JP5322742B2 - Reactor vibration monitoring method and reactor vibration monitoring system - Google Patents

Reactor vibration monitoring method and reactor vibration monitoring system Download PDF

Info

Publication number
JP5322742B2
JP5322742B2 JP2009090307A JP2009090307A JP5322742B2 JP 5322742 B2 JP5322742 B2 JP 5322742B2 JP 2009090307 A JP2009090307 A JP 2009090307A JP 2009090307 A JP2009090307 A JP 2009090307A JP 5322742 B2 JP5322742 B2 JP 5322742B2
Authority
JP
Japan
Prior art keywords
vibration
pressure vessel
reactor
reactor pressure
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009090307A
Other languages
Japanese (ja)
Other versions
JP2010243254A (en
Inventor
正彦 藁科
洋 片山
健司 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009090307A priority Critical patent/JP5322742B2/en
Publication of JP2010243254A publication Critical patent/JP2010243254A/en
Application granted granted Critical
Publication of JP5322742B2 publication Critical patent/JP5322742B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

本発明は、原子炉振動監視方法および原子炉振動監視システムに係り、特に、原子炉圧力容器外側から、原子炉圧力容器内に設けられる燃料集合体や制御棒案内管などの構造体の振動挙動を監視する技術に関する。   The present invention relates to a reactor vibration monitoring method and a reactor vibration monitoring system, and in particular, vibration behavior of a structure such as a fuel assembly or a control rod guide tube provided in the reactor pressure vessel from the outside of the reactor pressure vessel. Related to monitoring technology.

従来、原子炉構造体の振動挙動を監視する技術として、監視の対象構造体に音響センサや加速度センサを直接取り付けて構造体の振動周波数や振幅を検出し、構造体の振動変位を予測するものが知られている(特許文献1参照)。   Conventionally, as a technology for monitoring the vibration behavior of a nuclear reactor structure, an acoustic sensor or acceleration sensor is directly attached to the target structure to be monitored, and the vibration frequency and amplitude of the structure are detected to predict the vibration displacement of the structure. Is known (see Patent Document 1).

しかしながら、従来の原子炉振動監視技術は、構造体の音響振幅や振動加速度など構造体の振動変位に関わる間接量に基づいてその振動変位を予測する。このため、構造体の振動変位を直接予測するものに比べて予測精度は劣る。また、原子炉圧力容器の内に設けられる構造体の振動挙動を監視する場合にあっては、従来の原子炉振動監視技術の適用は困難である。たとえば、音響センサや加速度センサを監視の対象物に取り付けられず或いは原子炉出力制御の不安定性を伴うなど種々の弊害を伴う。   However, the conventional reactor vibration monitoring technology predicts the vibration displacement based on the indirect amount related to the vibration displacement of the structure such as the acoustic amplitude and vibration acceleration of the structure. For this reason, the prediction accuracy is inferior to that for directly predicting the vibration displacement of the structure. In addition, in the case of monitoring the vibration behavior of the structure provided in the reactor pressure vessel, it is difficult to apply the conventional reactor vibration monitoring technique. For example, the acoustic sensor and the acceleration sensor are not attached to the monitoring target, or there are various adverse effects such as instability of reactor power control.

そこで、原子炉圧力容器外側に超音波式変位センサを設けて、原子炉圧力容器内に設けられる構造体の振動変位を直接検出するようにした原子炉振動監視技術が提案されている(特許文献2参照)。   Therefore, there has been proposed a reactor vibration monitoring technique in which an ultrasonic displacement sensor is provided outside the reactor pressure vessel to directly detect the vibration displacement of the structure provided in the reactor pressure vessel (Patent Document). 2).

特開2004−53383号公報JP 2004-53383 A 特開平11−125688号公報JP 11-125688 A

超音波式変位センサを用いた原子炉振動監視技術では、原子炉圧力容器の内に設けられる構造体の振動挙動を監視できることに加え、振動変位を直接検出することからその振動変位の予測精度も高い。しかしながら、超音波式変位センサを用いる場合は、構造体の振動変位の予測精度が構造体への発信波および反射波の進行方向に依存する。このため、超音波式変位センサの位置や超音波の進行方向の経時変化に伴い、振動変位の予測信頼性が損なわれやすい。   In the reactor vibration monitoring technology using ultrasonic displacement sensors, in addition to being able to monitor the vibration behavior of the structure provided in the reactor pressure vessel, the vibration displacement is directly detected, so the predicted accuracy of the vibration displacement is also improved. high. However, when an ultrasonic displacement sensor is used, the prediction accuracy of the vibration displacement of the structure depends on the traveling direction of the transmitted wave and the reflected wave to the structure. For this reason, the predicted reliability of the vibration displacement is likely to be impaired along with the temporal change of the position of the ultrasonic displacement sensor and the traveling direction of the ultrasonic wave.

本発明は上記事情に鑑みてなされたもので、原子炉圧力容器内に設けられる構造体の振動変位を予測するにあたって、構造体の振動変位を直接検出する場合と同等に高い予測精度を有すると共にその予測精度の経時的低下を低減できる原子炉振動監視方法および原子炉振動監視システムを提供することを目的とする。   The present invention has been made in view of the above circumstances, and in predicting the vibration displacement of the structure provided in the reactor pressure vessel, the prediction accuracy is as high as that in the case of directly detecting the vibration displacement of the structure. It is an object of the present invention to provide a reactor vibration monitoring method and a reactor vibration monitoring system that can reduce a decrease in the prediction accuracy over time.

上述した目的を達成するため、本発明に係る原子炉振動監視方法では、原子炉圧力容器外側から、原子炉圧力容器内に設けられる燃料集合体や制御棒案内管などの構造体の振動挙動を監視する原子炉振動監視方法において、前記構造体の振動変位と原子炉圧力容器の振動特性とを相関付けた相関を用意しておき、取得した原子炉圧力容器の振動特性を前記相関と照合することにより構造体の振動変位を予測し、この振動変位がプラント保全上許容される制限値を超える場合に、原子炉圧力容器の異常報知を行うことを特徴とする。   In order to achieve the above-described object, in the reactor vibration monitoring method according to the present invention, the vibration behavior of a structure such as a fuel assembly or a control rod guide tube provided in the reactor pressure vessel is measured from the outside of the reactor pressure vessel. In the reactor vibration monitoring method to be monitored, a correlation that correlates the vibration displacement of the structure and the vibration characteristic of the reactor pressure vessel is prepared, and the obtained vibration characteristic of the reactor pressure vessel is collated with the correlation. Thus, the vibration displacement of the structure is predicted, and when the vibration displacement exceeds a limit value permitted for plant maintenance, abnormality notification of the reactor pressure vessel is performed.

また、本発明に係る原子炉振動監視システムでは、原子炉圧力容器外側から、原子炉圧力容器内に設けられる燃料集合体や制御棒案内管などの構造体の振動挙動を監視する原子炉振動監視システムにおいて、前記構造体の振動変位を検出する変位感応センサと、原子炉圧力容器の振動特性を検出する振動感応センサと、前記変位感応センサにより検出された構造体の振動変位と前記振動感応センサにより検出された原子炉圧力容器の振動特性とを相関付けて記録し、前記振動感応センサにより検出された原子炉圧力容器の振動特性を前記相関と照合することにより構造体の振動変位を予測し、予測した振動変位がプラント保全上許容される制限値を超える場合に異常信号を生成する異常検出装置と、前記異常検出装置から生成される異常信号の入力を受けて、原子炉圧力容器の異常を報知する警告装置と、を備えることを特徴とする。   In the reactor vibration monitoring system according to the present invention, the reactor vibration monitoring system monitors the vibration behavior of a structure such as a fuel assembly or a control rod guide tube provided in the reactor pressure vessel from the outside of the reactor pressure vessel. In the system, a displacement sensitive sensor for detecting vibration displacement of the structure, a vibration sensitive sensor for detecting vibration characteristics of a reactor pressure vessel, a vibration displacement of the structure detected by the displacement sensitive sensor, and the vibration sensitive sensor The vibration characteristics of the reactor pressure vessel detected by the correlation are recorded in correlation, and the vibration characteristics of the reactor pressure vessel detected by the vibration sensitive sensor are collated with the correlation to predict the vibration displacement of the structure. , An abnormality detection device that generates an abnormal signal when the predicted vibration displacement exceeds a limit value permitted for plant maintenance, and an abnormal signal generated from the abnormality detection device Receiving an input, characterized in that it and a warning device for informing the abnormality of the reactor pressure vessel.

本発明によれば、原子炉圧力容器内に設けられる構造体の振動変位を予測するにあたって、構造体の振動変位を直接検出する場合と同等に高い予測精度を有すると共にその予測精度の経時的低下を低減できる。   According to the present invention, in predicting the vibration displacement of the structure provided in the reactor pressure vessel, the prediction accuracy is as high as when the vibration displacement of the structure is directly detected, and the prediction accuracy decreases with time. Can be reduced.

原子炉振動監視システムの第1実施形態を示す図。The figure which shows 1st Embodiment of a nuclear reactor vibration monitoring system. 原子炉振動監視システムのセンサ群の配置を示す図であり、(a)は図1のX−X断面図であり、(b)は図1のY−Y断面図。It is a figure which shows arrangement | positioning of the sensor group of a nuclear reactor vibration monitoring system, (a) is XX sectional drawing of FIG. 1, (b) is YY sectional drawing of FIG. 原子炉圧力容器内に設けられる構造体の変位と原子炉圧力容器における音響振幅との相関を示す図。The figure which shows the correlation with the displacement of the structure provided in a reactor pressure vessel, and the acoustic amplitude in a reactor pressure vessel. 原子炉振動監視システムにおける異常信号の生成タイミングを示す図。The figure which shows the production | generation timing of the abnormal signal in a nuclear reactor vibration monitoring system. 原子炉振動監視システムの異常検出装置にて実行される異常検出処理の流れを示すフローチャート。The flowchart which shows the flow of the abnormality detection process performed with the abnormality detection apparatus of a reactor vibration monitoring system. 原子炉振動監視システムの第2実施形態を示すもので、固有周波数データベースに記録される構造体要素の固有周波数を示す図。The 2nd Embodiment of a nuclear reactor vibration monitoring system is a figure showing the natural frequency of a structure element recorded on a natural frequency database. 原子炉振動監視システムの異常検出装置にて行われる構造体要素の固有音響周波数の算出処理の説明図であり、(a)は原子炉圧力容器の音響周波数を示す図、(b)は構造体要素の固有音響周波数を示す図。It is explanatory drawing of the calculation process of the natural acoustic frequency of the structure element performed in the abnormality detection device of the reactor vibration monitoring system, (a) is a diagram showing the acoustic frequency of the reactor pressure vessel, (b) is the structure The figure which shows the natural acoustic frequency of an element. 構造体要素の振動変位の差分判断による異常信号の生成タイミングを示す図。The figure which shows the production | generation timing of the abnormal signal by the difference judgment of the vibration displacement of a structure element. 構造体要素の卓越振動変位による異常信号の生成タイミングを示す図。The figure which shows the production | generation timing of the abnormal signal by the dominant vibration displacement of a structure element. 構造体要素の固有音響周波数と異常現象の対応関係の一例を示す図。The figure which shows an example of the correspondence of the natural acoustic frequency of a structure body element, and an abnormal phenomenon. 異常報知の一例を示す図。The figure which shows an example of abnormality alert | report. 原子炉振動監視システムにて実行される異常検出処理の流れを示すフローチャート。The flowchart which shows the flow of the abnormality detection process performed with a reactor vibration monitoring system.

本発明の最良の実施形態を、添付図面に示す原子炉振動監視システムに基づいて説明する。なお。この原子炉振動監視システムは、本発明に係る原子炉振動監視方法の適用例である。   BEST MODE FOR CARRYING OUT THE INVENTION The best mode of the present invention will be described based on a reactor vibration monitoring system shown in the attached drawings. Note that. This reactor vibration monitoring system is an application example of the reactor vibration monitoring method according to the present invention.

[第1実施形態]
図1は原子炉振動監視システムの第1実施形態を示す図である。
[First embodiment]
FIG. 1 is a diagram showing a first embodiment of a reactor vibration monitoring system.

原子炉振動監視システム10は、センサ群(11、12、13)と、異常検出装置14と、警告装置15と、を備える。この原子炉振動監視システム10は、原子炉圧力容器21の外側に設けられ、原子炉圧力容器21の内に設けられる燃料集合体22や制御棒案内管23などから成る構造体の振動挙動を監視するものである。   The nuclear reactor vibration monitoring system 10 includes a sensor group (11, 12, 13), an abnormality detection device 14, and a warning device 15. The reactor vibration monitoring system 10 is provided outside the reactor pressure vessel 21 and monitors the vibration behavior of a structure including a fuel assembly 22 and a control rod guide tube 23 provided in the reactor pressure vessel 21. To do.

原子炉振動監視システム10のセンサ群は、変位感応センサとしての超音波式変位センサ11と、振動感応センサとしての音響センサ12と、同じく振動感応センサとしての加速度センサ13とにより構成される。超音波式変位センサ11は、原子炉圧力容器21内に設けられた構造体に向けて超音波を発信して反射波を受信し、その発信から受信までに要する時間から構造体の距離ないし振動変位を直接を検出する。音響センサ12は、構造体から発せられる音波が伝播して振動する原子炉圧力容器21の音響振幅や音響周波数を検出する。加速度センサ13は、構造体の振動が伝播して振動する原子炉圧力容器21の振動加速度や振動加速度周波数を検出する。   The sensor group of the nuclear reactor vibration monitoring system 10 includes an ultrasonic displacement sensor 11 as a displacement sensitive sensor, an acoustic sensor 12 as a vibration sensitive sensor, and an acceleration sensor 13 as a vibration sensitive sensor. The ultrasonic displacement sensor 11 transmits an ultrasonic wave toward the structure provided in the reactor pressure vessel 21 to receive a reflected wave, and the distance or vibration of the structure from the time required for the transmission to reception. Detect displacement directly. The acoustic sensor 12 detects the acoustic amplitude and acoustic frequency of the reactor pressure vessel 21 in which the sound wave emitted from the structure propagates and vibrates. The acceleration sensor 13 detects the vibration acceleration and the vibration acceleration frequency of the reactor pressure vessel 21 that vibrates as the vibration of the structure propagates.

図2は原子炉振動監視システムのセンサ群の配置例を示す図であり、(a)は図1のX−X断面図、(b)は図1のY−Y断面図である。   FIG. 2 is a diagram illustrating an arrangement example of the sensor group of the nuclear reactor vibration monitoring system, where (a) is a cross-sectional view taken along the line XX in FIG.

原子炉振動監視システム10は、図2(a)に示すように、超音波式変位センサ11を1つ有し、原子炉圧力容器21の周方向に沿って音響センサ12および加速度センサ13を複数有する。また、図2(b)に示すように、原子炉圧力容器21の軸方向から見て少なくとも音響センサ12と加速度センサ13がオーバーラップするように設けられる。ただし、各センサの配置は特に制限されず、構造体の振動変位の予測精度を考慮して設定することになる。   As shown in FIG. 2A, the reactor vibration monitoring system 10 has one ultrasonic displacement sensor 11, and includes a plurality of acoustic sensors 12 and acceleration sensors 13 along the circumferential direction of the reactor pressure vessel 21. Have. Further, as shown in FIG. 2B, at least the acoustic sensor 12 and the acceleration sensor 13 are provided so as to overlap each other when viewed from the axial direction of the reactor pressure vessel 21. However, the arrangement of the sensors is not particularly limited, and is set in consideration of the prediction accuracy of the vibration displacement of the structure.

原子炉振動監視システム10の異常検出装置14は、第一に、超音波式変位センサ11により検出された構造体の振動変位と音響センサ12により検出された原子炉圧力容器21の振動特性すなわち音響振幅とを相関付け、内部の変位制限値データベースにその相関を記録する。この相関付けに用いる振動変位および音響振幅は、地震などの大きな振動が生じない平常時に検出しておくのが好ましい。振動変位は超音波式変位センサ11により計測されるところ、超音波式変位センサ11は振動による位置ずれなどで振動変位の検出精度が低下しやすいためである。   The abnormality detection device 14 of the reactor vibration monitoring system 10 firstly includes the vibration displacement of the structure detected by the ultrasonic displacement sensor 11 and the vibration characteristics of the reactor pressure vessel 21 detected by the acoustic sensor 12, that is, the sound. Correlate the amplitude and record the correlation in the internal displacement limit value database. It is preferable to detect the vibration displacement and the acoustic amplitude used for the correlation in a normal time when no large vibration such as an earthquake occurs. This is because the vibration displacement is measured by the ultrasonic displacement sensor 11, and the ultrasonic displacement sensor 11 is liable to deteriorate the detection accuracy of the vibration displacement due to a displacement due to vibration.

図3は原子炉圧力容器21内に設けられる構造体の振動変位と原子炉圧力容器21の音響振幅との相関の一例を示したものである。図3に示す相関は、超音波式変位センサ11により構造体の振動変位σ1が検出されたとき、原子炉圧力容器21における音響振幅S1が検出されたことを示す。構造体の変位σ2〜σnと原子炉圧力容器21の音響振幅S2〜Snとの相関も同様の意味を持つ。   FIG. 3 shows an example of the correlation between the vibration displacement of the structure provided in the reactor pressure vessel 21 and the acoustic amplitude of the reactor pressure vessel 21. The correlation shown in FIG. 3 indicates that when the vibration displacement σ1 of the structure is detected by the ultrasonic displacement sensor 11, the acoustic amplitude S1 in the reactor pressure vessel 21 is detected. The correlation between the structural displacements σ2 to σn and the acoustic amplitudes S2 to Sn of the reactor pressure vessel 21 has the same meaning.

原子炉振動監視システム10の異常検出装置14は、第二に、音響センサ12により検出された原子炉圧力容器21の音響振幅を上述した相関と照合することにより構造体の振動変位を予測する。そして、予測した振動変位がプラント保全上許容される制限値を超える場合に異常信号を生成する。なお、この制限値は、構造体の振動変位の予測精度を考慮して設定され、異常検出装置14の内部に設けられる変位制限値データベースに記録される。また、異常信号は、構造体の振動変位があらかじめ設定された制限値を超えたタイミングで生成される。図4は原子炉振動監視システム10の異常検出装置14における異常信号の生成タイミングの一例を示したものである。   Secondly, the abnormality detection device 14 of the reactor vibration monitoring system 10 predicts the vibration displacement of the structure by comparing the acoustic amplitude of the reactor pressure vessel 21 detected by the acoustic sensor 12 with the above-described correlation. An abnormal signal is generated when the predicted vibration displacement exceeds a limit value permitted for plant maintenance. The limit value is set in consideration of the prediction accuracy of the vibration displacement of the structure, and is recorded in a displacement limit value database provided inside the abnormality detection device 14. The abnormal signal is generated at a timing when the vibration displacement of the structure exceeds a preset limit value. FIG. 4 shows an example of the generation timing of the abnormality signal in the abnormality detection device 14 of the nuclear reactor vibration monitoring system 10.

同様にして、原子炉振動監視システム10の異常検出装置14は、超音波式変位センサ11により検出された構造体の振動変位と加速度センサ13により検出された原子炉圧力容器21の振動特性すなわち振動加速度とを相関付けて記録する。次いで、加速度センサ13により検出された原子炉圧力容器21の振動加速度をその相関と照合することにより構造体の振動変位を予測する。そして、予測した振動変位がプラント保全上許容される制限値を超える場合に異常信号を生成する。また、構造体の振動変位と原子炉圧力容器21の振動加速度との相関付けも、構造体の振動変位と原子炉圧力容器21の音響振幅との相関付けと同様にして行われる。   Similarly, the abnormality detection device 14 of the reactor vibration monitoring system 10 includes the vibration displacement of the structure detected by the ultrasonic displacement sensor 11 and the vibration characteristics of the reactor pressure vessel 21 detected by the acceleration sensor 13, that is, vibration. Record the correlation with acceleration. Next, the vibration displacement of the structure is predicted by comparing the vibration acceleration of the reactor pressure vessel 21 detected by the acceleration sensor 13 with the correlation. An abnormal signal is generated when the predicted vibration displacement exceeds a limit value permitted for plant maintenance. Further, the correlation between the vibration displacement of the structure and the vibration acceleration of the reactor pressure vessel 21 is performed in the same manner as the correlation between the vibration displacement of the structure and the acoustic amplitude of the reactor pressure vessel 21.

原子炉振動監視システム10の警告装置15は、異常検出装置14から生成される異常信号の入力を受けて、その異常を表示装置に表示して報知する。   The warning device 15 of the nuclear reactor vibration monitoring system 10 receives the input of the abnormality signal generated from the abnormality detection device 14, and displays the abnormality on the display device to notify it.

次に、原子炉振動監視システム10の動作を説明する。   Next, the operation of the reactor vibration monitoring system 10 will be described.

図5は原子炉振動監視システム10にて実行される異常検出処理の流れを示すフローチャートである。以下、この異常検出処理の各ステップについて説明する。   FIG. 5 is a flowchart showing the flow of abnormality detection processing executed in the reactor vibration monitoring system 10. Hereinafter, each step of the abnormality detection process will be described.

ステップS101では、原子力発電プラント20の運転中に地震などにより原子炉圧力容器21に異常な振動が発生したとき、原子炉圧力容器の振動特性が検出される。すなわち、音響センサ12により原子炉圧力容器21の音響振幅が検出され、同時に加速度センサ13により原子炉圧力容器21の振動加速度が検出される。   In step S101, when abnormal vibration occurs in the reactor pressure vessel 21 due to an earthquake or the like during operation of the nuclear power plant 20, the vibration characteristics of the reactor pressure vessel are detected. That is, the acoustic amplitude of the reactor pressure vessel 21 is detected by the acoustic sensor 12, and at the same time, the vibration acceleration of the reactor pressure vessel 21 is detected by the acceleration sensor 13.

ステップS102では、ステップS101で検出された音響振幅および振動加速度が内部記録部に一時的に記録される。そして、一時記録された音響振幅と、すでに内部記録部に記録されている構造体の振動変位と原子炉圧力容器21の音響振幅との相関とが照合されて、ステップS101で検出された音響振幅から構造体の振動変位が予測される。同時に、一次記録された振動加速度と、すでに記録済みの構造体の振動変位と原子炉圧力容器21の振動加速度とが照合され、ステップS101で検出された振動加速度から構造体の振動変位が予測される。   In step S102, the acoustic amplitude and vibration acceleration detected in step S101 are temporarily recorded in the internal recording unit. Then, the temporarily recorded acoustic amplitude is compared with the correlation between the vibration displacement of the structure already recorded in the internal recording unit and the acoustic amplitude of the reactor pressure vessel 21, and the acoustic amplitude detected in step S101 is checked. Therefore, the vibration displacement of the structure is predicted. At the same time, the primary recorded vibration acceleration, the already recorded vibration displacement of the structure and the vibration acceleration of the reactor pressure vessel 21 are collated, and the vibration displacement of the structure is predicted from the vibration acceleration detected in step S101. The

ステップS103では、構造体変位の制限値データベースが参照されて構造体の振動変位がプラント保全上許容される制限値以下であるかどうか(Yes/No)が判断される。   In step S103, the structure displacement limit value database is referred to and it is determined whether the vibration displacement of the structure is equal to or less than the limit value allowed for plant maintenance (Yes / No).

ステップS104は、ステップS3で<Yes>と判断された場合に行われるステップである。このステップS4では、異常検出装置15の内部記録部にステップS2で予想した構造体の振動変位が記録される。   Step S104 is a step performed when <Yes> is determined in step S3. In step S4, the vibration displacement of the structure predicted in step S2 is recorded in the internal recording unit of the abnormality detection device 15.

ステップS5は、ステップS3で<No>と判断された場合に行われるステップである。このステップS5では、原子炉圧力容器21の異常が報知される。   Step S5 is a step performed when <No> is determined in step S3. In step S5, the abnormality of the reactor pressure vessel 21 is notified.

次に、原子炉振動監視システム10の作用を説明する。   Next, the operation of the reactor vibration monitoring system 10 will be described.

原子炉振動監視システム10では、たとえば、超音波式変位センサ11により検出された構造体の振動変位がσ1のときに原子炉圧力容器21の音響振幅がS1であるといった相関付けが行われ記録される。そして、音響センサ12および加速度センサ13により検出された原子炉圧力容器21の音響振幅および振動加速度の入力を受けたとき、この入力を受けた音響振幅および振動加速度が、記録済みの相関と照合されて構造体の振動変位が予測される。つまり、超音波式変位センサ11に比べて精密な位置決めが不要な音響センサ12や加速度センサ13により検出された音響振幅や振動加速度をもとにして、構造体の振動変位が予測される。このため、原子炉振動監視システム10では、地震など大きな揺れが生じても構造体の振動変位の予測精度が低下しにくいものとなる。また、音響振幅や振動加速度は、あらかじめ超音波式変位センサ11により検出された予測精度の高い振動変位と対応付けられている。このため、原子炉振動監視システム10では、音響振幅や振動加速度による構造体の振動変位の予測精度が、超音波式変位センサ11を用いて予測されたものと同等に高いものとなる。   In the reactor vibration monitoring system 10, for example, when the vibration displacement of the structure detected by the ultrasonic displacement sensor 11 is σ1, the correlation that the acoustic amplitude of the reactor pressure vessel 21 is S1 is performed and recorded. The When the acoustic amplitude and vibration acceleration of the reactor pressure vessel 21 detected by the acoustic sensor 12 and the acceleration sensor 13 are received, the received acoustic amplitude and vibration acceleration are collated with the recorded correlation. Thus, the vibration displacement of the structure is predicted. That is, the vibration displacement of the structure is predicted based on the acoustic amplitude and vibration acceleration detected by the acoustic sensor 12 and the acceleration sensor 13 that do not require precise positioning compared to the ultrasonic displacement sensor 11. For this reason, in the reactor vibration monitoring system 10, even if a large shake such as an earthquake occurs, the accuracy of predicting the vibration displacement of the structure is unlikely to decrease. The acoustic amplitude and the vibration acceleration are associated with a vibration displacement with high prediction accuracy detected in advance by the ultrasonic displacement sensor 11. For this reason, in the reactor vibration monitoring system 10, the prediction accuracy of the vibration displacement of the structure due to the acoustic amplitude and vibration acceleration is as high as that predicted using the ultrasonic displacement sensor 11.

よって、原子炉振動監視システム10によれば、
(1) 原子炉圧力容器内に設けられる構造体の振動変位を予測するにあたって、構造体の振動変位を直接検出する場合と同等の高い予測精度を有すると共にその予測精度の経時的低下を低減できる。
Therefore, according to the reactor vibration monitoring system 10,
(1) In predicting the vibration displacement of the structure provided in the reactor pressure vessel, it has high prediction accuracy equivalent to the case of directly detecting the vibration displacement of the structure and can reduce the decrease in the prediction accuracy over time .

[第2実施形態]
第2実施形態は、第1実施形態の原子炉振動監視システム10における異常検出装置14の機能を変更した例である。なお、第1実施形態と同様の構成は、対応する構成に同一符号を付して説明を省略し、第1実施形態の構成を変更し或いは新たに追加した構成は、符号末尾に「A」を付して説明する。
[Second Embodiment]
2nd Embodiment is an example which changed the function of the abnormality detection apparatus 14 in the reactor vibration monitoring system 10 of 1st Embodiment. In addition, the same structure as 1st Embodiment attaches | subjects the same code | symbol to a corresponding structure, abbreviate | omits description, and the structure which changed the structure of 1st Embodiment or added newly is "A" at the code | symbol end. Will be described.

原子炉振動監視システム10Aの異常検出装置14Aは、その内部に固有音響周波数データベースおよび固有振動加速度データベースから成る固有周波数データベースを備える。図6は原子炉振動監視システムの第2実施形態を示すもので、固有周波数データベースに記録される構造体要素の固有周波数を示す図である。固有周波数として記録されるものは、音響センサ12により検出される構造体要素ごとの固有音響周波数、加速度センサ13により検出される構造体要素ごとの固有振動加速度周波数である。   The abnormality detection device 14A of the reactor vibration monitoring system 10A includes a natural frequency database including a natural acoustic frequency database and a natural vibration acceleration database. FIG. 6 shows the second embodiment of the reactor vibration monitoring system, and is a diagram showing the natural frequencies of the structural elements recorded in the natural frequency database. What is recorded as the natural frequency is the natural acoustic frequency for each structural element detected by the acoustic sensor 12 and the natural vibration acceleration frequency for each structural element detected by the acceleration sensor 13.

原子炉振動監視システム10Aの異常検出装置14Aは、音響センサ12により音響振幅が検出されたとき、同時に検出された原子炉圧力容器21の音響周波数を周波数分析(FFT)により成分分解する。   When the acoustic amplitude is detected by the acoustic sensor 12, the abnormality detection device 14A of the reactor vibration monitoring system 10A decomposes the acoustic frequency of the reactor pressure vessel 21 detected at the same time by frequency analysis (FFT).

図7は原子炉振動監視システム10Aの異常検出装置14Aにて行われる構造体要素の固有音響周波数の算出処理の説明図であり、(a)は原子炉圧力容器21の音響周波数を示す図、(b)構造体要素の固有音響周波数を示す図である。   FIG. 7 is an explanatory diagram of a calculation process of the natural acoustic frequency of the structural element performed by the abnormality detection device 14A of the reactor vibration monitoring system 10A, and (a) is a diagram showing the acoustic frequency of the reactor pressure vessel 21. (b) It is a figure which shows the natural acoustic frequency of a structure body element.

音響センサ12により検出される原子炉圧力容器21の音響周波数は、図7(a)に示すように時間と共に変化する。各時刻における原子炉圧力容器21の音響周波数は、原子炉圧力容器21の内に設けられた構造体要素の固有音響周波数の重ね合わせである。原子炉振動監視システム10Aの異常検出装置14Aでは、周波数分析(FFT)処理を行い、図7(b)に示すように、ある特定の構造体要素の固有音響周波数を算出する。   The acoustic frequency of the reactor pressure vessel 21 detected by the acoustic sensor 12 changes with time as shown in FIG. The acoustic frequency of the reactor pressure vessel 21 at each time is a superposition of the natural acoustic frequencies of the structural elements provided in the reactor pressure vessel 21. In the abnormality detection device 14A of the reactor vibration monitoring system 10A, a frequency analysis (FFT) process is performed to calculate a specific acoustic frequency of a specific structural element as shown in FIG. 7B.

また、異常検出装置14Aは、周波数分析で得られた構造体要素ごとの固有音響周波数を、上述した固有周波数データベースに記録した固有音響周波数と照合することにより構造体要素を識別する。そして、識別した構造体要素ごとに第1実施形態と同様の振動変位の予測を行う。   Further, the abnormality detection device 14A identifies the structural element by comparing the natural acoustic frequency for each structural element obtained by the frequency analysis with the natural acoustic frequency recorded in the natural frequency database described above. And the prediction of the vibration displacement similar to 1st Embodiment is performed for every identified structural body element.

同様に、原子炉振動監視システム10Aの異常検出装置14Aは、加速度センサ13により振動加速度が検出されたとき、同時に検出された原子炉圧力容器21の振動加速度周波数を周波数分析(FFT)により成分分解する。また、周波数分析で得られる構造体要素ごとの固有音響周波数を固有周波数データベースに記録した固有振動加速度周波数と照合することにより構造体要素を識別する。そして、識別した構造体要素ごとに第1実施形態と同様の振動変位の予測を行う。   Similarly, the abnormality detection device 14A of the reactor vibration monitoring system 10A, when vibration acceleration is detected by the acceleration sensor 13, the vibration acceleration frequency of the reactor pressure vessel 21 detected at the same time is decomposed into components by frequency analysis (FFT). To do. Further, the structural element is identified by collating the natural acoustic frequency for each structural element obtained by frequency analysis with the natural vibration acceleration frequency recorded in the natural frequency database. And the prediction of the vibration displacement similar to 1st Embodiment is performed for every identified structural body element.

そして、異常検出装置14Aは、第1実施形態と同様に、予測した構造体要素の振動変位がプラント保全上許容される制限値を超える場合に異常信号を生成する。なお、この場合、異なる時点たとえば地震時と平常時に予測した構造体要素の両振動変位の差分を求めて、図8に示すように、この差分が所定値以上となった場合に異常信号を生成するようにしても良い。図8は構造体要素の振動変位が平常時に比べてσ1だけずれたときに異常信号が生成される例を示したものである。   Then, the abnormality detection device 14A generates an abnormality signal when the predicted vibration displacement of the structural element exceeds a limit value allowed for plant maintenance, as in the first embodiment. In this case, the difference between the two vibration displacements of the structural element predicted at different times, for example, at the time of an earthquake and normal times is obtained, and an abnormal signal is generated when the difference exceeds a predetermined value as shown in FIG. You may make it do. FIG. 8 shows an example in which an abnormal signal is generated when the vibration displacement of the structural element is shifted by σ1 compared to the normal state.

異常検出装置14Aは、もう1つの異常信号生成タイミングを有している。すなわち、音響周波数或いは振動加速度周波数の周波数分析で得られる各成分について卓越振動変位が抽出された場合に異常信号を生成する。図9構造体要素の卓越振動変位による異常信号の生成タイミングを示したものである。   The abnormality detection device 14A has another abnormality signal generation timing. That is, an abnormal signal is generated when the dominant vibration displacement is extracted for each component obtained by frequency analysis of the acoustic frequency or vibration acceleration frequency. 9 shows the generation timing of the abnormal signal due to the dominant vibration displacement of the structure element.

加えて、原子炉振動監視システム10Aの異常検出装置14Aは、その内部記録部に構造体要素ごとの固有音響周波数と異常現象との対応関係を記録可能に設けられる。図10は構造体要素ごとの固有音響周波数と異常現象の対応関係の一例を示したものである。異常検出装置14Aは、構造体要素の固有音響周波数を検出した際、この対応関係に基づいて異常が検出された構造体要素とその異常現象を特定する。原子炉振動監視システム10Aの警告装置15Aは、異常検出部14Aから異常信号の入力を受け、異常が検出された構造体要素とその異常現象の内容を報知する。図11は異常報知の一例を示したものである。   In addition, the abnormality detection device 14A of the reactor vibration monitoring system 10A is provided in its internal recording section so as to be able to record the correspondence between the natural acoustic frequency and the abnormal phenomenon for each structural element. FIG. 10 shows an example of the correspondence between the natural acoustic frequency and the abnormal phenomenon for each structure element. When detecting the natural acoustic frequency of the structure element, the abnormality detection device 14A specifies the structure element in which the abnormality is detected and the abnormal phenomenon based on this correspondence. The warning device 15A of the nuclear reactor vibration monitoring system 10A receives an input of an abnormality signal from the abnormality detection unit 14A, and notifies the structure element in which the abnormality is detected and the content of the abnormal phenomenon. FIG. 11 shows an example of abnormality notification.

次に、原子炉振動監視システム10Aの動作を説明する。   Next, the operation of the reactor vibration monitoring system 10A will be described.

図12は原子炉振動監視システム10Aにて実行される異常検出処理の流れを示すフローチャートである。以下、この異常検出処理の各ステップについて説明する。なお、ステップS101、ステップS102、ステップS104およびステップS105は、図5のステップS101、ステップS102、ステップS104およびステップS105と同様の処理を行うステップであるので、説明を省略する。   FIG. 12 is a flowchart showing a flow of abnormality detection processing executed in the reactor vibration monitoring system 10A. Hereinafter, each step of the abnormality detection process will be described. Note that step S101, step S102, step S104, and step S105 are steps that perform the same processing as step S101, step S102, step S104, and step S105 in FIG.

ステップS201では、原子炉圧力容器21の音響周波数および振動加速度周波数が成分分解され、構造体要素の固有音響周波数および固有振動加速周波数が抽出される。ステップS202では、固有音響周波数或いは固有振動加速度周波数について、卓越振動変位が抽出される。ステップS203では、固有周波数データベースが参照され、それぞれの固有音響周波数或いは固有振動加速度周波数に対応する構造体要素が識別される。   In step S201, the acoustic frequency and vibration acceleration frequency of the reactor pressure vessel 21 are subjected to component decomposition, and the natural acoustic frequency and natural vibration acceleration frequency of the structure element are extracted. In step S202, the dominant vibration displacement is extracted for the natural acoustic frequency or the natural vibration acceleration frequency. In step S203, the natural frequency database is referred to, and the structural element corresponding to each natural acoustic frequency or natural vibration acceleration frequency is identified.

ステップS204では、構造体変位の制限値データベースが参照され、ステップS203で識別された構造体要素ごとに、その振動変位がプラント保全上許容される制限値以下であるかどうか(Yes/No)が判断される。構造体要素の振動変位が、いずれも制限値以下である場合はステップS104に移行し、1つ以上の構造体要素の振動変位が、制限値を超える場合はステップS105に移行する。また、ステップS204では、ステップS202で卓越振動変位が抽出されたかどうか(Yes/No)が判断される。卓越振動変位が抽出されない場合はステップS104に移行し、卓越振動変位が抽出された場合はステップS5に移行する。   In step S204, the structure displacement limit value database is referred to, and for each structure element identified in step S203, whether or not the vibration displacement is equal to or less than the limit value allowed for plant maintenance (Yes / No). To be judged. If all the vibration displacements of the structure elements are equal to or less than the limit value, the process proceeds to step S104. If the vibration displacements of one or more structure elements exceed the limit value, the process proceeds to step S105. In step S204, it is determined whether or not the dominant vibration displacement is extracted in step S202 (Yes / No). If the dominant vibration displacement is not extracted, the process proceeds to step S104. If the dominant vibration displacement is extracted, the process proceeds to step S5.

よって、原子炉振動監視システム10Aによれば、
(2) 原子炉圧力容器21内に設けられる構造体要素ごとに振動変位を予測でき且つ各構造要素の振動変位の予測にあっても(1)の効果が得られる。
Therefore, according to the reactor vibration monitoring system 10A,
(2) The vibration displacement can be predicted for each structural element provided in the reactor pressure vessel 21, and the effect of (1) can be obtained even in the prediction of the vibration displacement of each structural element.

10,10A…原子炉振動監視システム,11…超音波式センサ,12…音響センサ,13…加速度センサ,14,14A…異常検出装置,15…警告装置,20…原子力発電プラント,21…原子炉圧力容器,22…燃料集合体,23…制御棒案内管。   DESCRIPTION OF SYMBOLS 10,10A ... Reactor vibration monitoring system, 11 ... Ultrasonic sensor, 12 ... Acoustic sensor, 13 ... Acceleration sensor, 14, 14A ... Abnormality detection device, 15 ... Warning device, 20 ... Nuclear power plant, 21 ... Reactor Pressure vessel, 22 ... fuel assembly, 23 ... control rod guide tube.

Claims (11)

原子炉圧力容器外側から、原子炉圧力容器内に設けられる燃料集合体や制御棒案内管などの構造体の振動挙動を監視する原子炉振動監視方法において、
前記構造体の振動変位と原子炉圧力容器の振動特性とを相関付けておき、取得した原子炉圧力容器の振動特性を前記相関と照合することにより構造体の振動変位を予測し、この振動変位がプラント保全上許容される制限値を超える場合に、原子炉圧力容器の異常報知を行うことを特徴とする原子炉振動監視方法。
In the reactor vibration monitoring method for monitoring the vibration behavior of a structure such as a fuel assembly or a control rod guide tube provided in the reactor pressure vessel from the outside of the reactor pressure vessel,
The vibration displacement of the structure is correlated with the vibration characteristics of the reactor pressure vessel, and the vibration displacement of the structure is predicted by comparing the obtained vibration characteristics of the reactor pressure vessel with the correlation. A reactor vibration monitoring method comprising: notifying an abnormality of a reactor pressure vessel when the temperature exceeds a limit value allowed for plant maintenance.
原子炉圧力容器の振動特性として音響振幅を用いることを特徴とする請求項1に記載の原子炉振動監視方法。   The method according to claim 1, wherein an acoustic amplitude is used as a vibration characteristic of the reactor pressure vessel. 原子炉圧力容器の振動特性として振動加速度を用いることを特徴とする請求項1に記載の原子炉振動監視方法。   2. The reactor vibration monitoring method according to claim 1, wherein vibration acceleration is used as the vibration characteristic of the reactor pressure vessel. 原子炉圧力容器内に設けられる構造体要素ごとの固有音響周波数データを用意しておき、
前記原子炉圧力容器の音響振幅の取得と共に原子炉圧力容器の音響周波数を取得し、この音響周波数の成分分解で得られる構造体要素ごとの固有音響周波数を前記固有周波数データと照合することにより各構造体要素を識別し、識別した構造体要素ごとに前記振動変位の予測を行うことを特徴とする請求項2に記載の原子炉振動監視方法。
Prepare the natural acoustic frequency data for each structural element provided in the reactor pressure vessel,
Acquire the acoustic frequency of the reactor pressure vessel together with the acquisition of the acoustic amplitude of the reactor pressure vessel, and collate the natural acoustic frequency for each structural element obtained by component decomposition of this acoustic frequency with the natural frequency data. The reactor vibration monitoring method according to claim 2, wherein a structural element is identified, and the vibration displacement is predicted for each identified structural element.
原子炉圧力容器内に設けられる構造体要素ごとの固有振動加速度周波数データを用意しておき、
前記原子炉圧力容器の振動加速度の取得と共に原子炉圧力容器の振動加速度周波数を取得し、この振動加速度周波数の成分分解で得られる構造体要素ごとの固有振動加速度周波数を前記固有周波数データと照合することにより各構造体要素を識別し、識別した構造体要素ごとに前記振動変位の予測を行うことを特徴とする請求項3に記載の原子炉振動監視方法。
Prepare natural vibration acceleration frequency data for each structural element provided in the reactor pressure vessel,
Acquire the vibration acceleration frequency of the reactor pressure vessel together with the acquisition of the vibration acceleration of the reactor pressure vessel, and collate the natural vibration acceleration frequency for each structural element obtained by component decomposition of the vibration acceleration frequency with the natural frequency data. The reactor vibration monitoring method according to claim 3, wherein each structural element is identified as a result, and the vibration displacement is predicted for each identified structural element.
原子炉圧力容器外側から、原子炉圧力容器内に設けられる燃料集合体や制御棒案内管などの構造体の振動挙動を監視する原子炉振動監視システムにおいて、
前記構造体の振動変位を検出する変位感応センサと、
原子炉圧力容器の振動特性を検出する振動感応センサと、
前記変位感応センサにより検出された構造体の振動変位と前記振動感応センサにより検出された原子炉圧力容器の振動特性とを相関付けて記録し、前記振動感応センサにより検出された原子炉圧力容器の振動特性を前記相関と照合することにより構造体の振動変位を予測し、予測した振動変位がプラント保全上許容される制限値を超える場合に異常信号を生成する異常検出装置と、
前記異常検出装置から生成される異常信号の入力を受けて、原子炉圧力容器の異常を報知する警告装置と、
を備えることを特徴とする原子炉振動監視システム。
In the reactor vibration monitoring system that monitors the vibration behavior of structures such as fuel assemblies and control rod guide tubes provided in the reactor pressure vessel from the outside of the reactor pressure vessel,
A displacement sensitive sensor for detecting vibration displacement of the structure;
A vibration sensitive sensor that detects the vibration characteristics of the reactor pressure vessel;
The vibration displacement of the structure detected by the displacement sensitive sensor and the vibration characteristics of the reactor pressure vessel detected by the vibration sensitive sensor are correlated and recorded, and the reactor pressure vessel detected by the vibration sensitive sensor is recorded. An abnormality detection device that predicts vibration displacement of the structure by checking vibration characteristics with the correlation, and generates an abnormality signal when the predicted vibration displacement exceeds a limit value permitted for plant maintenance;
A warning device that receives an input of an abnormality signal generated from the abnormality detection device and notifies an abnormality of a reactor pressure vessel;
A reactor vibration monitoring system comprising:
前記変位感応センサとして超音波式変位センサが用いられることを特徴とする請求項6に記載の原子炉振動監視システム。   The reactor vibration monitoring system according to claim 6, wherein an ultrasonic displacement sensor is used as the displacement sensitive sensor. 前記振動感応センサとして音響センサが用いられ、前記振動特性としてこの音響センサにより検出される原子炉圧力容器の音響振幅が用いられることを特徴とする請求項6に記載の原子炉振動監視システム。   The reactor vibration monitoring system according to claim 6, wherein an acoustic sensor is used as the vibration sensitive sensor, and an acoustic amplitude of a reactor pressure vessel detected by the acoustic sensor is used as the vibration characteristic. 前記振動感応センサとして加速度センサが用いられ、前記振動特性としてこの加速度センサにより検出される原子炉圧力容器の振動加速度が用いられることを特徴とする請求項6に記載の原子炉振動監視システム。   The reactor vibration monitoring system according to claim 6, wherein an acceleration sensor is used as the vibration sensitive sensor, and a vibration acceleration of a reactor pressure vessel detected by the acceleration sensor is used as the vibration characteristic. 前記原子炉振動監視システムは、原子炉圧力容器内に設けられる構造体要素ごとの固有音響周波数を記録した固有音響周波数データベースを備え、
前記異常検出装置は、前記音響センサにより音響振幅が検出されたとき、同時に検出された原子炉圧力容器の音響周波数を成分分解し、この成分分解で得られる構造体要素ごとの固有音響周波数を前記固有周波数データベースに記録された固有音響周波数と照合することにより各構造体要素を識別し、識別した構造体要素ごとに前記振動変位の予測を行うことを特徴とする請求項8に記載の原子炉振動監視システム。
The reactor vibration monitoring system includes a natural acoustic frequency database that records a natural acoustic frequency for each structural element provided in the reactor pressure vessel,
When the acoustic amplitude is detected by the acoustic sensor, the anomaly detection device component decomposes the acoustic frequency of the reactor pressure vessel detected at the same time, and calculates the natural acoustic frequency for each structural element obtained by the component decomposition. 9. The nuclear reactor according to claim 8, wherein each structural element is identified by collating with a natural acoustic frequency recorded in a natural frequency database, and the vibration displacement is predicted for each identified structural element. Vibration monitoring system.
前記原子炉振動監視システムは、原子炉圧力容器内に設けられる構造体要素ごとの固有振動加速度周波数を記録した固有振動加速度周波数データベースを備え、
前記異常検出装置は、前記加速度センサにより振動加速度が検出されたとき、同時に検出された原子炉圧力容器の振動加速度周波数を成分分解し、この成分分解で得られる構造体要素ごとの固有振動加速度周波数を前記固有周波数データベースに記録された固有振動加速度周波数と照合することにより各構造体要素を識別し、識別した構造体要素ごとに前記振動変位の予測を行うことを特徴とする請求項9に記載の原子炉振動監視システム。
The reactor vibration monitoring system includes a natural vibration acceleration frequency database that records the natural vibration acceleration frequency for each structural element provided in the reactor pressure vessel.
When the vibration acceleration is detected by the acceleration sensor, the abnormality detection device decomposes the vibration acceleration frequency of the reactor pressure vessel detected at the same time, and the natural vibration acceleration frequency for each structure element obtained by the component decomposition. 10. Each structural element is identified by collating the natural vibration acceleration frequency recorded in the natural frequency database, and the vibration displacement is predicted for each identified structural element. Nuclear reactor vibration monitoring system.
JP2009090307A 2009-04-02 2009-04-02 Reactor vibration monitoring method and reactor vibration monitoring system Active JP5322742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009090307A JP5322742B2 (en) 2009-04-02 2009-04-02 Reactor vibration monitoring method and reactor vibration monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009090307A JP5322742B2 (en) 2009-04-02 2009-04-02 Reactor vibration monitoring method and reactor vibration monitoring system

Publications (2)

Publication Number Publication Date
JP2010243254A JP2010243254A (en) 2010-10-28
JP5322742B2 true JP5322742B2 (en) 2013-10-23

Family

ID=43096427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009090307A Active JP5322742B2 (en) 2009-04-02 2009-04-02 Reactor vibration monitoring method and reactor vibration monitoring system

Country Status (1)

Country Link
JP (1) JP5322742B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112984A (en) * 2019-05-29 2019-08-09 维沃移动通信有限公司 A kind of vibration control method and mobile terminal of linear motor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101451831B1 (en) * 2013-01-31 2014-10-16 한국원자력연구원 Apparatus for controlling control rod of reactor and method thereof
KR102379217B1 (en) * 2019-12-05 2022-03-24 한국수력원자력 주식회사 Alarm processing system and method of nuclear power plant

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2466082A1 (en) * 1979-09-26 1981-03-27 Framatome Sa METHOD OF ACOUSTICALLY AND ULTRASONICALLY DETECTING COMBUSTIBLE ASSEMBLIES OF A NUCLEAR REACTOR WHICH HAVE BEEN DEFECTIVE IN SERVICE AND CORRESPONDING DETECTION DEVICE
JPS56154630A (en) * 1980-05-02 1981-11-30 Chugoku Electric Power Co Ltd:The Detecting method of abnormal vibration
JPS5764126A (en) * 1980-10-08 1982-04-19 Chugoku Electric Power Co Ltd:The Oscillation detecting apparatus
JPS62162698U (en) * 1986-04-04 1987-10-16
JPH02212722A (en) * 1989-02-14 1990-08-23 Toshiba Corp Handy diagnostic apparatus for construction
JPH0719987A (en) * 1993-06-23 1995-01-20 Tokyo Electric Power Co Inc:The Tube leak detecting device
JPH07181076A (en) * 1993-12-24 1995-07-18 Toshiba Corp Vibration detector for shaft of nuclear reactor recirculation pump
JPH0821780A (en) * 1994-07-07 1996-01-23 Hitachi Ltd Leak detector and leak-detecting method
JPH1183617A (en) * 1997-09-12 1999-03-26 Mitsubishi Heavy Ind Ltd Calibration method and vibration analyzer
JP3782559B2 (en) * 1997-10-23 2006-06-07 東京電力株式会社 Reactor vibration monitoring device
JP3941615B2 (en) * 2002-07-19 2007-07-04 株式会社日立製作所 Internal torsional vibration measuring device for internal pump
JP4551920B2 (en) * 2007-09-13 2010-09-29 株式会社東芝 Vibration / deterioration monitoring apparatus and method
JP2009079906A (en) * 2007-09-25 2009-04-16 Toshiba Corp Vibration evaluation device and method
JP2009229355A (en) * 2008-03-25 2009-10-08 Toshiba Corp Device and method for monitoring oscillation of nuclear reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112984A (en) * 2019-05-29 2019-08-09 维沃移动通信有限公司 A kind of vibration control method and mobile terminal of linear motor

Also Published As

Publication number Publication date
JP2010243254A (en) 2010-10-28

Similar Documents

Publication Publication Date Title
US20080069290A1 (en) Integrated monitoring method for nuclear device and system using the same
JP5573834B2 (en) Failure prediction system, electronic device, and failure prediction method
EP1898194A2 (en) Anomaly monitoring device and method
JP6308212B2 (en) Leakage detection system, vibration detection device, information processing device, and leak detection method
JP5322742B2 (en) Reactor vibration monitoring method and reactor vibration monitoring system
JP6322281B2 (en) Method and sensor system for monitoring the operation of a sensor
JPWO2007058196A1 (en) Stator core looseness diagnosis device and stator core looseness diagnosis method
JP7004060B2 (en) Diagnostic equipment, systems, diagnostic methods and programs
US9766118B2 (en) Method and device for monitoring vibrations of the winding overhang in a generator
WO2017078004A1 (en) Pipe condition detection device, pipe condition detection method, computer-readable recording medium, and pipe condition detection system
US10900869B2 (en) Detection of bearing carbonization failure in turbine systems
JP2012163439A (en) Rotating machine vibration monitoring system and monitoring method
RU2015120741A (en) METHOD AND DEVICE FOR ACOUSTIC DETECTION OF MISCONFORMANCE OF THE ENGINE SUPPORTED BY ACTIVE NOISE CONTROL
JP2011027615A (en) Integrity monitoring evaluation support system and method of valve device
US20120130607A1 (en) Method for early detection of damage in a motor vehicle transmission
JP2013210200A (en) Ultrasonic thickness measuring device and ultrasonic thickness measuring method
JP2009258063A (en) Damage monitoring system and measuring device
WO2014065743A1 (en) Cylinder diagnosis
EP2629071A1 (en) Condition Monitoring of Anti-vibration Mounts
JP5939886B2 (en) Earthquake motion convergence judgment system
JP2011150586A (en) Management system for failure history
JP5371096B2 (en) Monitoring system, monitoring method, and program
JPWO2020059693A1 (en) Fluid leak diagnostic device, fluid leak diagnostic system, fluid leak diagnostic method, and fluid leak diagnostic program
KR101045479B1 (en) Measuring system with multi-sensor
WO2022014597A1 (en) Monitoring system, aircraft, and monitoring method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130716

R151 Written notification of patent or utility model registration

Ref document number: 5322742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151