JP5321469B2 - Powder and production method thereof - Google Patents

Powder and production method thereof Download PDF

Info

Publication number
JP5321469B2
JP5321469B2 JP2009545377A JP2009545377A JP5321469B2 JP 5321469 B2 JP5321469 B2 JP 5321469B2 JP 2009545377 A JP2009545377 A JP 2009545377A JP 2009545377 A JP2009545377 A JP 2009545377A JP 5321469 B2 JP5321469 B2 JP 5321469B2
Authority
JP
Japan
Prior art keywords
powder
apatite
metal powder
minutes
iron powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009545377A
Other languages
Japanese (ja)
Other versions
JPWO2009075173A1 (en
Inventor
仁子 金井
鋼志 丸山
圭 粕谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2009545377A priority Critical patent/JP5321469B2/en
Publication of JPWO2009075173A1 publication Critical patent/JPWO2009075173A1/en
Application granted granted Critical
Publication of JP5321469B2 publication Critical patent/JP5321469B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/08Metallic powder characterised by particles having an amorphous microstructure

Abstract

The powder of the invention comprises metal powder, an apatite layer covering the metal powder and silica particles attached to the metal powder or apatite layer. The powder of the invention allows annealing to be carried out at high temperature without destruction of the insulating layer during production of powder magnetic cores. The insulating property of the insulating layer is therefore maintained, and a powder magnetic core with sufficiently high magnetic permeability can be obtained.

Description

本発明は、低鉄損な圧粉磁心の原料粉末として好適な粉末に関する。   The present invention relates to a powder suitable as a raw material powder for a dust core having a low iron loss.

変圧器、電動機、発電機、スピーカ、誘導加熱器、各種アクチュエータ等、我々の周囲には電磁気を利用した製品が多々ある。それらの高性能化、小型化を図る上で軟磁性材料の圧粉成型体である磁心の性能向上が不可欠である。   There are many products using electromagnetism around us, such as transformers, motors, generators, speakers, induction heaters, and various actuators. In order to achieve high performance and miniaturization, it is essential to improve the performance of the magnetic core, which is a compacted body of soft magnetic material.

前記磁心は、従来、ケイ素鋼の薄膜と絶縁層とを交互に複数積層し、これを型で打ち抜くことにより製造されている(電磁鋼板)。しかしながらこの方法は、製品小型化かつ複雑形状化への対応の点で不都合が多く、渦電流損失の低減という点で課題があった。   Conventionally, the magnetic core is manufactured by alternately laminating a plurality of silicon steel thin films and insulating layers and punching them with a mold (magnetic steel sheet). However, this method has many inconveniences in terms of product size reduction and complex shape, and has a problem in reducing eddy current loss.

このような課題に対して、近年、成型性に優れかつ低コスト製造可能な磁心として、軟磁性金属粉末を圧縮成型して得られる圧粉磁心が注目され、種々の研究開発がなされている。   In recent years, as a magnetic core excellent in moldability and capable of being manufactured at low cost, a powder magnetic core obtained by compression-molding a soft magnetic metal powder has attracted attention, and various research and development have been made.

このような圧粉磁心は、磁束密度を大きくするために透磁率を大きくすることが要求される。特にモーター用の磁心は交番磁界中で使用されることが多いが、鉄損が大きいとエネルギー変換効率が悪化するので、鉄損が小さい(低鉄損)ことが要求される。   Such a dust core is required to increase the magnetic permeability in order to increase the magnetic flux density. In particular, a magnetic core for a motor is often used in an alternating magnetic field, but if the iron loss is large, the energy conversion efficiency is deteriorated, so that the iron loss is required to be small (low iron loss).

前記鉄損には、ヒステリシス損失、渦電流損失及び残留損失があるが、主に問題となるのは、ヒステリシス損失と渦電流損失である。   The iron loss includes a hysteresis loss, an eddy current loss, and a residual loss. The main problems are hysteresis loss and eddy current loss.

圧粉磁心におけるヒステリシス損失の増大は、軟磁性金属粉末を圧縮成型して圧粉磁心とする際、軟磁性金属粉末に巨大な加工歪みが加えられることに起因する。従って、ヒステリシス損失の低減には、圧縮成型後、得られた成型体を焼鈍することにより、軟磁性金属粉末中に加えられた歪みを解放することが有効であり、その焼鈍温度は600℃以上が好ましいと言われている。   The increase in hysteresis loss in the dust core is caused by the fact that enormous processing strain is applied to the soft magnetic metal powder when the soft magnetic metal powder is compression-molded into a dust core. Therefore, to reduce the hysteresis loss, it is effective to release the strain applied to the soft magnetic metal powder by annealing the obtained molded body after compression molding, and the annealing temperature is 600 ° C. or higher. Is said to be preferred.

一方で、渦電流損失の低減を図るためには、軟磁性金属粉末を絶縁材料で被覆することが有効である。しかしながら、従来から一般的に使用される絶縁材料は、ヒステリシス損失を低減するための焼鈍を行うと、絶縁材料の耐熱性が低いために分解が起こり、絶縁性が著しく低下してしまう。したがって、渦電流損失の低減とヒステリシス損失の低減の両立は非常に大きな課題である。   On the other hand, in order to reduce eddy current loss, it is effective to coat soft magnetic metal powder with an insulating material. However, when the insulating material generally used conventionally is annealed to reduce the hysteresis loss, the insulating material has low heat resistance, so that decomposition occurs and the insulating property is remarkably lowered. Therefore, coexistence of reduction of eddy current loss and reduction of hysteresis loss is a very big problem.

そこで、このような課題を解決するために、耐熱性に優れた絶縁材料の開発が行われている。特に、軟磁性金属粉末として鉄粉を用いたものは安価であり、磁束密度の高い圧粉磁心が製造できることから、種々の研究開発がなされている。例えば、特許文献1では、耐熱性に優れた絶縁被膜としてシリカ粒子を採用する方法が提案されている。前記文献では、表面をリン酸処理した鉄粉とシリカ粒子を含む懸濁液とを混合し、この混合体を乾燥することによりシリカ粉末で被覆された金属粉末を得る方法が開示されている。   Therefore, in order to solve such a problem, an insulating material having excellent heat resistance has been developed. In particular, those using iron powder as a soft magnetic metal powder are inexpensive and can produce a dust core having a high magnetic flux density, so various research and development have been made. For example, Patent Document 1 proposes a method in which silica particles are used as an insulating coating having excellent heat resistance. The literature discloses a method of obtaining a metal powder coated with silica powder by mixing iron powder whose surface has been subjected to phosphoric acid treatment and a suspension containing silica particles, and drying the mixture.

しかしながら、前記シリカ粒子で被覆された鉄粉を使用して圧粉磁心を作製しようとした場合、金属粉末同士の接合力を充分に得るためには、焼鈍温度を、600℃付近の通常の工程より高く(例えば800℃以上)する必要があった。しかしながら、焼鈍温度を高くしすぎると、鉄のキュリー温度は769℃であるので、圧粉磁心の磁気特性が低下する傾向がある。   However, when an attempt is made to produce a powder magnetic core using the iron powder coated with the silica particles, the annealing temperature is a normal process around 600 ° C. in order to obtain a sufficient bonding force between the metal powders. It was necessary to make it higher (for example, 800 ° C. or higher). However, if the annealing temperature is set too high, the Curie temperature of iron is 769 ° C., so the magnetic properties of the dust core tend to deteriorate.

また特許文献2では、軟磁性金属粉末の表面に酸化物層と絶縁層とを形成し、還元性雰囲気、高温条件下で結合強化処理することにより、軟磁性金属粉末の表面に、絶縁性に優れた単一層を形成する方法が提案されている。
特開平9−180924号公報 特開2007−194273号公報
Further, in Patent Document 2, an oxide layer and an insulating layer are formed on the surface of the soft magnetic metal powder, and a bond strengthening treatment is performed in a reducing atmosphere under a high temperature condition. A method of forming an excellent single layer has been proposed.
JP-A-9-180924 JP 2007-194273 A

上記特許文献2に開示された方法により作製された軟磁性金属粉末を用いると、耐熱性に優れた圧粉磁心を提供することができるとされている。しかし、当該方法の場合、工程にかかる焼鈍等に関わるエネルギーコストが高いこと、大量生産にはあまり向いていないこと等の理由から、さらに簡便な方法で、耐熱性に優れた被膜を有する軟磁性金属粉末を得ることを考えた。   It is said that when a soft magnetic metal powder produced by the method disclosed in Patent Document 2 is used, a dust core having excellent heat resistance can be provided. However, in the case of this method, because of the high energy cost related to annealing and the like for the process, and because it is not very suitable for mass production, it is a simpler method with a soft magnetic film having excellent heat resistance. Considered obtaining metal powder.

また、磁束密度を高めるためには、軟磁性金属粉末にできるだけ薄くかつ広範囲に絶縁層を形成することが効果的であるが、簡便で低コストな方法はいままで知られていなかった。   In order to increase the magnetic flux density, it is effective to form an insulating layer as thin and as wide as possible on the soft magnetic metal powder, but a simple and low cost method has not been known so far.

本発明は、上述したような従来技術の有する課題に鑑みてなされたもので、圧粉磁心おいてヒステリシス損失低減と渦電流損失低減の両立を可能とし、また低鉄損と高磁束密度化の両立を可能とする軟磁性金属原料粉末を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art. In the dust core, it is possible to achieve both hysteresis loss reduction and eddy current loss reduction, and low iron loss and high magnetic flux density. An object of the present invention is to provide a soft magnetic metal raw material powder that can be compatible.

本発明は、上記課題を解決するために、金属粉と、前記金属粉を被覆するアパタイト層と、前記金属粉又は前記アパタイト層に付着したシリカ粒子とを有してなる粉末を提供する。   In order to solve the above-mentioned problems, the present invention provides a powder comprising metal powder, an apatite layer covering the metal powder, and silica particles attached to the metal powder or the apatite layer.

本発明によれば、金属粉をアパタイト層で被覆するとともに、金属粉又はアパタイト層にシリカ粒子を付着させることで、金属粉表面に600℃以上の焼鈍温度にも耐え得る絶縁被膜が形成可能となる。かかる構成の採用及びそれによる効果は、ヒステリシス損失を低減するためには、600℃以上の焼鈍温度に耐え得る良好な耐熱性絶縁膜の形成が有効であるという本発明者らの知見に基づくものである。   According to the present invention, it is possible to form an insulating coating that can withstand an annealing temperature of 600 ° C. or higher on the surface of the metal powder by coating the metal powder with the apatite layer and attaching silica particles to the metal powder or the apatite layer. Become. The adoption of such a configuration and the effects thereof are based on the knowledge of the present inventors that it is effective to form a good heat-resistant insulating film that can withstand an annealing temperature of 600 ° C. or higher in order to reduce hysteresis loss. It is.

本発明において、前記アパタイト層は下記一般式(I−a)又は(I−b)で表される化合物を含有することが好ましい。
Ca10(PO (I−a)
Ca(10−(m×n)/2)(PO (I−b)
(式中、Mは陽イオンを与える原子又は原子群を示し、mはMが与える陽イオンの価数を示し、nは0を超え5以下であり、Xは一価の陰イオンを与える原子又は原子群を示す。)
In the present invention, the apatite layer preferably contains a compound represented by the following general formula (Ia) or (Ib).
Ca 10 (PO 4 ) 6 X 2 (Ia)
Ca (10- (m × n) / 2) M n (PO 4 ) 6 X 2 (I-b)
(In the formula, M represents an atom or a group of atoms giving a cation, m represents a valence of a cation given by M, n is more than 0 and 5 or less, and X is an atom giving a monovalent anion. Or an atomic group.)

また、前記シリカ粒子は、有機基で表面修飾されたシリカ粒子であることが好ましい。   Moreover, it is preferable that the said silica particle is a silica particle surface-modified with the organic group.

さらに、前記有機基で表面修飾されたシリカ粒子は、下記一般式(II)又は(III)で示される化合物を用いて表面修飾されたシリカ粒子であることが好ましい。
Si(OR4−n (II)
SiX4−n (III)
(式中、nは1〜3の整数であり、R及びRは一価の有機基を示し、Xはハロゲンを示す)。
Furthermore, it is preferable that the silica particle surface-modified with the organic group is a silica particle surface-modified using a compound represented by the following general formula (II) or (III).
R 1 n Si (OR 2 ) 4-n (II)
R 1 n SiX 4-n (III)
(In the formula, n is an integer of 1 to 3, R 1 and R 2 represent a monovalent organic group, and X represents a halogen).

また、前記金属粉は軟磁性材料の粉末であることが好ましい。   The metal powder is preferably a soft magnetic material powder.

本発明の粉末は圧粉磁心用の粉末として好適である。   The powder of the present invention is suitable as a powder for a dust core.

また、本発明は、金属粉をアパタイトで被覆する第1の工程と、前記第1の工程で得られた金属粉表面又はアパタイト表面にシリカ粉末を付着させる第2の工程と、前記第2の工程で得られた粉末を350℃以下で予備硬化し、前記金属粉と、前記金属粉を被覆するアパタイト層と、前記金属粉又はアパタイト層に付着したシリカ粒子とを有してなる粉末を得る第3の工程と、を備える、粉末の製造方法を提供する。   The present invention also includes a first step of coating the metal powder with apatite, a second step of attaching silica powder to the metal powder surface or apatite surface obtained in the first step, and the second step. The powder obtained in the process is pre-cured at 350 ° C. or lower to obtain a powder comprising the metal powder, an apatite layer covering the metal powder, and silica particles attached to the metal powder or the apatite layer. And a third step. A method for producing a powder is provided.

前記第1の工程に供する前記金属粉としては、リン酸処理された金属粉を用いることが好ましい。   As the metal powder used in the first step, it is preferable to use a metal powder that has been subjected to phosphoric acid treatment.

本発明の粉末は、アパタイト層及びそれに付着したシリカ粒子を有する絶縁層で被覆され、該絶縁層は絶縁性ならびに耐熱性に優れている。従って、圧粉磁心を製造する上で、絶縁層の破壊を招くことなく、高温により焼鈍することが可能である。そのため、絶縁層の絶縁性を保持し、透磁率の充分に高い圧粉磁心を得ることができる。   The powder of the present invention is coated with an apatite layer and an insulating layer having silica particles attached thereto, and the insulating layer is excellent in insulation and heat resistance. Therefore, when producing a dust core, annealing can be performed at a high temperature without causing damage to the insulating layer. Therefore, it is possible to obtain a dust core having a sufficiently high permeability while maintaining the insulating properties of the insulating layer.

実施例1で得られたヒドロキシアパタイト被覆鉄粉の断面の走査型電子顕微鏡(SEM)像を示す写真である(倍率:2500倍)。It is a photograph which shows the scanning electron microscope (SEM) image of the cross section of the hydroxyapatite covering iron powder obtained in Example 1 (magnification: 2500 times). 実施例1で得られたヒドロキシアパタイト被覆鉄粉の断面のSEM像を示す写真である(倍率:50000倍)。It is a photograph which shows the SEM image of the cross section of the hydroxyapatite covering iron powder obtained in Example 1 (magnification: 50000 times). 実施例1で得られたナノシリカ付着ヒドロキシアパタイト被覆鉄粉の断面のSEM像を示す写真である(倍率:1000倍)。It is a photograph which shows the SEM image of the cross section of the nano silica adhesion hydroxyapatite coating iron powder obtained in Example 1 (magnification: 1000 times). 実施例1で得られたナノシリカ付着ヒドロキシアパタイト被覆鉄粉の断面のSEM像を示す写真である(倍率:100000倍)。It is a photograph which shows the SEM image of the cross section of the nano silica adhesion hydroxyapatite coating iron powder obtained in Example 1 (magnification: 100000 times).

本発明の粉末の一態様は、金属粉と、前記金属粉を被覆するアパタイト層と、前記金属粉又は前記アパタイト層に付着したシリカ粒子とを有してなる粉末である。以下、本発明の粉末の各構成要件について、順に説明する。   One aspect of the powder of the present invention is a powder comprising a metal powder, an apatite layer covering the metal powder, and silica particles attached to the metal powder or the apatite layer. Hereinafter, each component of the powder of the present invention will be described in order.

(金属粉)
本発明において用いられる金属粉は、強磁性を有しかつ高い飽和磁束密度を示す金属粉であれば、特に制限なく使用することができ、具体的には例えば、鉄粉、ケイ素鋼粉、センダスト粉、アモルファス粉、パーメンジュール粉、ソフトフェライト粉、アモルファス磁性合金粉、ナノクリスタル磁性合金粉及びパーマロイ粉等の軟磁性材料を挙げることができ、これらは単独で又は二種類以上を混合して使用することができる。中でも、磁性が強い上に低価格である点で、鉄粉が好ましい。
(Metal powder)
The metal powder used in the present invention can be used without particular limitation as long as the metal powder has ferromagnetism and exhibits a high saturation magnetic flux density. Specifically, for example, iron powder, silicon steel powder, Sendust Examples include soft magnetic materials such as powder, amorphous powder, permendur powder, soft ferrite powder, amorphous magnetic alloy powder, nanocrystal magnetic alloy powder, and permalloy powder. These may be used alone or in combination of two or more. Can be used. Among these, iron powder is preferable because it is strong in magnetism and inexpensive.

また、鉄粉の中でも、飽和磁束密度や透磁率などの磁気特性に優れ、圧縮性に優れる点で、純鉄粉が特に好ましい。このような純鉄粉としては、具体的には例えば、アトマイズ鉄粉、還元鉄粉及び電解鉄粉等を挙げることができ、例えば株式会社神戸製鋼所製の300NH等が挙げられる。   Among iron powders, pure iron powder is particularly preferable because it is excellent in magnetic properties such as saturation magnetic flux density and magnetic permeability, and is excellent in compressibility. Specific examples of such pure iron powder include atomized iron powder, reduced iron powder, and electrolytic iron powder. Examples thereof include 300NH manufactured by Kobe Steel, Ltd.

また、金属粉としては、圧縮性や圧粉磁心の磁気特性などに悪影響を及ぼさない範囲で、含有元素の調整を行ったものを用いても良い。具体的には例えば、金属粉の酸化を防止する目的でリン元素を添加したり、磁気特性向上の目的でコバルト、ニッケル、マンガン、クロム、モリブデン、銅等の元素を添加したりすることができる。   Moreover, as a metal powder, you may use what adjusted the content element in the range which does not have a bad influence on compressibility, the magnetic characteristic of a powder magnetic core, etc. Specifically, for example, phosphorus element can be added for the purpose of preventing oxidation of metal powder, or elements such as cobalt, nickel, manganese, chromium, molybdenum, copper, etc. can be added for the purpose of improving magnetic properties. .

金属粉の粒径としては、特に制限はなく、圧粉磁心の用途や要求特性によって適宜決めることができる。一般的には、走査型電子顕微鏡(SEM)等により観察できる粒子の大きさが1μm〜300μmの範囲にあるものから選択することができる。粒径が1μm以上であれば、圧粉磁心作成時に成形しやすくなる傾向があり、300μm以下であれば、圧粉磁心の渦電流が大きくなるのを抑制でき、アパタイト層をコートしやすくなる傾向がある。また、平均粒径(ふるい分け法により求められる平均二次粒径)としては50〜250μmのものが好ましい。   There is no restriction | limiting in particular as a particle size of metal powder, According to the use and required characteristic of a powder magnetic core, it can determine suitably. Generally, the particle size that can be observed with a scanning electron microscope (SEM) or the like can be selected from those having a size in the range of 1 μm to 300 μm. If the particle size is 1 μm or more, there is a tendency to be easily molded when the dust core is formed, and if it is 300 μm or less, an increase in eddy current of the dust core can be suppressed, and the apatite layer tends to be coated. There is. Moreover, as an average particle diameter (average secondary particle diameter calculated | required by the screening method), the thing of 50-250 micrometers is preferable.

金属粉としては、特にその形状に制限はなく、球状、塊状のものや、公知の製法又は機械加工によって、扁平加工した扁平状粉末を用いても良い。   The shape of the metal powder is not particularly limited, and a spherical or lump shape, or a flat powder that has been flattened by a known production method or machining may be used.

(アパタイト層)
本発明の粉末表面を被覆するアパタイト層は、前記金属粉の絶縁被膜としての機能を有する。かかる観点から、アパタイト層は前記金属粉の表面を層状に覆う被膜構造となっていることが好ましい。
(Apatite layer)
The apatite layer covering the powder surface of the present invention has a function as an insulating coating of the metal powder. From this point of view, it is preferable that the apatite layer has a coating structure that covers the surface of the metal powder in layers.

アパタイト層とは、アパタイト構造をとる物質で構成される層の意である。アパタイト層のアパタイト構造をとる物質の好ましい例としては、具体的には、下記一般式(I−a)又は(I−b)で表される化合物を挙げることができる。
Ca10(PO (I−a)
Ca(10−(m×n)/2)(PO (I−b)
(式中、Mは陽イオンを与える原子を示し、mはMが与える陽イオンの価数を示し、nは0を超え5以下であり、Xは一価の陰イオンを与える原子又は原子群を示す。)
An apatite layer is a layer composed of a substance having an apatite structure. Preferable examples of the substance having an apatite structure of the apatite layer include compounds represented by the following general formula (Ia) or (Ib).
Ca 10 (PO 4 ) 6 X 2 (Ia)
Ca (10- (m × n) / 2) M n (PO 4 ) 6 X 2 (I-b)
(In the formula, M represents an atom which gives a cation, m represents a valence of a cation given by M, n is more than 0 and 5 or less, and X is an atom or atomic group which gives a monovalent anion. Is shown.)

前記一般式(I−b)において、陽イオンを与える原子Mは、好ましくはカルシウムに置換しうる金属である。かかる金属としては、具体的にはイオン半径が0.80〜1.40Åの金属を挙げることができ、例えば、ナトリウム、マグネシウム、カリウム、カルシウム、スカンジウム、チタン、クロム、マンガン、鉄、コバルト、ニッケル、亜鉛、ストロンチウム、イットリウム、ジルコニウム、ルテニウム、ロジウム、パラジウム、銀、カドミウム、インジウム、スズ、アンチモン、テルル、バリウム、ランタン、セリウム、プラセオジウム、ネオジウム、プロメチウム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム、ハフニウム、白金、金、水銀、タリウム、鉛、ビスマス等を挙げることができる。前記一般式(I−b)中のMは1種でも2種以上であってもよい。また、前記一般式(I−b)において、nの範囲としては、0を超え5以下であり、0を超え2.5以下であることがより好ましく、0を超え1.0以下であることがより好ましい。前記一般式(I−a)及び(I−b)において、Xとしては、水酸基(OH)及びハロゲン(F、Cl、B、I等)が好ましく、水酸基及びフッ素がさらに好ましい。Xが水酸基である場合は、金属粉末への塗布性に優れる点で好ましく、フッ素である場合は、強度に優れる点で好ましい。   In the general formula (Ib), the atom M that gives a cation is preferably a metal that can be substituted with calcium. Specific examples of such metals include metals having an ionic radius of 0.80 to 1.40%, such as sodium, magnesium, potassium, calcium, scandium, titanium, chromium, manganese, iron, cobalt, nickel. , Zinc, strontium, yttrium, zirconium, ruthenium, rhodium, palladium, silver, cadmium, indium, tin, antimony, tellurium, barium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium Erbium, thulium, ytterbium, lutetium, hafnium, platinum, gold, mercury, thallium, lead, bismuth and the like. M in the general formula (Ib) may be one type or two or more types. In the general formula (Ib), the range of n is more than 0 and 5 or less, more preferably more than 0 and 2.5 or less, and more than 0 and 1.0 or less. Is more preferable. In the general formulas (Ia) and (Ib), X is preferably a hydroxyl group (OH) and a halogen (F, Cl, B, I, etc.), more preferably a hydroxyl group and fluorine. When X is a hydroxyl group, it is preferable from the viewpoint of excellent applicability to metal powder, and when X is fluorine, it is preferable from the viewpoint of excellent strength.

アパタイト層のアパタイト構造をとる物質としては、圧粉磁心にしたときの絶縁性、耐熱性さらに力学的特性に優れる点で、前記一般式(I−a)で表される化合物がより好ましく、ヒドロキシアパタイト(Ca10(PO(OH))又はフルオロアパタイト(Ca10(PO)を用いることが特に好ましい。As the substance having the apatite structure of the apatite layer, the compound represented by the general formula (Ia) is more preferable in terms of excellent insulation, heat resistance and mechanical properties when formed into a dust core. It is particularly preferable to use apatite (Ca 10 (PO 4 ) 6 (OH) 2 ) or fluoroapatite (Ca 10 (PO 4 ) 6 F 2 ).

本発明の粉末において、「アパタイト層による金属粉の被覆」とは、前記金属粉の少なくとも一部がアパタイト層で覆われている状態をいう。従って後述する「アパタイト被覆金属粉」とは、金属粉が完全にアパタイトで被覆されたものだけではなく、金属粉の一部が露出しているものでもよい。一方で、アパタイト層による金属粉の被覆の程度としては、被覆率が高い方が、後述するシリカが付着しやすくなり、結果として抗折強度が向上する点で好ましい。具体的には、アパタイト層により金属粉の表面が90%以上被覆されていることが好ましく、95%以上被覆されていることがより好ましく、全体(ほぼ100%)被覆していることがさらに好ましい。   In the powder of the present invention, “coating metal powder with an apatite layer” means a state in which at least a part of the metal powder is covered with an apatite layer. Therefore, the “apatite-coated metal powder” to be described later is not limited to a metal powder completely covered with apatite, but may be a metal powder that is partially exposed. On the other hand, as the degree of coating of the metal powder with the apatite layer, a higher covering ratio is preferable in that silica described later tends to adhere and as a result, the bending strength is improved. Specifically, it is preferable that the surface of the metal powder is covered by 90% or more with the apatite layer, more preferably 95% or more, and even more preferably (over 100%). .

本発明の粉末において、前記アパタイト層は、厚みが10nm〜1000nmであることが好ましく、20〜500nmであることがさらに好ましい。厚みが10nm以上であれば絶縁の効果を得る傾向があり、1000nm以下であれば密度向上の効果を得る傾向がある。   In the powder of the present invention, the apatite layer preferably has a thickness of 10 nm to 1000 nm, and more preferably 20 to 500 nm. If the thickness is 10 nm or more, there is a tendency to obtain an insulating effect, and if it is 1000 nm or less, there is a tendency to obtain an effect of improving density.

前記金属粉にアパタイト層を形成する方法としては、カルシウムイオンあるいは更に前記一般式(1−b)中の陽イオンを与える原子又は原子群Mのイオンを所定の比で含有する水溶液と、リン酸イオンを含有する水溶液の反応により、アパタイト構造をとる物質を金属粉表面に析出させる方法を挙げることができる。アパタイト構造の層を得るためには、反応溶液の液性を中性から塩基性領域(pH=6.0以上)に制御する必要がある。なお、酸性領域であるとアパタイト構造をとる物質以外のリン酸カルシウム層が析出する場合がある。   As a method for forming an apatite layer on the metal powder, an aqueous solution containing calcium ions or atoms that give cations in the general formula (1-b) or ions of the atomic group M in a predetermined ratio, and phosphoric acid A method of depositing a substance having an apatite structure on the surface of the metal powder by a reaction of an aqueous solution containing ions can be given. In order to obtain a layer having an apatite structure, it is necessary to control the liquidity of the reaction solution from neutral to basic region (pH = 6.0 or more). In the acidic region, a calcium phosphate layer other than a substance having an apatite structure may be deposited.

アパタイト層としてヒドロキシアパタイトを析出させる場合、例えば、硝酸カルシウム水溶液とリン酸二水素アンモニウム水溶液を用いる方法を挙げることができる。このようにして得られるヒドロキシアパタイトの化学量論的な組成はCa10(PO(OH)であるが、大部分がアパタイト構造であって、それが維持できる限り非化学量論的な組成であってもよく、例えば、一部がCa10−Z(HPO(PO6−Z(OH)2−Z(0<Z≦1,1.50≦Ca/P(原子量比)<1.67)となっていてもよい。In the case where hydroxyapatite is deposited as the apatite layer, for example, a method using a calcium nitrate aqueous solution and an ammonium dihydrogen phosphate aqueous solution can be mentioned. The stoichiometric composition of the hydroxyapatite thus obtained is Ca 10 (PO 4 ) 6 (OH) 2 , but most of it has an apatite structure and is non-stoichiometric as long as it can be maintained. For example, a part of Ca 10 -Z (HPO 4 ) Z (PO 4 ) 6 -Z (OH) 2 -Z (0 <Z ≦ 1,1.50 ≦ Ca / P ( Atomic weight ratio) <1.67).

前記アパタイト層の原料を添加する量としては、金属粉100質量部に対して、0.1〜1.0質量部であることが好ましく、0.4〜0.8質量部であることがより好ましく、0.5〜0.7質量部であることがさらに好ましい。0.1質量部以上であれば、圧粉磁心にしたときに充分な比抵抗が得られる傾向がある。また、得られる粉末の絶縁層が均一となり絶縁性改善の効果を充分得ることができる。1.0質量部以下であれば、圧粉磁心にしたときに成型体密度が低下するのを防ぐことができる傾向がある。アパタイト層の質量は、得られた粉末を元素分析してカルシウム(及び金属M)の量を定量することによって求めることができる。   The amount of the raw material for the apatite layer added is preferably 0.1 to 1.0 part by mass and more preferably 0.4 to 0.8 part by mass with respect to 100 parts by mass of the metal powder. Preferably, it is 0.5-0.7 mass part. If it is 0.1 mass part or more, there exists a tendency for sufficient specific resistance to be obtained when it is set as a powder magnetic core. Further, the obtained powder insulating layer becomes uniform, and the effect of improving the insulation can be sufficiently obtained. If it is 1.0 mass part or less, when it is set as a powder magnetic core, there exists a tendency which can prevent that a molded object density falls. The mass of the apatite layer can be determined by elemental analysis of the obtained powder and quantifying the amount of calcium (and metal M).

(シリカ粒子)
本発明の粉末において使用するシリカ粒子としては、従来公知のものを広く使用することができ、具体的には、ヒュームドシリカ、コロイダルシリカ等を挙げることができるが、取り扱い性が容易である点でコロイダルシリカが好ましい。シリカ粒子の形状は特に制限はない。
(Silica particles)
As the silica particles used in the powder of the present invention, conventionally known particles can be widely used, and specific examples include fumed silica, colloidal silica, etc. Colloidal silica is preferred. The shape of the silica particles is not particularly limited.

シリカ粒子の粒径としては、様々な大きさのものが使用できるが、成膜性のためにはサブミクロン以下の粒径を持つシリカ粒子が好適である。具体的には、シリカ粒子の平均一次粒径が50nm以下であることが好ましく、30nm以下であることがより好ましく、20nm以下であることがさらに好ましい。   The silica particles having various sizes can be used, but silica particles having a particle size of submicron or less are suitable for film forming properties. Specifically, the average primary particle size of the silica particles is preferably 50 nm or less, more preferably 30 nm or less, and even more preferably 20 nm or less.

さらにシリカ粒子は、有機溶剤中で凝集せずに分散していることが好ましい。従って、シリカ粒子の分散性を向上させる目的で、シリカ粒子表面を有機基によって修飾してもよい。このような有機基としては、例えば、シクロヘキシル基、フェニル基、ベンジル基、フェネチル基、C1〜C6(炭素数が1〜6)のアルキル基等を挙げることができる。   Further, the silica particles are preferably dispersed without being aggregated in the organic solvent. Therefore, the surface of the silica particles may be modified with an organic group for the purpose of improving the dispersibility of the silica particles. Examples of such an organic group include a cyclohexyl group, a phenyl group, a benzyl group, a phenethyl group, a C1 to C6 (C1 to C6) alkyl group, and the like.

このような有機基によってシリカ粒子の表面を修飾する方法としては、分子構造内に前記有機基を有するシラン化合物を、前記シリカ粒子の表面に反応させる方法を用いることができる。このようにすることで、圧粉磁心にしたときの抗折強度を向上させることができ、場合によっては比抵抗も向上できる。   As a method for modifying the surface of the silica particles with such an organic group, a method of reacting the silane compound having the organic group in the molecular structure with the surface of the silica particle can be used. By doing in this way, the bending strength when it is set as a powder magnetic core can be improved, and a specific resistance can also be improved depending on the case.

このようなシラン化合物としては、具体的には下記一般式(II)で表されるアルコキシシラン又は下記一般式(III)で表されるハロゲノシラン化合物を用いることができる。
Si(OR4−n (II)
SiX4−n (III)
(式中nは1〜3の整数であり、R及びRは一価の有機基を示し、Xはハロゲンを示す。)
As such a silane compound, specifically, an alkoxysilane represented by the following general formula (II) or a halogenosilane compound represented by the following general formula (III) can be used.
R 1 n Si (OR 2 ) 4-n (II)
R 1 n SiX 4-n (III)
(In the formula, n is an integer of 1 to 3, R 1 and R 2 represent a monovalent organic group, and X represents a halogen.)

前記一般式(II)及び(III)において、Rとしては、シリカ粒子に修飾したい有機基が挙げられ、具体的には、シクロヘキシル基、フェニル基、ベンジル基、フェネチル基、C1〜C6(炭素数が1〜6)のアルキル基等を挙げることができる。また、Rとしては、一価の有機基が挙げられ、具体的には、メチル基、エチル基等が挙げられる。また、Xとしては、クロロ、ブロモ、ヨード等が挙げられる。In the general formulas (II) and (III), examples of R 1 include an organic group to be modified into silica particles. Specifically, cyclohexyl group, phenyl group, benzyl group, phenethyl group, C1-C6 (carbon Examples thereof include alkyl groups having 1 to 6). As the R 2, it includes a monovalent organic group, specifically, methyl group, ethyl group and the like. Examples of X include chloro, bromo, iodo and the like.

前記一般式(II)で表されるアルコキシシランとしては、具体的には例えば、メチルトリメトキシシラン、エチルトリメトキシシラン、n−プロピルトリメトキシシラン、iso−プロピルトリメトキシシラン、n−ブチルトリメトキシシラン、tert−ブチルトリメトキシシラン、n−ペンチルトリメトキシシラン、n−ヘキシルトリメトキシシラン、シクロヘキシルトリメトキシシラン、フェニルトリメトキシシラン、ベンジルトリメトキシシラン、フェネチルトリメトキシシラン等のトリメトキシシラン類;
メチルトリエトキシシラン、エチルトリエトキシシラン、n−プロピルトリエトキシシラン、iso−プロピルトリエトキシシラン、n−ブチルトリエトキシシラン、tert−ブチルトリエトキシシラン、n−ペンチルトリエトキシシラン、n−ヘキシルトリエトキシシラン、シクロヘキシルトリエトキシシラン、フェニルトリエトキシシラン、ベンジルトリエトキシシラン、フェネチルトリエトキシシラン等のトリエトキシシラン類;
ジメチルジメトキシシラン、エチルメチルジメトキシシラン、メチルn−プロピルジメトキシシラン、メチルiso−プロピルジメトキシシラン、n−ブチルメチルジメトキシシラン、メチルtert−ブチルジメトキシシラン、メチルn−ペンチルジメトキシシラン、n−ヘキシルメチルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、メチルフェニルジメトキシシラン、ベンジルメチルジメトキシシラン、フェネチルメチルジメトキシシラン等のジメトキシシラン類;
ジメチルジエトキシシラン、エチルメチルジエトキシシラン、メチルn−プロピルジエトキシシラン、メチルiso−プロピルジエトキシシラン、n−ブチルメチルジエトキシシラン、メチルtert−ブチルジエトキシシラン、メチルn−ペンチルジエトキシシラン、n−ヘキシルメチルジエトキシシラン、シクロヘキシルメチルジエトキシシラン、メチルフェニルジエトキシシラン、ベンジルメチルジエトキシシラン、フェネチルメチルジエトキシシラン等のジエトキシシラン類;などを挙げることができる。
Specific examples of the alkoxysilane represented by the general formula (II) include methyltrimethoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, iso-propyltrimethoxysilane, and n-butyltrimethoxy. Trimethoxysilanes such as silane, tert-butyltrimethoxysilane, n-pentyltrimethoxysilane, n-hexyltrimethoxysilane, cyclohexyltrimethoxysilane, phenyltrimethoxysilane, benzyltrimethoxysilane, and phenethyltrimethoxysilane;
Methyltriethoxysilane, ethyltriethoxysilane, n-propyltriethoxysilane, iso-propyltriethoxysilane, n-butyltriethoxysilane, tert-butyltriethoxysilane, n-pentyltriethoxysilane, n-hexyltriethoxy Triethoxysilanes such as silane, cyclohexyltriethoxysilane, phenyltriethoxysilane, benzyltriethoxysilane, phenethyltriethoxysilane;
Dimethyldimethoxysilane, ethylmethyldimethoxysilane, methyl n-propyldimethoxysilane, methyl iso-propyldimethoxysilane, n-butylmethyldimethoxysilane, methyl tert-butyldimethoxysilane, methyl n-pentyldimethoxysilane, n-hexylmethyldimethoxysilane , Dimethoxysilanes such as cyclohexylmethyldimethoxysilane, methylphenyldimethoxysilane, benzylmethyldimethoxysilane, phenethylmethyldimethoxysilane;
Dimethyldiethoxysilane, ethylmethyldiethoxysilane, methyl n-propyldiethoxysilane, methyl iso-propyldiethoxysilane, n-butylmethyldiethoxysilane, methyl tert-butyldiethoxysilane, methyl n-pentyldiethoxysilane , N-hexylmethyldiethoxysilane, cyclohexylmethyldiethoxysilane, methylphenyldiethoxysilane, benzylmethyldiethoxysilane, phenethylmethyldiethoxysilane, and other diethoxysilanes.

また、前記一般式(III)で表されるハロゲノシラン化合物としては、具体的には例えば;
メチルトリクロロシラン、エチルトリクロロシラン、n−プロピルトリクロロシラン、iso−プロピルトリクロロシラン、n−ブチルトリクロロシラン、tert−ブチルトリクロロシラン、n−ペンチルトリクロロシラン、n−ヘキシルトリクロロシラン、シクロヘキシルトリクロロシラン、フェニルトリクロロシラン、ベンジルトリクロロシラン、フェネチルトリクロロシラン等のトリクロロシラン類;
ジメチルジクロロシラン、エチルメチルジクロロシラン、メチル−n−プロピルジクロロシラン、メチル−iso−プロピルジクロロシラン、n−ブチルメチルジクロロシラン、メチル−tert−ブチルジクロロシラン、メチル−n−ペンチルジクロロシラン、n−ヘキシルメチルジクロロシラン、シクロヘキシルメチルジクロロシラン、メチルフェニルジクロロシラン、ベンジルメチルジクロロシラン、フェネチルメチルジクロロシラン等のジクロロシラン類などを挙げることができる。
Specific examples of the halogenosilane compound represented by the general formula (III) include:
Methyltrichlorosilane, ethyltrichlorosilane, n-propyltrichlorosilane, iso-propyltrichlorosilane, n-butyltrichlorosilane, tert-butyltrichlorosilane, n-pentyltrichlorosilane, n-hexyltrichlorosilane, cyclohexyltrichlorosilane, phenyltri Trichlorosilanes such as chlorosilane, benzyltrichlorosilane, and phenethyltrichlorosilane;
Dimethyldichlorosilane, ethylmethyldichlorosilane, methyl-n-propyldichlorosilane, methyl-iso-propyldichlorosilane, n-butylmethyldichlorosilane, methyl-tert-butyldichlorosilane, methyl-n-pentyldichlorosilane, n- Examples include dichlorosilanes such as hexylmethyldichlorosilane, cyclohexylmethyldichlorosilane, methylphenyldichlorosilane, benzylmethyldichlorosilane, and phenethylmethyldichlorosilane.

上記シラン化合物は、それぞれ単独で又は二種類以上組み合わせて使用することができる。   The above silane compounds can be used alone or in combination of two or more.

シリカ粒子の表面修飾は、通常、シリカ粒子の分散液に、前記アルコキシシラン化合物又は前記ハロゲノシラン化合物を添加し、撹拌することで行うことができる。その場合、シリカ粒子固形分1重量部に対して、0.4〜0.6重量部の範囲で添加することが好ましい。0.6重量部以下であれば添加したシラン化合物が未反応で残存することがなく、0.4重量部以上であれば、シリカ粒子に対する有機基の修飾の効果を充分得ることができる。なお、前記シリカ粒子は、水に分散したものであっても、有機溶媒に分散したものであってもよい。   The surface modification of the silica particles can usually be performed by adding the alkoxysilane compound or the halogenosilane compound to a dispersion of silica particles and stirring. In that case, it is preferable to add in the range of 0.4-0.6 weight part with respect to 1 weight part of silica particle solid content. If it is 0.6 parts by weight or less, the added silane compound does not remain unreacted, and if it is 0.4 parts by weight or more, the effect of modifying the organic group on the silica particles can be sufficiently obtained. The silica particles may be dispersed in water or dispersed in an organic solvent.

また、シリカ粒子表面への有機基の修飾反応を温和な条件で迅速に進行させるために、無機酸、有機酸、酸性イオン交換樹脂などの酸触媒を用いることが好ましい。この場合、特に、塩酸、硝酸、酢酸、クエン酸、ギ酸、シュウ酸などを用いるのが好ましい。一般に酸は、前記アパタイトと反応して特性を劣化させうるので、揮発性が高く、系に残留しにくいという点で塩酸及び酢酸がより好ましい。前記酸触媒の添加量としては、シリカ粒子固形分1重量部に対して0.05〜0.1重量部であることが好ましい。   In addition, it is preferable to use an acid catalyst such as an inorganic acid, an organic acid, or an acidic ion exchange resin in order to rapidly proceed the modification reaction of the organic group on the silica particle surface under mild conditions. In this case, it is particularly preferable to use hydrochloric acid, nitric acid, acetic acid, citric acid, formic acid, oxalic acid and the like. In general, an acid can react with the apatite and deteriorate characteristics, so that hydrochloric acid and acetic acid are more preferable in that they are highly volatile and hardly remain in the system. The addition amount of the acid catalyst is preferably 0.05 to 0.1 parts by weight with respect to 1 part by weight of the silica particle solid content.

前記修飾反応の温度は、シリカ粒子が凝集するのを防ぐため、0〜50℃で行うことが好ましく、10〜40℃で行うことがより好ましい。また、前記シリカ粒子は、イソプロピルアルコール、ポリエチレングリコールモノメチルエーテルアセテート、トルエン、キシレンなどの有機溶媒に分散されていることが好ましい。   The temperature of the modification reaction is preferably 0 to 50 ° C., more preferably 10 to 40 ° C., in order to prevent the silica particles from aggregating. The silica particles are preferably dispersed in an organic solvent such as isopropyl alcohol, polyethylene glycol monomethyl ether acetate, toluene, and xylene.

(製造方法)
本発明の粉末の製造方法は、金属粉をアパタイトで被覆してアパタイト層で被覆された金属粉(以下、アパタイト被覆金属粉という)を形成する第1の工程と、前記第1の工程で得られたアパタイト被覆金属粉における金属粉又は前記アパタイト層にシリカ粉末を付着させる第2の工程と、前記第2の工程で得られた粉末を350℃以下で予備硬化し、前記金属粉と、前記金属粉を被覆するアパタイト層と、前記金属粉又はアパタイト層に付着したシリカ粒子とを有してなる粉末を得る第3の工程と、を備える。
(Production method)
The powder production method of the present invention is obtained in a first step of forming a metal powder coated with an apatite by coating a metal powder with an apatite layer (hereinafter referred to as apatite-coated metal powder) and the first step. A second step of attaching silica powder to the metal powder in the apatite-coated metal powder or the apatite layer, and pre-curing the powder obtained in the second step at 350 ° C. or less, the metal powder, And a third step of obtaining a powder comprising an apatite layer covering the metal powder and silica particles adhering to the metal powder or the apatite layer.

(金属粉のリン酸処理)
また、第1の工程に供する金属粉として、リン酸処理された金属粉を用いることが、金属粉の酸化を防止できる点で好ましい。本発明の粉末の製造方法においては、当該リン酸処理を第1の工程の前に設けてもよく、また、リン酸処理された金属粉末として市販されているものを使用してもよい。リン酸処理は従来公知の方法で行うことができる。
(Phosphoric acid treatment of metal powder)
Moreover, it is preferable to use the metal powder by which the phosphoric acid process was used as a metal powder with which it uses for a 1st process at the point which can prevent the oxidation of a metal powder. In the manufacturing method of the powder of this invention, the said phosphoric acid process may be provided before a 1st process, and what is marketed as a metal powder by which the phosphoric acid process was carried out may be used. The phosphoric acid treatment can be performed by a conventionally known method.

(アパタイト層の形成)
前記金属粉にアパタイトの層を形成する方法としては、これまで説明したように、カルシウムイオン(及び必要に応じカルシウム以外の陽イオンを与える原子又は原子群Mのイオン)を含む水溶液と、リン酸イオンを含有する水溶液の反応により、アパタイトを金属粉表面に析出させる方法を挙げることができる。具体的には、フラスコ内に、カルシウム源となる水溶液と金属粉を入れ、撹拌しながら、リン酸源となる水溶液を滴下する方法が挙げられる。また、フラスコ内に水と金属粉を入れ、撹拌しながら、前記カルシウム源となる水溶液と、リン酸源となる水溶液を同時又は逐次滴下する方法も使用できる。逐次滴下する場合、その順序はどちらを先に滴下してもよい。
(Formation of apatite layer)
As described above, as a method of forming an apatite layer on the metal powder, an aqueous solution containing calcium ions (and atoms or ions of atomic group M that give cations other than calcium as needed), and phosphoric acid, The method of depositing apatite on the metal powder surface by reaction of the aqueous solution containing ion can be mentioned. Specifically, a method in which an aqueous solution serving as a calcium source and metal powder are placed in a flask and the aqueous solution serving as a phosphoric acid source is added dropwise while stirring. Alternatively, a method in which water and metal powder are placed in a flask and the aqueous solution serving as the calcium source and the aqueous solution serving as the phosphoric acid source are dropped simultaneously or sequentially while stirring can be used. In the case of sequential dropping, either order may be dropped first.

前記カルシウム源としては、水溶性のカルシウム化合物であれば特に制限はなく、具体的には、例えば、水酸化カルシウム等の無機塩基のカルシウム塩、硝酸カルシウム等の無機酸のカルシウム塩、酢酸カルシウム等の有機酸のカルシウム塩、有機塩基のカルシウム塩等を挙げることができる。前記リン酸源としては、リン酸や、リン酸二水素アンモニウム、リン酸水素二アンモニウム等のリン酸塩を挙げることができる。   The calcium source is not particularly limited as long as it is a water-soluble calcium compound. Specifically, for example, calcium salts of inorganic bases such as calcium hydroxide, calcium salts of inorganic acids such as calcium nitrate, calcium acetate, etc. And calcium salts of organic acids and calcium salts of organic bases. Examples of the phosphoric acid source include phosphoric acid and phosphates such as ammonium dihydrogen phosphate and diammonium hydrogen phosphate.

アパタイト構造の層を得るためには、反応溶液が中性領域〜塩基性領域であることが好ましく、pHとしては7以上であることが好ましく、8以上がより好ましく、9以上がさらに好ましく、10以上が特に好ましい。酸性領域であるとアパタイト以外のリン酸カルシウム層が析出する場合があるので、前記カルシウム源となる水溶液と、リン酸源となる水溶液は、アンモニア水等の塩基によりあらかじめpHを7以上にしておくことが好ましい。   In order to obtain a layer having an apatite structure, the reaction solution is preferably a neutral region to a basic region, and the pH is preferably 7 or more, more preferably 8 or more, further preferably 9 or more, 10 The above is particularly preferable. Since the calcium phosphate layer other than apatite may precipitate in the acidic region, the pH of the aqueous solution serving as the calcium source and the aqueous solution serving as the phosphoric acid source may be previously set to 7 or more with a base such as ammonia water. preferable.

反応温度としては、室温でもかまわないが、反応促進のために50℃以上であることが好ましく、70℃以上であることが好ましく、90℃以上が特に好ましい。溶媒が水である場合、その上限温度としては、反応液の還流温度であり100℃付近である。   The reaction temperature may be room temperature, but is preferably 50 ° C. or higher, preferably 70 ° C. or higher, and particularly preferably 90 ° C. or higher for promoting the reaction. When the solvent is water, the upper limit temperature is the reflux temperature of the reaction solution, which is around 100 ° C.

反応時間としては、前記カルシウム源となる水溶液とリン酸源となる水溶液の濃度により異なり、濃度が高いほど短い反応時間でよく、濃度が低ければ反応時間を長くすることが好ましい。本発明の製造方法において、前記カルシウム源となる水溶液と、リン酸源となる水溶液の濃度は、それぞれ0.003〜0.5
Mの範囲とすることが好ましく、この場合の反応時間としては、1〜10時間であることが好ましい。
The reaction time varies depending on the concentrations of the aqueous solution serving as the calcium source and the aqueous solution serving as the phosphoric acid source. The higher the concentration, the shorter the reaction time. The lower the concentration, the longer the reaction time. In the production method of the present invention, the concentration of the aqueous solution serving as the calcium source and the concentration of the aqueous solution serving as the phosphoric acid source are respectively 0.003 to 0.5.
The range of M is preferable, and the reaction time in this case is preferably 1 to 10 hours.

(シリカ粉末の付着)
次に、前記のようにして得られたアパタイト被覆金属粉に、前記シリカ粒子を付着させる。この方法としては、前記シリカ粒子の分散液をアパタイト被覆金属粉に添加して振とう・撹拌する方法が挙げられる。市販のオルガノシリカゾルを用いる場合には、適当な濃度に希釈して使用しても良い。また、前記のように、市販のオルガノシリカゾル中のシリカ粒子の表面をシラン化合物等の有機基で表面修飾した場合には、表面修飾の際に使用した反応液をそのまま使用してもよい。なお、ここで使用されたシリカ粒子はアパタイト層に付着していても、アパタイト層の被覆が不十分な欠陥部分の露出金属粉表面に付着していてもよい。
(Silica powder adhesion)
Next, the silica particles are adhered to the apatite-coated metal powder obtained as described above. Examples of this method include a method in which the dispersion of silica particles is added to the apatite-coated metal powder, followed by shaking and stirring. When a commercially available organosilica sol is used, it may be diluted to an appropriate concentration. As described above, when the surface of silica particles in a commercially available organosilica sol is surface-modified with an organic group such as a silane compound, the reaction solution used for the surface modification may be used as it is. In addition, even if the silica particle used here is adhering to an apatite layer, it may be adhering to the exposed metal powder surface of a defective part with insufficient coating of an apatite layer.

シリカ粒子を分散させる溶媒としては、特に制限はなく、具体的には例えばイソプロピルアルコールに代表されるアルコール系溶剤、メチルエチルケトンに代表されるケトン系溶剤、トルエンに代表される芳香族系溶剤が挙げられる。特にオルガノシリカゾル中のシリカ粒子がコロイド溶液状態を維持しやすいしやすい芳香族溶媒が好ましい。   The solvent for dispersing the silica particles is not particularly limited, and specific examples include alcohol solvents typified by isopropyl alcohol, ketone solvents typified by methyl ethyl ketone, and aromatic solvents typified by toluene. . In particular, an aromatic solvent in which the silica particles in the organosilica sol easily maintain a colloidal solution state is preferable.

(予備硬化)
このようにしてシリカ粒子を表面に付着させたアパタイト被覆金属粉を、350℃以下で予備硬化する。このようにすることで、アパタイト層が硬化し、強固な耐熱性被膜を形成することができる。予備硬化を行わないと、これら原料粉末を圧縮成型して圧粉磁心を製造する際に、表面のシリカ粒子がアパタイト層に埋め込まれてしまい、充分な絶縁性が得られない傾向がある。上記予備硬化の温度としては、100〜300℃とすることが好ましい。
(Pre-curing)
The apatite-coated metal powder having the silica particles attached to the surface in this way is pre-cured at 350 ° C. or lower. By doing in this way, an apatite layer can harden | cure and it can form a firm heat resistant film. Without pre-curing, when these powders are compression molded to produce a powder magnetic core, the silica particles on the surface are embedded in the apatite layer, and there is a tendency that sufficient insulation is not obtained. The pre-curing temperature is preferably 100 to 300 ° C.

なお、本発明におけるシリカ粒子の添加量は使用する金属粉100質量部に対し、0.05〜1.0質量部とすることが好ましい。添加量が0.05重量部以上であれば、シリカ粒子が金属粉に均一に被覆でき、絶縁性改善の効果が得られる傾向がある。一方1.0質量部以下であれば、圧粉磁心にした際に成形体密度の低下を防ぎ、かつ、得られる圧粉磁心の抗折強度の低下も防ぐことができる傾向がある。   In addition, it is preferable that the addition amount of the silica particle in this invention shall be 0.05-1.0 mass part with respect to 100 mass parts of metal powder to be used. If the addition amount is 0.05 parts by weight or more, the silica particles can be uniformly coated on the metal powder, and the effect of improving the insulation tends to be obtained. On the other hand, if the amount is 1.0 part by mass or less, there is a tendency that when the powder magnetic core is formed, a reduction in the density of the molded body can be prevented and a reduction in the bending strength of the obtained powder magnetic core can be prevented.

(圧粉磁心の製造)
本発明の圧粉磁心用粉末は、必要に応じて潤滑剤を混合した混合粉末を圧縮成型して圧粉磁心とすることができる。潤滑剤はその分散液を金型壁面に塗布、乾燥してから使用することもできる。潤滑剤としては、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸リチウムなどの金属石鹸、ワックス等の長鎖炭化水素、シリコーンオイル等が使用できる。成型圧は500〜1500MPaとするのが好ましい。さらに、得られた圧粉磁心を、ヒステリシス損失を低減するために焼鈍を施すことができる。この場合の焼鈍温度は500〜800℃の範囲で選定することが好ましい。本焼鈍は窒素もしくはアルゴンなどの不活性ガス下で行うことが好ましい。
(Manufacture of dust core)
The powder for a powder magnetic core of the present invention can be formed into a powder magnetic core by compression molding a mixed powder mixed with a lubricant as necessary. The lubricant can be used after the dispersion is applied to the mold wall surface and dried. As the lubricant, metal soap such as zinc stearate, calcium stearate and lithium stearate, long chain hydrocarbons such as wax, silicone oil and the like can be used. The molding pressure is preferably 500-1500 MPa. Furthermore, the obtained powder magnetic core can be annealed to reduce hysteresis loss. In this case, the annealing temperature is preferably selected in the range of 500 to 800 ° C. This annealing is preferably performed under an inert gas such as nitrogen or argon.

以上の方法で作製された圧粉磁心は、高い成型体密度と絶縁性を示す。なお、このような特性を示す機構は明確に解明されたわけではないが、本発明者らは以下のような機構を推定している。すなわち、アパタイト層を金属粉に被覆すると、アパタイト特有の高い吸着力によって、シリカ粒子は金属粉に、より付着しやすくなる。さらに、このように付着したシリカ粒子が成型の際に発生するアパタイト層の割れ目部位にシリカ粒子が効果的に充填されることにより、高い成型体密度(例えば7.0g/cm以上)、そして高い耐熱性と絶縁性の保持を可能にしていると推定される。前記したように、シリカ粒子としてサブミクロン以下の粒径であるものが好ましい理由は、小さいシリカ粒子が動きやすいことから、アパタイト層の割れ目部位にシリカ粒子がより効果的に充填されるためと考えられる。The dust core produced by the above method exhibits high molded body density and insulation. Although the mechanism showing such characteristics has not been clearly clarified, the present inventors presume the following mechanism. That is, when the apatite layer is coated on the metal powder, the silica particles are more likely to adhere to the metal powder due to the high adsorption force unique to apatite. Further, the silica particles are effectively filled in the crack portion of the apatite layer generated when the silica particles attached in this way are molded, so that a high molded body density (for example, 7.0 g / cm 3 or more), and It is estimated that high heat resistance and insulation can be maintained. As described above, it is preferable that the silica particles have a particle size of submicron or less because the small silica particles are easy to move, and thus the silica particles are more effectively filled into the cracks of the apatite layer. It is done.

本発明の粉末から作成した圧粉磁心の成型体密度は、7.0g/cm以上であることが好ましく、7.4g/cm以上であることがさらに好ましい。密度が7.4g/cm以上であれば該圧粉磁心の磁束密度が向上する傾向がある。The density of the compact of the powder magnetic core prepared from the powder of the present invention is preferably 7.0 g / cm 3 or more, and more preferably 7.4 g / cm 3 or more. If the density is 7.4 g / cm 3 or more, the magnetic flux density of the dust core tends to be improved.

また、前記圧粉磁心の表面の電気抵抗値は、30μΩm以上であることが好ましく、50μΩm以上であることがより好ましく、90μΩm以上であることがさらに好ましい。電気抵抗が30μΩm以上であれば、前記圧粉磁心の渦電流損低下の効果を得ることができる傾向がある。   The electric resistance value on the surface of the dust core is preferably 30 μΩm or more, more preferably 50 μΩm or more, and further preferably 90 μΩm or more. If the electric resistance is 30 μΩm or more, there is a tendency that the effect of reducing the eddy current loss of the dust core can be obtained.

以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to these Examples.

[実施例1]
300mLの四つ口フラスコに25%アンモニア水によりpH11以上に調整した硝酸カルシウム水溶液75mL(1.79mmol,0.024M)及び鉄粉(神戸製鋼所社製純鉄粉300NH)30gを入れた。また、側管付滴下ロートに25%アンモニア水によりpH11以上に調整したリン酸二水素アンモニウム水溶液75mL(1.07mmol,0.014M)を入れ、これを四つ口フラスコに固定した。四つ口フラスコ内容物を室温(25℃)にて撹拌しながら、これに10分かけて滴下ロート内のリン酸二水素アンモニウム水溶液を滴下した。
[Example 1]
A 300 mL four-necked flask was charged with 75 mL (1.79 mmol, 0.024 M) of calcium nitrate aqueous solution adjusted to pH 11 or more with 25% aqueous ammonia and 30 g of iron powder (pure iron powder 300NH manufactured by Kobe Steel). Further, 75 mL (1.07 mmol, 0.014 M) of an aqueous solution of ammonium dihydrogen phosphate adjusted to pH 11 or higher with 25% aqueous ammonia was placed in a dropping funnel with a side tube, and this was fixed to a four-necked flask. While stirring the contents of the four-necked flask at room temperature (25 ° C.), the aqueous solution of ammonium dihydrogen phosphate in the dropping funnel was added dropwise thereto over 10 minutes.

次に、四つ口フラスコを90℃のオイルバス中で撹拌しながら2時間反応させた。得られたスラリー液を吸引ろ過し、濾物を110℃のオーブンにて乾燥させたところ灰色の粉末が得られた(収率96質量%)。得られた粉末の表面近傍の原子存在率をX線光電子分光(XPS)により分析したところ、原子存在率がFe:4.58%、Ca:15.7%、Ca/P比(モル比)が1.64であり、鉄粉がヒドロキシアパタイトに被覆されていることを確認できた。   Next, the four-necked flask was reacted in a 90 ° C. oil bath with stirring for 2 hours. The obtained slurry was filtered with suction, and the residue was dried in an oven at 110 ° C. to obtain a gray powder (yield 96% by mass). When the atomic abundance ratio in the vicinity of the surface of the obtained powder was analyzed by X-ray photoelectron spectroscopy (XPS), the atomic abundance ratio was Fe: 4.58%, Ca: 15.7%, Ca / P ratio (molar ratio). Was 1.64, and it was confirmed that the iron powder was coated with hydroxyapatite.

さらに、得られたアパタイト被覆鉄粉20gとオルガノシリカゾルトルエン溶液(固形分濃度3.0質量%)2gとを混合し、最大内容量50mLのポリプロピレン製ビン中で10分間振とうした後、内容物をステンレス製シャーレに取り出し、200℃にて30分予備硬化した。予備硬化して得られた粉末を250μmのふるいに掛け、巨大会合粒子を除去し、ナノシリカ付着アパタイト被覆鉄粉を得た。   Further, 20 g of the obtained apatite-coated iron powder and 2 g of an organosilica sol toluene solution (solid content concentration: 3.0% by mass) were mixed and shaken in a polypropylene bottle having a maximum internal volume of 50 mL for 10 minutes. Was taken out into a stainless steel petri dish and precured at 200 ° C. for 30 minutes. The powder obtained by pre-curing was passed through a 250 μm sieve to remove the giant associated particles to obtain nanosilica-attached apatite-coated iron powder.

以上のようにして得られたアパタイト被覆鉄粉の断面のSEM像を図1、2に、ナノシリカ付着アパタイト被覆鉄粉の断面のSEM像をそれぞれ図3、4に示した。これら粒子表面において、ヒドロキシアパタイト層、ナノシリカ層が形成していることを確認できた。   The SEM images of the cross section of the apatite-coated iron powder obtained as described above are shown in FIGS. 1 and 2, and the SEM images of the cross section of the nanosilica-attached apatite-coated iron powder are shown in FIGS. It was confirmed that a hydroxyapatite layer and a nanosilica layer were formed on the surface of these particles.

得られたナノシリカ付着アパタイト被覆鉄粉5.92gを内径14mmの金型に充填し、成型圧力1000MPaにて、円柱状の錠剤に成型した。この時、得られた錠剤の厚みは約5mmとなる。成型した錠剤の表面を研磨し、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、296μΩmであった。また、密度は7.48g/cmであった。この錠剤を窒素雰囲気下、600℃にて1時間焼鈍し、再度表面を研磨後、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、91μΩmであった。また、密度は7.47g/cmであった。The obtained nanosilica-attached apatite-coated iron powder (5.92 g) was filled in a mold having an inner diameter of 14 mm and molded into a cylindrical tablet at a molding pressure of 1000 MPa. At this time, the thickness of the obtained tablet is about 5 mm. The surface of the molded tablet was polished, and the volume resistivity (resistivity) was measured with a four-terminal resistivity meter to be 296 μΩm. The density was 7.48 g / cm 3 . This tablet was annealed at 600 ° C. for 1 hour in a nitrogen atmosphere, and after polishing the surface again, the volume resistivity (resistivity) was measured with a four-terminal resistivity meter to be 91 μΩm. The density was 7.47 g / cm 3 .

[比較例1]
以下のように実施例1と同様に途中までヒドロキシアパタイト被覆鉄粉を調製した。すなわち、300mLの四つ口フラスコに25%アンモニア水によりpH11以上に調整した硝酸カルシウム水溶液75mL(1.79mmol,0.024M)及び鉄粉(神戸製鋼所社製純鉄粉300NH)30gを入れた。また、側管付滴下ロートに25%アンモニア水によりpH11以上に調整したリン酸二水素アンモニウム水溶液75mL(1.07mmol,0.014M)を入れ、これを四つ口フラスコに固定した。四つ口フラスコ内容物を室温(25℃)にて撹拌しながら、これに10分かけて滴下ロート内のリン酸二水素アンモニウム水溶液を滴下した。
[Comparative Example 1]
In the same manner as in Example 1, hydroxyapatite-coated iron powder was prepared halfway as follows. That is, a calcium nitrate aqueous solution 75 mL (1.79 mmol, 0.024 M) adjusted to pH 11 or more with 25% ammonia water and 30 g of iron powder (pure iron powder 300 NH manufactured by Kobe Steel) were placed in a 300 mL four-necked flask. . Further, 75 mL (1.07 mmol, 0.014 M) of an aqueous solution of ammonium dihydrogen phosphate adjusted to pH 11 or higher with 25% aqueous ammonia was placed in a dropping funnel with a side tube, and this was fixed to a four-necked flask. While stirring the contents of the four-necked flask at room temperature (25 ° C.), the aqueous solution of ammonium dihydrogen phosphate in the dropping funnel was added dropwise thereto over 10 minutes.

次に、四つ口フラスコを90℃のオイルバス中で撹拌しながら2時間反応させた。それから、得られたスラリー液を吸引ろ過し、濾物を110℃のオーブンにて乾燥させたところ灰色の粉末が得られた。(収率96質量%)。得られた粉末を250μmのふるいに掛け、アパタイト被覆金属粉を得た。アパタイト被覆金属粉5.95gを内径14mmの金型に充填し、成型圧力1000MPaにて、円柱状の錠剤に成型した。この時、得られた錠剤の厚みは約5mmであった。成型した錠剤の表面を研磨し、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、144μΩmであった。また、密度は7.54g/cmであった。研磨した錠剤を窒素雰囲気下、600℃にて1時間焼鈍し、表面を再研磨後、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、0.54μΩmであった。また、密度は7.53g/cmであった。Next, the four-necked flask was reacted in a 90 ° C. oil bath with stirring for 2 hours. Then, the obtained slurry was subjected to suction filtration, and the residue was dried in an oven at 110 ° C. to obtain a gray powder. (Yield 96 mass%). The obtained powder was passed through a 250 μm sieve to obtain an apatite-coated metal powder. 5.95 g of apatite-coated metal powder was filled in a metal mold having an inner diameter of 14 mm and molded into a cylindrical tablet at a molding pressure of 1000 MPa. At this time, the thickness of the obtained tablet was about 5 mm. The surface of the molded tablet was polished, and the volume resistivity (resistivity) was measured with a four-terminal resistivity meter to be 144 μΩm. The density was 7.54 g / cm 3 . The polished tablet was annealed at 600 ° C. for 1 hour in a nitrogen atmosphere, and after repolishing the surface, the volume resistivity (resistivity) was measured with a four-terminal resistivity meter to be 0.54 μΩm. The density was 7.53 g / cm 3 .

[比較例2]
アパタイト層を設けずに、実施例1でナノシリカを付着させる方法で、鉄粉にナノシリカを付着させた。すなわち、鉄粉(神戸製鋼所社製純鉄粉300NH)20gとナノシリカトルエン溶液(固形分濃度3.0質量%)2gとを混合し、最大内容量50mLのポリプロピレン製ビン中で10分間振とうさせた後、200℃にて30分予備硬化した。予備硬化して得られた粉末を250μmのふるいに掛け、巨大会合粒子を除去し、ナノシリカ付着金属粉を得た。得られた粉末の内、5.99gを1000MPaにて、直径1.4cm、厚み5.145mmの円柱状の錠剤に成型した。成型した錠剤の表面を研磨し、体積抵抗率(比抵抗)を四端子抵抗計で測定したところ、79μΩmであった。また、密度は7.57g/cmであった。研磨した錠剤を窒素雰囲気下、600℃にて一時間焼鈍焼成し、表面を再研磨後、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、20μΩmであった。また、密度は7.57g/cmであった。
[Comparative Example 2]
Without providing the apatite layer, nanosilica was adhered to the iron powder by the method of attaching nanosilica in Example 1. That is, 20 g of iron powder (pure iron powder 300NH manufactured by Kobe Steel, Ltd.) and 2 g of nanosilica toluene solution (solid content concentration: 3.0% by mass) are mixed and shaken for 10 minutes in a polypropylene bottle having a maximum internal volume of 50 mL. Then, it was precured at 200 ° C. for 30 minutes. The powder obtained by pre-curing was passed through a 250 μm sieve to remove the huge associating particles, thereby obtaining nano silica-attached metal powder. 5.99 g of the obtained powder was molded into a cylindrical tablet having a diameter of 1.4 cm and a thickness of 5.145 mm at 1000 MPa. The surface of the molded tablet was polished, and the volume resistivity (resistivity) was measured with a four-terminal resistance meter, and it was 79 μΩm. The density was 7.57 g / cm 3 . The polished tablet was annealed and fired at 600 ° C. for 1 hour in a nitrogen atmosphere, and after repolishing the surface, the volume resistivity (resistivity) was measured with a four-terminal resistivity meter to be 20 μΩm. The density was 7.57 g / cm 3 .

かくして得られた圧粉磁心の密度、比抵抗について測定した結果を表1に示した。   Table 1 shows the measurement results of the density and specific resistance of the powder magnetic core thus obtained.

表1を参照して、高い比抵抗を得るにはヒドロキシアパタイト被覆及びシリカ粒子の付着の両方が不可欠である。また、実施例1の成型体密度は、実施例1でヒドロキシアパタイト被覆及びシリカ粒子付着が行なわれているにもかかわらず、比較例1及び比較例2の成型体密度と比較してほとんど低下していない。これは、圧縮成型時に破壊され、生じたアパタイト層の割れ目の細孔内にシリカ粒子が埋め込まれたためと推定できる。   Referring to Table 1, both hydroxyapatite coating and silica particle deposition are essential to obtain a high resistivity. Further, the density of the molded body of Example 1 is almost lower than the density of the molded body of Comparative Example 1 and Comparative Example 2 even though hydroxyapatite coating and silica particle adhesion are performed in Example 1. Not. This can be presumed to be because silica particles were embedded in the pores of the cracks of the apatite layer that were broken during compression molding.

次に、アパタイト層とシリカ粒子との吸着力の強さを見積もるために表面状態の異なる純鉄粉とアパタイト被覆鉄粉にそれぞれシリカ粒子を付着させて、どれほどのシリカ粒子が表面に残存するかを、定量分析を通して比較した。方法としては、Mlvern社製HPPSを用い動的光散乱法により測定した平均粒径20nmのシリカ粒子を含有するオルガノシリカゾル液(媒体:トルエン)(固形分濃度3.0質量%)5.0g中を、最大容量10mLのガラス製スクリュー管に入れ、その中に種々の粉末3.0gを加えた。このスクリュー管を回転数を105rpmに設定したミックスローターで、3時間撹拌した。撹拌後の液を、定量分析用No.5B(JIS P3801)のろ紙を用いて吸引濾過を行い、濾物をトルエンで洗浄し、真空乾燥させてそれぞれの粉末を得た。
得られた粉末をICP−OES法を用いて元素分析し、粉末に付着したシリカ粒子をケイ素原子量として定量した。結果を表2に示す。
Next, in order to estimate the strength of the adsorption force between the apatite layer and the silica particles, silica particles are adhered to pure iron powder and apatite-coated iron powder having different surface states, respectively, and how much silica particles remain on the surface. Were compared through quantitative analysis. As a method, in 5.0 g of an organosilica sol solution (medium: toluene) (solid content concentration: 3.0% by mass) containing silica particles having an average particle diameter of 20 nm measured by a dynamic light scattering method using HPPS manufactured by Mlvern Was placed in a glass screw tube with a maximum capacity of 10 mL, and 3.0 g of various powders were added therein. The screw tube was agitated for 3 hours with a mix rotor whose rotational speed was set to 105 rpm. The liquid after stirring was designated as No. for quantitative analysis. Suction filtration was performed using 5B (JIS P3801) filter paper, and the residue was washed with toluene and vacuum dried to obtain each powder.
The obtained powder was subjected to elemental analysis using the ICP-OES method, and the silica particles adhering to the powder were quantified as the amount of silicon atoms. The results are shown in Table 2.

表2の結果から、アパタイト被覆した鉄粉から定量されるケイ素原子量は、純鉄粉のものと比較して2倍程度多い。ケイ素原子はシリカ粒子由来のものしか存在しないので、このことからシリカ粒子の付着量が多く、アパタイト層は純鉄粉表面層よりもシリカ粒子の吸着力が強いことがわかった。   From the results in Table 2, the amount of silicon atoms determined from the iron powder coated with apatite is about twice as large as that of pure iron powder. Since silicon atoms are only derived from silica particles, the amount of silica particles adhering was large, and it was found that the apatite layer had a stronger adsorption force for silica particles than the pure iron powder surface layer.

[実施例2]
実施例1において硝酸カルシウム水溶液に鉄粉を加えた後、30℃のオイルバス中にて15分間撹拌する工程を追加した。
[Example 2]
After adding iron powder to the calcium nitrate aqueous solution in Example 1, a step of stirring in an oil bath at 30 ° C. for 15 minutes was added.

すなわち、300mLの四つ口フラスコに25%アンモニア水によりpH11以上に調整した硝酸カルシウム水溶液75mL(1.79mmol,0.024M)及び鉄粉(神戸製鋼所社製純鉄粉300NH)30gを入れ、30℃のオイルバス中にて15分間撹拌した。その後、側管付滴下ロートに25%アンモニア水によりpH11以上に調整したリン酸二水素アンモニウム水溶液75mL(1.07mmol,0.014M)を入れ、これを四つ口フラスコに固定した。四つ口フラスコを30℃のオイルバス中にて撹拌しながら、これに10分かけて滴下ロート内のリン酸二水素アンモニウム水溶液を滴下した。   That is, in a 300 mL four-necked flask, 75 mL (1.79 mmol, 0.024 M) of calcium nitrate aqueous solution adjusted to pH 11 or more with 25% ammonia water and 30 g of iron powder (pure iron powder 300NH manufactured by Kobe Steel) were added. The mixture was stirred for 15 minutes in an oil bath at 30 ° C. Thereafter, 75 mL (1.07 mmol, 0.014 M) of an aqueous solution of ammonium dihydrogen phosphate adjusted to pH 11 or higher with 25% aqueous ammonia was placed in a dropping funnel with a side tube, and this was fixed to a four-necked flask. While stirring the four-necked flask in an oil bath at 30 ° C., the aqueous solution of ammonium dihydrogen phosphate in the dropping funnel was added dropwise thereto over 10 minutes.

次に、オイルバスの温度を30℃から90℃に10分かけて昇温し、撹拌しながら90℃にて2時間反応させた。得られたスラリー液を吸引ろ過し、濾物を110℃のオーブンにて乾燥させたところ灰色の粉末が得られた。得られた粉末の表面近傍の原子存在率をXPSにより分析したところ、原子存在率がFe3.31%、Ca17.1%、Ca/P比(モル比)が1.63であり、粉末がヒドロキシアパタイトで被覆されていることを確認できた。   Next, the temperature of the oil bath was raised from 30 ° C. to 90 ° C. over 10 minutes and reacted at 90 ° C. for 2 hours with stirring. The obtained slurry was subjected to suction filtration, and the residue was dried in an oven at 110 ° C. to obtain a gray powder. When the atomic abundance ratio near the surface of the obtained powder was analyzed by XPS, the atomic abundance ratio was Fe 3.31%, Ca 17.1%, Ca / P ratio (molar ratio) was 1.63, and the powder was hydroxy. It was confirmed that it was covered with apatite.

さらに、得られたアパタイト被覆粉末20gとオルガノシリカゾルトルエン溶液(固形分濃度3.0質量%)2gとを混合し、最大内容量50mLのポリプロピレン製ビン中で10分間振とうした後、1MPa以下の圧力にて5分間乾燥し、取り出した粉末を200℃にて25分間予備硬化した。予備硬化後に得られた粉末を250μmのふるいに掛けた。
ふるいに掛けた鉄粉末のうち、6gを内径14mmの金型に充填し、成型圧力1000MPa/cmにて、円柱状の錠剤に成型した。この時、得られた錠剤の厚みは約5mmとなる。成型した錠剤の表面を研磨し、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、236μΩmであった。また、成型体密度は7.50g/cmであった。研磨した錠剤を窒素雰囲気下、600℃にて1時間焼成し、表面を研磨後、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、75μΩmであった。また、成型体密度は7.50g/cmであった。
Further, 20 g of the obtained apatite-coated powder and 2 g of an organosilica sol toluene solution (solid content concentration: 3.0% by mass) were mixed and shaken for 10 minutes in a polypropylene bottle having a maximum internal volume of 50 mL. It was dried under pressure for 5 minutes, and the taken-out powder was precured at 200 ° C. for 25 minutes. The powder obtained after precuring was passed through a 250 μm sieve.
Of the iron powder applied to the sieve, 6 g was filled in a mold having an inner diameter of 14 mm and molded into a cylindrical tablet at a molding pressure of 1000 MPa / cm 2 . At this time, the thickness of the obtained tablet is about 5 mm. The surface of the molded tablet was polished, and the volume resistivity (resistivity) was measured with a four-terminal resistivity meter to be 236 μΩm. The compact density was 7.50 g / cm 2 . The polished tablet was baked at 600 ° C. for 1 hour in a nitrogen atmosphere, and after polishing the surface, the volume resistivity (resistivity) was measured with a four-terminal resistivity meter to be 75 μΩm. The compact density was 7.50 g / cm 2 .

[実施例3]
実施例2において四つ口フラスコ内容物にリン酸二水素アンモニウム水溶液滴下後、30℃のオイルバス中にて1.5時間撹拌する工程を追加した。
[Example 3]
In Example 2, after adding ammonium dihydrogen phosphate aqueous solution to the contents of the four-necked flask, a step of stirring in an oil bath at 30 ° C. for 1.5 hours was added.

すなわち、300mLの四つ口フラスコに25%アンモニア水によりpH11以上に調整した硝酸カルシウム水溶液75mL(1.79mmol,0.024M)及び鉄粉(神戸製鋼所社製純鉄粉300NH)30gを入れ、30℃のオイルバス中にて15分間撹拌した。その後、側管付滴下ロートに25%アンモニア水によりpH11以上に調整したリン酸二水素アンモニウム水溶液75mL(1.07mmol,0.014M)を入れ、これを四つ口フラスコに固定した。四つ口フラスコを30℃のオイルバス中にて撹拌しながら、これに10分かけて滴下ロート内のリン酸二水素アンモニウム水溶液を滴下した後、オイルバスの温度を30℃に保持したまま1.5時間撹拌した。   That is, in a 300 mL four-necked flask, 75 mL (1.79 mmol, 0.024 M) of calcium nitrate aqueous solution adjusted to pH 11 or more with 25% ammonia water and 30 g of iron powder (pure iron powder 300NH manufactured by Kobe Steel) were added. The mixture was stirred for 15 minutes in an oil bath at 30 ° C. Thereafter, 75 mL (1.07 mmol, 0.014 M) of an aqueous solution of ammonium dihydrogen phosphate adjusted to pH 11 or higher with 25% aqueous ammonia was placed in a dropping funnel with a side tube, and this was fixed to a four-necked flask. While stirring the four-necked flask in an oil bath at 30 ° C., the aqueous solution of ammonium dihydrogen phosphate in the dropping funnel was dropped over 10 minutes, and then the temperature of the oil bath was maintained at 30 ° C. Stir for 5 hours.

次に、オイルバスの温度を30℃から90℃に10分かけて昇温し、撹拌しながら90℃にて2時間反応させた。得られたスラリー液を吸引ろ過し、濾物を110℃のオーブンにて乾燥させたところ灰色の粉末が得られた。得られた粉末の表面近傍の原子存在率をXPSにより分析したところ、原子存在率がFe5.56%、Ca14.85%、Ca/P比(モル比)が1.63であり、粉末がヒドロキシアパタイトで被覆されていることを確認できた。   Next, the temperature of the oil bath was raised from 30 ° C. to 90 ° C. over 10 minutes and reacted at 90 ° C. for 2 hours with stirring. The obtained slurry was subjected to suction filtration, and the residue was dried in an oven at 110 ° C. to obtain a gray powder. When the atomic abundance ratio in the vicinity of the surface of the obtained powder was analyzed by XPS, the atomic abundance ratio was Fe 5.56%, Ca 14.85%, Ca / P ratio (molar ratio) was 1.63, and the powder was hydroxy. It was confirmed that it was covered with apatite.

さらに、得られたアパタイト被覆粉末20gとオルガノシリカゾルトルエン溶液(固形分濃度3.0質量%)2gとを混合し、最大内容量50mLのポリプロピレン製ビン中で10分間振とうした後、内容物をステンレス製シャーレに取り出し、1MPa以下の圧力にて5分間乾燥し、取り出した粉末を200℃にて25分間予備硬化した。予備硬化して得られた鉄粉末を250μmのふるいに掛けた。
得られたナノシリカ付着アパタイト被覆鉄粉6gを内径14mmの金型に充填し、成型圧力1000MPa/cmにて、円柱状の錠剤に成型した。この時、得られた錠剤の厚みは約5mmとなる。成型した錠剤の表面を研磨し、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、111μΩmであった。また、成型体密度は7.51g/cmであった。研磨した錠剤を窒素雰囲気下、600℃にて1時間焼鈍し、表面を再研磨後、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、55μΩmであった。また、成型体密度は7.51g/cmであった。
Furthermore, 20 g of the obtained apatite-coated powder and 2 g of organosilica sol toluene solution (solid content concentration: 3.0% by mass) were mixed and shaken for 10 minutes in a polypropylene bottle having a maximum internal volume of 50 mL. It took out to the stainless steel petri dish, it dried for 5 minutes at the pressure of 1 Mpa or less, and the taken-out powder was precured for 25 minutes at 200 degreeC. The iron powder obtained by pre-curing was passed through a 250 μm sieve.
6 g of the obtained nanosilica-attached apatite-coated iron powder was filled in a die having an inner diameter of 14 mm and molded into a cylindrical tablet at a molding pressure of 1000 MPa / cm 2 . At this time, the thickness of the obtained tablet is about 5 mm. The surface of the molded tablet was polished, and the volume resistivity (resistivity) was measured with a four-terminal resistivity meter. As a result, it was 111 μΩm. The compact density was 7.51 g / cm 2 . The polished tablet was annealed at 600 ° C. for 1 hour in a nitrogen atmosphere, and after repolishing the surface, the volume resistivity (resistivity) was measured with a four-terminal resistivity meter to be 55 μΩm. The compact density was 7.51 g / cm 2 .

[実施例4]
実施例3において、90℃反応時間を2時間から10分に変更した。
[Example 4]
In Example 3, the 90 ° C. reaction time was changed from 2 hours to 10 minutes.

すなわち、300mLの四つ口フラスコに25%アンモニア水によりpH11以上に調整した硝酸カルシウム水溶液75mL(1.79mmol,0.024M)及び鉄粉(神戸製鋼所社製純鉄粉300NH)30gを入れ、30℃のオイルバス中にて15分間撹拌した。その後、側管付滴下ロートに25%アンモニア水によりpH11以上に調整したリン酸二水素アンモニウム水溶液75mL(1.07mmol,0.014M)を入れ、これを四つ口フラスコに固定した。四つ口フラスコを30℃のオイルバス中にて撹拌しながら、これに10分かけて滴下ロート内のリン酸二水素アンモニウム水溶液を滴下した後、オイルバスの温度を30℃に保持したまま1.5時間撹拌した。   That is, in a 300 mL four-necked flask, 75 mL (1.79 mmol, 0.024 M) of calcium nitrate aqueous solution adjusted to pH 11 or more with 25% ammonia water and 30 g of iron powder (pure iron powder 300NH manufactured by Kobe Steel) were added. The mixture was stirred for 15 minutes in an oil bath at 30 ° C. Thereafter, 75 mL (1.07 mmol, 0.014 M) of an aqueous solution of ammonium dihydrogen phosphate adjusted to pH 11 or higher with 25% aqueous ammonia was placed in a dropping funnel with a side tube, and this was fixed to a four-necked flask. While stirring the four-necked flask in an oil bath at 30 ° C., the aqueous solution of ammonium dihydrogen phosphate in the dropping funnel was dropped over 10 minutes, and then the temperature of the oil bath was maintained at 30 ° C. Stir for 5 hours.

次に、オイルバスの温度を30℃から90℃に10分かけて昇温し、撹拌しながら90℃にて10分間反応させた。それから、得られたスラリー液を吸引ろ過し、110℃のオーブンにて乾燥させたところ灰色の鉄粉末が得られた。得られた粉末の表面近傍の原子存在率をXPSにより分析したところ、原子存在率がFe6.79%、Ca12.77%、Ca/P比(モル比)が1.44であった。   Next, the temperature of the oil bath was raised from 30 ° C. to 90 ° C. over 10 minutes and reacted at 90 ° C. for 10 minutes while stirring. Then, the obtained slurry was filtered by suction and dried in an oven at 110 ° C. to obtain a gray iron powder. When the atomic abundance ratio in the vicinity of the surface of the obtained powder was analyzed by XPS, the atomic abundance ratio was Fe 6.79%, Ca 12.77%, and the Ca / P ratio (molar ratio) was 1.44.

さらに、得られたアパタイト被覆粉末20gとオルガノシリカゾルトルエン溶液(固形分濃度3.0質量%)2gとを最大内容量50mLのポリプロピレン製ビン中で10分間振とうした後、内容物をステンレス製シャーレに取り出し、1MPa以下の圧力にて5分間乾燥し、取り出した粉末を200℃にて25分間予備硬化した。予備硬化して得られた鉄粉末を250μmのふるいに掛けた。得られたナノシリカ付着アパタイト被覆鉄粉6gを内径14mmの金型に充填し、成型圧力1000MPa/cmにて、円柱状の錠剤に成型した。この時、得られた錠剤の厚みは約5mmとなる。成型した錠剤の表面を研磨し、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、214μΩmであった。また、成型体密度は7.50g/cmであった。研磨した錠剤を窒素雰囲気下、600℃にて1時間焼鈍し、表面を再研磨後、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、53μΩmであった。また、成型体密度は7.49g/cmであった。Further, 20 g of the obtained apatite-coated powder and 2 g of an organosilica sol toluene solution (solid content concentration: 3.0% by mass) were shaken for 10 minutes in a polypropylene bottle having a maximum internal volume of 50 mL, and then the contents were made of a stainless steel petri dish. And dried at a pressure of 1 MPa or less for 5 minutes, and the taken-out powder was precured at 200 ° C. for 25 minutes. The iron powder obtained by pre-curing was passed through a 250 μm sieve. 6 g of the obtained nanosilica-attached apatite-coated iron powder was filled in a die having an inner diameter of 14 mm and molded into a cylindrical tablet at a molding pressure of 1000 MPa / cm 2 . At this time, the thickness of the obtained tablet is about 5 mm. The surface of the molded tablet was polished, and the volume resistivity (resistivity) was measured with a four-terminal resistivity meter. As a result, it was 214 μΩm. The compact density was 7.50 g / cm 2 . The polished tablet was annealed at 600 ° C. for 1 hour in a nitrogen atmosphere, and after repolishing the surface, the volume resistivity (resistivity) was measured with a four-terminal resistivity meter to be 53 μΩm. The compact density was 7.49 g / cm 2 .

[実施例5]
実施例3において、90℃での反応時間を2時間から5時間に変更した。
[Example 5]
In Example 3, the reaction time at 90 ° C. was changed from 2 hours to 5 hours.

すなわち、300mLの四つ口フラスコに25%アンモニア水によりpH11以上に調整した硝酸カルシウム水溶液75mL(1.79mmol,0.024M)及び鉄粉(神戸製鋼所社製純鉄粉300NH)30gを入れ、30℃のオイルバス中にて15分間撹拌した。その後、側管付滴下ロートに25%アンモニア水によりpH11以上に調整したリン酸二水素アンモニウム水溶液75mL(1.07mmol,0.014M)を入れ、これを四つ口フラスコに固定した。四つ口フラスコを30℃のオイルバス中にて撹拌しながら、これに10分かけて滴下ロート内のリン酸二水素アンモニウム水溶液を滴下した後、オイルバスの温度を30℃に保持したまま1.5時間撹拌した。   That is, in a 300 mL four-necked flask, 75 mL (1.79 mmol, 0.024 M) of calcium nitrate aqueous solution adjusted to pH 11 or more with 25% ammonia water and 30 g of iron powder (pure iron powder 300NH manufactured by Kobe Steel) were added. The mixture was stirred for 15 minutes in an oil bath at 30 ° C. Thereafter, 75 mL (1.07 mmol, 0.014 M) of an aqueous solution of ammonium dihydrogen phosphate adjusted to pH 11 or higher with 25% aqueous ammonia was placed in a dropping funnel with a side tube, and this was fixed to a four-necked flask. While stirring the four-necked flask in an oil bath at 30 ° C., the aqueous solution of ammonium dihydrogen phosphate in the dropping funnel was dropped over 10 minutes, and then the temperature of the oil bath was maintained at 30 ° C. Stir for 5 hours.

次に、オイルバスの温度を30℃から90℃に10分かけて昇温し、撹拌しながら90℃にて5時間反応させた。得られたスラリー液を吸引ろ過し、110℃のオーブンにて乾燥させたところ灰色の鉄粉末が得られた。得られた粉末の表面近傍の原子存在率をXPSにより分析したところ、原子存在率がFe6.07%、Ca13.98%、Ca/P比が1.67であり、粉末がヒドロキシアパタイトで被覆されていることを確認できた。   Next, the temperature of the oil bath was raised from 30 ° C. to 90 ° C. over 10 minutes and reacted at 90 ° C. for 5 hours with stirring. The obtained slurry was suction filtered and dried in an oven at 110 ° C. to obtain a gray iron powder. When the atomic abundance ratio near the surface of the obtained powder was analyzed by XPS, the atomic abundance ratio was Fe 6.07%, Ca 13.98%, Ca / P ratio 1.67, and the powder was coated with hydroxyapatite. I was able to confirm that.

さらに、得られたアパタイト被覆粉末20gとオルガノシリカゾルトルエン溶液(固形分濃度3.0質量%)2gとを最大内容量50mLのポリプロピレン製ビン中で10分間振とうした後、内容物をステンレス製シャーレに取り出し、1MPa以下の圧力にて5分間乾燥し、取り出した粉末を200℃にて25分間予備硬化した。予備硬化して得られた鉄粉末を250μmのふるいに掛けた。得られたナノシリカ付着アパタイト被覆鉄粉6gを内径14mmの金型に充填し、成型圧力1000MPa/cmにて、円柱状の錠剤に成型した。この時、得られた錠剤の厚みは約5mmとなる。成型した錠剤の表面を研磨し、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、218μΩmであった。また、成型体密度は7.47g/cmであった。研磨した錠剤を窒素雰囲気下、600℃にて1時間焼鈍し、表面を再研磨後、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、93μΩmであった。また、成型体密度は7.47g/cmであった。Further, 20 g of the obtained apatite-coated powder and 2 g of an organosilica sol toluene solution (solid content concentration: 3.0% by mass) were shaken for 10 minutes in a polypropylene bottle having a maximum internal volume of 50 mL, and then the contents were made of a stainless steel petri dish. And dried at a pressure of 1 MPa or less for 5 minutes, and the taken-out powder was precured at 200 ° C. for 25 minutes. The iron powder obtained by pre-curing was passed through a 250 μm sieve. 6 g of the obtained nanosilica-attached apatite-coated iron powder was filled in a die having an inner diameter of 14 mm and molded into a cylindrical tablet at a molding pressure of 1000 MPa / cm 2 . At this time, the thickness of the obtained tablet is about 5 mm. The surface of the molded tablet was polished, and the volume resistivity (resistivity) was measured with a four-terminal resistivity meter. As a result, it was 218 μΩm. Further, the density of the molded body was 7.47 g / cm 2 . The polished tablet was annealed at 600 ° C. for 1 hour in a nitrogen atmosphere, and after repolishing the surface, the volume resistivity (resistivity) was measured with a four-terminal resistivity meter to be 93 μΩm. Further, the density of the molded body was 7.47 g / cm 2 .

[実施例6]
実施例3において、90℃の反応温度を30℃に変更した。
[Example 6]
In Example 3, the reaction temperature of 90 ° C. was changed to 30 ° C.

すなわち、300mLの四つ口フラスコに25%アンモニア水によりpH11以上に調整した硝酸カルシウム水溶液75mL(1.79mmol,0.024M)及び鉄粉(神戸製鋼所社製純鉄粉300NH)30gを入れ、30℃のオイルバス中にて15分間撹拌した。その後、側管付滴下ロートに25%アンモニア水によりpH11以上に調整したリン酸二水素アンモニウム水溶液75mL(1.07mmol,0.014M)を入れ、これを四つ口フラスコに固定した。四つ口フラスコを30℃のオイルバス中にて撹拌しながら、これに10分かけて滴下ロート内のリン酸二水素アンモニウム水溶液を滴下した後、オイルバスの温度を30℃に保持したまま3.5時間撹拌した。   That is, in a 300 mL four-necked flask, 75 mL (1.79 mmol, 0.024 M) of calcium nitrate aqueous solution adjusted to pH 11 or more with 25% ammonia water and 30 g of iron powder (pure iron powder 300NH manufactured by Kobe Steel) were added. The mixture was stirred for 15 minutes in an oil bath at 30 ° C. Thereafter, 75 mL (1.07 mmol, 0.014 M) of an aqueous solution of ammonium dihydrogen phosphate adjusted to pH 11 or higher with 25% aqueous ammonia was placed in a dropping funnel with a side tube, and this was fixed to a four-necked flask. While stirring the four-necked flask in an oil bath at 30 ° C., the aqueous solution of ammonium dihydrogen phosphate in the dropping funnel was dropped over 10 minutes, and then the temperature of the oil bath was maintained at 30 ° C. 3 Stir for 5 hours.

それから、得られたスラリー液を吸引ろ過し、110℃のオーブンにて乾燥させたところ灰色の鉄粉末が得られた。得られた粉末の表面近傍の原子存在率をXPSにより分析したところ、原子存在率がFe7.84%、Ca11.67%、Ca/P比(モル比)が1.65であり、鉄粉末がヒドロキシアパタイトで被覆されていることを確認できた。   Then, the obtained slurry was filtered by suction and dried in an oven at 110 ° C. to obtain a gray iron powder. When the atomic abundance ratio in the vicinity of the surface of the obtained powder was analyzed by XPS, the atomic abundance ratio was Fe 7.84%, Ca 11.67%, Ca / P ratio (molar ratio) was 1.65, and the iron powder was It was confirmed that it was coated with hydroxyapatite.

さらに、得られたアパタイト被覆粉末20gとオルガノシリカゾルトルエン溶液(固形分濃度3.0質量%)2gとを最大内容量50mLのポリプロピレン製ビン中で10分間振とうした後、内容物をステンレス製シャーレに取り出し、1MPa以下の圧力にて5分間乾燥し、取り出した粉末を200℃にて25分間予備硬化した。予備硬化して得られた鉄粉末を250μmのふるいに掛けた。得られたナノシリカ付着アパタイト被覆鉄粉6gを内径14mmの金型に充填し、成型圧力1000MPa/cmにて、円柱状の錠剤に成型した。この時、得られた錠剤の厚みは約5mmとなる。成型した錠剤の表面を研磨し、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、119μΩmであった。また、成型体密度は7.53g/cmであった。
研磨した錠剤を窒素雰囲気下、600℃にて1時間焼鈍し、表面を再研磨後、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、31μΩmであった。また、密度は7.53g/cmであった。
Further, 20 g of the obtained apatite-coated powder and 2 g of an organosilica sol toluene solution (solid content concentration: 3.0% by mass) were shaken for 10 minutes in a polypropylene bottle having a maximum internal volume of 50 mL, and then the contents were made of a stainless steel petri dish. And dried at a pressure of 1 MPa or less for 5 minutes, and the taken-out powder was precured at 200 ° C. for 25 minutes. The iron powder obtained by pre-curing was passed through a 250 μm sieve. 6 g of the obtained nanosilica-attached apatite-coated iron powder was filled in a die having an inner diameter of 14 mm and molded into a cylindrical tablet at a molding pressure of 1000 MPa / cm 2 . At this time, the thickness of the obtained tablet is about 5 mm. The surface of the molded tablet was polished, and the volume resistivity (resistivity) was measured with a four-terminal resistivity meter to be 119 μΩm. Moreover, the molding density was 7.53 g / cm 2 .
The polished tablet was annealed at 600 ° C. for 1 hour in a nitrogen atmosphere, and after repolishing the surface, the volume resistivity (resistivity) was measured with a four-terminal resistivity meter to be 31 μΩm. The density was 7.53 g / cm 2 .

[実施例7]
実施例3において、90℃反応温度を50℃に変更した。
すなわち、300mLの四つ口フラスコに25%アンモニア水によりpH11以上に調整した硝酸カルシウム水溶液75mL(1.79mmol,0.024M)及び鉄粉(神戸製鋼所社製純鉄粉300NH)30gを入れ、30℃のオイルバス中にて15分間撹拌した。その後、側管付滴下ロートに25%アンモニア水によりpH11以上に調整したリン酸二水素アンモニウム水溶液75mL(1.07mmol,0.014M)を入れ、これを四つ口フラスコに固定した。四つ口フラスコを30℃のオイルバス中にて撹拌しながら、これに10分かけて滴下ロート内のリン酸二水素アンモニウム水溶液を滴下した後、オイルバスの温度を30℃に保持したまま1.5時間撹拌した。
[Example 7]
In Example 3, the 90 ° C. reaction temperature was changed to 50 ° C.
That is, in a 300 mL four-necked flask, 75 mL (1.79 mmol, 0.024 M) of calcium nitrate aqueous solution adjusted to pH 11 or more with 25% ammonia water and 30 g of iron powder (pure iron powder 300NH manufactured by Kobe Steel) were added. The mixture was stirred for 15 minutes in an oil bath at 30 ° C. Thereafter, 75 mL (1.07 mmol, 0.014 M) of an aqueous solution of ammonium dihydrogen phosphate adjusted to pH 11 or higher with 25% aqueous ammonia was placed in a dropping funnel with a side tube, and this was fixed to a four-necked flask. While stirring the four-necked flask in an oil bath at 30 ° C., the aqueous solution of ammonium dihydrogen phosphate in the dropping funnel was dropped over 10 minutes, and then the temperature of the oil bath was maintained at 30 ° C. Stir for 5 hours.

次に、オイルバスの温度を30℃から50℃に5分かけて昇温し、撹拌しながら90℃にて2時間反応させた。得られたスラリー液を吸引ろ過し、110℃のオーブンにて乾燥させたところ灰色の鉄粉末が得られた。得られた粉末の表面近傍の原子存在率をXPSにより分析したところ、原子存在率がFe7.08%、Ca13.24%、Ca/P比(モル比)が1.77であり、鉄粉末がヒドロキシアパタイトで被覆されていることを確認できた。   Next, the temperature of the oil bath was raised from 30 ° C. to 50 ° C. over 5 minutes and reacted at 90 ° C. for 2 hours with stirring. The obtained slurry was suction filtered and dried in an oven at 110 ° C. to obtain a gray iron powder. When the atomic abundance ratio in the vicinity of the surface of the obtained powder was analyzed by XPS, the atomic abundance ratio was Fe 7.08%, Ca 13.24%, Ca / P ratio (molar ratio) was 1.77, and the iron powder was It was confirmed that it was coated with hydroxyapatite.

さらに、得られたアパタイト被覆粉末20gとオルガノシリカゾルトルエン溶液(固形分濃度3.0質量%)2gとを最大内容量50mLのポリプロピレン製ビン中で10分間振とうした後、内容物をステンレス製シャーレに取り出し、1MPa以下の圧力にて5分間乾燥し、取り出した粉末を200℃にて25分間予備硬化した。予備硬化して得られた鉄粉末を250μmのふるいに掛けた。   Further, 20 g of the obtained apatite-coated powder and 2 g of an organosilica sol toluene solution (solid content concentration: 3.0% by mass) were shaken for 10 minutes in a polypropylene bottle having a maximum content of 50 mL, and then the contents were made of a stainless steel dish. And dried at a pressure of 1 MPa or less for 5 minutes, and the taken-out powder was precured at 200 ° C. for 25 minutes. The iron powder obtained by pre-curing was passed through a 250 μm sieve.

得られたナノシリカ付着アパタイト被覆鉄粉6gを内径14mmの金型に充填し、成型圧力1000MPa/cmにて、円柱状の錠剤に成型した。この時、得られた錠剤の厚みは約5mmとなる。成型した錠剤の表面を研磨し、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、176μΩmであった。また、成型体密度は7.46g/cmであった。研磨した錠剤を窒素雰囲気下、600℃にて1時間焼鈍し、表面を再研磨後、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、53μΩmであった。また、成型体密度は7.47g/cmであった。6 g of the obtained nanosilica-attached apatite-coated iron powder was filled in a die having an inner diameter of 14 mm and molded into a cylindrical tablet at a molding pressure of 1000 MPa / cm 2 . At this time, the thickness of the obtained tablet is about 5 mm. The surface of the molded tablet was polished, and the volume resistivity (resistivity) was measured with a four-terminal resistivity meter to be 176 μΩm. The compact density was 7.46 g / cm 2 . The polished tablet was annealed at 600 ° C. for 1 hour in a nitrogen atmosphere, and after repolishing the surface, the volume resistivity (resistivity) was measured with a four-terminal resistivity meter to be 53 μΩm. Further, the density of the molded body was 7.47 g / cm 2 .

[実施例8]
実施例3において、90℃反応温度を30℃に変更し、110℃焼成を行わなかった。
[Example 8]
In Example 3, the 90 ° C. reaction temperature was changed to 30 ° C., and firing at 110 ° C. was not performed.

すなわち、300mLの四つ口フラスコに25%アンモニア水によりpH11以上に調整した硝酸カルシウム水溶液75mL(1.79mmol,0.024M)及び鉄粉(神戸製鋼所社製純鉄粉300NH)30gを入れ、30℃のオイルバス中にて15分間撹拌した。その後、側管付滴下ロートに25%アンモニア水によりpH11以上に調整したリン酸二水素アンモニウム水溶液75mL(1.07 mmol,0.014M)を入れ、これを四つ口フラスコに固定した。四つ口フラスコを30℃のオイルバス中にて撹拌しながら、これに10分かけて滴下ロート内のリン酸二水素アンモニウム水溶液を滴下した後、オイルバスの温度を30℃に保持したまま3.5時間撹拌した。   That is, in a 300 mL four-necked flask, 75 mL (1.79 mmol, 0.024 M) of calcium nitrate aqueous solution adjusted to pH 11 or more with 25% ammonia water and 30 g of iron powder (pure iron powder 300NH manufactured by Kobe Steel) were added. The mixture was stirred for 15 minutes in an oil bath at 30 ° C. Thereafter, 75 mL (1.07 mmol, 0.014 M) of an aqueous solution of ammonium dihydrogen phosphate adjusted to pH 11 or higher with 25% aqueous ammonia was placed in a dropping funnel with a side tube, and this was fixed to a four-necked flask. While stirring the four-necked flask in an oil bath at 30 ° C., the aqueous solution of ammonium dihydrogen phosphate in the dropping funnel was dropped over 10 minutes, and then the temperature of the oil bath was maintained at 30 ° C. 3 Stir for 5 hours.

次に、得られたスラリー液を吸引ろ過し、ステンレス製シャーレに取り出し、1MPa以下の圧力にて5分間乾燥したところ灰色の鉄粉末が得られた。得られた粉末の表面近傍の原子存在率をXPSにより分析したところ、原子存在率がFe5.53%、Ca13.63%、Ca/P比(モル比)が1.52であった。   Next, the obtained slurry was suction filtered, taken out into a stainless steel petri dish, and dried at a pressure of 1 MPa or less for 5 minutes to obtain a gray iron powder. When the atomic abundance ratio in the vicinity of the surface of the obtained powder was analyzed by XPS, the atomic abundance ratio was Fe 5.53%, Ca 13.63%, and the Ca / P ratio (molar ratio) was 1.52.

さらに、得られたアパタイト被覆粉末20gとオルガノシリカゾルトルエン溶液(固形分濃度3.0質量%)2gとを最大内容量50mLのポリプロピレン製ビン中で10分間振とうした後、内容物をステンレス製シャーレに取り出し、1MPa以下の圧力にて5分間乾燥し、取り出した粉末を200℃にて25分間予備硬化した。予備硬化して得られた鉄粉末を250μmのふるいに掛けた。
得られたナノシリカ付着アパタイト被覆鉄粉6gを内径14mmの金型に充填し、成型圧力1000MPa/cmにて、円柱状の錠剤に成型した。この時、得られた錠剤の厚みは約5mmとなる。成型した錠剤の表面を研磨し、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、168μΩmであった。また、成型体密度は7.50g/cmであった。研磨した錠剤を窒素雰囲気下、600℃にて1時間焼鈍し、表面を研磨後、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、56μΩmであった。また、成型体密度は7.49g/cmであった。
Further, 20 g of the obtained apatite-coated powder and 2 g of an organosilica sol toluene solution (solid content concentration: 3.0% by mass) were shaken for 10 minutes in a polypropylene bottle having a maximum internal volume of 50 mL, and then the contents were made of a stainless steel petri dish. And dried at a pressure of 1 MPa or less for 5 minutes, and the taken-out powder was precured at 200 ° C. for 25 minutes. The iron powder obtained by pre-curing was passed through a 250 μm sieve.
6 g of the obtained nanosilica-attached apatite-coated iron powder was filled in a die having an inner diameter of 14 mm and molded into a cylindrical tablet at a molding pressure of 1000 MPa / cm 2 . At this time, the thickness of the obtained tablet is about 5 mm. The surface of the molded tablet was polished, and the volume resistivity (resistivity) was measured with a four-terminal resistivity meter. As a result, it was 168 μΩm. The compact density was 7.50 g / cm 2 . The polished tablet was annealed at 600 ° C. for 1 hour in a nitrogen atmosphere, and after polishing the surface, the volume resistivity (resistivity) was measured with a four-terminal resistivity meter to be 56 μΩm. The compact density was 7.49 g / cm 2 .

[実施例9]
実施例3において、90℃反応温度を50℃に変更し、110℃焼成を行わなかった。
[Example 9]
In Example 3, the 90 ° C. reaction temperature was changed to 50 ° C., and firing at 110 ° C. was not performed.

すなわち、300mLの四つ口フラスコに25%アンモニア水によりpH11以上に調整した硝酸カルシウム水溶液75mL(1.79mmol,0.024M)及び鉄粉(神戸製鋼所社製純鉄粉300NH)30gを入れ、30℃のオイルバス中にて15分間撹拌した。その後、側管付滴下ロートに25%アンモニア水によりpH11以上に調整したリン酸二水素アンモニウム水溶液75mL(1.07mmol,0.014M)を入れ、これを四つ口フラスコに固定した。四つ口フラスコを30℃のオイルバス中にて撹拌しながら、これに10分かけて滴下ロート内のリン酸二水素アンモニウム水溶液を滴下した後、オイルバスの温度を30℃に保持したまま1.5時間撹拌した。   That is, in a 300 mL four-necked flask, 75 mL (1.79 mmol, 0.024 M) of calcium nitrate aqueous solution adjusted to pH 11 or more with 25% ammonia water and 30 g of iron powder (pure iron powder 300NH manufactured by Kobe Steel) were added. The mixture was stirred for 15 minutes in an oil bath at 30 ° C. Thereafter, 75 mL (1.07 mmol, 0.014 M) of an aqueous solution of ammonium dihydrogen phosphate adjusted to pH 11 or higher with 25% aqueous ammonia was placed in a dropping funnel with a side tube, and this was fixed to a four-necked flask. While stirring the four-necked flask in an oil bath at 30 ° C., the aqueous solution of ammonium dihydrogen phosphate in the dropping funnel was dropped over 10 minutes, and then the temperature of the oil bath was maintained at 30 ° C. Stir for 5 hours.

次に、オイルバスの温度を30℃から50℃に5分かけて昇温し、四つ口フラスコ内容物を撹拌しながら90℃にて2時間反応させた。得られたスラリー液を吸引ろ過し、ステンレス製シャーレに取り出し、1MPa以下の圧力にて5分間乾燥したところ灰色の鉄粉末が得られた。得られた粉末の表面近傍の原子存在率をXPSにより分析したところ、原子存在率がFe4.89%、Ca15.54%、Ca/P比(モル比)が1.77であり、粉末がヒドロキシアパタイトで被覆されていることを確認できた。   Next, the temperature of the oil bath was raised from 30 ° C. to 50 ° C. over 5 minutes, and the contents of the four-necked flask were reacted at 90 ° C. for 2 hours while stirring. The obtained slurry was suction filtered, taken out into a stainless steel petri dish, and dried at a pressure of 1 MPa or less for 5 minutes to obtain a gray iron powder. When the atomic abundance ratio in the vicinity of the surface of the obtained powder was analyzed by XPS, the atomic abundance ratio was Fe 4.89%, Ca 15.54%, Ca / P ratio (molar ratio) was 1.77, and the powder was hydroxy. It was confirmed that it was covered with apatite.

さらに、得られたアパタイト被覆粉末20gとオルガノシリカゾルトルエン溶液(固形分濃度3.0質量%)2gとを最大内容量50mLのポリプロピレン製ビン中で10分間振とうした後、内容物をステンレス製シャーレに取り出し、1MPa以下の圧力にて5分間乾燥し、取り出した粉末を200℃にて25分間予備硬化した。予備硬化して得られた鉄粉末を250μmのふるいに掛けた。得られたナノシリカ付着アパタイト被覆鉄粉6gを内径14mmの金型に充填し、成型圧力1000MPa/cmにて、円柱状の錠剤に成型した。この時、得られた錠剤の厚みは約5mmとなる。成型した錠剤の表面を研磨し、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、137μΩmであった。また、成型体密度は7.50g/cmであった。研磨した錠剤を窒素雰囲気下、600℃にて1時間焼鈍し、表面を再研磨後、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、44μΩmであった。また、成型体密度は7.50g/cmであった。Further, 20 g of the obtained apatite-coated powder and 2 g of an organosilica sol toluene solution (solid content concentration: 3.0% by mass) were shaken for 10 minutes in a polypropylene bottle having a maximum internal volume of 50 mL, and then the contents were made of a stainless steel petri dish. And dried at a pressure of 1 MPa or less for 5 minutes, and the taken-out powder was precured at 200 ° C. for 25 minutes. The iron powder obtained by pre-curing was passed through a 250 μm sieve. 6 g of the obtained nanosilica-attached apatite-coated iron powder was filled in a die having an inner diameter of 14 mm and molded into a cylindrical tablet at a molding pressure of 1000 MPa / cm 2 . At this time, the thickness of the obtained tablet is about 5 mm. The surface of the molded tablet was polished, and the volume resistivity (resistivity) was measured with a four-terminal resistivity meter. As a result, it was 137 μΩm. The compact density was 7.50 g / cm 2 . The polished tablet was annealed at 600 ° C. for 1 hour in a nitrogen atmosphere, and after repolishing the surface, the volume resistivity (resistivity) was measured with a four-terminal resistivity meter to be 44 μΩm. The compact density was 7.50 g / cm 2 .

[実施例10]
実施例3において、110℃焼成を行わなかった。
[Example 10]
In Example 3, baking at 110 ° C. was not performed.

すなわち、300mLの四つ口フラスコに25%アンモニア水によりpH11以上に調整した硝酸カルシウム水溶液75mL(1.79mmol,0.024M)及び鉄粉(神戸製鋼所社製純鉄粉300NH)30gを入れ、30℃のオイルバス中にて15分間撹拌した。その後、側管付滴下ロートに25%アンモニア水によりpH11以上に調整したリン酸二水素アンモニウム水溶液75mL(1.07mmol,0.014M)を入れ、これを四つ口フラスコに固定した。四つ口フラスコを30℃のオイルバス中にて撹拌しながら、これに10分かけて滴下ロート内のリン酸二水素アンモニウム水溶液を滴下した後、オイルバスの温度を30℃に保持したまま1.5時間撹拌した。   That is, in a 300 mL four-necked flask, 75 mL (1.79 mmol, 0.024 M) of calcium nitrate aqueous solution adjusted to pH 11 or more with 25% ammonia water and 30 g of iron powder (pure iron powder 300NH manufactured by Kobe Steel) were added. The mixture was stirred for 15 minutes in an oil bath at 30 ° C. Thereafter, 75 mL (1.07 mmol, 0.014 M) of an aqueous solution of ammonium dihydrogen phosphate adjusted to pH 11 or higher with 25% aqueous ammonia was placed in a dropping funnel with a side tube, and this was fixed to a four-necked flask. While stirring the four-necked flask in an oil bath at 30 ° C., the aqueous solution of ammonium dihydrogen phosphate in the dropping funnel was dropped over 10 minutes, and then the temperature of the oil bath was maintained at 30 ° C. Stir for 5 hours.

次に、オイルバスの温度を30℃から90℃に10分かけて昇温し、撹拌しながら90℃にて2時間反応させた。得られたスラリー液を吸引ろ過し、0MPaにて真空乾燥したところ灰色の鉄粉末が得られた。得られた鉄粉末をXPSにより分析したところ、原子存在率がFe3.85%、Ca16.63%、Ca/P比(モル比)が1.56であった。   Next, the temperature of the oil bath was raised from 30 ° C. to 90 ° C. over 10 minutes and reacted at 90 ° C. for 2 hours with stirring. The obtained slurry liquid was subjected to suction filtration and vacuum dried at 0 MPa to obtain gray iron powder. When the obtained iron powder was analyzed by XPS, the atomic abundance ratio was Fe 3.85%, Ca 16.63%, and the Ca / P ratio (molar ratio) was 1.56.

さらに、得られたアパタイト被覆粉末20gとオルガノシリカゾルトルエン溶液(固形分濃度3.0質量%)2gとを最大内容量50mLのポリプロピレン製ビン中で10分間振とうした後、内容物をステンレス製シャーレに取り出し、1MPa以下の圧力にて5分間乾燥し、取り出した粉末を200℃にて25分間予備硬化した。予備硬化して得られた鉄粉末を250μmのふるいに掛けた。得られたナノシリカ付着アパタイト被覆鉄粉6gを内径14mmの金型に充填し、成型圧力1000MPa/cmにて、円柱状の錠剤に成型した。この時、得られた錠剤の厚みは約5mmとなる。成型した錠剤の表面を研磨し、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、137μΩmであった。また、成型体密度は7.50g/cmであった。研磨した錠剤を窒素雰囲気下、600℃にて1時間焼鈍し、表面を再研磨後、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、30μΩmであった。また、成型体密度は7.50g/cmであった。Further, 20 g of the obtained apatite-coated powder and 2 g of an organosilica sol toluene solution (solid content concentration: 3.0% by mass) were shaken for 10 minutes in a polypropylene bottle having a maximum internal volume of 50 mL, and then the contents were made of a stainless steel petri dish. And dried at a pressure of 1 MPa or less for 5 minutes, and the taken-out powder was precured at 200 ° C. for 25 minutes. The iron powder obtained by pre-curing was passed through a 250 μm sieve. 6 g of the obtained nanosilica-attached apatite-coated iron powder was filled in a die having an inner diameter of 14 mm and molded into a cylindrical tablet at a molding pressure of 1000 MPa / cm 2 . At this time, the thickness of the obtained tablet is about 5 mm. The surface of the molded tablet was polished, and the volume resistivity (resistivity) was measured with a four-terminal resistivity meter. As a result, it was 137 μΩm. The compact density was 7.50 g / cm 2 . The polished tablet was annealed at 600 ° C. for 1 hour in a nitrogen atmosphere, and after repolishing the surface, the volume resistivity (resistivity) was measured with a four-terminal resistivity meter to be 30 μΩm. The compact density was 7.50 g / cm 2 .

[実施例11]
実施例3において、硝酸カルシウムの仕込み量を1.79mmolから0.60mmolに、リン酸二水素アンモニウムの仕込み量を1.07mmolから0.36mmolに変更した。
[Example 11]
In Example 3, the charge amount of calcium nitrate was changed from 1.79 mmol to 0.60 mmol, and the charge amount of ammonium dihydrogen phosphate was changed from 1.07 mmol to 0.36 mmol.

すなわち、300mLの四つ口フラスコに25%アンモニア水によりpH11以上に調整した硝酸カルシウム水溶液75mL(0.60mmol,0.008M)及び鉄粉(神戸製鋼所社製純鉄粉300NH)30gを入れ、30℃のオイルバス中にて15分間撹拌した。その後、側管付滴下ロートに25%アンモニア水によりpH11以上に調整したリン酸二水素アンモニウム水溶液75mL(0.36mmol,0.005M)を入れ、これを四つ口フラスコに固定した。四つ口フラスコを30℃のオイルバス中にて撹拌しながら、これに10分かけて滴下ロート内のリン酸二水素アンモニウム水溶液を滴下した後、オイルバスの温度を30 ℃に保持したまま1.5時間撹拌した。   That is, in a 300 mL four-necked flask, 75 mL (0.60 mmol, 0.008 M) of calcium nitrate aqueous solution adjusted to pH 11 or more with 25% ammonia water and 30 g of iron powder (pure iron powder 300NH manufactured by Kobe Steel) were added. The mixture was stirred for 15 minutes in an oil bath at 30 ° C. Thereafter, 75 mL (0.36 mmol, 0.005 M) of an aqueous solution of ammonium dihydrogen phosphate adjusted to pH 11 or higher with 25% aqueous ammonia was placed in a dropping funnel with a side tube, and this was fixed to a four-necked flask. While stirring the four-necked flask in an oil bath at 30 ° C., the aqueous solution of ammonium dihydrogen phosphate in the dropping funnel was dropped over 10 minutes, and then the temperature of the oil bath was maintained at 30 ° C. 1 Stir for 5 hours.

次に、オイルバスの温度を30℃から90℃に10分かけて昇温し、撹拌しながら90℃にて2時間反応させた。得られたスラリー液を吸引ろ過し、110℃のオーブンにて乾燥させたところ灰色の鉄粉末が得られた。得られた粉末の表面近傍の原子存在率をXPSにより分析したところ、原子存在率がFe7.29%、Ca13.14%、Ca/P比(モル比)が1.52であった。   Next, the temperature of the oil bath was raised from 30 ° C. to 90 ° C. over 10 minutes and reacted at 90 ° C. for 2 hours with stirring. The obtained slurry was suction filtered and dried in an oven at 110 ° C. to obtain a gray iron powder. When the atomic abundance ratio in the vicinity of the surface of the obtained powder was analyzed by XPS, the atomic abundance ratio was Fe 7.29%, Ca 13.14%, and the Ca / P ratio (molar ratio) was 1.52.

さらに、得られたアパタイト被覆粉末20gとオルガノシリカゾルトルエン溶液(固形分濃度3.0質量%)2gとを最大内容量50mLのポリプロピレン製ビン中で10分間振とうした後、内容物をステンレス製シャーレに取り出し、1MPa以下の圧力にて5分間乾燥し、取り出した粉末を200℃にて25分間予備硬化した。予備硬化して得られた鉄粉末を250μmのふるいに掛けた。得られたナノシリカ付着アパタイト被覆鉄粉6gを内径14mmの金型に充填し、成型圧力1000MPa/cmにて、円柱状の錠剤に成型した。この時、得られた錠剤の厚みは約5mmとなる。成型した錠剤の表面を研磨し、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、122μΩmであった。また、成型体密度は7.56g/cmであった。研磨した錠剤を窒素雰囲気下、600℃にて1時間焼鈍し、表面を再研磨後、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、30μΩmであった。また、成型体密度は7.56g/cmであった。Further, 20 g of the obtained apatite-coated powder and 2 g of an organosilica sol toluene solution (solid content concentration: 3.0% by mass) were shaken for 10 minutes in a polypropylene bottle having a maximum internal volume of 50 mL, and then the contents were made of a stainless steel petri dish. And dried at a pressure of 1 MPa or less for 5 minutes, and the taken-out powder was precured at 200 ° C. for 25 minutes. The iron powder obtained by pre-curing was passed through a 250 μm sieve. 6 g of the obtained nanosilica-attached apatite-coated iron powder was filled in a die having an inner diameter of 14 mm and molded into a cylindrical tablet at a molding pressure of 1000 MPa / cm 2 . At this time, the thickness of the obtained tablet is about 5 mm. The surface of the molded tablet was polished, and the volume resistivity (resistivity) was measured with a four-terminal resistivity meter. As a result, it was 122 μΩm. Moreover, the molding density was 7.56 g / cm 2 . The polished tablet was annealed at 600 ° C. for 1 hour in a nitrogen atmosphere, and after repolishing the surface, the volume resistivity (resistivity) was measured with a four-terminal resistivity meter to be 30 μΩm. Moreover, the molding density was 7.56 g / cm 2 .

[実施例12]
実施例3において、硝酸カルシウムの仕込み量を1.78mmolから2.98mmolに、リン酸二水素アンモニウムの仕込み量を1.07mmolから1.78mmolに変更した。
[Example 12]
In Example 3, the calcium nitrate charge was changed from 1.78 mmol to 2.98 mmol, and the ammonium dihydrogen phosphate charge was changed from 1.07 mmol to 1.78 mmol.

すなわち、300mLの四つ口フラスコに25%アンモニア水によりpH11以上に調整した硝酸カルシウム水溶液75mL(2.98mmol,0.040M)及び鉄粉(神戸製鋼所社製純鉄粉300NH)30gを入れ、30℃のオイルバス中にて15分間撹拌した。その後、側管付滴下ロートに25%アンモニア水によりpH11以上に調整したリン酸二水素アンモニウム水溶液75mL(1.78mmol,0.024M)を入れ、これを四つ口フラスコに固定した。四つ口フラスコを30℃のオイルバス中にて撹拌しながら、これに10分かけて滴下ロート内のリン酸二水素アンモニウム水溶液を滴下した後、オイルバスの温度を30℃に保持したまま1.5時間撹拌した。   That is, in a 300 mL four-necked flask, 75 mL (2.98 mmol, 0.040 M) of calcium nitrate aqueous solution adjusted to pH 11 or more with 25% ammonia water and 30 g of iron powder (pure iron powder 300NH manufactured by Kobe Steel) were added. The mixture was stirred for 15 minutes in an oil bath at 30 ° C. Thereafter, 75 mL (1.78 mmol, 0.024 M) of an aqueous solution of ammonium dihydrogen phosphate adjusted to pH 11 or more with 25% aqueous ammonia was placed in a dropping funnel with a side tube, and this was fixed to a four-necked flask. While stirring the four-necked flask in an oil bath at 30 ° C., the aqueous solution of ammonium dihydrogen phosphate in the dropping funnel was dropped over 10 minutes, and then the temperature of the oil bath was maintained at 30 ° C. Stir for 5 hours.

次に、オイルバスの温度を30℃から90℃に10分かけて昇温し、撹拌しながら90℃にて2時間反応させた。得られたスラリー液を吸引ろ過し、110℃のオーブンにて乾燥させたところ灰色の鉄粉末が得られた。得られた粉末の表面近傍の原子存在率をXPSにより分析したところ、原子存在率がFe2.76%、Ca17.59%、Ca/P比(モル比)が1.67であった。   Next, the temperature of the oil bath was raised from 30 ° C. to 90 ° C. over 10 minutes and reacted at 90 ° C. for 2 hours with stirring. The obtained slurry was suction filtered and dried in an oven at 110 ° C. to obtain a gray iron powder. When the atomic abundance ratio in the vicinity of the surface of the obtained powder was analyzed by XPS, the atomic abundance ratio was Fe 2.76%, Ca 17.59%, and the Ca / P ratio (molar ratio) was 1.67.

さらに、得られたアパタイト被覆粉末20gとオルガノシリカゾルトルエン溶液(固形分濃度3.0質量%)2gとを最大内容量50mLのポリプロピレン製ビン中で10分間振とうした後、内容物をステンレス製シャーレに取り出し、1MPa以下の圧力にて5分間乾燥し、取り出した粉末を200℃にて25分間予備硬化した。予備硬化して得られた鉄粉末を250μmのふるいに掛けた。得られたナノシリカ付着アパタイト被覆鉄粉6gを内径14mmの金型に充填し、成型圧力1000MPa/cmにて、円柱状の錠剤に成型した。この時、得られた錠剤の厚みは約5mmとなる。成型した錠剤の表面を研磨し、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、213μΩmであった。また、成型体密度は7.44g/cmであった。研磨した錠剤を窒素雰囲気下、600℃にて1時間焼鈍し、表面を再研磨後、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、88μΩmであった。また、成型体密度は7.44g/cmであった。Further, 20 g of the obtained apatite-coated powder and 2 g of an organosilica sol toluene solution (solid content concentration: 3.0% by mass) were shaken for 10 minutes in a polypropylene bottle having a maximum internal volume of 50 mL, and then the contents were made of a stainless steel petri dish. And dried at a pressure of 1 MPa or less for 5 minutes, and the taken-out powder was precured at 200 ° C. for 25 minutes. The iron powder obtained by pre-curing was passed through a 250 μm sieve. 6 g of the obtained nanosilica-attached apatite-coated iron powder was filled in a die having an inner diameter of 14 mm and molded into a cylindrical tablet at a molding pressure of 1000 MPa / cm 2 . At this time, the thickness of the obtained tablet is about 5 mm. The surface of the molded tablet was polished, and the volume resistivity (resistivity) was measured with a four-terminal resistivity meter to find 213 μΩm. Moreover, the molding density was 7.44 g / cm 2 . The polished tablet was annealed at 600 ° C. for 1 hour in a nitrogen atmosphere, and after repolishing the surface, the volume resistivity (resistivity) was measured with a four-terminal resistivity meter to be 88 μΩm. Moreover, the molding density was 7.44 g / cm 2 .

[実施例13]
実施例11と同様にヒドロキシアパタイト層が1層から成るヒドロキシアパタイト被覆鉄粉を調製し、さらに同様の処理を繰り返し、ヒドロキシアパタイト層が2層構造であるヒドロキシアパタイト被覆鉄粉を調製した。
[Example 13]
In the same manner as in Example 11, a hydroxyapatite-coated iron powder having a single hydroxyapatite layer was prepared, and the same treatment was repeated to prepare a hydroxyapatite-coated iron powder having a two-layer hydroxyapatite layer.

すなわち、300mLの四つ口フラスコに25%アンモニア水によりpH11以上に調整した硝酸カルシウム水溶液75mL(0.60mmol,0.008M)及び鉄粉(神戸製鋼所社製純鉄粉300NH)30gを入れ、30℃のオイルバス中にて15分間撹拌した。その後、側管付滴下ロートに25%アンモニア水によりpH11以上に調整したリン酸二水素アンモニウム水溶液75mL(0.36mmol,0.005M)を入れ、これを四つ口フラスコに固定した。四つ口フラスコを30℃のオイルバス中にて撹拌しながら、この内容物に10分かけて滴下ロート内のリン酸二水素アンモニウム水溶液を滴下した後、オイルバスの温度を30℃に保持したまま1.5時間撹拌した。   That is, in a 300 mL four-necked flask, 75 mL (0.60 mmol, 0.008 M) of calcium nitrate aqueous solution adjusted to pH 11 or more with 25% ammonia water and 30 g of iron powder (pure iron powder 300NH manufactured by Kobe Steel) were added. The mixture was stirred for 15 minutes in an oil bath at 30 ° C. Thereafter, 75 mL (0.36 mmol, 0.005 M) of an aqueous solution of ammonium dihydrogen phosphate adjusted to pH 11 or higher with 25% aqueous ammonia was placed in a dropping funnel with a side tube, and this was fixed to a four-necked flask. While stirring the four-necked flask in an oil bath at 30 ° C., the aqueous solution of ammonium dihydrogen phosphate in the dropping funnel was dropped into the contents over 10 minutes, and then the temperature of the oil bath was maintained at 30 ° C. The mixture was stirred for 1.5 hours.

次に、オイルバスの温度を30℃から90℃に10分かけて昇温し、四つ口フラスコ内容物を撹拌しながら90℃にて2時間反応させた。得られたスラリー液を吸引ろ過し、110℃のオーブンにて乾燥させたところ灰色の鉄粉末が得られた(収率96質量%)。   Next, the temperature of the oil bath was raised from 30 ° C. to 90 ° C. over 10 minutes, and the contents of the four-necked flask were reacted at 90 ° C. for 2 hours while stirring. The obtained slurry was suction filtered and dried in an oven at 110 ° C. to obtain a gray iron powder (yield 96 mass%).

続いて、得られたアパタイト1層被覆粉末28.8g及び25%アンモニア水によりpH11以上に調整した硝酸カルシウム水溶液72mL(0.57mmol,0.008M)を300mLの四つ口フラスコに入れ、30℃のオイルバス中にて15分間撹拌した。その後、側管付滴下ロートに25%アンモニア水によりpH11以上に調整したリン酸二水素アンモニウム水溶液72mL(0.34mmol,0.005M)を入れ、これを四つ口フラスコに固定した。四つ口フラスコを30℃のオイルバス中にて撹拌しながら、この内容物に10分かけて滴下ロート内のリン酸二水素アンモニウム水溶液を滴下した後、オイルバスの温度を30℃に保持したまま1.5時間撹拌した。   Subsequently, 28.8 g of the obtained apatite single-layer coating powder and 72 mL (0.57 mmol, 0.008 M) of an aqueous calcium nitrate solution adjusted to pH 11 or more with 25% aqueous ammonia were placed in a 300 mL four-necked flask, and 30 ° C. In an oil bath for 15 minutes. Thereafter, 72 mL (0.34 mmol, 0.005 M) of an aqueous solution of ammonium dihydrogen phosphate adjusted to pH 11 or more with 25% aqueous ammonia was placed in a dropping funnel with a side tube, and this was fixed to a four-necked flask. While stirring the four-necked flask in an oil bath at 30 ° C., the aqueous solution of ammonium dihydrogen phosphate in the dropping funnel was dropped into the contents over 10 minutes, and then the temperature of the oil bath was maintained at 30 ° C. The mixture was stirred for 1.5 hours.

次に、オイルバスの温度を30℃から90℃に10分かけて昇温し、撹拌しながら90℃にて2時間反応させた。得られたスラリー液を吸引ろ過し、110℃のオーブンにて乾燥させたところ灰色の鉄粉末が得られた。得られた粉末の表面近傍の原子存在率をXPSにより分析したところ、原子存在率がFe7.05%、Ca13.84%、Ca/P比(モル比)が1.59であった。   Next, the temperature of the oil bath was raised from 30 ° C. to 90 ° C. over 10 minutes and reacted at 90 ° C. for 2 hours with stirring. The obtained slurry was suction filtered and dried in an oven at 110 ° C. to obtain a gray iron powder. When the atomic abundance ratio in the vicinity of the surface of the obtained powder was analyzed by XPS, the atomic abundance ratio was Fe 7.05%, Ca 13.84%, and the Ca / P ratio (molar ratio) was 1.59.

さらに、得られたアパタイト2層被覆粉末20gとオルガノシリカゾルトルエン溶液(固形分濃度3.0質量%)2gとを最大内容量50mLのポリプロピレン製ビン中で10分間振とうした後、内容物をステンレス製シャーレに取り出し、1MPa以下の圧力にて5分間乾燥し、取り出した粉末を200℃にて25分間予備硬化した。予備硬化して得られた鉄粉末を250μmのふるいに掛けた。得られたナノシリカ付着アパタイト被覆鉄粉6gを内径14mmの金型に充填し、成型圧力1000MPa/cmにて、円柱状の錠剤に成型した。この時、得られた錠剤の厚みは約5mmとなる。成型した錠剤の表面を研磨し、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、131μΩmであった。また、成型体密度は7.53g/cmであった。研磨した錠剤を窒素雰囲気下、600℃にて1時間焼成し、表面を再研磨後、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、59μΩmであった。また、成型体密度は7.53g/cmであった。Furthermore, after shaking 20 g of the obtained apatite two-layer coating powder and 2 g of organosilica sol toluene solution (solid content concentration of 3.0% by mass) in a polypropylene bottle having a maximum internal volume of 50 mL, the contents were made of stainless steel. The powder was taken out into a petri dish and dried at a pressure of 1 MPa or less for 5 minutes, and the taken-out powder was precured at 200 ° C. for 25 minutes. The iron powder obtained by pre-curing was passed through a 250 μm sieve. 6 g of the obtained nanosilica-attached apatite-coated iron powder was filled in a die having an inner diameter of 14 mm and molded into a cylindrical tablet at a molding pressure of 1000 MPa / cm 2 . At this time, the thickness of the obtained tablet is about 5 mm. The surface of the molded tablet was polished, and the volume resistivity (resistivity) was measured with a four-terminal resistivity meter to be 131 μΩm. Moreover, the molding density was 7.53 g / cm 2 . The polished tablet was baked at 600 ° C. for 1 hour in a nitrogen atmosphere, and after repolishing the surface, the volume resistivity (resistivity) was measured with a four-terminal resistivity meter to be 59 μΩm. Moreover, the molding density was 7.53 g / cm 2 .

[実施例14]
実施例13と同様にヒドロキシアパタイト層が2層から成るヒドロキシアパタイト被覆鉄粉を調製し、さらに同様の処理を繰り返し、ヒドロキシアパタイト層が3層構造であるヒドロキシアパタイト被覆鉄粉を調製した。
[Example 14]
Similar to Example 13, a hydroxyapatite-coated iron powder having two hydroxyapatite layers was prepared, and the same treatment was repeated to prepare a hydroxyapatite-coated iron powder having a three-layer hydroxyapatite layer.

すなわち、300mLの四つ口フラスコに25%アンモニア水によりpH11以上に調整した硝酸カルシウム水溶液75mL(0.60mmol,0.008M)及び鉄粉(神戸製鋼所社製純鉄粉300NH)30gを入れ、30℃のオイルバス中にて15分間撹拌した。その後、側管付滴下ロートに25%アンモニア水によりpH11以上に調整したリン酸二水素アンモニウム水溶液75mL(0.36mmol,0.005M)を入れ、これを四つ口フラスコに固定した。四つ口フラスコを30℃のオイルバス中にて撹拌しながら、これに10分かけて滴下ロート内のリン酸二水素アンモニウム水溶液を滴下した後、オイルバスの温度を30℃に保持したまま1.5時間撹拌した。   That is, in a 300 mL four-necked flask, 75 mL (0.60 mmol, 0.008 M) of calcium nitrate aqueous solution adjusted to pH 11 or more with 25% ammonia water and 30 g of iron powder (pure iron powder 300NH manufactured by Kobe Steel) were added. The mixture was stirred for 15 minutes in an oil bath at 30 ° C. Thereafter, 75 mL (0.36 mmol, 0.005 M) of an aqueous solution of ammonium dihydrogen phosphate adjusted to pH 11 or higher with 25% aqueous ammonia was placed in a dropping funnel with a side tube, and this was fixed to a four-necked flask. While stirring the four-necked flask in an oil bath at 30 ° C., the aqueous solution of ammonium dihydrogen phosphate in the dropping funnel was dropped over 10 minutes, and then the temperature of the oil bath was maintained at 30 ° C. Stir for 5 hours.

次に、オイルバスの温度を30℃から90℃に10分かけて昇温し、撹拌しながら90℃にて2時間反応させた。得られたスラリー液を吸引ろ過し、110℃のオーブンにて乾燥させたところ灰色の鉄粉末が得られた。   Next, the temperature of the oil bath was raised from 30 ° C. to 90 ° C. over 10 minutes and reacted at 90 ° C. for 2 hours with stirring. The obtained slurry was suction filtered and dried in an oven at 110 ° C. to obtain a gray iron powder.

続いて、得られたアパタイト1層被覆鉄粉29.5g及び25%アンモニア水によりpH11以上に調整した硝酸カルシウム水溶液74mL(0.59mmol,0.008M)を300mLの四つ口フラスコに入れ、30℃のオイルバス中にて15分間撹拌した。その後、側管付滴下ロートに25%アンモニア水によりpH11以上に調整したリン酸二水素アンモニウム水溶液74mL(0.35mmol,0.005M)を入れ、これを四つ口フラスコに固定した。四つ口フラスコを30℃のオイルバス中にて撹拌しながら、これに10分かけて滴下ロート内のリン酸二水素アンモニウム水溶液を滴下した後、オイルバスの温度を30℃に保持したまま1.5時間撹拌した。   Subsequently, 29.5 g of the obtained apatite single-layer coated iron powder and 74 mL (0.59 mmol, 0.008 M) of an aqueous calcium nitrate solution adjusted to pH 11 or higher with 25% aqueous ammonia were placed in a 300 mL four-necked flask, and 30 The mixture was stirred for 15 minutes in an oil bath at 0 ° C. Thereafter, 74 mL (0.35 mmol, 0.005 M) of an aqueous solution of ammonium dihydrogen phosphate adjusted to pH 11 or higher with 25% aqueous ammonia was placed in a dropping funnel with a side tube, and this was fixed to a four-necked flask. While stirring the four-necked flask in an oil bath at 30 ° C., the aqueous solution of ammonium dihydrogen phosphate in the dropping funnel was dropped over 10 minutes, and then the temperature of the oil bath was maintained at 30 ° C. Stir for 5 hours.

次に、オイルバスの温度を30℃から90℃に10分かけて昇温し、四つ口フラスコ内容物を撹拌しながら90℃にて2時間反応させた。得られたスラリー液を吸引ろ過し、110℃のオーブンにて乾燥させたところ灰色の鉄粉末が得られた。   Next, the temperature of the oil bath was raised from 30 ° C. to 90 ° C. over 10 minutes, and the contents of the four-necked flask were reacted at 90 ° C. for 2 hours while stirring. The obtained slurry was suction filtered and dried in an oven at 110 ° C. to obtain a gray iron powder.

得られたアパタイト2層被覆鉄粉29.5g及び25%アンモニア水によりpH11以上に調整した硝酸カルシウム水溶液74mL(0.59mmol,0.008M)を300mLの四つ口フラスコに入れ、30℃のオイルバス中にて15分間撹拌した。その後、側管付滴下ロートに25%アンモニア水によりpH11以上に調整したリン酸二水素アンモニウム水溶液74mL(0.35mmol,0.005M)を入れ、これを四つ口フラスコに固定した。四つ口フラスコを30℃のオイルバス中にて撹拌しながら、これに10分かけて滴下ロート内のリン酸二水素アンモニウム水溶液を滴下した後、オイルバスの温度を30℃に保持したまま1.5時間撹拌した。   29.5 g of the obtained apatite two-layer coated iron powder and 74 mL (0.59 mmol, 0.008 M) of an aqueous calcium nitrate solution adjusted to pH 11 or more with 25% aqueous ammonia are placed in a 300 mL four-necked flask and oil at 30 ° C. Stir in the bath for 15 minutes. Thereafter, 74 mL (0.35 mmol, 0.005 M) of an aqueous solution of ammonium dihydrogen phosphate adjusted to pH 11 or higher with 25% aqueous ammonia was placed in a dropping funnel with a side tube, and this was fixed to a four-necked flask. While stirring the four-necked flask in an oil bath at 30 ° C., the aqueous solution of ammonium dihydrogen phosphate in the dropping funnel was dropped over 10 minutes, and then the temperature of the oil bath was maintained at 30 ° C. Stir for 5 hours.

次に、オイルバスの温度を30℃から90℃に10分かけて昇温し、撹拌しながら90℃にて2時間反応させた。得られたスラリー液を吸引ろ過し、110℃のオーブンにて乾燥させたところ灰色の鉄粉末が得られた。得られた粉末の表面近傍の原子存在率をXPSにより分析したところ、原子存在率がFe10.33%、Ca10.95%、Ca/P比(モル比)が1.69であった。   Next, the temperature of the oil bath was raised from 30 ° C. to 90 ° C. over 10 minutes and reacted at 90 ° C. for 2 hours with stirring. The obtained slurry was suction filtered and dried in an oven at 110 ° C. to obtain a gray iron powder. When the atomic abundance ratio in the vicinity of the surface of the obtained powder was analyzed by XPS, the atomic abundance ratio was Fe 10.33%, Ca 10.95%, and the Ca / P ratio (molar ratio) was 1.69.

さらに、得られたアパタイト3層被覆鉄粉20gとオルガノシリカゾルトルエン溶液(固形分濃度3.0質量%)2gとを最大内容量50mLのポリプロピレン製ビン中で10分間振とうした後、内容物をステンレス製シャーレに取り出し、1MPa以下の圧力にて5分間乾燥し、取り出した粉末を200℃にて25分間予備硬化した。予備硬化して得られた鉄粉末を250μmのふるいに掛けた。得られたナノシリカ付着アパタイト3層被覆鉄粉6gを内径14mmの金型に充填し、成型圧力1000MPa/cmにて、円柱状の錠剤に成型した。この時、得られた錠剤の厚みは約5mmとなる。成型した錠剤の表面を研磨し、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、95μΩmであった。また、成型体密度は7.494g/cmであった。研磨した錠剤を窒素雰囲気下、600℃にて1時間焼鈍し、表面を再研磨後、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、31μΩmであった。また、成型体密度は7.50g/cmであった。Further, after shaking 20 g of the obtained apatite three-layer coated iron powder and 2 g of an organosilica sol toluene solution (solid content concentration of 3.0% by mass) in a polypropylene bottle having a maximum internal volume of 50 mL, the contents were It took out to the stainless steel petri dish, it dried for 5 minutes at the pressure of 1 Mpa or less, and the taken-out powder was precured for 25 minutes at 200 degreeC. The iron powder obtained by pre-curing was passed through a 250 μm sieve. 6 g of the obtained nanosilica-attached apatite three-layer coated iron powder was filled in a mold having an inner diameter of 14 mm and molded into a cylindrical tablet at a molding pressure of 1000 MPa / cm 2 . At this time, the thickness of the obtained tablet is about 5 mm. The surface of the molded tablet was polished, and the volume resistivity (resistivity) was measured with a four-terminal resistivity meter to be 95 μΩm. The compact density was 7.494 g / cm 2 . The polished tablet was annealed at 600 ° C. for 1 hour in a nitrogen atmosphere, and after repolishing the surface, the volume resistivity (resistivity) was measured with a four-terminal resistivity meter to be 31 μΩm. The compact density was 7.50 g / cm 2 .

[実施例15]
実施例3において仕込む鉄粉量を33倍に変更し、それに伴い反応容器容積、溶媒量等も33倍に変更し、四つ口フラスコ内容物にリン酸二水素アンモニウム水溶液滴下後、30℃のオイルバス中にて撹拌する時間を1.5時間から2時間に変更した。
[Example 15]
The amount of iron powder charged in Example 3 was changed to 33 times, and accordingly the reaction vessel volume, the amount of solvent, etc. were also changed to 33 times, and after dropping the ammonium dihydrogen phosphate aqueous solution into the contents of the four-necked flask, The stirring time in the oil bath was changed from 1.5 hours to 2 hours.

すなわち、1000mLの四つ口フラスコに25%アンモニア水によりpH11以上に調整した硝酸カルシウム水溶液250mL(5.95mmol,0.024M)及び鉄粉(神戸製鋼所社製純鉄粉300NH)100gを入れ、30℃のオイルバス中にて15分間撹拌した。その後、側管付滴下ロートに25%アンモニア水によりpH11以上に調整したリン酸二水素アンモニウム水溶液250mL(3.57mmol,0.014M)を入れ、これを四つ口フラスコに固定した。四つ口フラスコを30℃のオイルバス中にて撹拌しながら、これに30分かけて滴下ロート内のリン酸二水素アンモニウム水溶液を滴下した後、オイルバスの温度を30℃に保持したまま2時間撹拌した。   That is, a calcium nitrate aqueous solution 250 mL (5.95 mmol, 0.024 M) adjusted to pH 11 or more with 25% ammonia water and 100 g of iron powder (pure iron powder 300 NH manufactured by Kobe Steel) were placed in a 1000 mL four-necked flask, The mixture was stirred for 15 minutes in an oil bath at 30 ° C. Thereafter, 250 mL (3.57 mmol, 0.014 M) of an aqueous solution of ammonium dihydrogen phosphate adjusted to pH 11 or more with 25% aqueous ammonia was placed in a dropping funnel with a side tube, and this was fixed to a four-necked flask. While stirring the four-necked flask in an oil bath at 30 ° C., the ammonium dihydrogen phosphate aqueous solution in the dropping funnel was dropped over 30 minutes, and then the temperature of the oil bath was maintained at 30 ° C. 2 Stir for hours.

次に、オイルバスの温度を30℃から90℃に10分かけて昇温し、撹拌しながら90℃にて2時間反応させた。得られたスラリー液を吸引ろ過し、110℃のオーブンにて乾燥させたところ灰色の鉄粉末が得られた。得られた鉄粉末をXPSにより分析したところ、原子存在率がFe3.85%、Ca15.30%、Ca/P比が1.76であり、鉄粉末がヒドロキシアパタイトで被覆されていることを確認できた。   Next, the temperature of the oil bath was raised from 30 ° C. to 90 ° C. over 10 minutes and reacted at 90 ° C. for 2 hours with stirring. The obtained slurry was suction filtered and dried in an oven at 110 ° C. to obtain a gray iron powder. When the obtained iron powder was analyzed by XPS, it was confirmed that the atomic abundance ratio was Fe 3.85%, Ca 15.30%, Ca / P ratio was 1.76, and the iron powder was coated with hydroxyapatite. did it.

さらに、得られたアパタイト被覆鉄粉60gとオルガノシリカゾルトルエン溶液(固形分濃度3.0質量%)6gとを最大内容量50mLのポリプロピレン製ビン中で10分間振とうした後、内容物をステンレス製シャーレに取り出し、1MPa以下の圧力にて5分間乾燥し、取り出した粉末を200℃にて25分間予備硬化した。予備硬化して得られた鉄粉末を250μmのふるいに掛けた。得られたナノシリカ付着アパタイト被覆鉄粉6gを内径14mmの金型に充填し、成型圧力1000MPa/cmにて、円柱状の錠剤に成型した。この時、得られた錠剤の厚みは約5mmとなる。成型した錠剤の表面を研磨し、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、193μΩmであった。また、成型体密度は7.51g/cmであった。研磨した錠剤を窒素雰囲気下、600℃にて1時間焼鈍し、表面を再研磨後、体積抵抗率(比抵抗)を四端子抵抗率計で測定したところ、41μΩmであった。また、成型体密度は7.51g/cmであった。Further, 60 g of the obtained apatite-coated iron powder and 6 g of organosilica sol toluene solution (solid content concentration: 3.0% by mass) were shaken for 10 minutes in a polypropylene bottle having a maximum internal volume of 50 mL, and then the contents were made of stainless steel. The powder was taken out into a petri dish and dried at a pressure of 1 MPa or less for 5 minutes, and the taken-out powder was precured at 200 ° C. for 25 minutes. The iron powder obtained by pre-curing was passed through a 250 μm sieve. 6 g of the obtained nanosilica-attached apatite-coated iron powder was filled in a die having an inner diameter of 14 mm and molded into a cylindrical tablet at a molding pressure of 1000 MPa / cm 2 . At this time, the thickness of the obtained tablet is about 5 mm. The surface of the molded tablet was polished, and the volume resistivity (resistivity) was measured with a four-terminal resistivity meter. As a result, it was 193 μΩm. The compact density was 7.51 g / cm 2 . The polished tablet was annealed at 600 ° C. for 1 hour in a nitrogen atmosphere, and after repolishing the surface, the volume resistivity (resistivity) was measured with a four-terminal resistivity meter to be 41 μΩm. The compact density was 7.51 g / cm 2 .

実施例1〜15で得られたヒドロキシアパタイト被覆鉄粉及びナノシリカ付着ヒドロキシアパタイト被覆鉄粉に関する評価結果を表3〜5にまとめた。   The evaluation results regarding the hydroxyapatite-coated iron powder and nanosilica-attached hydroxyapatite-coated iron powder obtained in Examples 1 to 15 are summarized in Tables 3 to 5.

表4を参照して、合成法が異なっても、同程度の被覆率で金属粉にヒドロキシアパタイト層を形成できることが明らかになった。また表3及び5を参照して、製造工程に100〜300℃で予備硬化する工程を含むナノシリカ付着ヒドロキシアパタイト被覆鉄粉の圧粉磁心は、高い比抵抗及び成型体密度を示すことが明らかである。   Referring to Table 4, it was revealed that even if the synthesis method is different, the hydroxyapatite layer can be formed on the metal powder with the same coverage. Also, referring to Tables 3 and 5, it is clear that the powder magnetic core of the nanosilica-attached hydroxyapatite-coated iron powder including the step of pre-curing at 100 to 300 ° C. in the production process shows high specific resistance and compact density. is there.

Claims (6)

金属粉と、前記金属粉を被覆するアパタイト層と、前記金属粉又はアパタイト層に付着したシリカ粒子とを有してなり、
前記シリカ粒子が有機基で表面修飾されたシリカ粒子であり、
前記有機基で表面修飾されたシリカ粒子が下記一般式(II)又は(III)で示される化合物を用いて表面修飾されたシリカ粒子である、粉末。
Si(OR 4−n (II)
SiX 4−n (III)
(式中、nは1〜3の整数であり、R 及びR は一価の有機基を示し、Xはハロゲンを示す)
And metal powder, and the apatite layer covering the metal powder, Ri Na and a silica particles attached to the metal powder or apatite layer,
The silica particles are silica particles whose surface is modified with an organic group,
The powder whose silica particle surface-modified with the organic group is a silica particle surface-modified using a compound represented by the following general formula (II) or (III) .
R 1 n Si (OR 2 ) 4-n (II)
R 1 n SiX 4-n (III)
(In the formula, n is an integer of 1 to 3, R 1 and R 2 represent a monovalent organic group, and X represents a halogen)
前記アパタイト層が下記一般式(I−a)又は(I−b)で表される化合物を含有する、請求項1に記載の粉末。
Ca10(PO (I−a)
Ca(10−(m×n)/2)(PO (I−b)
(式中、Mは陽イオンを与える原子を示し、mはMが与える陽イオンの価数を示し、nは0を超え5以下であり、Xは一価の陰イオンを与える原子又は原子群を示す。)
The powder according to claim 1, wherein the apatite layer contains a compound represented by the following general formula (Ia) or (Ib).
Ca 10 (PO 4 ) 6 X 2 (Ia)
Ca (10- (m × n) / 2) M n (PO 4 ) 6 X 2 (I-b)
(In the formula, M represents an atom which gives a cation, m represents a valence of a cation given by M, n is more than 0 and 5 or less, and X is an atom or atomic group which gives a monovalent anion. Is shown.)
前記金属粉が軟磁性材料の粉末である、請求項1又は2に記載の粉末。 The powder according to claim 1 or 2 , wherein the metal powder is a powder of a soft magnetic material. 圧粉磁心用の粉末である、請求項1〜のいずれか1項に記載の粉末。 The powder according to any one of claims 1 to 3 , which is a powder for a dust core. 金属粉をアパタイトで被覆してアパタイト被覆金属粉を得る第1の工程と、
前記第1の工程で得られたアパタイト被覆金属粉の金属粉表面又はアパタイト層表面にシリカ粉末を付着させる第2の工程と、
前記第2の工程で得られた粉末を350℃以下で予備硬化し、前記金属粉と、前記金属粉を被覆するアパタイト層と、前記金属粉又はアパタイト層に付着したシリカ粒子とを有してなる粉末を得る第3の工程と、
を備える、粉末の製造方法。
A first step of coating the metal powder with apatite to obtain the apatite-coated metal powder;
A second step of attaching silica powder to the metal powder surface or apatite layer surface of the apatite-coated metal powder obtained in the first step;
The powder obtained in the second step is precured at 350 ° C. or less, and has the metal powder, an apatite layer covering the metal powder, and silica particles attached to the metal powder or the apatite layer. A third step of obtaining a powder comprising:
A method for producing a powder.
前記第1の工程に供する前記金属粉として、リン酸処理された金属粉を用いる、請求項に記載の粉末の製造方法。 The manufacturing method of the powder of Claim 5 using the metal powder by which the phosphoric acid process was used as the said metal powder provided to a said 1st process.
JP2009545377A 2007-12-10 2008-11-19 Powder and production method thereof Expired - Fee Related JP5321469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009545377A JP5321469B2 (en) 2007-12-10 2008-11-19 Powder and production method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007318251 2007-12-10
JP2007318251 2007-12-10
PCT/JP2008/071031 WO2009075173A1 (en) 2007-12-10 2008-11-19 Powder and method for producing the same
JP2009545377A JP5321469B2 (en) 2007-12-10 2008-11-19 Powder and production method thereof

Publications (2)

Publication Number Publication Date
JPWO2009075173A1 JPWO2009075173A1 (en) 2011-04-28
JP5321469B2 true JP5321469B2 (en) 2013-10-23

Family

ID=40755416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009545377A Expired - Fee Related JP5321469B2 (en) 2007-12-10 2008-11-19 Powder and production method thereof

Country Status (6)

Country Link
EP (1) EP2226142A4 (en)
JP (1) JP5321469B2 (en)
CN (2) CN102717069B (en)
CA (1) CA2708830C (en)
TW (1) TWI433741B (en)
WO (1) WO2009075173A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127201A (en) * 2009-12-18 2011-06-30 Hitachi Chem Co Ltd Coated metal powder, powder magnetic core and their production methods
JP5462356B2 (en) * 2010-03-26 2014-04-02 日立粉末冶金株式会社 Powder magnetic core and manufacturing method thereof
JP5382947B2 (en) * 2010-04-08 2014-01-08 株式会社アルバック DIFFERENTIAL TRANSFORMER CORE FOR PROTECT TYPE STEP METER AND ITS MANUFACTURING METHOD
JP5555945B2 (en) * 2010-04-09 2014-07-23 日立化成株式会社 Powder magnetic core and manufacturing method thereof
JP5565595B2 (en) * 2010-04-09 2014-08-06 日立化成株式会社 Coated metal powder, dust core and method for producing them
JP4927983B2 (en) * 2010-04-09 2012-05-09 日立化成工業株式会社 Powder magnetic core and manufacturing method thereof
JP2012088507A (en) * 2010-10-19 2012-05-10 Nitto Denko Corp Depolarizing film, liquid crystal panel, and liquid crystal display device
JP2012104573A (en) * 2010-11-08 2012-05-31 Hitachi Chem Co Ltd Powder for core, manufacturing method of the same, dust core using the same, and electromagnetic device
JP5027945B1 (en) 2011-03-04 2012-09-19 住友電気工業株式会社 Dust compact, manufacturing method of compact compact, reactor, converter, and power converter
JP5997424B2 (en) * 2011-07-22 2016-09-28 住友電気工業株式会社 Manufacturing method of dust core
WO2013175929A1 (en) * 2012-05-25 2013-11-28 Ntn株式会社 Powder core, powder core manufacturing method, and method for estimating eddy current loss in powder core
KR20150002172A (en) * 2013-06-28 2015-01-07 삼성전기주식회사 Composite and method for forming the composite, and inductor manufactured using the composite
KR20150011168A (en) * 2013-07-22 2015-01-30 삼성전기주식회사 Magnetic material, the manufacturing method of the same and electric part comprising the same
WO2015046282A1 (en) 2013-09-27 2015-04-02 日立化成株式会社 Powder magnetic core, method for manufacturing powder compact for magnetic core, pressing die and mold device for manufacturing powder magnetic core, and lubricant composition for pressing die for manufacturing powder magnetic core
US11915847B2 (en) * 2017-03-09 2024-02-27 Tdk Corporation Dust core
CN111842874A (en) * 2019-04-24 2020-10-30 昆山磁通新材料科技有限公司 Method for improving insulation impedance characteristic of metal powder core and metal powder core thereof
CN110358941B (en) * 2019-08-12 2021-04-16 河南科技大学 Tungsten-based alloy material and preparation method thereof
WO2021096878A1 (en) * 2019-11-11 2021-05-20 Carpenter Technology Corporation Soft magnetic composite materials and methods and powders for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05103829A (en) * 1991-10-14 1993-04-27 Res Dev Corp Of Japan Method for applying biologically active layer
JPH09180924A (en) * 1995-12-27 1997-07-11 Kobe Steel Ltd Dust core and manufacture thereof
JPH11180705A (en) * 1997-12-24 1999-07-06 Murakashi Sekkai Kogyo Kk Production of solid material having porous apatite on at least surface layer
JP2005112888A (en) * 2003-10-03 2005-04-28 Trial Corp Production method of covered resin particle
JP2006348335A (en) * 2005-06-14 2006-12-28 Jfe Steel Kk Iron-based mixed powder for powder metallurgy
JP2007027480A (en) * 2005-07-19 2007-02-01 Sumitomo Metal Mining Co Ltd Resin bonding magnet composition, its manufacturing method, and resin bonding magnet using the composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0343934B1 (en) * 1988-05-24 1995-01-25 Anagen (U.K.) Limited Magnetically attractable particles and method of preparation
DE69028360T2 (en) * 1989-06-09 1997-01-23 Matsushita Electric Ind Co Ltd Composite material and process for its manufacture
AU1673797A (en) * 1996-02-20 1997-09-10 Mikuni Corporation Method for producing granulated material
JP4060101B2 (en) * 2002-03-20 2008-03-12 株式会社豊田中央研究所 Insulating film, magnetic core powder and powder magnetic core, and methods for producing them
JP2007194273A (en) 2006-01-17 2007-08-02 Jfe Steel Kk Dust core and soft magnetic metal powder therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05103829A (en) * 1991-10-14 1993-04-27 Res Dev Corp Of Japan Method for applying biologically active layer
JPH09180924A (en) * 1995-12-27 1997-07-11 Kobe Steel Ltd Dust core and manufacture thereof
JPH11180705A (en) * 1997-12-24 1999-07-06 Murakashi Sekkai Kogyo Kk Production of solid material having porous apatite on at least surface layer
JP2005112888A (en) * 2003-10-03 2005-04-28 Trial Corp Production method of covered resin particle
JP2006348335A (en) * 2005-06-14 2006-12-28 Jfe Steel Kk Iron-based mixed powder for powder metallurgy
JP2007027480A (en) * 2005-07-19 2007-02-01 Sumitomo Metal Mining Co Ltd Resin bonding magnet composition, its manufacturing method, and resin bonding magnet using the composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013016875; 山本哲兵、他3名: 'アルミナ粒子上への水酸アパタイトコーティングおよび得られた粒子のキャラクタリゼーション' 日本セラミックス協会秋季シンポジウム講演予稿集 Vol.12th, 19991006, Page.390 *

Also Published As

Publication number Publication date
CA2708830A1 (en) 2009-06-18
CA2708830C (en) 2013-01-22
TWI433741B (en) 2014-04-11
TW200932404A (en) 2009-08-01
JPWO2009075173A1 (en) 2011-04-28
CN101896300B (en) 2012-08-22
EP2226142A4 (en) 2017-04-12
CN102717069A (en) 2012-10-10
CN101896300A (en) 2010-11-24
CN102717069B (en) 2014-12-17
WO2009075173A1 (en) 2009-06-18
EP2226142A1 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
JP5321469B2 (en) Powder and production method thereof
JP5565595B2 (en) Coated metal powder, dust core and method for producing them
US20130056674A1 (en) Powder magnetic core and process for production thereof
JP5697589B2 (en) Ferromagnetic powder composition and production method thereof
JP5088195B2 (en) Insulating film-coated powder and method for producing the same
JP2014072367A (en) Coated metal powder and dust core
CA2378417C (en) Ferromagnetic-metal-based powder, powder core using the same, and manufacturing method for ferromagnetic-metal-based powder
JP2003303711A (en) Iron base powder and dust core using the same, and method of manufacturing iron base powder
JP2013243268A (en) Dust core, coated metal powder for dust core, and methods for producing them
CN111683768B (en) Soft magnetic powder coated with silicon oxide and method for producing same
WO2008032503A1 (en) Iron-based soft magnetic powder for dust core, method for producing the same and dust core
JP2005286315A (en) Silica-coated rare-earth magnetic powder, manufacturing method therefor, and applications thereof
WO2014157517A1 (en) Powder magnetic core for reactor
JP5555945B2 (en) Powder magnetic core and manufacturing method thereof
JP2017508873A (en) Soft magnetic composite powder and soft magnetic member
JP2006169618A (en) Iron based magnet alloy powder comprising rare earth element, method for producing the same, resin composition for bond magnet obtained therefrom, and bond magnet and consolidated magnet
JP6139384B2 (en) Powder for dust core
JP4803353B2 (en) SOFT MAGNETIC MATERIAL, ITS MANUFACTURING METHOD, AND DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC MATERIAL
WO2019078257A1 (en) Compressed powder magnetic core, powder for magnetic core, and production methods therefor
JP4655540B2 (en) Surface layer coating metal and green compact
JP6617867B2 (en) Soft magnetic particle powder and powder magnetic core containing the soft magnetic particle powder
JP2011127201A (en) Coated metal powder, powder magnetic core and their production methods
JP4790224B2 (en) SOFT MAGNETIC MATERIAL, ITS MANUFACTURING METHOD, AND DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC MATERIAL
JP5773581B2 (en) Method for producing coated magnetite particles
CN116895419A (en) Soft magnetic metal particle, powder magnetic core, and magnetic component

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R151 Written notification of patent or utility model registration

Ref document number: 5321469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees