sealing film
JP2006104494A (en) Surface treatment apparatus
CN109234709B (en) Processing apparatus and method for gating-in substrates
JP6375735B2 (en) Vacuum sealing device and vacuum process processing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130719

R150 Certificate of patent or registration of utility model

Ref document number: 5325031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees