JP5319503B2 - AC AT feeder circuit protection device and method - Google Patents

AC AT feeder circuit protection device and method Download PDF

Info

Publication number
JP5319503B2
JP5319503B2 JP2009272106A JP2009272106A JP5319503B2 JP 5319503 B2 JP5319503 B2 JP 5319503B2 JP 2009272106 A JP2009272106 A JP 2009272106A JP 2009272106 A JP2009272106 A JP 2009272106A JP 5319503 B2 JP5319503 B2 JP 5319503B2
Authority
JP
Japan
Prior art keywords
voltage
current
fundamental wave
difference
time series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009272106A
Other languages
Japanese (ja)
Other versions
JP2011111128A (en
Inventor
利美 金子
泰司 久水
哲夫 兎束
大観 森本
芳文 持永
隆雄 増山
修 上村
恭之 福田
和宜 福田
仁 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Railway Technical Research Institute
Original Assignee
Toshiba Corp
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Railway Technical Research Institute filed Critical Toshiba Corp
Priority to JP2009272106A priority Critical patent/JP5319503B2/en
Publication of JP2011111128A publication Critical patent/JP2011111128A/en
Application granted granted Critical
Publication of JP5319503B2 publication Critical patent/JP5319503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Locating Faults (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a feeding protective technology for an alternating current AT feeding circuit that can surely detect a failure even in a long and large feeding section. <P>SOLUTION: A feeding protective device for the alternating current AT feeding circuit incorporates feeding voltage of both ends of a protective section at the respective electric power station ends, measures the incorporated feeding voltage in every optional period, integrally shares feeding voltage information of each end as the same time series voltage information by mutual high-speed communication, computes the same time series voltage information of both ends to obtain differential voltage time series information, carries out filtering operation of the differential voltage time series information to obtain time series information of differential voltage fundamental wave components, carries out amplitude value operation of the time series information of the differential voltage fundamental wave components to obtain a differential voltage fundamental wave component amount, and makes comparative determination of the differential voltage fundamental wave component amount and a predetermined constant to detect a section failure. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、電気鉄道における交流ATき電回路のAT区間に発生する短絡あるいは地絡故障を検出するためのき電保護装置及び方法に関する。   The present invention relates to a feeder protection device and method for detecting a short circuit or a ground fault occurring in an AT section of an AC AT feeder circuit in an electric railway.

交流電気鉄道におけるATき電回路の一般的な系統構成例を図19に示す。鉄道沿線には、き電電源を供給する変電所SSを数10km間隔で備え、双方の変電所電源をき電区分所SPで区分している。さらに、同一電源区間を限定区分するための補助き電区分所SSPを設けている。変電所、及びそれぞれのき電区分所には単巻変圧器ATを備えている。き電区分所SPの切替セクションで双方向の異なる電源を列車走行位置に応じて切り替える運転方式を「突き合せき電」と言い、き電区分所SPの切替セクションを開閉器でバイパスして一方の電源を反対方面へ延ばした運転方法を「延長き電」と言う。電車線には下り線と上り線があり、上下線は変電所から上下線にき電し、き電区分所に備える上下線タイ開閉器により分離又は結合して運用する。   An example of a general system configuration of an AT feeder circuit in an AC electric railway is shown in FIG. Along the railway, substations SS that supply feeder power are provided at intervals of several tens of kilometers, and both substation power sources are divided by feeder substations SP. Furthermore, an auxiliary feeder section SSP is provided for restricting the same power source section. Each substation and each feeder section has a self-transforming transformer AT. The operation method of switching the two-way power source in the switching section of the feeding section SP according to the train traveling position is called “matching power”, and the switching section of the feeding section SP is bypassed with a switch. The operation method of extending the power supply in the opposite direction is called “extension power”. There are two types of train lines: down line and up line. The upper and lower lines are fed from the substation to the upper and lower lines, and are separated or combined by the upper and lower line tie switches provided at the feeding section.

ATき電回路は、図20に示すようにトロリ線T・き電線F・レールR及び保護線PWから構成され、約10km間隔で単巻変圧器ATが配置される。変電所SSのき電電圧Vは単巻変圧器ATの巻き数比Nでトロリ線TとレールR間電圧に降圧(V/N)して電気車に供給している。トロリ線TとレールRに流れる電気車電流は単巻変圧器ATで巻き数比倍の値1/Nに変換されてトロリ線Tとき電線Fを帰還し、変電所SSの電源Vに流れる。   As shown in FIG. 20, the AT feeder circuit is composed of a trolley wire T, a feeder wire F, a rail R, and a protective wire PW, and single-turn transformers AT are arranged at intervals of about 10 km. The feeding voltage V of the substation SS is stepped down (V / N) to the voltage between the trolley line T and the rail R at the turn ratio N of the autotransformer AT and supplied to the electric vehicle. The electric vehicle current flowing through the trolley wire T and the rail R is converted to a value 1 / N of the turn ratio multiplied by the autotransformer AT, and the electric wire F is fed back when the trolley wire T is passed to the power source V of the substation SS.

変電所SSで検出する一般的な電車線の線路短絡インピーダンスを図21に示す。T−F短絡インピーダンスは線路長に対し直線であるが、T−R短絡、T−PW短絡、F−PW短絡、及び図示しないT、Fの地絡故障は、レールRと保護線PWの渡り地点CPWを節として上部に膨らむ。き電回路の保護方式としては、このようなATき電回路のインピーダンス特性をカバーするように、故障検出領域が平行四辺形の形状を持った距離継電器(#44F)が一般に使用されてきている。図22にその特性例を示す。   FIG. 21 shows the line short-circuit impedance of a general train line detected at the substation SS. Although the TF short-circuit impedance is linear with respect to the line length, the T-R short circuit, the T-PW short circuit, the F-PW short circuit, and the ground faults of T and F (not shown) are crossed between the rail R and the protection line PW. The point CPW bulges upward at a node. As a feeder system protection method, a distance relay (# 44F) having a fault detection area having a parallelogram shape has been generally used so as to cover the impedance characteristics of such an AT feeder circuit. . FIG. 22 shows an example of the characteristics.

さらにこの距離継電器とは別に、き電電流の急峻な変化分から故障を検出する交流ΔI形継電器(#50F)が使用され、上記距離継電器#44Fと併用してき電回路の故障検出を行っている。図23にその特性例を示す。これら#44F、#50Fは電源元の変電所SSだけでなく、き電区分所SP、補助き電区分所SSPの電車線路上に配置する各電気所にも設備して、き電形態に応じ分布変化する故障電流に対し、少なくとも故障点近傍の電気所で故障を検出できるように構成されている。これら保護要素(#44F、#50F)の配置例を図24に示す。図24は、A変電所AssとB変電所Bssとの間の配置例である。   In addition to this distance relay, an AC ΔI type relay (# 50F) that detects a failure from a steep change in feeding current is used, and is used together with the distance relay # 44F to detect a failure in the feeding circuit. FIG. 23 shows an example of the characteristics. These # 44F and # 50F are installed not only at the power source substation SS, but also at each power station located on the train line of the feeder section SP and auxiliary feeder section SSP. It is configured such that a fault can be detected at least at an electric station near the fault point against a fault current that changes in distribution. An arrangement example of these protection elements (# 44F, # 50F) is shown in FIG. FIG. 24 is an arrangement example between the A substation Ass and the B substation Bss.

このような従来のATき電回路には、次のような問題点があった。鉄道き電回路電車線の上下線それぞれは、大別すると電気車に電力を送電するトロリ線T、き電線F、レールR、保護線PWなどの電車線から成るき電区間及び、上下線を開閉器で結合あるいは分離するき電ポストSS、SSP、SPから構成されている。しかしながら、故障は多様な箇所でT、F地絡故障、あるいは、T−R、T−PW、F−R、F−PW短絡故障、さらには、T−F短絡故障が発生する。   Such a conventional AT feeder circuit has the following problems. Each of the upper and lower lines of a railway feeder circuit train line is roughly divided into a feeder section composed of a train line such as a trolley line T, a feeder line F, a rail R, a protection line PW, etc. The feeder posts SS, SSP, and SP are coupled or separated by a switch. However, T, F ground faults, T-R, T-PW, FR, F-PW short-circuit faults, and TF short-circuit faults occur at various locations.

一方で電気車両の負荷電流はその走行状態に応じて変動し、き電区間に進入する電気車電流には過大な車両用変圧器の励磁突入電流が発生して急峻な電流増加を伴う。さらにき電回路には再閉路機能が備えられ、再閉路時に、き電区間内の複数の電気車と複数の単巻変圧器ATが一斉に再加圧されて過大な変圧器の励磁突入電流が発生する。き電回路に設備される保護リレーには、このような負荷電流変動と故障電流とを確実に判別する性能が要求される。ところが変電所建設の都合上変電所間隔が長くなると、在線する電気車の編成数が増えるので負荷電流は増加し、線路長の延伸に応じた線路定数の増加で故障電流は減少する。そのため、図25の電流例に示す重なり部分のように、負荷電流と故障電流の領域が近接し、あるいは重なりが生じ、遠端故障の検出が困難となる場合が生じる。図25の電流例で、最大負荷電流がTR(トロリ線−レール)故障電流を上回る領域の故障検出が困難であった。   On the other hand, the load current of the electric vehicle fluctuates in accordance with the traveling state, and the electric vehicle current entering the feeding section is caused by an excessive inrush current of the vehicle transformer, resulting in a sharp increase in current. In addition, the feeder circuit is equipped with a reclosing function, and at the time of reclosing, a plurality of electric vehicles in the feeding section and a plurality of autotransformers AT are re-pressurized all at once, resulting in excessive inrush current of the transformer. Will occur. The protection relay provided in the feeder circuit is required to have a capability of reliably discriminating between such load current fluctuation and fault current. However, if the interval between substations becomes longer due to the construction of the substation, the number of electric cars in the line increases, so the load current increases, and the fault current decreases as the line constant increases as the line length increases. For this reason, like the overlapping portion shown in the current example of FIG. 25, the load current and the fault current region are close to each other or overlapped, which may make it difficult to detect the far-end fault. In the current example of FIG. 25, it is difficult to detect a failure in a region where the maximum load current exceeds the TR (trolley wire-rail) failure current.

特開2008−221898号公報JP 2008-221898 A 特開2004−74924号公報JP 2004-74924 A 特開2003−2088号公報JP 2003-2088 A

本発明は、上述した従来技術の課題に鑑みてなされたもので、長大なき電区間においても故障を確実に検出することができる交流ATき電回路のき電保護装置及び方法を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and provides a feeder protection device and method for an AC AT feeder circuit that can reliably detect a failure even in a long feeder section. Objective.

本発明の1つの特徴は、交流単巻変圧器き電回路において、任意距離区間毎に配置される電気所の単巻変圧器を境界とする電車線の故障を検出するき電保護装置であって、保護区間の両端き電電圧をそれぞれの電気所端で計器用変圧器の二次側から取り込むき電電圧取得手段と、前記電気所端それぞれで取り込むき電電圧を任意周期毎に測定し、相互に高速通信してそれぞれの端のき電電圧情報を両端の同一時系列電圧情報として一元共有する電圧情報端末手段と、前記両端の同一時系列電圧情報を演算して差電圧時系列情報を求める差電圧時系列情報算出手段と、前記差電圧時系列情報をフィルタリング演算して、差電圧基本波成分の時系列情報を求める差電圧基本波成分算出手段と、前記差電圧基本波成分の時系列情報を振幅値演算して差電圧基本波成分量を求める差電圧基本波成分量算出手段と、前記差電圧基本波成分量と予め定める定数とを比較判定して区間故障を検出する電圧ベース区間故障検出手段とを備えた点にある。   One feature of the present invention is a feeder protection device that detects a failure of a train line that is bounded by a transformer of an electric power station arranged at an arbitrary distance section in an AC transformer transformer feeder circuit. The feeding voltage acquisition means for capturing the feeding voltage at both ends of the protection section from the secondary side of the instrument transformer at each electrical station end, and the feeding voltage captured at each of the electrical station ends is measured at each arbitrary period. A voltage information terminal means for performing high-speed communication with each other and sharing the feeding voltage information at each end as the same time-series voltage information at both ends; and calculating the same time-series voltage information at both ends and calculating the difference voltage time-series information Difference voltage time series information calculating means for obtaining difference voltage fundamental wave component calculating means for filtering the difference voltage time series information to obtain time series information of the difference voltage fundamental wave component, and the difference voltage fundamental wave component Calculate the amplitude value of time series information A difference voltage fundamental wave component amount calculating means for obtaining a voltage fundamental wave component amount, and a voltage base section failure detecting means for detecting a section failure by comparing and determining the difference voltage fundamental wave component amount and a predetermined constant. It is in.

また本発明の別の特徴は、交流単巻変圧器き電回路において、任意距離区間毎に配置される電気所の単巻変圧器を境界とする電車線の故障を検出するき電保護装置であって、保護区間の両端き電電圧をそれぞれの電気所端で計器用変圧器の二次側から取り込むき電電圧取得手段と、前記電気所端それぞれで取り込むき電電圧を任意周期毎に測定し、相互に高速通信してそれぞれの端のき電電圧情報を両端の同一時系列電圧情報として一元共有する電圧情報端末手段と、前記両端の同一時系列電圧情報を演算して差電圧時系列情報を求める差電圧時系列情報算出手段と、前記差電圧時系列情報をフィルタリング演算して、差電圧基本波成分の時系列情報を求める差電圧基本波成分算出手段と、前記差電圧基本波成分の時系列情報を振幅値演算して差電圧基本波成分量を求める差電圧基本波成分量算出手段と、前記保護区間の両端電車線電流をそれぞれの電気所端で計器用変流器の二次側から取り込む電車線電流取得手段と、前記電気所端それぞれで取り込む電車線電流を任意周期毎に測定し、相互に高速通信してそれぞれの端の電車線電流を両端の同一時系列電流情報として一元共有する電流情報端末手段と、前記両端の同一時系列電流情報を演算して差電流時系列情報を求める差電流算出手段と、前記差電流時系列情報をフィルタリング演算して、差電流基本波成分の時系列情報を求める差電流基本波成分算出手段と、前記差電流基本波成分の時系列情報を振幅値演算して差電流基本波成分量を求める差電流基本波成分量算出手段と、前記差電圧基本波成分量と予め定める定数とを比較判定し、前記差電流基本波成分量と予め定めた定数とを比較判定し、当該双方の判定結果から区間故障を検出する区間故障検出手段とを備えた点にある。   Another feature of the present invention is a feeder protection device for detecting a failure of a train line bordered by a transformer of an electric power station arranged at an arbitrary distance section in an AC transformer transformer feeder circuit. In addition, the feeding voltage acquisition means for capturing the feeding voltage at both ends of the protection section from the secondary side of the instrument transformer at the respective electrical station ends, and the feeding voltage captured at each of the electrical station ends is measured for each arbitrary period. A voltage information terminal means for sharing the voltage information at each end as the same time-series voltage information at both ends by performing high-speed communication with each other, and calculating the same time-series voltage information at both ends to calculate a difference voltage time series Difference voltage time series information calculating means for obtaining information, difference voltage fundamental wave component calculating means for obtaining time series information of the difference voltage fundamental wave component by filtering the difference voltage time series information, and the difference voltage fundamental wave component The time series information of A differential voltage fundamental wave component amount calculating means for obtaining a differential voltage fundamental wave component amount; and a train line current obtaining means for capturing the both-end train line current of the protection section from the secondary side of the current transformer at each electric station end; , Current information terminal means for measuring the train line current captured at each end of the electric station for each arbitrary period, and mutually sharing the train line current at each end as the same time-series current information at high speed by mutual communication, Difference current calculation means for calculating difference current time series information by calculating the same time series current information at both ends, and difference current for calculating time series information of the difference current fundamental wave component by filtering the difference current time series information Fundamental wave component calculating means; differential current fundamental wave component amount calculating means for calculating a difference current fundamental wave component amount by calculating an amplitude value of time series information of the differential current fundamental wave component; and Constants Compare the determined said difference current fundamental wave component amount and determining comparing the predetermined constant, lies in that a segment fault detection means for detecting a duration fault from the both determination results.

また本発明の別の特徴は、交流単巻変圧器き電回路において、任意距離区間毎に配置される電気所の単巻変圧器を境界とする電車線の故障を検出するき電保護装置であって、保護区間の両端き電電圧をそれぞれの電気所端で計器用変圧器の二次側から取り込むき電電圧取得手段と、前記電気所端それぞれで取り込むき電電圧を任意周期毎に測定し、相互に高速通信してそれぞれの端のき電電圧情報を両端の同一時系列電圧情報として一元共有する電圧情報端末手段と、前記両端の同一時系列電圧情報を演算して差電圧時系列情報を求める差電圧時系列情報算出手段と、前記差電圧時系列情報をフィルタリング演算して、差電圧基本波成分の時系列情報を求める差電圧基本波成分算出手段と、前記差電圧基本波成分の時系列情報を振幅値演算して差電圧基本波成分量を求める差電圧基本波成分量算出手段と、前記保護区間の両端電車線電流をそれぞれの電気所端で計器用変流器の二次側から取り込む電車線電流取得手段と、前記電気所端それぞれで取り込む電車線電流を任意周期毎に測定し、相互に高速通信してそれぞれの端の電車線電流を両端の同一時系列電流情報として一元共有する電流情報端末手段と、前記両端の同一時系列電流情報を演算して差電流時系列情報を求める差電流算出手段と、前記差電流時系列情報をフィルタリング演算して、差電流基本波成分の時系列情報を求める差電流基本波成分算出手段と、前記差電流基本波成分の時系列情報を振幅値演算して差電流基本波成分量を求める差電流基本波成分量算出手段と、前記両端の同一時系列電流情報を演算して各端の電流時系列情報を求める電流時系列情報演算手段と、前記各端の電流時系列情報をフィルタリング演算して各端の基本波電流時系列情報を求める基本波電流時系列情報算出手段と、前記各端の基本波電流時系列情報を振幅値演算して各端の基本波電流成分量を算出する基本波電流成分量算出手段と、前記差電流基本波成分量と各端の基本波電流成分量とから区間通過電流量を求める区間通過電流量演算手段と、前記区間通過電流量に予め定める線路定数を乗じ、前記差電圧基本波成分量から減算して区間流入電流量等価差電圧を求める等価差電圧演算手段と、前記区間流入電流量等価差電圧と予め定める定数とを比較判定し、区間故障を検出する区間故障検出手段とを備えた点にある。   Another feature of the present invention is a feeder protection device for detecting a failure of a train line bordered by a transformer of an electric power station arranged at an arbitrary distance section in an AC transformer transformer feeder circuit. In addition, the feeding voltage acquisition means for capturing the feeding voltage at both ends of the protection section from the secondary side of the instrument transformer at the respective electrical station ends, and the feeding voltage captured at each of the electrical station ends is measured for each arbitrary period. A voltage information terminal means for sharing the voltage information at each end as the same time-series voltage information at both ends by performing high-speed communication with each other, and calculating the same time-series voltage information at both ends to calculate a difference voltage time series Difference voltage time series information calculating means for obtaining information, difference voltage fundamental wave component calculating means for obtaining time series information of the difference voltage fundamental wave component by filtering the difference voltage time series information, and the difference voltage fundamental wave component The time series information of A differential voltage fundamental wave component amount calculating means for obtaining a differential voltage fundamental wave component amount; and a train line current obtaining means for capturing the both-end train line current of the protection section from the secondary side of the current transformer at each electric station end; , Current information terminal means for measuring the train line current captured at each end of the electric station for each arbitrary period, and mutually sharing the train line current at each end as the same time-series current information at high speed by mutual communication, Difference current calculation means for calculating difference current time series information by calculating the same time series current information at both ends, and difference current for calculating time series information of the difference current fundamental wave component by filtering the difference current time series information Fundamental wave component calculating means, difference current fundamental wave component amount calculating means for calculating a difference current fundamental wave component amount by calculating an amplitude value of the time series information of the difference current fundamental wave component, and the same time series current information at both ends. Calculate each end Current time series information calculating means for obtaining current time series information, fundamental wave current time series information calculating means for filtering the current time series information at each end to obtain fundamental wave current time series information at each end, and each of the above Fundamental wave current component amount calculating means for calculating the fundamental wave current component amount at each end by calculating the amplitude value of the fundamental wave current time-series information at the end, and the difference current fundamental wave component amount and the fundamental wave current component amount at each end The section passage current amount calculation means for obtaining the section passage current amount from the above, and the section passage current amount equivalent to obtain the section inflow current amount equivalent difference voltage by multiplying the section passage current amount by a predetermined line constant and subtracting from the difference voltage fundamental wave component amount A difference voltage calculation means, and a section failure detection means for comparing and determining the section inflow current amount equivalent difference voltage and a predetermined constant to detect a section failure are provided.

また本発明の別の特徴は、交流単巻変圧器き電回路において、任意距離区間毎に配置される電気所の単巻変圧器を境界とする電車線の故障を検出するき電保護装置であって、保護区間の両端き電電圧をそれぞれの電気所端で計器用変圧器の二次側から取り込むき電電圧取得手段と、前記電気所端それぞれで取り込むき電電圧を任意周期毎に測定し、相互に高速通信してそれぞれの端のき電電圧情報を両端の同一時系列電圧情報として一元共有する電圧情報端末手段と、前記両端の同一時系列電圧情報を演算して差電圧時系列情報を求める差電圧時系列情報算出手段と、前記差電圧時系列情報をフィルタリング演算して、差電圧基本波成分の時系列情報を求める差電圧基本波成分算出手段と、前記差電圧基本波成分の時系列情報を振幅値演算して差電圧基本波成分量を求める差電圧基本波成分量算出手段と、前記差電圧基本波成分量と予め定める定数とを比較判定して区間故障を検出する電圧ベース区間故障検出手段と、前記差電圧時系列情報をフィルタリング演算して差電圧の第二高調波時系列情報を求める第二高調波時系列情報算出手段と、差電圧の第二高調波時系列情報を振幅値演算して差電圧第二高調波成分量を算出する差電圧第二高調波成分量算出手段と、前記差電圧第二高調波成分量と前記差電圧基本波成分量との比率演算から差電圧の第二高調波含有量を算出する第二高調波含有量算出手段と、前記第二高調波含有量を予め定める判定定数と比較判定し、前記第二高調波含有量が予め定めた判定定数を超過する場合に前記電圧ベース区間故障検出手段による区間故障判定を抑止する区間故障判定抑止手段とを備えた点にある。   Another feature of the present invention is a feeder protection device for detecting a failure of a train line bordered by a transformer of an electric power station arranged at an arbitrary distance section in an AC transformer transformer feeder circuit. In addition, the feeding voltage acquisition means for capturing the feeding voltage at both ends of the protection section from the secondary side of the instrument transformer at the respective electrical station ends, and the feeding voltage captured at each of the electrical station ends is measured for each arbitrary period. A voltage information terminal means for sharing the voltage information at each end as the same time-series voltage information at both ends by performing high-speed communication with each other, and calculating the same time-series voltage information at both ends to calculate a difference voltage time series Difference voltage time series information calculating means for obtaining information, difference voltage fundamental wave component calculating means for obtaining time series information of the difference voltage fundamental wave component by filtering the difference voltage time series information, and the difference voltage fundamental wave component The time series information of A difference voltage fundamental wave component amount calculating means for obtaining a difference voltage fundamental wave component amount; a voltage base interval failure detecting means for comparing and determining the difference voltage fundamental wave component amount and a predetermined constant to detect an interval failure; and the difference Second harmonic time series information calculating means for obtaining the second harmonic time series information of the difference voltage by filtering the voltage time series information, and calculating the amplitude value of the second harmonic time series information of the difference voltage and calculating the difference voltage Difference voltage second harmonic component amount calculating means for calculating the second harmonic component amount, and the second harmonic of the difference voltage from the ratio calculation of the difference voltage second harmonic component amount and the difference voltage fundamental wave component amount A second harmonic content calculating means for calculating the content, the second harmonic content is compared with a predetermined determination constant, and the second harmonic content exceeds a predetermined determination constant. Section fault judgment by the voltage base section fault detection means It lies in that a section failure determination inhibition means for inhibiting.

また本発明の別の特徴は、交流単巻変圧器き電回路において、任意距離区間毎に配置される電気所の単巻変圧器を境界とする電車線の故障を検出するき電保護装置であって、保護区間の両端き電電圧をそれぞれの電気所端で計器用変圧器の二次側から取り込むき電電圧取得手段と、前記電気所端それぞれで取り込むき電電圧を任意周期毎に測定し、相互に高速通信してそれぞれの端のき電電圧情報を両端の同一時系列電圧情報として一元共有する電圧情報端末手段と、前記保護区間の両端電車線電流をそれぞれの電気所端で計器用変流器の二次側から取り込む電車線電流取得手段と、前記電気所端それぞれで取り込む電車線電流を任意周期毎に測定し、相互に高速通信してそれぞれの端の電車線電流を両端の同一時系列電流情報として一元共有する電流情報端末手段と、前記両端の同一時系列電流情報を演算して差電流時系列情報を求める差電流算出手段と、前記差電流時系列情報をフィルタリング演算して、差電流基本波成分の時系列情報を求める差電流基本波成分算出手段と、前記差電流基本波成分の時系列情報を振幅値演算して差電流基本波成分量を求める差電流基本波成分量算出手段と、前記差電流基本波成分量と予め定める定数とを比較判定して区間故障を検出する電流ベース区間故障検出手段と、前記保護区間の両端の同一時系列電圧情報から各端それぞれの電圧時系列情報を求める電圧時系列情報算出手段と、前記各端の電圧時系列情報をフィルタリング演算して各端の電圧の基本波時系列情報を求める電圧基本波時系列情報算出手段と、前記各端の電圧の基本波時系列情報を振幅値演算して各端の電圧基本波成分量を求める電圧基本波成分量算出手段と、前記各端の電圧基本波成分量の過去値と現在値との電圧変化量を各端毎に求める電圧変化量算出手段と、前記各端毎の電圧変化量を加算してスカラ和量を求める電圧変化量算出手段と、前記差電流基本波成分量と予め定める定数とを比較判定し、前記電圧変化量のスカラ和量と予め定める定数とを比較判定し、双方の判定結果から区間故障を検出する区間故障検出手段とを備えた点にある。   Another feature of the present invention is a feeder protection device for detecting a failure of a train line bordered by a transformer of an electric power station arranged at an arbitrary distance section in an AC transformer transformer feeder circuit. In addition, the feeding voltage acquisition means for capturing the feeding voltage at both ends of the protection section from the secondary side of the instrument transformer at the respective electrical station ends, and the feeding voltage captured at each of the electrical station ends is measured for each arbitrary period. Voltage information terminal means for mutually sharing high-speed communication with each other and feeding voltage information at each end as the same time-series voltage information at both ends, and measuring the electric current at both ends of the protection section at each electric station end Measures the train line current acquisition means that captures from the secondary side of the current transformer and the train line current that is captured at each end of the electrical station, and communicates at high speed with each other to communicate the train line current at each end at both ends. As the same time series current information Current information terminal means for calculating the difference current time series information by calculating the same time series current information at both ends, filtering the difference current time series information, and calculating the difference current fundamental wave component Difference current fundamental wave component calculation means for obtaining time series information, difference current fundamental wave component amount calculation means for calculating an amplitude value of time series information of the difference current fundamental wave component to obtain a difference current fundamental wave component amount, and the difference Current base section fault detection means for detecting section faults by comparing and determining a current fundamental wave component amount and a predetermined constant, and obtaining voltage time series information at each end from the same time series voltage information at both ends of the protection section Voltage time-series information calculating means, voltage basic time-series information calculating means for obtaining fundamental wave time-series information of the voltage at each end by filtering the voltage time-series information at each end, and basic voltage of each end Wave time Voltage fundamental wave component amount calculating means for calculating the amplitude value of the column information to obtain the voltage fundamental wave component amount at each end, and the voltage change amount between the past value and the current value of the voltage fundamental wave component amount at each end. A voltage change amount calculating means to be obtained every time, a voltage change amount calculating means to obtain a scalar sum by adding the voltage change amounts at each end, and comparing and determining the difference current fundamental wave component amount and a predetermined constant. And a section failure detecting means for comparing and determining a scalar sum of the voltage change amount and a predetermined constant and detecting a section failure from both determination results.

また本発明の別の特徴は、交流単巻変圧器き電回路において、任意距離区間毎に配置される電気所の単巻変圧器を境界とする電車線の故障を検出するき電保護方法であって、保護区間の両端き電電圧をそれぞれの電気所端で計器用変圧器の二次側から取り込むき電電圧取得ステップと、前記電気所端それぞれで取り込むき電電圧を任意周期毎に測定し、相互に高速通信してそれぞれの端のき電電圧情報を両端の同一時系列電圧情報として一元共有する電圧情報共有ステップと、前記両端の同一時系列電圧情報を演算して差電圧時系列情報を求める差電圧演算ステップと、前記差電圧時系列情報をフィルタリング演算して、差電圧基本波成分の時系列情報を求める差電圧基本波成分算出ステップと、前記差電圧基本波成分の時系列情報を振幅値演算して差電圧基本波成分量を求める差電圧基本波成分量算出ステップと、前記差電圧基本波成分量と予め定める定数とを比較判定して区間故障を検出する電圧ベース区間故障検出ステップとを有する点にある。   Another feature of the present invention is a feeding protection method for detecting a failure of a train line bordering on a winding transformer of an electric station arranged for each arbitrary distance section in an AC winding transformer feeding circuit. In addition, the feeding voltage acquisition step for capturing the feeding voltage at both ends of the protection section from the secondary side of the instrument transformer at each electrical station end, and the feeding voltage captured at each of the electrical station ends is measured at each arbitrary period A voltage information sharing step for mutually sharing high-speed communication with each other and feeding voltage information at each end as the same time-series voltage information at both ends; and calculating a difference voltage time-series by calculating the same time-series voltage information at both ends A difference voltage calculation step for obtaining information, a difference voltage fundamental wave component calculation step for obtaining time series information of the difference voltage fundamental wave component by filtering the difference voltage time series information, and a time series of the difference voltage fundamental wave component Information amplitude value A difference voltage fundamental wave component amount calculating step for calculating a difference voltage fundamental wave component amount, and a voltage base interval failure detecting step for comparing and determining the difference voltage fundamental wave component amount and a predetermined constant to detect an interval failure; It is in that it has.

また本発明の別の特徴は、交流単巻変圧器き電回路において、任意距離区間毎に配置される電気所の単巻変圧器を境界とする電車線の故障を検出するき電保護方法であって、保護区間の両端き電電圧をそれぞれの電気所端で計器用変圧器の二次側から取り込むき電電圧取得ステップと、前記電気所端それぞれで取り込むき電電圧を任意周期毎に測定し、相互に高速通信してそれぞれの端のき電電圧情報を両端の同一時系列電圧情報として一元共有する電圧情報共有ステップと、前記両端の同一時系列電圧情報を演算して差電圧時系列情報を求める差電圧演算ステップと、前記差電圧時系列情報をフィルタリング演算して、差電圧基本波成分の時系列情報を求める差電圧基本波成分算出ステップと、前記差電圧基本波成分の時系列情報を振幅値演算して差電圧基本波成分量を求める差電圧基本波成分量算出ステップと、前記保護区間の両端電車線電流をそれぞれの電気所端で計器用変流器の二次側から取り込む電車線電流取得ステップと、前記電気所端それぞれで取り込む電車線電流を任意周期毎に測定し、相互に高速通信してそれぞれの端の電車線電流を両端の同一時系列電流情報として一元共有する電流情報共有ステップと、前記両端の同一時系列電流情報を演算して差電流時系列情報を求める差電流算出ステップと、前記差電流時系列情報をフィルタリング演算して、差電流基本波成分の時系列情報を求める差電流基本波成分算出ステップと、前記差電流基本波成分の時系列情報を振幅値演算して差電流基本波成分量を求める差電流基本波成分量算出ステップと、前記差電圧基本波成分量と予め定める定数とを比較判定し、前記差電流基本波成分量と予め定めた定数とを比較判定し、当該双方の判定結果から区間故障を検出する区間故障検出ステップとを有する点にある。   Another feature of the present invention is a feeding protection method for detecting a failure of a train line bordering on a winding transformer of an electric station arranged for each arbitrary distance section in an AC winding transformer feeding circuit. In addition, the feeding voltage acquisition step for capturing the feeding voltage at both ends of the protection section from the secondary side of the instrument transformer at each electrical station end, and the feeding voltage captured at each of the electrical station ends is measured at each arbitrary period A voltage information sharing step for mutually sharing high-speed communication with each other and feeding voltage information at each end as the same time-series voltage information at both ends; and calculating a difference voltage time-series by calculating the same time-series voltage information at both ends A difference voltage calculation step for obtaining information, a difference voltage fundamental wave component calculation step for obtaining time series information of the difference voltage fundamental wave component by filtering the difference voltage time series information, and a time series of the difference voltage fundamental wave component Information amplitude value Step of calculating the difference voltage fundamental wave component amount by calculating the difference voltage fundamental wave component amount, and the train line current that takes in both ends of the protection section from the secondary side of the current transformer at each electrical station end Current information sharing in which the electric line current taken at each end of the electric station is measured at an arbitrary period, and the electric line current at each end is centrally shared as the same time-series current information at both ends by obtaining high-speed communication with each other Calculating a difference current time-series information by calculating the same time-series current information at both ends, and filtering the difference current time-series information to obtain time-series information of the difference current fundamental wave component A difference current fundamental wave component calculating step, a difference current fundamental wave component amount calculating step for calculating a difference current fundamental wave component amount by calculating an amplitude value of time series information of the difference current fundamental wave component, and the difference voltage base A section failure detection step of comparing and determining a wave component amount and a predetermined constant, comparing and determining the difference current fundamental wave component amount and a predetermined constant, and detecting a section failure from both determination results It is in.

また本発明の別の特徴は、交流単巻変圧器き電回路において、任意距離区間毎に配置される電気所の単巻変圧器を境界とする電車線の故障を検出するき電保護方法であって、保護区間の両端き電電圧をそれぞれの電気所端で計器用変圧器の二次側から取り込むき電電圧取得ステップと、前記電気所端それぞれで取り込むき電電圧を任意周期毎に測定し、相互に高速通信してそれぞれの端のき電電圧情報を両端の同一時系列電圧情報として一元共有する電圧情報共有ステップと、前記両端の同一時系列電圧情報を演算して差電圧時系列情報を求める差電圧演算ステップと、前記差電圧時系列情報をフィルタリング演算して、差電圧基本波成分の時系列情報を求める差電圧基本波成分算出ステップと、前記差電圧基本波成分の時系列情報を振幅値演算して差電圧基本波成分量を求める差電圧基本波成分量算出ステップと、前記保護区間の両端電車線電流をそれぞれの電気所端で計器用変流器の二次側から取り込む電車線電流取得ステップと、前記電気所端それぞれで取り込む電車線電流を任意周期毎に測定し、相互に高速通信してそれぞれの端の電車線電流を両端の同一時系列電流情報として一元共有する電流情報共有ステップと、前記両端の同一時系列電流情報を演算して差電流時系列情報を求める差電流算出ステップと、前記差電流時系列情報をフィルタリング演算して、差電流基本波成分の時系列情報を求める差電流基本波成分算出ステップと、前記差電流基本波成分の時系列情報を振幅値演算して差電流基本波成分量を求める差電流基本波成分量算出ステップと、前記両端の同一時系列電流情報を演算して各端の電流時系列情報を求める電流時系列情報演算ステップと、前記各端の電流時系列情報をフィルタリング演算して各端の基本波電流時系列情報を求める基本波電流時系列情報算出ステップと、前記各端の基本波電流時系列情報を振幅値演算して各端の基本波電流成分量を算出する基本波電流成分量算出ステップと、前記差電流基本波成分量と各端の基本波電流成分量とから区間通過電流量を求める区間通過電流量演算ステップと、前記区間通過電流量に予め定める線路定数を乗じ、前記差電圧基本波成分量から減算して区間流入電流量等価差電圧を求める等価差電圧演算ステップと、前記区間流入電流量等価差電圧と予め定める定数とを比較判定し、区間故障を検出する区間故障検出ステップとを有する点にある。   Another feature of the present invention is a feeding protection method for detecting a failure of a train line bordering on a winding transformer of an electric station arranged for each arbitrary distance section in an AC winding transformer feeding circuit. In addition, the feeding voltage acquisition step for capturing the feeding voltage at both ends of the protection section from the secondary side of the instrument transformer at each electrical station end, and the feeding voltage captured at each of the electrical station ends is measured at each arbitrary period A voltage information sharing step for mutually sharing high-speed communication with each other and feeding voltage information at each end as the same time-series voltage information at both ends; and calculating a difference voltage time-series by calculating the same time-series voltage information at both ends A difference voltage calculation step for obtaining information, a difference voltage fundamental wave component calculation step for obtaining time series information of the difference voltage fundamental wave component by filtering the difference voltage time series information, and a time series of the difference voltage fundamental wave component Information amplitude value Step of calculating the difference voltage fundamental wave component amount by calculating the difference voltage fundamental wave component amount, and the train line current that takes in both ends of the protection section from the secondary side of the current transformer at each electrical station end Current information sharing in which the electric line current taken at each end of the electric station is measured at an arbitrary period, and the electric line current at each end is centrally shared as the same time-series current information at both ends by obtaining high-speed communication with each other Calculating a difference current time-series information by calculating the same time-series current information at both ends, and filtering the difference current time-series information to obtain time-series information of the difference current fundamental wave component A difference current fundamental wave component calculation step to obtain; a difference current fundamental wave component amount calculation step to obtain a difference current fundamental wave component amount by calculating an amplitude value of the time series information of the difference current fundamental wave component; Current time series information calculation step for calculating current time series information at each end by calculating time series current information, and a basic operation for obtaining fundamental wave current time series information at each end by filtering the current time series information at each end A wave current time series information calculation step, a fundamental wave current component amount calculation step for calculating a fundamental wave current component amount at each end by calculating an amplitude value of the fundamental wave current time series information at each end, and the difference current fundamental wave A section passing current amount calculating step for obtaining a section passing current amount from the component amount and the fundamental current component amount at each end, and multiplying the section passing current amount by a predetermined line constant, and subtracting from the difference voltage fundamental wave component amount. The equivalent difference voltage calculation step for obtaining the section inflow current amount equivalent difference voltage, and the section failure detection step for comparing and determining the section inflow current amount equivalent difference voltage and a predetermined constant to detect a section failure. The

また本発明の別の特徴は、交流単巻変圧器き電回路において、任意距離区間毎に配置される電気所の単巻変圧器を境界とする電車線の故障を検出するき電保護方法であって、保護区間の両端き電電圧をそれぞれの電気所端で計器用変圧器の二次側から取り込むき電電圧取得ステップと、前記電気所端それぞれで取り込むき電電圧を任意周期毎に測定し、相互に高速通信してそれぞれの端のき電電圧情報を両端の同一時系列電圧情報として一元共有する電圧情報共有ステップと、前記両端の同一時系列電圧情報を演算して差電圧時系列情報を求める差電圧演算ステップと、前記差電圧時系列情報をフィルタリング演算して、差電圧基本波成分の時系列情報を求める差電圧基本波成分算出ステップと、前記差電圧基本波成分の時系列情報を振幅値演算して差電圧基本波成分量を求める差電圧基本波成分量算出ステップと、前記差電圧基本波成分量と予め定める定数とを比較判定して区間故障を検出する電圧ベース区間故障検出ステップと、前記差電圧時系列情報をフィルタリング演算して差電圧の第二高調波時系列情報を求める第二高調波時系列情報算出ステップと、差電圧の第二高調波時系列情報を振幅値演算して差電圧第二高調波成分量を算出する差電圧第二高調波成分量算出ステップと、前記差電圧第二高調波成分量と前記差電圧基本波成分量との比率演算から差電圧の第二高調波含有量を算出する第二高調波含有量算出ステップと、前記第二高調波含有量を予め定める判定定数と比較判定し、前記第二高調波含有量が予め定めた判定定数を超過する場合に前記電圧ベース区間故障検出ステップによる区間故障判定を抑止する区間故障判定抑止ステップとを有する点にある。   Another feature of the present invention is a feeding protection method for detecting a failure of a train line bordering on a winding transformer of an electric station arranged for each arbitrary distance section in an AC winding transformer feeding circuit. In addition, the feeding voltage acquisition step for capturing the feeding voltage at both ends of the protection section from the secondary side of the instrument transformer at each electrical station end, and the feeding voltage captured at each of the electrical station ends is measured at each arbitrary period A voltage information sharing step for mutually sharing high-speed communication with each other and feeding voltage information at each end as the same time-series voltage information at both ends; and calculating a difference voltage time-series by calculating the same time-series voltage information at both ends A difference voltage calculation step for obtaining information, a difference voltage fundamental wave component calculation step for obtaining time series information of the difference voltage fundamental wave component by filtering the difference voltage time series information, and a time series of the difference voltage fundamental wave component Information amplitude value A difference voltage fundamental wave component amount calculating step for calculating a difference voltage fundamental wave component amount, and a voltage base interval failure detecting step for comparing and determining the difference voltage fundamental wave component amount and a predetermined constant to detect an interval failure; A second harmonic time series information calculation step for obtaining the second harmonic time series information of the difference voltage by filtering the difference voltage time series information, and calculating an amplitude value of the second harmonic time series information of the difference voltage. Differential voltage second harmonic component amount calculating step for calculating the difference voltage second harmonic component amount, and calculating the difference voltage from the difference voltage second harmonic component amount and the difference voltage fundamental wave component amount. The second harmonic content calculating step for calculating the second harmonic content and the second harmonic content are compared with a predetermined determination constant, and the second harmonic content exceeds the predetermined determination constant. When the voltage base interval is In that it has a section failure determination inhibiting step of inhibiting the section failure determination by the detecting step.

さらに本発明の別の特徴は、交流単巻変圧器き電回路において、任意距離区間毎に配置される電気所の単巻変圧器を境界とする電車線の故障を検出するき電保護方法であって、保護区間の両端き電電圧をそれぞれの電気所端で計器用変圧器の二次側から取り込むき電電圧取得ステップと、前記電気所端それぞれで取り込むき電電圧を任意周期毎に測定し、相互に高速通信してそれぞれの端のき電電圧情報を両端の同一時系列電圧情報として一元共有する電圧情報共有ステップと、前記保護区間の両端電車線電流をそれぞれの電気所端で計器用変流器の二次側から取り込む電車線電流取得ステップと、前記電気所端それぞれで取り込む電車線電流を任意周期毎に測定し、相互に高速通信してそれぞれの端の電車線電流を両端の同一時系列電流情報として一元共有する電流情報共有ステップと、前記両端の同一時系列電流情報を演算して差電流時系列情報を求める差電流算出ステップと、前記差電流時系列情報をフィルタリング演算して、差電流基本波成分の時系列情報を求める差電流基本波成分算出ステップと、前記差電流基本波成分の時系列情報を振幅値演算して差電流基本波成分量を求める差電流基本波成分量算出ステップと、前記差電流基本波成分量と予め定める定数とを比較判定して区間故障を検出する電流ベース区間故障検出ステップと、前記保護区間の両端の同一時系列電圧情報から各端それぞれの電圧時系列情報を求める電圧時系列情報算出ステップと、前記各端の電圧時系列情報をフィルタリング演算して各端の電圧の基本波時系列情報を求める電圧基本波時系列情報算出ステップと、前記各端の電圧の基本波時系列情報を振幅値演算して各端の電圧基本波成分量を求める電圧基本波成分量算出ステップと、前記各端の電圧基本波成分量の過去値と現在値との電圧変化量を各端毎に求める電圧変化量算出ステップと、前記各端毎の電圧変化量を加算してスカラ和量を求める電圧変化量算出ステップと、前記差電流基本波成分量と予め定める定数とを比較判定し、前記電圧変化量のスカラ和量と予め定める定数とを比較判定し、双方の判定結果から区間故障を検出する区間故障検出ステップとを有する点にある。   Furthermore, another feature of the present invention is a feeder protection method for detecting a failure of a train line bordering on a transformer of an electric power station arranged at an arbitrary distance section in an AC transformer transformer feeder circuit. In addition, the feeding voltage acquisition step for capturing the feeding voltage at both ends of the protection section from the secondary side of the instrument transformer at each electrical station end, and the feeding voltage captured at each of the electrical station ends is measured at each arbitrary period A voltage information sharing step for mutually sharing high-speed communication with each other and feeding voltage information at each end as the same time-series voltage information at both ends, and measuring the electric current at both ends of the protection section at each electric station end. The electric line current acquisition step to be taken in from the secondary side of the current transformer and the electric line current to be taken in at each end of the electric station are measured every arbitrary period, and the electric line current at each end is measured at both ends by high-speed communication with each other Same time series current information A current information sharing step that is shared as a unit, a difference current calculation step that calculates the same time-series current information at both ends to obtain difference current time-series information, and a filtering operation on the difference-current time-series information to calculate a difference current basic A difference current fundamental wave component calculation step for obtaining time series information of the wave component; a difference current fundamental wave component amount calculation step for calculating an amplitude value of the time series information of the difference current fundamental wave component to obtain a difference current fundamental wave component amount; A current base section failure detection step for comparing and determining the difference current fundamental wave component amount and a predetermined constant to detect a section failure; and voltage time series at each end from the same time series voltage information at both ends of the protection section A voltage time-series information calculating step for obtaining information; and a voltage fundamental wave time-series information for obtaining fundamental wave time-series information of the voltage at each end by filtering the voltage time-series information at each end. A voltage fundamental wave component amount calculating step for calculating a voltage fundamental wave component amount at each end by calculating an amplitude value of the fundamental wave time-series information of the voltage at each end, and a voltage fundamental wave component amount at each end. A voltage change amount calculating step for obtaining a voltage change amount between a past value and a current value for each end; a voltage change amount calculating step for obtaining a scalar sum by adding the voltage change amounts for each end; and the difference current A section failure detection step of comparing and determining a fundamental wave component amount and a predetermined constant, comparing and determining a scalar sum of the voltage change amount and a predetermined constant, and detecting a section failure from both determination results It is in.

本発明の交流ATき電回路のき電保護装置及び方法によれば、保護区間において負荷電流と故障電流とが接近する領域に対する故障検出の選択性が向上し、保護区間の両端に備える従来の保護要素数を半減できる。   According to the feeder protection device and method of the AC AT feeder circuit of the present invention, the selectivity of fault detection for the area where the load current and the fault current approach in the protection section is improved, and the conventional protection equipment provided at both ends of the protection section is provided. The number of protection elements can be halved.

また、本発明の交流ATき電回路のき電保護装置及び方法によれば、保護区間外への通過電流で生じる差電圧による不要動作を抑止することができ、同時に、計器用変圧器二次電圧の導入不良で生じる差電圧による不要動作を抑止することもできる。   Further, according to the feeder protection device and method of the AC AT feeder circuit of the present invention, it is possible to suppress unnecessary operation due to the differential voltage generated by the passing current to the outside of the protection section, and at the same time, the secondary transformer of the instrument transformer It is also possible to suppress unnecessary operations due to the differential voltage caused by voltage introduction failure.

また、本発明の交流ATき電回路のき電保護装置及び方法によれば、保護区間の差電圧検出感度を著しく改善できる。   In addition, according to the feeder protection device and method of the AC AT feeder circuit of the present invention, the differential voltage detection sensitivity in the protection section can be remarkably improved.

さらに、本発明の交流ATき電回路のき電保護装置及び方法によれば、保護区間の差電圧検出感度を著しく改善でき、同時に、計器用変圧器二次電圧の導入不良で生じる差電圧による不要動作を抑止することもできる。   Furthermore, according to the feeder protection device and method of the AC AT feeder circuit of the present invention, the difference voltage detection sensitivity in the protection section can be remarkably improved, and at the same time, due to the difference voltage caused by the poor introduction of the secondary voltage of the instrument transformer. Unnecessary operations can also be suppressed.

一般的な交流ATき電回路の基本構成を示す回路図。The circuit diagram which shows the basic composition of a general alternating current AT feeder circuit. 図2A(a)、(b)は、本発明のき電保護装置及び方法による差電圧保護方式でのき電保護動作を説明する図であり、トロリ線とレールの短絡故障検出の原理を示す説明図。FIGS. 2A (a) and 2 (b) are diagrams for explaining the feeding protection operation in the differential voltage protection method by the feeding protection device and method of the present invention, and show the principle of detecting a short-circuit fault between the trolley wire and the rail. Illustration. 図2B(a)、(b)は、本発明のき電保護装置及び方法による差電圧保護方式でのき電保護動作を説明する図であり、トロリ線とき電線の短絡故障検出の原理を示す説明図。FIGS. 2B (a) and 2 (b) are diagrams for explaining the feeding protection operation in the differential voltage protection method by the feeding protection device and method of the present invention, and show the principle of detection of a short-circuit fault in a trolley wire. Illustration. 本発明の第1の実施の形態のき電保護装置のブロック図。1 is a block diagram of a feeding protection device according to a first embodiment of the present invention. 上記第1の実施の形態において、区間外の負荷電流と保護区間の差電圧を示す説明図。In the said 1st Embodiment, explanatory drawing which shows the load current outside a zone, and the difference voltage of a protection zone. 本発明の第2の実施の形態のき電保護装置のブロック図。The block diagram of the electricity protection apparatus of the 2nd Embodiment of this invention. 上記実施の形態において、電気車の位置移動と電流増加の時間変化特性を示すグラフ。The graph which shows the time change characteristic of the position movement of an electric vehicle, and an electric current increase in the said embodiment. 本発明の第3の実施の形態のき電保護装置による差電圧保護方式でのき電保護動作の説明図。Explanatory drawing of the feeding protection operation | movement by the differential voltage protection system by the feeding protection apparatus of the 3rd Embodiment of this invention. 上記第3の実施の形態のき電保護装置のブロック図。The block diagram of the feeding protection apparatus of the said 3rd Embodiment. 本発明の第4の実施の形態のき電保護装置のブロック図。The block diagram of the electricity protection apparatus of the 4th Embodiment of this invention. 本発明の第5の実施の形態のき電保護装置に関連し、保護区間に流れる電気車突入電流の説明図。Explanatory drawing of the electric vehicle inrush current which flows into a protection area in relation to the feeding protection apparatus of the 5th Embodiment of this invention. 上記第5の実施の形態に関連し、電気車再加圧における区間両端差電圧の測定波形図。The measurement waveform figure of the section both-ends differential voltage in the electric vehicle repressurization in relation to the fifth embodiment. 上記第5の実施の形態のき電保護装置のブロック図。The block diagram of the feeding protection apparatus of the said 5th Embodiment. 本発明の第6の実施の形態に関連し、故障前の電車線の電流分布変化と保護区間両端の差電圧を示す回路図。The circuit diagram which shows the difference of the electric current distribution change of the train line before a failure, and the difference voltage of both ends of a protection area in connection with the 6th Embodiment of this invention. 上記第6の実施の形態に関連し、故障時の電車線の電流分布変化と保護区間両端の差電圧を示す回路図。The circuit diagram which shows the current distribution change of the train line at the time of a failure, and the difference voltage of both ends of a protection area in relation to the said 6th Embodiment. 上記第6の実施の形態に関連し、保護区間内外の電流重畳の等価回路図。The equivalent circuit schematic of the electric current superimposition inside and outside a protection area in relation to the said 6th Embodiment. 上記第6の実施の形態のき電保護装置のブロック図。The block diagram of the feeding protection apparatus of the said 6th Embodiment. 上記第6の実施の形態に関連し、故障前の保護区間内の電流の位置と故障電流の故障点に応じた電圧変化を示すグラフ。The graph which shows the voltage change according to the position of the electric current in the protection area before a failure, and the failure point of a failure current in relation to the said 6th Embodiment. 上記第6の実施の形態に関連し、保護区間に流れる故障電気量の説明図。Explanatory drawing of the amount of fault electricity which flows in a protection area in relation to the said 6th Embodiment. 従来例のき電保護方式の説明図。Explanatory drawing of the feeding protection system of a prior art example. 本発明の第1の実施の形態による差電圧保護方式の説明図。Explanatory drawing of the differential voltage protection system by the 1st Embodiment of this invention. 本発明の第2の実施の形態による故障前後の端差電圧と故障時の差電圧の変化量を示すグラフ。The graph which shows the variation | change_quantity of the terminal voltage difference before and behind failure by the 2nd Embodiment of this invention, and the difference voltage at the time of failure. 従来の交流ATき電回路の構成を示す回路図。The circuit diagram which shows the structure of the conventional alternating current AT feeder circuit. 交流ATき電の原理を示す説明図。Explanatory drawing which shows the principle of alternating current AT feeding. 交流ATき電回路の距離−インピーダンス特性のグラフ。The graph of the distance-impedance characteristic of an AC AT feeder circuit. 従来の距離継電器(#44F)の動作特性のグラフ。The graph of the operating characteristic of the conventional distance relay (# 44F). 従来の交流ΔI形継電器(#50F)の動作特性のグラフ。The graph of the operating characteristic of the conventional AC ΔI type relay (# 50F). 従来の交流ATき電回路におけるき電系統と保護リレー要素(#44F、#50F)の配置を示す回路図。The circuit diagram which shows the arrangement | positioning of the feeder system and protection relay element (# 44F, # 50F) in the conventional alternating current AT feeder circuit. 従来の交流ATき電回路のき電保護装置の課題を説明するためのグラフであって、負荷電流と短絡故障電流との関係を示すグラフ。It is a graph for demonstrating the subject of the feeding protection apparatus of the conventional alternating current AT feeding circuit, Comprising: The graph which shows the relationship between a load current and a short circuit fault current.

以下、本発明の実施の形態を図に基づいて詳説する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

[第1の実施の形態]
図1は、交流電気鉄道におけるATき電回路の一般的な系統構成例を示しており、従来例で前述した図19の構成と同様である。図2A(a)、図2B(a)は、本発明による差電圧保護の原理を説明するために、図1で前述した系統構成の複数AT区間における任意区間の下り線を代表例として示したもので、保護区間の両端はそれぞれ、電気所A、Bの単巻変圧器ATに接続され、保護区間の電車線は三種に代表されるトロリ線、レール、き電線で示している。図2A(a)は保護区間の不定位置dにおけるトロリ線とレールの短絡故障を示し、図2A(b)はその故障等価回路である。図2B(a)はトロリ線とき電線の短絡故障を示し、図2B(b)もまたその故障等価回路である。保護区間全長の電車線路インピーダンスZLを基準値1PUとして区間の不定位置dで発生する故障には故障点インピーダンスZFが介在し、故障電流Iが流れる。故障電流Iは、故障点dで保護区間の電車線路インピーダンスZLが二分されたインピーダンスZA、ZB分岐点で、それぞれ端の電気所A、Bへ電流IA、IBが分岐して流れる。
[First Embodiment]
FIG. 1 shows a general system configuration example of an AT feeder circuit in an AC electric railway, which is the same as the configuration of FIG. 19 described above in the conventional example. 2A (a) and 2B (a) show, as a representative example, the down line of an arbitrary section in a plurality of AT sections of the system configuration described above with reference to FIG. 1 in order to explain the principle of differential voltage protection according to the present invention. Therefore, both ends of the protection section are respectively connected to the autotransformers AT of the electric stations A and B, and the train lines in the protection section are indicated by three types of trolley lines, rails, and feeders. FIG. 2A (a) shows a short circuit failure between the trolley wire and the rail at an indefinite position d in the protection section, and FIG. 2A (b) is a fault equivalent circuit thereof. FIG. 2B (a) shows a short circuit failure of the electric wire when the trolley wire is used, and FIG. 2B (b) is also a fault equivalent circuit thereof. A fault occurring at an indefinite position d in the section with the train line impedance ZL of the entire protection section as a reference value 1PU is accompanied by a fault point impedance ZF, and a fault current I flows. The fault current I is a branch point of the impedance ZA and ZB where the train line impedance ZL of the protection section is divided into two at the fault point d, and the currents IA and IB branch and flow to the electric stations A and B at the ends, respectively.

区間の両端電気所A、Bには保護装置1A、1Bを備え、それぞれ端のき電電圧VA、VBを図示しない計器用変圧器を介して導入する。区間両端の保護装置1A、1Bは、任意周期毎にサンプリング同期して測定したき電電圧VA、VBを相互に高速通信し、任意サンプリング回数分の同一時系列情報として記憶し、更新する。区間両端の保護装置1A、1Bは、記憶更新される区間両端き電電圧のサンプリング時系列情報をフィルタリング演算、及び、振幅値演算して両端電圧VA、VBの差dVの基本波成分量を求め、区間故障を検出する。また、図2A(a)、図2B(a)は原理説明を簡略するため、レールとき電線の電車線インピーダンスをトロリ線インピーダンスZA、ZB、ZLに集約している。   The electric power stations A and B at both ends of the section are provided with protective devices 1A and 1B, respectively, and feed voltages VA and VB at the ends are introduced through instrument transformers (not shown). The protection devices 1A and 1B at both ends of the section communicate the feeding voltages VA and VB measured in sampling synchronization every arbitrary period at high speed, and store and update the same time-series information as many times as desired. The protection devices 1A and 1B at both ends of the section obtain the fundamental wave component amount of the difference dV between the both-end voltages VA and VB by performing filtering calculation and amplitude calculation on the sampling time series information of the feeding voltage at both ends to be stored and updated. Detecting section faults. 2A (a) and FIG. 2B (a) consolidate train line impedances of rails and electric wires into trolley line impedances ZA, ZB, ZL in order to simplify the principle description.

図2A(a)のトロリ線とレール短絡故障、図2A(b)の故障等価回路において、電源電圧をV、保護区間両端の単巻変圧器ATの変圧比をN、電源から保護区間までの経路インピーダンスをZP、保護区間全長の線路インピーダンスをZL、AT漏れインピーダンスをZAT、故障点抵抗をZf、AT漏れインピーダンスZATの線路インピーダンスZLに対する比率をkZAT、電気所Aから故障点までの線路インピーダンスZAの保護区間線路長ZLに対する線路長比率をd、故障点から電気所Bまでの線路インピーダンスZBの線路長比率を1−d、電気所A端の電車線から故障点に流れる電流をIA、電気所B端の電車線から故障点に流れる電流をIB、区間両端の電圧をVA、VB、区間両端の差電圧をdVとすれば、これらには、数1〜数4の関係式が成り立つ。

Figure 0005319503
2A (a) trolley wire and rail short circuit failure, in the fault equivalent circuit of FIG. 2A (b), the power supply voltage is V, the transformer ratio of the autotransformer AT at both ends of the protection section is N, the power supply to the protection section The path impedance is ZP, the line impedance of the entire protection section is ZL, the AT leakage impedance is ZAT, the failure point resistance is Zf, the ratio of the AT leakage impedance ZAT to the line impedance ZL is kZAT, and the line impedance ZA from the electric station A to the failure point The ratio of the line length to the protection section line length ZL is d, the line length ratio of the line impedance ZB from the failure point to the electric station B is 1-d, and the current flowing from the electric line at the electric station A end to the failure point is IA, If the current flowing from the train line at the end of the station B to the failure point is IB, the voltages at both ends of the section are VA, VB, and the differential voltage at both ends of the section is dV, these are The relationship of the equations 1 to 4 are satisfied.
Figure 0005319503

但し、αは区間両端電気所A、Bにおける上下線の結合関数、上下線開放では(α=1)、結合では(α=2)である。

Figure 0005319503
Figure 0005319503
Figure 0005319503
However, α is a coupling function of upper and lower lines at the electric power stations A and B at both ends of the section, (α = 1) when the upper and lower lines are open, and (α = 2) when coupled.
Figure 0005319503
Figure 0005319503
Figure 0005319503

ここで、単巻変圧器ATの巻数比Nを2、長距離区間の線路インピーダンスZLに対する単巻変圧器ATの漏れインピーダンスZATは小さいので無視(ZAT=0)すれば、故障点比率dに応じた区間両端差電圧dVは数5式の原理式、区間両端の上下線が開放の場合は数6式(α=1)、区間両端の上下線が結合の場合は数6a式(α=2)の値となる。

Figure 0005319503
Figure 0005319503
Figure 0005319503
Here, if the turn ratio N of the autotransformer AT is 2, and the leakage impedance ZAT of the autotransformer AT with respect to the line impedance ZL in the long distance section is small and ignored (ZAT = 0), it corresponds to the failure point ratio d. The differential voltage dV at both ends of the section is the formula of Formula 5, Formula 6 when the vertical lines at both ends of the section are open (α = 1), Formula 6a when the vertical lines at both ends of the section are coupled (α = 2) ) Value.
Figure 0005319503
Figure 0005319503
Figure 0005319503

図2B(a)、図2B(b)のトロリ線とき電線の短絡故障においても同様に、数7〜数10の関係式が成り立つ。   Similarly, in the case of the trolley wire of FIG. 2B (a) and FIG.

但し、βは区間両端電気所A、Bにおける上下線の結合関数であり、上下線開放では(β=∞)、結合では(β=1)

Figure 0005319503
Figure 0005319503
Figure 0005319503
Figure 0005319503
However, β is a coupling function of the upper and lower lines at the electric power stations A and B at both ends of the section. When the upper and lower lines are open (β = ∞), in the coupling (β = 1)
Figure 0005319503
Figure 0005319503
Figure 0005319503
Figure 0005319503

ここで、故障点比率dに応じて生じる区間両端の差電圧は、区間両端の上下線が開放の場合は数11式(β=∞)、区間両端の上下線が結合の場合は数12式(β=1)の値となる。

Figure 0005319503
Figure 0005319503
Here, the differential voltage at both ends of the section generated according to the failure point ratio d is expressed by Equation 11 (β = ∞) when the upper and lower lines at both ends of the section are open, and Equation 12 when the upper and lower lines at both ends of the section are combined. The value is (β = 1).
Figure 0005319503
Figure 0005319503

前述した、図2A(a)のトロリ線とレール短絡故障の数4式と、図2B(a)のトロリ線とき電線短絡故障の数10式とから分かるように、双方は何れも、保護区間全長の電車線インピーダンスZLを基準として故障点dと区間内に流れ込む故障電流Iを関数とする原理式である。   As can be understood from the above-described equation (4) for the trolley wire and rail short-circuit failure in FIG. 2A (a) and equation (10) for the trolley wire and wire short-circuit failure in FIG. This is a principle expression using a failure point d and a failure current I flowing into the section as a function with reference to the full-length train line impedance ZL.

また、図2A(a)のトロリ線とレール短絡故障電流は、電車線電圧V/N基準の電流であり(数4式)、図2B(a)のトロリ線とき電線短絡故障電流は、き電電圧V基準である(数10式)。しかるに、トロリ線とレール短絡、トロリ線とき電線短絡、この両者の同一故障点dにおける区間両端差電圧dVは、トロリ線とき電線短絡故障の方が0.2PU程度上回り、故障点が電源より遠のく程に増加する。   Moreover, the trolley wire and rail short-circuit fault current in FIG. 2A (a) is a current based on the train line voltage V / N (Equation 4). When the trolley wire in FIG. This is the electric voltage V reference (Equation 10). However, the trolley wire and rail short circuit, the trolley wire and the wire short circuit, and the differential voltage dV across the section at the same failure point d of both of them is more than about 0.2 PU when the trolley wire and the wire short circuit failure, and the failure point is far from the power source. It increases as much.

また、両端電気所A、Bの上下線が結合する場合と開放する場合の差電圧量dVの変化率は双方とも50%である。   Further, the rate of change of the differential voltage amount dV when the upper and lower lines of both ends of the electrical stations A and B are coupled and opened is 50% for both.

図3に本発明の第1の実施の形態のき電保護装置1による区間差電圧方式の演算方法を示す。き電保護装置1は、図2A(a)、図2B(a)に記載する保護区間両端の保護装置1A、1Bである。両端保護装置1A、1Bの構成は同様である。図2A(a)、図2B(a)を用いて説明したように、両端保護装置1A、1Bは、それぞれ端がサンプリング同期して測定する両端の電圧情報を相互に通信し、任意のサンプリング回数分の同一時系列情報VA、VBとして記憶し、都度更新する。これらサンプリング同期測定、相互通信、サンプリング時系列情報の記憶更新に関する手段は既に公開され、実用化されたものを採用する。   FIG. 3 shows a section difference voltage method calculation method by the feeder protection device 1 according to the first embodiment of the present invention. The feeder protection device 1 is the protection devices 1A and 1B at both ends of the protection section shown in FIGS. 2A (a) and 2B (a). The configuration of both-end protection devices 1A and 1B is the same. As described with reference to FIGS. 2A (a) and 2B (a), the both-end protection devices 1A and 1B communicate with each other voltage information measured at both ends in a sampling-synchronized manner, and an arbitrary number of samplings can be obtained. Are stored as the same time-series information VA and VB, and updated each time. The means relating to sampling synchronous measurement, mutual communication, and storage update of sampling time series information are already publicized and put into practical use.

差電圧時系列情報算出ステップにて、差電圧時系列情報算出部11は、両端電圧情報の同一時点サンプリング値の差を任意サンプリング回数分の両端差電圧時系列情報dVとして記憶し、都度更新する。   In the differential voltage time-series information calculation step, the differential voltage time-series information calculation unit 11 stores the difference between the sampling values at the same time of the both-end voltage information as the both-end difference voltage time-series information dV for an arbitrary number of samplings, and updates it whenever necessary. .

差電圧基本波成分演算ステップにて、差電圧基本波成分演算部12は、両端差電圧時系列情報をフィルタリング演算して両端差電圧VA、VBの基本波成分を任意サンプリング回数分の時系列情報として記憶し、都度更新する。   In the differential voltage fundamental wave component computation step, the differential voltage fundamental wave component computation unit 12 performs filtering computation on the differential voltage time-series information at both ends, and time-series information for the fundamental wave components of the differential voltages VA and VB at any sampling times. And update as needed.

差電圧量演算ステップにて、差電圧量演算部13は、両端差電圧の基本波成分時系列情報を振幅値演算して区間両端の差電圧量|dV|を求める。   In the difference voltage amount calculation step, the difference voltage amount calculation unit 13 calculates the amplitude value of the fundamental wave component time-series information of the difference voltage at both ends to obtain the difference voltage amount | dV |

電圧ベース区間故障検出ステップにて、電圧ベース区間故障検出部14は、振幅値演算して求めた区間両端の差電圧量|dV|と予め定める故障判定値kVとを比較判定し、区間故障を検出する。|dV|≧kVならば区間故障と判定し、そうでなければ区間故障なしと判定する。   In the voltage base section failure detection step, the voltage base section failure detection unit 14 compares and determines the difference voltage amount | dV | at both ends of the section obtained by calculating the amplitude value and a predetermined failure determination value kV to determine the section failure. To detect. If | dV | ≧ kV, it is determined that there is a section failure. Otherwise, it is determined that there is no section failure.

このように、本実施の形態のき電保護装置及び方法では、保護区間の両端保護装置1A、1Bは、電車線に接続された計器用変圧器VTを介してそれぞれの端のき電電圧情報を任意周期毎にサンプリング同期して測定して相互に通信し、両端の測定情報を任意サンプリング回数分の時系列情報として記憶し、サンプリング周期毎に更新する。そして、記憶更新される両端き電電圧の同時系列情報をサンプリング周期毎に合成して区間両端差電圧の時系列情報を生成し、差電圧時系列情報から算出する両端の差電圧基本波量を故障判定値と比較判定して区間故障を検出する。   As described above, in the feeder protection device and method of the present embodiment, both-end protection devices 1A and 1B in the protection section have feeding voltage information at their ends via the instrument transformer VT connected to the train line. Are measured in synchronization with each other at sampling intervals and communicated with each other, and measurement information at both ends is stored as time-series information corresponding to the number of samplings, and updated at each sampling cycle. Then, the time series information of the differential voltage at both ends is generated by synthesizing the simultaneous series information of the both-end feeding voltage to be stored and updated for each sampling period, and the fundamental voltage difference between both ends calculated from the difference voltage time series information is calculated. A section failure is detected by comparison with the failure determination value.

これにより、本実施の形態のき電保護装置及び方法は、次のような効果を奏する。   Thereby, the feeder protection apparatus and method of this Embodiment have the following effects.

1)負荷電流と故障電流とが接近する領域に対する故障検出の選択性が向上する。   1) The failure detection selectivity for the region where the load current and the fault current are close to each other is improved.

図16(a)は、複数編成数(1、2、…、n)の電気車が保護区間の電車線を等間隔(d=1/n)で、一定・同速度・同電流ILで走行するとした概念図である。同図(b)は、同一保護区間における不定位置の故障点dfに流れる故障電流Ifを示している。   FIG. 16 (a) shows that a plurality of trains (1, 2,..., N) of electric vehicles travel on a train line in a protected section at equal intervals (d = 1 / n) at a constant, the same speed, and the same current IL. Then, it is a conceptual diagram. FIG. 5B shows a fault current If that flows to a fault point df at an indefinite position in the same protection section.

図16(a)、(b)に示した定常負荷走行と故障の概念図において、従来の保護方式は、定常負荷走行における不要動作を回避するために、保護区間内に流れる最大負荷電流、つまり、電気車編成数n×単位編成当りの負荷電流ILを超える故障電流If(>n・IL)を検出し、あるいは、区間全長の電車線インピーダンスZL以下の故障インピーダンスZfを検出する。つまり、最大負荷領域に接近する故障の検出は困難である。   In the conceptual diagram of steady load running and failure shown in FIGS. 16 (a) and 16 (b), the conventional protection method uses the maximum load current flowing in the protection section in order to avoid unnecessary operation in steady load running, that is, The fault current If (> n · IL) exceeding the load current IL per unit train n × the unit train is detected, or the fault impedance Zf below the train line impedance ZL of the entire section is detected. That is, it is difficult to detect a failure approaching the maximum load region.

一方、本実施の形態による差電圧保護方式では、図16(a)、(b)において、定常負荷走行で区間の両端に生じる最大差電圧dVLは数13式の値である(d=1PU)。保護区間内の故障で区間の両端に生じる差電圧はdVfは数14式の値になる。ここで、電気車単位編成当りの負荷電流ILに対する故障電流Ifの倍率kf=If/ILと置けば、故障時の差電圧dVfが定常走行時の差電圧dVLを上回る故障点位置dfは、数15式で示すように電気車編成数nと負荷電流に対する故障電流比率Kfとの関数式で示すことができる。仮に、電気車単位編成当りの負荷電流ILに対する検出すべき故障電流Ifの比率kfを”4”、区間を走行する気車編成数nを”4”とすれば、従来方式では困難な保護領域の故障検出が可能になる。図示の場合、区間全長の5/8より遠方の領域故障を検出できる。

Figure 0005319503
Figure 0005319503
Figure 0005319503
On the other hand, in the differential voltage protection method according to the present embodiment, in FIGS. 16A and 16B, the maximum differential voltage dVL generated at both ends of the section during steady load traveling is a value of Formula 13 (d = 1 PU). . The difference voltage generated at both ends of the section due to the failure in the protection section is dVf having the value of the formula (14). Here, if the ratio kf = If / IL of the fault current If with respect to the load current IL per electric vehicle unit train is set, the fault point position df in which the differential voltage dVf at the time of failure exceeds the differential voltage dVL at the time of steady running is As shown in Equation 15, it can be expressed by a functional equation of the number n of electric vehicle formations and the failure current ratio Kf with respect to the load current. If the ratio kf of the fault current If to be detected to the load current IL per electric vehicle unit train is “4” and the number n of trains traveling in the section is “4”, it is difficult to protect the conventional system. Failure detection can be performed. In the case shown in the figure, it is possible to detect an area fault farther than 5/8 of the entire section length.
Figure 0005319503
Figure 0005319503
Figure 0005319503

2) 区間両端に備える従来の保護要素数を半減できる。   2) The number of conventional protection elements provided at both ends of the section can be halved.

図17Aに示す従来方法と図17Bに示す本実施の形態による差電圧方式の比較から明白なように、保護すべき区間の両端に備える従来の保護要素を区間差電圧保護に統括して簡素化(半減)できる。   As is clear from the comparison between the conventional method shown in FIG. 17A and the differential voltage method according to the present embodiment shown in FIG. 17B, the conventional protection elements provided at both ends of the section to be protected are integrated into the section differential voltage protection and simplified. (Halved).

[第2の実施の形態]
上記第1の実施の形態では、基本原理の数4式、数10式で明らかなように、区間両端に生じる差電圧dVは、区間内に流れ込む電流の位置dと量Iに依存する一方で、図4に示すように、保護区間ZL=1PUを通過して保護区間外に流れる電気車負荷電流σIX=IX1+IX2+IX3の影響を受ける。その影響は、電源に近い区間ほど、区間通過の負荷電流量σIxが増えるので増大する。しかるに、区間両端の差電圧dVは、図2A(a)で説明した区間内に流れ込む電流Iとその位置dで生じる差電圧dVの基本原理式(数4式)に保護区間外へ通過する電気車電流σIxによる差電圧が重畳する。ここで、単巻変圧器ATの巻数比Nを2、漏れインピーダンスを無視(ZAT=0)すれば、区間内を走行する電気車の電流Iと位置の比率d、区間外通過電流σIXに応じて生じる区間両端の差電圧dVは、数16式の値となる。

Figure 0005319503
[Second Embodiment]
In the first embodiment, the difference voltage dV generated at both ends of the section depends on the position d and the amount I of the current flowing into the section, as is apparent from the basic equations (4) and (10). As shown in FIG. 4, it is affected by the electric vehicle load current σIX = IX1 + IX2 + IX3 passing through the protection zone ZL = 1PU and flowing outside the protection zone. The influence increases as the section closer to the power source increases because the load current amount σIx passing through the section increases. However, the difference voltage dV at both ends of the section is the electric current that passes outside the protection section according to the basic principle expression (formula 4) of the current I flowing into the section described in FIG. 2A (a) and the difference voltage dV generated at the position d. The difference voltage due to the vehicle current σIx is superimposed. Here, if the turn ratio N of the autotransformer AT is 2 and the leakage impedance is ignored (ZAT = 0), it corresponds to the current ratio I and position d of the electric vehicle traveling in the section and the out-of-section passing current σIX. The difference voltage dV at both ends of the section is the value of the equation (16).
Figure 0005319503

但し、α:上下線の結合関数で、開放(α=1)、結合(α=2)、kα:上下線結合状態に応じた基本原理式の差電圧量係数で、開放(kα=0.4)、結合(kα=0.22)である。   However, α is a coupling function of upper and lower lines, and is open (α = 1), coupling (α = 2), kα: a difference voltage amount coefficient of a basic principle equation corresponding to an upper and lower line coupling state, and is opened (kα = 0. 4) A bond (kα = 0.22).

図5は本発明の第2の実施の形態のき電保護装置1による区間差電圧方式の演算機能の構成を示す。図3と同一の符号の要素、すなわち、差電圧時系列情報算出部11、差電圧基本波成分演算部12、電圧ベース区間故障検出部14は、第1の実施の形態と同一であり、各ステップにて同様の処理をするので、その説明は省略する。   FIG. 5 shows a configuration of the calculation function of the section difference voltage method by the feeder protection device 1 according to the second embodiment of the present invention. Elements of the same reference numerals as those in FIG. 3, that is, the difference voltage time series information calculation unit 11, the difference voltage fundamental wave component calculation unit 12, and the voltage base section failure detection unit 14 are the same as those in the first embodiment. Since the same processing is performed in steps, the description thereof is omitted.

図3における差電圧量演算部13による差電圧量演算ステップにて両端差電圧の基本波成分時系列情報を振幅値演算して区間両端の差電圧量|dV|を求めるのに対し、本実施の形態では、差電圧量演算ステップにて、差電圧量演算部13aが差電圧基本波成分演算部12による差電圧基本波成分演算ステップにて出力する両端差電圧の基本波成分時系列情報を振幅値演算して任意サイクル分過去t−nと、現在t−0の区間両端差電圧|dV|t−n、|dV|t−0の変化量ΔdVを数17式のように求める。

Figure 0005319503
The difference voltage amount calculation unit 13 in FIG. 3 calculates the amplitude value of the fundamental wave component time-series information of the differential voltage at both ends to obtain the difference voltage amount | dV | In the embodiment, in the differential voltage amount calculation step, the fundamental voltage component time series information of the differential voltage at both ends output by the differential voltage amount calculation unit 13a in the differential voltage fundamental wave component calculation step by the differential voltage fundamental wave component calculation unit 12 is obtained. The amplitude value is calculated, and a change ΔdV between the past t−n for an arbitrary cycle and the difference voltage | dV | t−n, | dV | t−0 at both ends of the current t−0 is obtained as shown in Equation 17.
Figure 0005319503

ここで、区間を走行する電気車最大電流の増加時定数dI/dt=dtiを1sec、電源周波数fを60Hz、変化量検出のブラインド時間wを5サイクルとすれば、図6のように、電気車最大負荷電流は5%程度の変化量に抑制される。また、保護区間を走行する電気車の一定時走行速度をSkm/h、加速時定数dtvとすれば、任意時間tにおける区間両端電圧dVtは、数18式の値となる。

Figure 0005319503
Here, if the increase time constant dI / dt = dti of the electric vehicle maximum current traveling in the section is 1 sec, the power supply frequency f is 60 Hz, and the blind time w for detecting the amount of change is 5 cycles, as shown in FIG. The maximum vehicle load current is suppressed to a variation of about 5%. Further, if the traveling speed at a constant time of the electric vehicle traveling in the protection section is set to Skm / h and the acceleration time constant dtv, the section both-ends voltage dVt at the arbitrary time t is a value of Expression 18.
Figure 0005319503

ここで、定常の負荷走行状態で生じる区間両端の差電圧変化量ΔdVが最大となる一例として、区間内任意位置の電気車編成数を1、区間外任意位置の電気車編成数をn、全電気車が一斉に最大電流Iに加速中として保護区間長距離をLkm、その線路インピーダンスをZLとすれば、数19式の値となる。一般的に保護区間長距離は10km以上であるから、電気車の走行速度による位置移動分変化量は微小で無視できるので区間両端差電圧dVが10%以下に低減されることは確実となる。

Figure 0005319503
Here, as an example in which the difference voltage change ΔdV between the two ends of the section that occurs in the steady load traveling state is maximized, the number of electric vehicles at any position in the section is 1, the number of electric cars at any position outside the section is n, Assuming that the electric cars are simultaneously accelerating to the maximum current I and the protection section long distance is Lkm and the line impedance is ZL, the value of Equation 19 is obtained. In general, since the protection section long distance is 10 km or more, the amount of change in position movement due to the traveling speed of the electric vehicle is negligible and can be ignored, so it is certain that the section differential voltage dV is reduced to 10% or less.
Figure 0005319503

但し、α:上下線の結合関数で、開放(α=1)、結合(α=2)、kα:上下線結合状態に応じた基本原理式の差電圧量係数で、開放(kα=0.4)、結合(kα=0.22)である。   However, α is a coupling function of upper and lower lines, and is open (α = 1), coupling (α = 2), kα: a difference voltage amount coefficient of a basic principle equation corresponding to an upper and lower line coupling state, and is opened (kα = 0. 4) A bond (kα = 0.22).

このように、本実施の形態のき電保護装置及び方法は、両端の保護装置1A、1Bが、第1の実施の形態で求める差電圧の過去時点に対する現在時点の増加量を判定して区間故障を検出する。   As described above, the feeder protection device and method according to the present embodiment are configured so that the protection devices 1A and 1B at both ends determine the increase amount of the current time point with respect to the past time point of the differential voltage obtained in the first embodiment. Detect failure.

これにより、本実施の形態のき電保護装置及び方法によれば次のような効果を奏する。   Thereby, according to the feeder protection apparatus and method of this Embodiment, there exist the following effects.

1)保護区間の差電圧検出感度を著しく改善できる。   1) The difference voltage detection sensitivity in the protection section can be remarkably improved.

本実施の形態のき電保護装置及び方法では、当該区間の差電圧量を過去と現在との変化量に縮小して検出する。そのため、当該保護区間を通過して遠方の他区間に流れる電気車の電流、当該保護区間を走行する電気車の電流と走行位置、これら電気車走行変化の時定数に対する変化検出時間ウィンドウ幅の比率により差電圧変化量は数19式の値に縮小できる。つまり、定常負荷走行で生じる区間両端の差電圧を10%以下の変化量に抑制するので、定常負荷走行で区間両端に生じる最大差電圧の10%以上を差電圧保護の検出量として整定できる。また、保護区間内の故障時には、故障電流量Ifと電流位置dfが急峻に変化するので変化検出時間のウィンドウ幅比率による変化量の抑制を無視できる。したがって、故障時の差電圧変化量としては、故障前後の差電圧量の差、即ち、数20式の変化量ΔdVfが検出される。

Figure 0005319503
In the feeder protection device and method of the present embodiment, the difference voltage amount in the section is detected by reducing it to the change amount between the past and the present. Therefore, the current of the electric vehicle that flows through the protection section and flows to other sections in the distance, the current and the travel position of the electric vehicle that travels in the protection section, and the ratio of the change detection time window width to the time constant of these electric vehicle travel changes Thus, the amount of change in the differential voltage can be reduced to the value of equation (19). That is, since the difference voltage at both ends of the section that occurs in steady load traveling is suppressed to a change amount of 10% or less, 10% or more of the maximum difference voltage that occurs at both ends of the section during steady load traveling can be set as the detected amount of difference voltage protection. In addition, when a failure occurs in the protection section, the failure current amount If and the current position df change sharply, so that the suppression of the change amount due to the window width ratio of the change detection time can be ignored. Therefore, as the difference voltage change amount at the time of failure, the difference between the difference voltage amounts before and after the failure, that is, the change amount ΔdVf of Expression 20 is detected.
Figure 0005319503

但し、α:上下線の結合関数で、開放(α=1)、結合(α=2)、kα:上下線結合状態に応じた基本原理式の差電圧量係数で、開放(kα=0.4)、結合(kα=0.22)、df:故障電流位置、If:故障電流量、d:故障前の電気車の区間走行位置、σIx:故障前の区間通過電流量である。   However, α is a coupling function of upper and lower lines, and is open (α = 1), coupling (α = 2), kα: a difference voltage amount coefficient of a basic principle equation corresponding to an upper and lower line coupling state, and is opened (kα = 0. 4), coupling (kα = 0.22), df: failure current position, If: failure current amount, d: section travel position of the electric vehicle before failure, and σIx: section passage current amount before failure.

定常の負荷電流と故障電流とが接近すると、従来方式では故障検出が困難になっていたが、本実施の形態が検出する差電圧変化量を、数20式を用い区間外走行の電気車電流σIX=3PUと区間内電気車電流I=1PUとの和、即ち、故障前電流と区間内の故障電流If=4PUとが同等である場合の計算結果を図18に示す。但し、計算では、kα=0.4、α=1、ZL=1PUとしている。   When the steady load current and the fault current approach each other, it is difficult to detect the fault in the conventional method. However, the change in the difference voltage detected by the present embodiment is expressed as follows. FIG. 18 shows the calculation result when the sum of σIX = 3PU and the section electric vehicle current I = 1PU, that is, the current before failure and the section fault current If = 4PU are equivalent. However, in the calculation, kα = 0.4, α = 1, and ZL = 1PU.

図18において、本実施の形態による差電圧変化量グラフのdVmaxは定常時に想定される区間両端差電圧量dVの最大値である。本実施の形態では、この最大値dVmaxの±10%の変化量を検出するとして、故障時の差電圧量dVfが定常時に区間内を走行する電気車の任意位置dに応じた差電圧量dVの±dVmaxを超えた領域が故障検出領域である。即ち、定常時の区間内を走行する電気車の位置dが0.7PU以上の領域では全域(df=0〜1)に生じる故障を、定常時の区間内を走行する電気車の位置dが0.7PU以下の領域では故障位置df=0〜0.8に生じる故障の検出が可能である。   In FIG. 18, dVmax in the differential voltage change amount graph according to the present embodiment is the maximum value of the differential voltage amount dV at both ends assumed in the steady state. In this embodiment, assuming that a change amount of ± 10% of the maximum value dVmax is detected, the difference voltage amount dVf at the time of failure is the difference voltage amount dV corresponding to the arbitrary position d of the electric vehicle traveling in the section at the steady state. The region exceeding ± dVmax is a failure detection region. That is, in the region where the position d of the electric vehicle running in the steady section is 0.7 PU or more, a failure that occurs in the whole area (df = 0 to 1), the position d of the electric vehicle running in the steady section is In the region of 0.7 PU or less, it is possible to detect a failure occurring at the failure position df = 0 to 0.8.

[第3の実施の形態]
本発明の第3の実施の形態の交流ATき電回路のき電保護装置及び方法について説明する。図7は、本実施の形態による区間差電圧方式の構成を示すもので、区間の両端電気所A、Bには、保護装置1A、1Bを備え、計器用変圧器VTA、VTBと変流器CTtA、CTtB、CTfA、CTfBを介して区間両端それぞれのき電電圧VA、VBとトロリ線電流ItA、ItB、き電線電流IfA、IfBを導入する。区間両端の保護装置1A、1Bは、任意周期毎にサンプリング同期して測定するき電電圧VA、VBとトロリ線電流ItA、ItB、き電線電流IfA、IfBを相互に高速通信し、任意サンプリング回数分の同一時系列情報として記憶し、更新する。区間両端の保護装置1A、1Bは、記憶更新する区間両端のサンプリング時系列情報をフィルタリング演算、及び、振幅値演算して区間の両端電圧VA、VBの差dVと図7の保護区間に流入する電流ItA、ItB、IfA、IfBの差dIの基本波成分量を求める。尚、求める区間両端差電圧dVは、第1の実施の形態と同様に求め、区間流入電流dIは数21式のように求める。

Figure 0005319503
[Third Embodiment]
A feeder protection device and method for an AC AT feeder circuit according to a third embodiment of the present invention will be described. FIG. 7 shows the configuration of the section differential voltage system according to the present embodiment. The electrical terminals A and B at both ends of the section are equipped with protective devices 1A and 1B, and are used as instrument transformers VTA and VTB and current transformers. Feed voltages VA, VB, trolley wire currents ItA, ItB, feeder currents IfA, IfB at both ends of the section are introduced via CTtA, CTtB, CTfA, CTfB. The protection devices 1A and 1B at both ends of the section communicate the feeding voltages VA and VB and the trolley line currents ItA and ItB, the feeder currents IfA and IfB measured in synchronization with each other at an arbitrary period, and perform arbitrary sampling times. The same time series information is stored and updated. The protection devices 1A and 1B at both ends of the section flow the sampling time series information at both ends of the section to be stored and updated and the amplitude value, and flow into the difference dV between the voltages VA and VB at both ends of the section and the protection section of FIG. The fundamental wave component amount of the difference dI between the currents ItA, ItB, IfA, IfB is obtained. The section difference voltage dV to be obtained is obtained in the same manner as in the first embodiment, and the section inflow current dI is obtained as shown in Equation 21.
Figure 0005319503

図8を用いて、本実施の形態のき電保護装置1による区間差電圧方式の演算方法を示す。図3と同一の符号の要素、すなわち、差電圧時系列情報算出部11、差電圧基本波成分演算部12、差電圧量演算部13、電圧ベース区間故障検出部14それぞれによる差電圧時系列情報算出ステップ、差電圧基本波成分演算ステップ、差電圧量演算ステップ、電圧ベース区間故障検出ステップは第1の実施の形態と同様であるので、その説明は省略する。   With reference to FIG. 8, an interval difference voltage calculation method by the feeder protection device 1 of the present embodiment will be described. 3, that is, the difference voltage time series information by the difference voltage time series information calculation unit 11, the difference voltage fundamental wave component calculation unit 12, the difference voltage amount calculation unit 13, and the voltage base section failure detection unit 14. Since the calculation step, the difference voltage fundamental wave component calculation step, the difference voltage amount calculation step, and the voltage base section failure detection step are the same as those in the first embodiment, description thereof is omitted.

差電流自警情報算出ステップにて、差電流時系列情報算出部15は、両端電流情報の同一時点サンプリング値の差(数21式)を任意サンプリング回数分の両端差電流時系列情報として記憶し、都度更新する。   In the difference current warning information calculation step, the difference current time series information calculation unit 15 stores the difference (equation 21) of the same-time sampling values of the both-end current information as the both-end difference current time-series information for any number of sampling times, Update each time.

基本波成分量算出ステップにて、基本波成分量算出部16は、両端差電流の時系列情報をフィルタリング演算して両端差電流の基本波成分量を任意サンプリング回数分の時系列情報として記憶し、都度更新する。   In the fundamental wave component amount calculating step, the fundamental wave component amount calculating unit 16 performs a filtering operation on the time series information of the differential current at both ends, and stores the fundamental wave component amount of the differential current at both ends as time series information for an arbitrary number of samplings. , Update each time.

差電流量演算ステップにて、差電流量演算部17は、両端差電流の基本波成分時系列情報を振幅値演算して区間両端の差電流量|dI|を求める。   In the difference current amount calculation step, the difference current amount calculation unit 17 calculates the amplitude value of the fundamental wave component time series information of the difference current at both ends to obtain the difference current amount | dI |

電流ベース区間故障検出ステップにて、電流ベース区間故障検出部18は、振幅値演算して求めた区間両端の差電流量|dI|と予め定める故障判定値kIとを比較し区間故障を判定(|dI|≧kI)する。   In the current base section failure detection step, the current base section failure detection unit 18 compares the difference current amount | dI | at both ends of the section obtained by calculating the amplitude value with a predetermined failure determination value kI to determine a section failure ( | DI | ≧ kI).

最終区間故障判定ステップにて、最終区間故障判定部19は、電圧ベース区間故障検出ステップにおける差電圧値|dV|の電圧ベース区間故障検出部14の判定結果と、電流ベース区間故障検出ステップにおける差電流値|dI|の電流ベース区間故障検出部18の判定結果とを論理積処理し、双方ともに故障判定のとき保護装置の動作を出力する。   In the final section failure determination step, the final section failure determination unit 19 determines the difference between the determination result of the voltage base section failure detection unit 14 of the difference voltage value | dV | in the voltage base section failure detection step and the difference in the current base section failure detection step. The determination result of the current base section failure detection unit 18 of the current value | dI | is logically processed, and when both are determined as failure, the operation of the protection device is output.

このように、第3の実施の形態のき電保護装置及び方法では、第1の実施の形態に対して、さらに、電車線に接続された計器用変流器CTtA、CTtB、CTfA、CTfBを介してそれぞれ端を通過する電流情報を任意サンプリング周期毎に測定し、任意サンプリング回数分の時系列情報として記憶更新し、記憶更新される両端の同一時系列電流情報から区間両端の差電流量を算出し、第1の実施の形態と同様の差電圧量に基づく区間故障判定と同次に、差電流量に基づく区間故障判定とを平行して行い、双方の判定結果に基づいて最終的な区間故障判定を行う。   As described above, in the feeder protection device and method according to the third embodiment, the current transformers CTtA, CTtB, CTfA, and CTfB for measuring instruments connected to the train lines are further added to the first embodiment. The current information passing through each end is measured every arbitrary sampling period, and is stored and updated as time series information for the number of arbitrary sampling times, and the difference current amount at both ends of the section is calculated from the same time series current information at both ends to be stored and updated. The section failure determination based on the difference voltage amount calculated in the same manner as in the first embodiment and the section failure determination based on the difference current amount are performed in parallel, and the final determination is made based on both determination results. Perform section failure judgment.

これにより、本実施の形態によれば、次のような効果を奏する。   Thereby, according to this Embodiment, there exist the following effects.

1)保護区間外への通過電流で生じる差電圧による不要動作を抑止する。   1) Suppress unnecessary operation due to the voltage difference caused by the passing current outside the protection section.

前述した数21で求める差電流|dI|は、区間両端電流のベクトル合成量である。本発明は、区間両端の差電圧量|dV|と区間両端電流のベクトル合成量|dI|の双方を判定して故障検出する。つまり、健全区間を通過する故障電流の重畳で両端に差電圧が生じても、故障電流は健全区間を通過して区間両端電流のベクトル合成量(流入量)として検出されないので、不要動作は抑止できる。 The difference current | dI | obtained by the aforementioned equation 21 is a vector composite amount of the current at both ends of the section. According to the present invention, both the difference voltage amount | dV | at both ends of the section and the vector combined amount | dI | In other words, even if a difference voltage occurs at both ends due to the superposition of fault current passing through the healthy section, the fault current is not detected as the vector composite amount (inflow) of the current at both ends through the healthy section, so unnecessary operations are suppressed. it can.

2)計器用変圧器二次電圧の導入不良で生じる差電圧による不要動作を抑止する。   2) Suppress unnecessary operations due to differential voltage caused by poor introduction of secondary voltage for instrument transformers.

保護区間両端電圧は計器用変圧器を介して導入される。一端側電圧の導入が不良(断線)になると、区間両端に顕著な差電圧が生じて動作するが、区間両端電流のベクトル合成量(流入量)の検出量を、区間内に定常時流入する電気車電流量よりも大きくすれば、故障検出を抑止できる。 The voltage across the protection zone is introduced via an instrument transformer. If the introduction of the voltage at one end becomes defective (disconnection), a significant difference voltage is generated at both ends of the section, but the detected amount of the vector composite amount (inflow amount) of the current at both ends flows into the section at steady state. If it is larger than the electric vehicle current amount, failure detection can be suppressed.

[第4の実施の形態]
本発明の第4の実施の形態の交流ATき電回路のき電保護装置及び方法について説明する。本実施の形態のき電保護装置1の構成は、上記第3の実施の形態と共通する。そして、本実施の形態によれば、区間両端の保護装置1A、1Bは、任意周期毎にサンプリング同期して測定したき電電圧VA、VBとトロリ線電流ItA、ItB、き電線電流IfA、IfBを相互に高速通信し、任意サンプリング回数分の同一時系列情報として記憶し、更新する。区間両端の保護装置1A、1Bは、記憶更新する区間両端のサンプリング時系列情報をフィルタリング演算、及び、振幅値演算して両端電圧VA、VBと、保護区間外に通過する電流Ithを数22式で求め、数23式による区間差電圧抑制量dVXを判定して区間故障を検出する。尚、各数式では、単巻変圧器ATの巻数比Nを2、漏れインピーダンスを無視(ZAT=0)している。

Figure 0005319503
Figure 0005319503
[Fourth Embodiment]
A feeder protection device and method for an AC AT feeder circuit according to a fourth embodiment of the present invention will be described. The configuration of the feeder protection device 1 of the present embodiment is common to the third embodiment. According to the present embodiment, the protection devices 1A and 1B at both ends of the section have the feeding voltages VA and VB and the trolley line currents ItA and ItB, the feeder currents IfA and IfB measured in synchronization with each other at an arbitrary period. Are mutually stored at high speed, stored as the same time-series information for an arbitrary number of samplings, and updated. The protection devices 1A and 1B at both ends of the section perform the filtering calculation and the amplitude value calculation on the sampling time series information at both ends of the section to be stored and updated, and the voltages VA and VB at both ends and the current Ith passing outside the protection section are expressed by Equation 22 And the section difference voltage suppression amount dVX according to Equation 23 is determined to detect a section failure. In each equation, the turn ratio N of the autotransformer AT is 2 and the leakage impedance is ignored (ZAT = 0).
Figure 0005319503
Figure 0005319503

但し、I:保護区間に流入する電流(故障電流)、d:保護区間流入電流位置の区間長距離比(保護区間の線路長に対する故障点の線路長比率)、ZL:保護区間の電車線路インピーダンス、kα:上下線結合状態に応じた基本原理式の差電圧量係数で、開放(kα=0.4)、結合(kα=0.2)である。   Where I: current flowing into the protection section (failure current), d: section length distance ratio of the protection section inflow current position (line length ratio of the failure point to the protection section line length), ZL: train line impedance of the protection section , Kα: a difference voltage amount coefficient of a basic principle equation according to the vertical line coupling state, which is open (kα = 0.4) and coupling (kα = 0.2).

図9を用いて、本実施の形態のき電保護装置1による区間差電圧方式の演算機能の構成及びき電保護方法を説明する。図3に示した第1の実施の形態における演算要素、また図8に示した第3の実施の形態における演算要素と共通するものには同一の符号を用い、その説明は省略する。すなわち、差電圧時系列情報算出部11、差電圧基本波成分演算部12、差電圧量演算部13は第1の実施の形態と同一であり、それらによる差電圧時系列情報算出ステップ、差電圧基本波成分演算ステップ、差電圧量演算ステップの処理も第1の実施の形態と同一である。また、差電流時系列情報算出部15、基本波成分量算出部16、差電流量演算部17は第3の実施の形態と同一であり、それらによる差電流時系列情報算出ステップ、基本波成分量算出ステップ、差電流量演算ステップの処理も第3の実施の形態と同一である。   With reference to FIG. 9, the configuration of the calculation function of the section difference voltage method and the feeding protection method by the feeding protection device 1 of the present embodiment will be described. The same reference numerals are used for the arithmetic elements in the first embodiment shown in FIG. 3 and the arithmetic elements in the third embodiment shown in FIG. 8, and the description thereof is omitted. That is, the difference voltage time series information calculation unit 11, the difference voltage fundamental wave component calculation unit 12, and the difference voltage amount calculation unit 13 are the same as those in the first embodiment, and the difference voltage time series information calculation step, the difference voltage by them The processing of the fundamental wave component calculation step and the difference voltage amount calculation step is also the same as in the first embodiment. Further, the difference current time series information calculation unit 15, the fundamental wave component amount calculation unit 16, and the difference current amount calculation unit 17 are the same as those of the third embodiment, and the difference current time series information calculation step, the fundamental wave component by them. The processing of the amount calculation step and the difference current amount calculation step is the same as that of the third embodiment.

本実施の形態では、各端電流算出ステップにて、各端電流算出部15aは、区間両端の電流サンプリング情報ItA、IfA、ItB、IfBを各端電流時系列情報として記憶し、都度更新する。   In the present embodiment, in each end current calculation step, each end current calculation unit 15a stores the current sampling information ItA, IfA, ItB, IfB at both ends of the section as each end current time series information, and updates each time.

各端電流基本波成分量算出ステップにて、各端電流基本波成分量算出部16aは、各端電流時系列情報をフィルタリング演算して各端差電流の基本波成分量を任意サンプリング回数分の時系列情報として記憶し、都度更新する。   In each end current fundamental wave component amount calculation step, each end current fundamental wave component amount calculation unit 16a performs a filtering operation on each end current time-series information to obtain the fundamental wave component amount of each end difference current for an arbitrary number of samplings. It is stored as time series information and updated as needed.

各端電流振幅値演算ステップにて、各端電流振幅値演算部17aは、各端電流の基本波成分時系列情報を振幅値演算して各端の電流量|ItA|、|IfA|、|ItB|、|IfB|を求める。   In each end current amplitude value calculation step, each end current amplitude value calculation unit 17a calculates the amplitude value of the fundamental wave component time-series information of each end current and calculates the current amount | ItA |, | IfA |, | ItB | and | IfB |

区間通過電流演算ステップにて、区間通過電流演算部20は、差電流量演算部17による差電流量演算ステップにて数21式のように求めた区間両端の差電流量|dI|と各端電流振幅値演算部17aによる各端電流振幅値演算ステップにて求めた各端電流量|ItA|、|IfA|、|ItB|、|IfB|を用い、数22式のように保護区間通過電流Ithを算出する。   In the section passing current calculation step, the section passing current calculation unit 20 calculates the difference current amount | dI | at both ends of the section obtained by Equation 21 by the difference current amount calculation step by the difference current amount calculation unit 17 and each end. Using the respective end current amounts | ItA |, | IfA |, | ItB |, | IfB | obtained in the respective end current amplitude value calculation steps by the current amplitude value calculation unit 17a, the current passing through the protection section is obtained as shown in Equation 22. Ith is calculated.

通過電流補正演算ステップにて、通過電流補正演算部21は、数23式のように、差電圧量演算部13で求めた区間両端の差電圧量|dV|から、区間通過電流演算部20で求めた保護区間通過電流Ithと予め定める定数ZLとの積量を減算し、保護区間通過電流による区間差電圧抑制量dVXを算出する。   In the passage current correction calculation step, the passage current correction calculation unit 21 calculates the difference voltage amount | dV | at both ends of the section obtained by the difference voltage amount calculation unit 13 by the section passage current calculation unit 20 as shown in Equation 23. The product of the obtained protection section passage current Ith and a predetermined constant ZL is subtracted to calculate a section difference voltage suppression amount dVX due to the protection section passage current.

区間故障判定ステップにて、区間故障判定部22は、保護区間通過電流で抑制した差電圧dVXと予め定める故障判定値kVとを比較して、|dVX|≧kVであるか否かにより区間故障を判定する。   In the section failure determination step, the section failure determination unit 22 compares the difference voltage dVX suppressed by the protection section passage current with a predetermined failure determination value kV, and determines whether or not the section failure depends on whether or not | dVX | ≧ kV. Determine.

このように、本実施の形態のき電保護装置及び方法は、第3の実施の形態両端の保護装置及び方法のように保護区間の両端電流の同一時系列情報から求める区間両端それぞれの電流のスカラ和量と区間両端の差電流量とから区間両端を通過して区間外に流れる区間通過電流を算出し、区間通過電流量に予め定める線路定数を乗じ、さらに区間両端の差電圧量から減算した値を予め定める故障判定値kVとを比較して、区間故障を判定する。   As described above, the feeder protection device and method of the present embodiment is similar to the protection device and method of both ends of the third embodiment in that the current at both ends of the section obtained from the same time series information of the current at both ends of the protection section is obtained. Calculate the section passing current that flows through both ends of the section and flows outside the section from the scalar sum and the difference current amount at both ends of the section, multiply the section passing current amount by a predetermined line constant, and subtract from the difference voltage amount at both ends of the section The determined value is compared with a predetermined failure determination value kV to determine a section failure.

これにより、本実施の形態によれば、次のような効果を奏する。   Thereby, according to this Embodiment, there exist the following effects.

1)保護区間の差電圧検出感度を著しく改善できる。   1) The difference voltage detection sensitivity in the protection section can be remarkably improved.

上述のように、本実施の形態では、区間両端の電車線電流から区間通過電流Ithを算出し、区間両端の差電圧|dV|から保護区間通過電流成分Ithの差電圧重畳量|Ith|・ZLを差し引いて除去し、区間内流入電流成分の差電圧量|dVX|を検出する。任意の保護区間内を走行する電気車の編成数は、電車線全域を走行する電気車の総編成数よりも少ない。しかるに、上のようにすることで、保護区間の全域を走行する電気車の総負荷電流で生じる差電圧量よりも低い値の区間流入成分で生じる差電圧量を検出することができ、その結果、差電圧検出感度は著しく改善できる。   As described above, in the present embodiment, the section passing current Ith is calculated from the train line current at both ends of the section, and the difference voltage superposition amount | Ith | · of the protection section passing current component Ith from the difference voltage | dV | ZL is subtracted and removed, and the difference voltage amount | dVX | of the inflow current component in the section is detected. The number of electric cars traveling in an arbitrary protected section is less than the total number of electric cars traveling throughout the train line. However, by doing the above, it is possible to detect the difference voltage amount caused by the section inflow component having a value lower than the difference voltage amount generated by the total load current of the electric vehicle traveling throughout the protection section, and as a result. The differential voltage detection sensitivity can be remarkably improved.

[第5の実施の形態]
本発明の第5の実施の形態の交流ATき電回路のき電保護装置及び方法について説明する。本実施の形態のき電保護装置1の構成は図2A、図2Bに示した第1の実施の形態と同様である。
[Fifth Embodiment]
A feeding protection apparatus and method for an AC AT feeding circuit according to a fifth embodiment of the present invention will be described. The configuration of the feeder protection device 1 of this embodiment is the same as that of the first embodiment shown in FIGS. 2A and 2B.

第1の実施の形態では、保護区間両端の保護装置1A、1Bは、それぞれ端のき電電圧を導入し、保護区間両端の差電圧|dV|を求め、比較定数kVとの比較判定により区間故障を検出する。   In the first embodiment, the protection devices 1A and 1B at both ends of the protection section introduce a feeding voltage at each end, obtain a difference voltage | dV | at both ends of the protection section, and compare and determine the difference with the comparison constant kV. Detect failure.

一方、図10に示すように、電源を区分する切替セクションに電気車が進入する場合は、セクションの電源切替により電気車に積載されている変圧器の再加圧による励磁突入電流が流れる。この励磁突入電流の値は、電源の再加圧時の電圧位相により不定であるが、その最大は故障電流に匹敵し、急峻に変化する。しかるに、前述した第1の実施の形態により数7式、数12式で算出される保護区間両端の差電圧量は、検出すべき故障電流に匹敵する値の再加圧時の励磁突入電流が保護区間全域d=1PUを通過するので故障で生じる差電圧量との判別が困難になる。   On the other hand, as shown in FIG. 10, when an electric vehicle enters a switching section that divides power, an inrush current due to re-pressurization of a transformer mounted on the electric vehicle flows by switching the power of the section. The value of the magnetizing inrush current is indefinite depending on the voltage phase at the time of re-pressurization of the power source, but the maximum is comparable to the fault current and changes sharply. However, the voltage difference between the protection sections calculated by Equation (7) and Equation (12) according to the first embodiment described above is the excitation inrush current at the time of re-pressurization with a value comparable to the failure current to be detected. Since it passes through the entire protection section d = 1PU, it is difficult to discriminate it from the difference voltage amount caused by the failure.

図10を用いて、切替セクションに電気車が進入する場合に保護区間に流れる電気車積載変圧器の再加圧時の励磁突入電流を説明する。図10は、図1の交流ATき電回路の基本構成に示す変電所SSからき電区分所SPに至る区間の上り線で、保護区間2(補助き電区分所SSP〜き電区分所SPの区間の切替セクションに進入した電気車を保護区間側変電所SSの電源で再加圧している。その再加圧時の無負荷突入電流ILinはSSの電源〜保護区間1〜保護区間2〜セクション再加圧電気車へと流れ、保護区間全域の線路インピーダンスZLを通過するので各保護区間1、2の両端に生じる差電圧dV1、dV2は、数24式、数24a式の値となる。尚、各数式では、単巻変圧器ATの巻数比Nを2、漏れインピーダンスを無視(ZAT=0)している。

Figure 0005319503
Figure 0005319503
The magnetizing inrush current at the time of re-pressurization of the electric vehicle-mounted transformer flowing in the protection section when the electric vehicle enters the switching section will be described with reference to FIG. FIG. 10 is an up line in the section from the substation SS to the feeding section SP shown in the basic configuration of the AC AT feeding circuit in FIG. 1, and shows the protection section 2 (the auxiliary feeding section SSP to the feeding section SP). The electric vehicle that has entered the section switching section is re-pressurized with the power supply of the protection section-side substation SS, and the no-load inrush current ILin at the time of the re-pressurization is the SS power supply ~ protection section 1 ~ protection section 2-section Since the electric current flows to the repressurized electric vehicle and passes through the line impedance ZL of the entire protection section, the differential voltages dV1 and dV2 generated at both ends of the protection sections 1 and 2 are values of Expression 24 and Expression 24a. In each equation, the turn ratio N of the autotransformer AT is 2, and the leakage impedance is ignored (ZAT = 0).
Figure 0005319503
Figure 0005319503

但し、dV1:区間1両端差電圧、kα:上下線結合状態に応じた基本原理式の差電圧量係数で、開放(kα=0.4)、結合(kα=0.22)、dV2:区間2両端差電圧、α:上下線結合状態の関数で、開放(α=1)、結合(α=2)である。   However, dV1: Section 1 differential voltage at both ends, kα: difference voltage amount coefficient of the basic principle equation according to the vertical line coupling state, open (kα = 0.4), coupling (kα = 0.22), dV2: section 2 Both-end differential voltage, α: function of upper and lower line coupling state, open (α = 1), coupling (α = 2).

しかるに、故障電流域の再加圧突入電流ILinが区間全域d=1を通過すれば、故障との判別は困難である。   However, if the re-pressurized inrush current ILin in the fault current region passes through the entire section d = 1, it is difficult to determine the fault.

図11は、切替セクションの電源切替における電気車再加圧時に生じた区間両端差電圧の測定波形例である。波形から明らかなように、再加圧突入電流ILinには、第二高調波成分量が多く含まれるので、電流で生じる区間両端差電圧量dVの第二高調波成分の含有率を判定すれば、電気車再加圧と故障との判別は可能である。   FIG. 11 is an example of a measurement waveform of the differential voltage at both ends generated when the electric vehicle is repressurized in the power switching of the switching section. As is apparent from the waveform, the repressurization inrush current ILin contains a large amount of the second harmonic component, so if the content rate of the second harmonic component of the voltage difference dV across the section generated by the current is determined. It is possible to discriminate between electric vehicle repressurization and failure.

図12は本実施の形態のき電保護装置1による区間差電圧方式の演算機能の構成を示している。図12において、図3に示した第1の実施の形態における演算要素と共通するものには同一の符号を用い、その説明は省略する。すなわち、差電圧時系列情報算出部11、差電圧基本波成分演算部12、差電圧量演算部13、電圧ベース区間故障検出部14は第1の実施の形態と同一であり、それらによる差電圧時系列情報算出ステップ、差電圧基本波成分演算ステップ、差電圧量演算ステップ、電圧ベース区間故障検出ステップそれぞれの処理も同一である。   FIG. 12 shows the configuration of the calculation function of the section difference voltage method by the feeder protection device 1 of the present embodiment. In FIG. 12, the same reference numerals are used for the same elements as those in the first embodiment shown in FIG. 3, and the description thereof is omitted. That is, the difference voltage time series information calculation unit 11, the difference voltage fundamental wave component calculation unit 12, the difference voltage amount calculation unit 13, and the voltage base section failure detection unit 14 are the same as those in the first embodiment, and the difference voltage generated by them. The processes of the time series information calculation step, the difference voltage fundamental wave component calculation step, the difference voltage amount calculation step, and the voltage base section failure detection step are also the same.

本実施の形態では、さらに、第二高調波成分算出ステップにて、第二高調波成分算出部23は、両端差電圧の時系列情報をフィルタリング演算して両端差電圧VA、VBの第二高調波成分を任意サンプリング回数分の時系列情報として記憶し、都度更新する。   In the present embodiment, in the second harmonic component calculation step, the second harmonic component calculation unit 23 performs a filtering operation on the time-series information of the voltage difference between both ends to perform the second harmonic of the voltage difference VA and VB at both ends. Wave components are stored as time-series information for an arbitrary number of samplings, and updated each time.

第二高調波差電圧演算ステップにて、第二高調波差電圧演算部24は、両端差電圧の第二高調波成分の時系列情報を振幅値演算して区間両端の第二高調波差電圧量|dV2f|を求める。   In the second harmonic difference voltage calculation step, the second harmonic difference voltage calculation unit 24 calculates the amplitude value of the time series information of the second harmonic component of the differential voltage at both ends, and calculates the second harmonic differential voltage at both ends of the section. The quantity | dV2f |

第二高調波含有率判定ステップにて、第二高調波含有率判定部25は、差電圧量演算部13で求めた区間両端の基本波差電圧量|dV1f|と第二高調波差電圧演算部24で求めた第二高調波差電圧量|dV2f|を用い、第二高調波成分の含有率|dV2f|/|dV1f|を算出し、算出した含有率と予め定める含有率判定量k2fとを比較し、電気車再加圧突入電流による差電圧か否かを判定する。   In the second harmonic content determination step, the second harmonic content determination unit 25 calculates the fundamental wave difference voltage amount | dV1f | at both ends of the section obtained by the difference voltage amount calculation unit 13 and the second harmonic difference voltage calculation. The second harmonic component content | dV2f | / | dV1f | is calculated using the second harmonic difference voltage amount | dV2f | obtained by the unit 24, and the calculated content rate and a predetermined content rate determination amount k2f are calculated. Are compared to determine whether or not the voltage difference is due to the electric vehicle repressurizing inrush current.

最終区間故障判定ステップにて、最終区間故障判定部26は、電圧ベース区間故障検出部14による電圧ベース区間故障検出ステップでの基本波差電圧量|dV|による故障判定と、第二高調波含有率判定部25による第二高調波含有率判定ステップでの第二高調波の含有率判定を用い、両判定の論理積により基本波差電圧判定が電気車再加圧突入電流によるものでなく、区間故障によるものであると判定し、そうでなければ区間故障はなしと判定する。   In the final section failure determination step, the final section failure determination unit 26 performs failure determination based on the fundamental wave difference voltage amount | dV | in the voltage base section failure detection step performed by the voltage base section failure detection unit 14, and includes the second harmonic. Using the second harmonic content determination in the second harmonic content determination step by the rate determination unit 25, the fundamental wave difference voltage determination is not due to the electric vehicle repressurization inrush current by the logical product of both determinations, It is determined that the failure is due to a section failure. Otherwise, it is determined that there is no section failure.

このように、本実施の形態のき電保護装置及び方法は、第1の実施の形態による保護区間両端の差電圧量に基づく区間故障の判定に対して、両端き電電圧の差電圧時系列情報から差電圧に含有する第二高調波成分量を算出し、第二高調波の含有率が予め定める判定定数を超えたなら差電圧量に基づく区間故障判定の出力を抑止する。   As described above, the feeder protection device and method according to the present embodiment provides a difference voltage time series of feeder voltages at both ends for the determination of the section failure based on the difference voltage amount at both ends of the protection section according to the first embodiment. The amount of second harmonic component contained in the difference voltage is calculated from the information, and if the content rate of the second harmonic exceeds a predetermined determination constant, the output of the section failure determination based on the difference voltage amount is suppressed.

これにより、本実施の形態によれば、次のような効果を奏する。   Thereby, according to this Embodiment, there exist the following effects.

1)保護区間の差電圧検出感度を著しく改善できる。   1) The difference voltage detection sensitivity in the protection section can be remarkably improved.

セクション電源切替により電気車が再加圧されると故障電流に匹敵する突入電流が当該セクション区間に流入し、他区間の電車線を通過する。したがって、区間両端には故障検出量に匹敵し、あるいは、超過する量の差電圧(前記の数7式、数16式、数23式)が生じるが、差電圧に含有する第二高調波成分の含有率を判定し、差電圧量に基づく区間故障の判定を抑止することにより、電気車再加圧電流による不要動作を抑制することができる。つまり、電気車再加圧電流で生じる差電圧量より低い値、若しくは無視して故障による差電圧量を検出することができ、その結果、保護区間の差電圧検出感度は著しく改善できる。   When the electric vehicle is re-pressurized by switching the section power supply, an inrush current comparable to the fault current flows into the section section and passes through the train line in the other section. Therefore, a difference voltage (formula 7, formula 16, formula 23) that is equal to or exceeds the amount of fault detection occurs at both ends of the section, but the second harmonic component contained in the differential voltage By determining the content rate of the battery and suppressing the determination of the section failure based on the amount of differential voltage, unnecessary operation due to the electric vehicle repressurizing current can be suppressed. That is, it is possible to detect a value that is lower than the difference voltage amount generated by the electric vehicle repressurization current, or ignore it and ignore the difference voltage amount, and as a result, the difference voltage detection sensitivity in the protection section can be remarkably improved.

[第6の実施の形態]
本発明の第6の実施の形態の交流ATき電回路のき電保護装置及び方法について説明する。本実施の形態のき電保護装置1の構成は図7に示した第3の実施の形態と同様である。
[Sixth Embodiment]
A feeding protection apparatus and method for an AC AT feeding circuit according to a sixth embodiment of the present invention will be described. The configuration of the feeder protection device 1 of this embodiment is the same as that of the third embodiment shown in FIG.

第3の実施の形態では、区間両端の保護装置1A、1Bが任意周期毎にサンプリング同期して測定するき電電圧VA、VBとトロリ線電流ItA、ItB、き電線電流IfA、IfBを相互に高速通信し、任意サンプリング回数分の同一時系列情報として記憶し、更新する。区間両端の保護装置1A、1Bは、記憶更新する区間両端のサンプリング時系列情報をフィルタリング演算、及び、振幅値演算して求める区間両端の差電圧|dV|と差電流|dI|とから故障を検出するようにしている。しかしながら、定常時に区間両端に生じる差電圧量|dV|は区間外に通過する電流の影響を受ける。その一例として、図13Aの故障前電流分布に示すように、電源Vより遠端側の電気車負荷電流σIX(=IX1+IX2+IX3)は保護区間ZL=1PUを通過して区間外に流れ、保護区間の両端に生じる差電圧dVは数25式(第2の実施の形態で使用した数16式と同様)の値となる。   In the third embodiment, the protective devices 1A, 1B at both ends of the section mutually measure the feeding voltages VA, VB, the trolley line currents ItA, ItB, the feeder currents IfA, IfB that are measured in synchronization with each other at an arbitrary period. High-speed communication is performed and stored as the same time-series information for any number of samplings and updated. The protection devices 1A and 1B at both ends of the section can detect a failure from the difference voltage | dV | and the difference current | dI | at both ends of the section obtained by filtering the sampling time series information at both ends of the section to be stored and updated and calculating the amplitude value. I try to detect it. However, the amount of difference voltage | dV | generated at both ends of the section in a steady state is affected by the current passing outside the section. As an example, as shown in the current distribution before failure in FIG. 13A, the electric vehicle load current σIX (= IX1 + IX2 + IX3) on the far end side from the power source V flows outside the section through the protection section ZL = 1PU, The differential voltage dV generated at both ends is a value of Expression 25 (similar to Expression 16 used in the second embodiment).

一方、区間内に故障が生じる場合、図13Bに示すように、故障電流Ifが保護区間の故障点位置df流れ、電気車負荷電流は、故障による電圧低下で高速度に制御を停止して零になるとすれば、故障時の区間両端電圧VA、VBの差電圧量|dVf|は数26式の値となる。   On the other hand, when a fault occurs in the section, as shown in FIG. 13B, the fault current If flows at the fault position df in the protection section, and the electric vehicle load current is zeroed by stopping the control at a high speed due to a voltage drop due to the fault. Then, the difference voltage amount | dVf | between the both-ends voltages VA and VB at the time of the failure is a value of Equation 26.

故障前後の区間両端差電圧dVとdVfの比較において、故障時の差電圧量|dVf|が定常時の差電圧量|dV|を上回るための関係式は数27式で示される。尚、各数式では、単巻変圧器ATの巻数比をN、漏れインピーダンスを無視(ZAT=0)している

Figure 0005319503
Figure 0005319503
Figure 0005319503
In the comparison between the difference voltages dV and dVf at both ends before and after the failure, the relational expression for the difference voltage amount | dVf | at the time of failure exceeds the difference voltage amount | dV | In each formula, the turn ratio of the autotransformer AT is N and the leakage impedance is ignored (ZAT = 0).
Figure 0005319503
Figure 0005319503
Figure 0005319503

但し、α:上下線の結合関数で、開放(α=1)、結合(α=2)、kα:上下線結合状態に応じた基本原理式の差電圧量係数で、開放(kα=0.4)、結合(kα=0.22)である。   However, α is a coupling function of upper and lower lines, and is open (α = 1), coupling (α = 2), kα: a difference voltage amount coefficient of a basic principle equation corresponding to an upper and lower line coupling state, and is opened (kα = 0. 4) A bond (kα = 0.22).

定常時の差電圧量dVLを故障時の差電圧量dVfが上回る検出量限界点を示す関係式である数27式において、故障検出は故障点位置dfと区間通過電流σIXに大きく左右される。故障前後の区間内電流I、Ifの位置d、dfは0〜1PUの範囲に限定される。したがって、故障電流Ifが如何に大きい値でも、故障点位置dfが減少するにつれて右辺が増加して無限大に近づき、故障検出困難な領域が存在する。また、定常時の区間外通過電流と故障電流が接近するにつれ、あるいは故障点が中間位置よりも電源側端に接近するにつれて故障判定は困難になる。つまり、数27式から汲み取る故障検出の概念的な条件は、区間外へ通過する電流σIXの2倍以上の故障電流が保護区間の中間より終端側位置に流れることである。   In Equation 27, which is a relational expression indicating the detection amount limit point where the difference voltage amount dVf at the time of failure exceeds the steady-state difference voltage amount dVL, failure detection is greatly influenced by the failure point position df and the section passing current σIX. The positions d and df of the currents I and If in the section before and after the failure are limited to a range of 0 to 1PU. Therefore, no matter how large the fault current If is, the right side increases and approaches infinity as the fault point position df decreases, and there is a region where fault detection is difficult. In addition, the failure determination becomes difficult as the out-of-interval passing current and the failure current approach in a steady state, or as the failure point approaches the power source side end rather than the intermediate position. That is, the conceptual condition of the failure detection drawn from the equation (27) is that a failure current more than twice the current σIX passing outside the section flows from the middle of the protection section to the end side position.

本実施の形態のき電保護装置1による区間差電圧方式は、定常時の区間外通過電流σIXの影響を排除するものである。図14は本実施の形態による区間差電圧方式の演算機能の構成及びき電保護方法を示す。この図14において、図8に示した第3の実施の形態と共通する要素には同一の符号を用いている。つまり、差電流時系列情報算出部15、基本波成分量算出部16、差電流量演算部17、電流ベース区間故障検出部18は第3の実施の形態と同一であり、それらによる差電流時系列情報算出ステップ、基本波成分量算出ステップ、差電流量演算ステップ、電流ベース区間故障検出ステップの処理も同一であるので、その説明は省略する。   The section differential voltage method by the feeder protection device 1 of the present embodiment eliminates the influence of the out-of-section passing current σIX in the steady state. FIG. 14 shows the configuration of the calculation function of the interval difference voltage method and the feeding protection method according to the present embodiment. In FIG. 14, the same reference numerals are used for elements common to the third embodiment shown in FIG. That is, the difference current time-series information calculation unit 15, the fundamental wave component amount calculation unit 16, the difference current amount calculation unit 17, and the current base section failure detection unit 18 are the same as those in the third embodiment, and the difference current time is determined by them. Since the processing of the sequence information calculation step, fundamental wave component amount calculation step, difference current amount calculation step, and current base section failure detection step is the same, description thereof will be omitted.

本実施の形態のき電保護装置1において、各端電圧算出ステップにて、各端電圧算出部27は、区間両端のそれぞれ端電圧VA、VBを同一サンプリング時系列情報として記憶し、都度更新する。   In the feeder protection device 1 of the present embodiment, in each end voltage calculation step, each end voltage calculation unit 27 stores the end voltages VA and VB at both ends of the section as the same sampling time series information, and updates each time. .

各端基本波成分量算出ステップにて、各端基本波成分量算出部28は、それぞれ端電圧の時系列情報をフィルタリング演算して基本波成分量を任意サンプリング回数分の時系列情報として記憶し、都度更新する。   In each end fundamental wave component amount calculation step, each end fundamental wave component amount calculation unit 28 performs filtering operation on the time series information of the end voltage, and stores the fundamental wave component amount as time series information for an arbitrary number of samplings. , Update each time.

各端電圧変化量算出ステップにて、各端電圧変化量算出部29は、各端電圧の基本波成分時系列情報を振幅値演算して各端それぞれの電圧量VA、VBの任意サイクル分過去t−nと現在t0との変化量ΔVA、ΔVBを求める。この各端それぞれの変化量ΔVA、ΔVBは、故障の前後を示す図13Aと図13Bの概念図と図13Cに示す等価回路から、数28式、数29式のように求める。

Figure 0005319503
Figure 0005319503
In each end voltage change amount calculation step, each end voltage change amount calculation unit 29 calculates the amplitude value of the fundamental wave component time-series information of each end voltage and stores the past for an arbitrary cycle of the voltage amounts VA and VB at each end. Changes ΔVA and ΔVB between t−n and the current t0 are obtained. The change amounts ΔVA and ΔVB at each end are obtained as shown in Equations 28 and 29 from the conceptual diagrams of FIGS. 13A and 13B showing before and after the failure and the equivalent circuit shown in FIG. 13C.
Figure 0005319503
Figure 0005319503

但し、V:電源電圧、Zp:電源〜保護区間までの線路インピーダンス、N:単巻き変圧器ATの巻き数比、If:故障電流、I:故障前の区間走行電気車電流、σIx:故障前の区間外通過電流、dVto:故障時の区間両端差電圧、dVt−n:故障前の区間両端差電圧、kα:上下線結合状態に応じた基本原理式の差電圧量係数で、開放(kα=0.4)、結合(kα=0.22)、α:上下線の結合関数、開放(α=1)、結合(α=2)である。   Where V: power supply voltage, Zp: line impedance from the power supply to the protection section, N: turn ratio of the single-turn transformer AT, If: failure current, I: section electric vehicle current before failure, σIx: before failure DVto: differential voltage across the section at the time of failure, dVt-n: differential voltage across the section before the failure, kα: difference voltage amount coefficient of the basic principle formula according to the vertical line coupling state, and open (kα = 0.4), coupling (kα = 0.22), α: coupling function of upper and lower lines, open (α = 1), coupling (α = 2).

変化量ベース区間故障検出ステップにて、変化量ベース区間故障検出部30は、各端変化量ΔVA、ΔVBのスカラ和ΣΔV(=|ΔVA|+|ΔVB|を数30式で求め、予め定める故障判定値kσVと比較し区間故障を判定する。

Figure 0005319503
In the change amount base section failure detection step, the change amount base section failure detection unit 30 obtains a scalar sum ΣΔV (= | ΔVA | + | ΔVB |) of each end change amount ΔVA, ΔVB by Equation 30 and determines a predetermined failure. A section fault is determined by comparing with the determination value kσV.
Figure 0005319503

最終区間故障検出ステップにて、最終区間故障検出部31は、電流ベース区間故障検出部18による電流ベース区間故障検出ステップでの差電流量|dI|による故障判定と、変化量ベース区間故障検出部30による変化量ベース区間故障検出ステップでのスカラ和|ΣΔV|による故障判定との両判定の論理積により最終的な区間故障の判定結果を出力する。   In the final section failure detection step, the final section failure detection unit 31 determines the failure based on the difference current amount | dI | in the current base section failure detection step by the current base section failure detection unit 18, and the variation amount base section failure detection unit. The final section failure determination result is output by the logical product of both determinations with the scalar sum | ΣΔV | at the change amount-based section failure detection step 30.

数30式で求める区間両端の電圧変化量スカラ和に生じる変化量ΣΔVを、概念的な一例として、上下線の結合関数αを1、上下線結合状態に応じた差電圧量係数kαを0.4、区間長の線路インピーダンスをZL、故障電流をIf、故障前の区間内流入電流をI、故障前の区間通過電流をσIXと置き、故障前後の電流を同一とすれば、故障前の区間内電流Iの位置dと故障電流Ifの故障点dfに応じた電圧変化量は数31式の値となる。その計算結果を図15に示す。

Figure 0005319503
Taking the change amount ΣΔV generated in the scalar sum of the voltage changes at both ends of the section obtained by Equation 30 as a conceptual example, the vertical line coupling function α is 1 and the differential voltage amount coefficient kα according to the vertical line coupling state is 0. 4. If the line impedance of the section length is ZL, the fault current is If, the inflow current in the section before the fault is I, the section passing current before the fault is σIX, and the current before and after the fault is the same, the section before the fault The amount of voltage change corresponding to the position d of the internal current I and the failure point df of the failure current If is a value of Equation 31. The calculation result is shown in FIG.
Figure 0005319503

図15において、直線右肩上がりの両端差電圧dVは故障前電流の位置dに応じた値である。直線右肩上がりの両端差電圧dVfは故障後電流の位置dfに応じた値である。これら両者dV、dVfの比較から明白なように、故障時の最大差電圧dVf=1.6PU(df=1の値)は、故障前の最大差電圧dV=1.9PU(d=1の値)を下回る。つまり、保護区間全域の故障点において故障は検出できない。一方、本実施の形態による各端変化量ΔVA、ΔVB|のスカラ和量ΣΔV(=|ΔVA|+|ΔVB|)は、図15のΔ0.1d、Δ0.5d、Δ1.0d、ΔdVのV折れ線と水平線で示される。水平線ΔdVは、故障前の各端電圧変化スカラ和量|ΔVAt0−ΔVAt−n|+|ΔVBt0−ΔVBt−n|であり、前述したようにその値は電気車の電流増加時定数と変化量検出ブラインド時間の比率で圧縮されて故障前の最大差電圧dV=1.9・PUの10%程度に低減される。V折れ線Δ0.1d、Δ0.5d、Δ1.0dは、故障前の電流Iの位置dが、0.1PU、0.5PU、1.0PU、の各端電圧変化量に対する故障位置dfに応じて生じる各端電圧変化スカラ和量|ΔVAft0−ΔVAt−n|+|ΔVBft0−ΔVBt−n|である。   In FIG. 15, the difference voltage dV across the straight line is a value corresponding to the position d of the current before failure. The differential voltage dVf across the straight line is a value corresponding to the post-fault current position df. As is apparent from the comparison between these two dV and dVf, the maximum differential voltage dVf = 1.6PU (value of df = 1) at the time of failure is the maximum differential voltage dV = 1.9PU (value of d = 1) before the failure. ). That is, no failure can be detected at the failure points in the entire protection section. On the other hand, the scalar sum ΣΔV (= | ΔVA | + | ΔVB |) of the end change amounts ΔVA, ΔVB | according to the present embodiment is the V of Δ0.1d, Δ0.5d, Δ1.0d, ΔdV in FIG. Indicated by line and horizontal lines. The horizontal line ΔdV is the sum of each end voltage change scalar before the failure | ΔVAt0−ΔVAt−n | + | ΔVBt0−ΔVBt−n |. As described above, the value is the current increase time constant of the electric vehicle and the detection of the amount of change. It is compressed at the blind time ratio and reduced to about 10% of the maximum differential voltage dV = 1.9 · PU before failure. The V broken lines Δ0.1d, Δ0.5d, and Δ1.0d indicate that the position d of the current I before the failure depends on the failure position df with respect to each end voltage change amount of 0.1PU, 0.5PU, 1.0PU. The resulting end voltage change scalar sum | ΔVAft0−ΔVAt−n | + | ΔVBft0−ΔVBt−n |.

図15から明白なように、保護区間全域に対して0.2PU幅程度の故障前の各端電圧変化スカラ和量を下回る保護不能領域が生じるものの、保護区間領域は格段に拡大する。また、図15の計算例条件の故障電流量4PUが0.8PU程度増加すれば全域において故障検出は可能になる。   As apparent from FIG. 15, an unprotectable region that is less than the sum of each end voltage change scalar of about 0.2 PU width occurs in the entire protection interval, but the protection interval region is greatly expanded. Further, if the fault current amount 4PU in the calculation example condition of FIG. 15 increases by about 0.8 PU, fault detection becomes possible in the entire area.

このように、本発明の第6の実施の形態のき電保護装置及び方法は、第3の実施の形態による保護区間の両端の差電流量判定と両端の電圧変化量スカラ和量判定の双方から区間故障を検出する。   As described above, the feeding protection device and method according to the sixth embodiment of the present invention both perform the difference current amount determination at both ends of the protection section and the voltage change amount scalar sum determination at both ends according to the third embodiment. Detects a fault in the section.

これにより、本実施の形態によれば、次のような効果を奏する。   Thereby, according to this Embodiment, there exist the following effects.

1)保護区間の差電圧検出感度を著しく改善できる。   1) The difference voltage detection sensitivity in the protection section can be remarkably improved.

本実施の形態によれば、保護区間の両端において、現在と任意ブラインド時間幅だけ過去との電圧差をそれぞれ端の電圧変化量として検出し(数28式、数29式)、両端変化量のスカラ和量から故障を検出する(数30式)。つまり、定常の電気車走行において生じる両端電圧変化量は電気車の電流増加時定数と変化量検出の任意ブラインド時間で大きく抑制し、一方で、急峻に電流量と位置が変化する故障では殆んど抑制することなく両端電圧の増減変化スカラ和量を検出できる。これにより、保護区間外まで通過する電気車電流で生じる差電圧量よりも著しく低い値で故障による差電圧を検出できる。その結果、保護区間の差電圧検出感度は著しく改善できる。   According to the present embodiment, at both ends of the protection section, the voltage difference between the present and the past by an arbitrary blind time width is detected as the voltage change amount at each end (Equation 28, Equation 29), A failure is detected from the scalar sum (Equation 30). In other words, the amount of change in the voltage at both ends that occurs during steady electric vehicle travel is largely suppressed by the current increase time constant of the electric vehicle and the optional blind time for detection of the change amount. It is possible to detect the increase / decrease change scalar sum of the voltage at both ends without any suppression. Thereby, the difference voltage due to the failure can be detected with a value significantly lower than the amount of difference voltage generated by the electric vehicle current passing outside the protection section. As a result, the difference voltage detection sensitivity in the protection section can be significantly improved.

2)計器用変圧器二次電圧の導入不良で生じる差電圧による不要動作を抑止できる。   2) Unnecessary operation due to differential voltage caused by poor introduction of instrument transformer secondary voltage can be suppressed.

保護区間の両端電圧は計器用変圧器を介して導入される。一端側電圧の導入が不良(断線)になると区間両端に顕著な差電圧が生じるが、定常状態の保護区間の両端電流のベクトル合成量(流入量)は、故障検出量に達することは無く不要動作を抑止できる。   The voltage across the protection zone is introduced through an instrument transformer. If the introduction of the voltage at one end becomes defective (disconnection), a noticeable voltage difference will occur at both ends of the section, but the amount of vector synthesis (inflow) of the current at both ends of the protection section in the steady state does not reach the detected fault amount Operation can be suppressed.

尚、本発明は、上記実施の形態に限定されることはなく、第1〜第6の実施の形態の構成を任意に組み合わせたき電保護装置、またそれによるき電保護方法を構成できる。   In addition, this invention is not limited to the said embodiment, The feed protection apparatus which combined the structure of the 1st-6th embodiment arbitrarily, and the feed protection method by it can be comprised.

1 き電保護装置
11 差電圧時系列情報算出部
12 差電圧基本波成分演算部
13 差電圧量演算部
13a 差電圧量演算部
14 電圧ベース区間故障検出部
15 差電流時系列情報算出部
15a 各端電流算出部
16 基本波成分量算出部
16a 各端電流基本波成分量算出部
17 差電流量演算部
18 電流ベース区間故障検出部
19 最終区間故障判定部
20 区間通過電流演算部
21 通過電流補正演算部
22 区間故障判定部
23 第二高調波成分算出部
24 第二高調波差電圧演算部
25 第二高調波含有率判定部
26 最終区間故障判定部
27 各端電圧算出部
28 各端基本波成分量算出部
29 各端電圧変化量算出部
30 変化量ベース区間故障検出部
31 最終区間故障検出部
AT 単巻変圧器
CT 計器用変流器
SS 変電所
SP き電区分所
SSP 補助き電区分所
DESCRIPTION OF SYMBOLS 1 Feeder protective device 11 Difference voltage time series information calculation part 12 Difference voltage fundamental wave component calculation part 13 Difference voltage amount calculation part 13a Difference voltage amount calculation part 14 Voltage base section failure detection part 15 Difference current time series information calculation part 15a End current calculation unit 16 Fundamental wave component amount calculation unit 16a Each end current fundamental wave component amount calculation unit 17 Difference current amount calculation unit 18 Current base section failure detection unit 19 Final section failure determination unit 20 Section passage current calculation unit 21 Pass current correction Calculation section 22 Section failure determination section 23 Second harmonic component calculation section 24 Second harmonic difference voltage calculation section 25 Second harmonic content determination section 26 Final section failure determination section 27 Each end voltage calculation section 28 Each end fundamental wave Component amount calculation unit 29 Voltage change calculation unit at each end 30 Change amount base section fault detection unit 31 Final section fault detection unit AT Autotransformer CT Current transformer for SS SS Substation SP Feeding section SSP Supplement Feeding circuit section post

Claims (12)

交流単巻変圧器き電回路において、任意距離区間毎に配置される電気所の単巻変圧器を境界とする電車線の故障を検出するき電保護装置であって、
保護区間の両端き電電圧をそれぞれの電気所端で計器用変圧器の二次側から取り込むき電電圧取得手段と、
前記電気所端それぞれで取り込むき電電圧を任意周期毎に測定し、相互に高速通信してそれぞれの端のき電電圧情報を両端の同一時系列電圧情報として一元共有する電圧情報端末手段と、
前記両端の同一時系列電圧情報を演算して差電圧時系列情報を求める差電圧時系列情報算出手段と、
前記差電圧時系列情報をフィルタリング演算して、差電圧基本波成分の時系列情報を求める差電圧基本波成分算出手段と、
前記差電圧基本波成分の時系列情報を振幅値演算して差電圧基本波成分量を求める差電圧基本波成分量算出手段と、
前記差電圧基本波成分量と予め定める定数とを比較判定して区間故障を検出する電圧ベース区間故障検出手段とを備えたことを特徴とする交流ATき電回路のき電保護装置。
In the AC self-winding transformer feeding circuit, a feeder protection device that detects a failure of a train line that is bounded by the self-winding transformer of an electric station arranged for each arbitrary distance section,
Feeding voltage acquisition means for capturing the feeding voltage at both ends of the protection section from the secondary side of the instrument transformer at each electrical station end,
Voltage information terminal means for measuring the feeding voltage captured at each of the electrical station ends for each arbitrary period, and sharing the feeding voltage information at each end as the same time-series voltage information at both ends by high-speed communication with each other;
Difference voltage time series information calculating means for calculating the same time series voltage information at both ends to obtain difference voltage time series information;
A difference voltage fundamental wave component calculating means for filtering the difference voltage time series information to obtain time series information of the difference voltage fundamental wave component;
A difference voltage fundamental wave component amount calculating means for calculating an amplitude value of the time series information of the difference voltage fundamental wave component to obtain a difference voltage fundamental wave component amount;
A feeding protection device for an AC AT feeding circuit, comprising: a voltage base section fault detecting means for detecting a section fault by comparing and determining the difference voltage fundamental wave component amount and a predetermined constant.
前記差電圧基本波成分算出手段は、任意時点の過去値に対する現在値の増加量に基づいて前記差電圧基本波成分量を算出することを特徴とする請求項1に記載の交流ATき電回路のき電保護装置。   2. The alternating current AT feeder circuit according to claim 1, wherein the difference voltage fundamental wave component calculation means calculates the difference voltage fundamental wave component amount based on an increase amount of a current value with respect to a past value at an arbitrary time point. Snorkeling protection device. 交流単巻変圧器き電回路において、任意距離区間毎に配置される電気所の単巻変圧器を境界とする電車線の故障を検出するき電保護装置であって、
保護区間の両端き電電圧をそれぞれの電気所端で計器用変圧器の二次側から取り込むき電電圧取得手段と、
前記電気所端それぞれで取り込むき電電圧を任意周期毎に測定し、相互に高速通信してそれぞれの端のき電電圧情報を両端の同一時系列電圧情報として一元共有する電圧情報端末手段と、
前記両端の同一時系列電圧情報を演算して差電圧時系列情報を求める差電圧時系列情報算出手段と、
前記差電圧時系列情報をフィルタリング演算して、差電圧基本波成分の時系列情報を求める差電圧基本波成分算出手段と、
前記差電圧基本波成分の時系列情報を振幅値演算して差電圧基本波成分量を求める差電圧基本波成分量算出手段と、
前記保護区間の両端電車線電流をそれぞれの電気所端で計器用変流器の二次側から取り込む電車線電流取得手段と、
前記電気所端それぞれで取り込む電車線電流を任意周期毎に測定し、相互に高速通信してそれぞれの端の電車線電流を両端の同一時系列電流情報として一元共有する電流情報端末手段と、
前記両端の同一時系列電流情報を演算して差電流時系列情報を求める差電流算出手段と、
前記差電流時系列情報をフィルタリング演算して、差電流基本波成分の時系列情報を求める差電流基本波成分算出手段と、
前記差電流基本波成分の時系列情報を振幅値演算して差電流基本波成分量を求める差電流基本波成分量算出手段と、
前記差電圧基本波成分量と予め定める定数とを比較判定し、前記差電流基本波成分量と予め定めた定数とを比較判定し、当該双方の判定結果から区間故障を検出する区間故障検出手段とを備えたことを特徴とする交流ATき電回路のき電保護装置。
In the AC self-winding transformer feeding circuit, a feeder protection device that detects a failure of a train line that is bounded by the self-winding transformer of an electric station arranged for each arbitrary distance section,
Feeding voltage acquisition means for capturing the feeding voltage at both ends of the protection section from the secondary side of the instrument transformer at each electrical station end,
Voltage information terminal means for measuring the feeding voltage captured at each of the electrical station ends for each arbitrary period, and sharing the feeding voltage information at each end as the same time-series voltage information at both ends by high-speed communication with each other;
Difference voltage time series information calculating means for calculating the same time series voltage information at both ends to obtain difference voltage time series information;
A difference voltage fundamental wave component calculating means for filtering the difference voltage time series information to obtain time series information of the difference voltage fundamental wave component;
A difference voltage fundamental wave component amount calculating means for calculating an amplitude value of the time series information of the difference voltage fundamental wave component to obtain a difference voltage fundamental wave component amount;
Train line current acquisition means for taking in both ends of the protected section from the secondary side of the current transformer at the end of each electric station,
Current information terminal means for measuring the train line current captured at each end of the electric station for each arbitrary period, and sharing the train line current at each end as the same time-series current information at both ends by high-speed communication with each other,
Difference current calculation means for calculating the same time series current information at both ends to obtain difference current time series information;
A difference current fundamental wave component calculating means for filtering the difference current time series information to obtain time series information of the difference current fundamental wave component;
A difference current fundamental wave component amount calculating means for calculating a difference current fundamental wave component amount by calculating an amplitude value of the time series information of the difference current fundamental wave component;
Section fault detection means for comparing and determining the difference voltage fundamental wave component amount and a predetermined constant, comparing and determining the difference current fundamental wave component amount and a predetermined constant, and detecting a section fault from both determination results And a feeding protection device for an AC AT feeding circuit.
交流単巻変圧器き電回路において、任意距離区間毎に配置される電気所の単巻変圧器を境界とする電車線の故障を検出するき電保護装置であって、
保護区間の両端き電電圧をそれぞれの電気所端で計器用変圧器の二次側から取り込むき電電圧取得手段と、
前記電気所端それぞれで取り込むき電電圧を任意周期毎に測定し、相互に高速通信してそれぞれの端のき電電圧情報を両端の同一時系列電圧情報として一元共有する電圧情報端末手段と、
前記両端の同一時系列電圧情報を演算して差電圧時系列情報を求める差電圧時系列情報算出手段と、
前記差電圧時系列情報をフィルタリング演算して、差電圧基本波成分の時系列情報を求める差電圧基本波成分算出手段と、
前記差電圧基本波成分の時系列情報を振幅値演算して差電圧基本波成分量を求める差電圧基本波成分量算出手段と、
前記保護区間の両端電車線電流をそれぞれの電気所端で計器用変流器の二次側から取り込む電車線電流取得手段と、
前記電気所端それぞれで取り込む電車線電流を任意周期毎に測定し、相互に高速通信してそれぞれの端の電車線電流を両端の同一時系列電流情報として一元共有する電流情報端末手段と、
前記両端の同一時系列電流情報を演算して差電流時系列情報を求める差電流算出手段と、
前記差電流時系列情報をフィルタリング演算して、差電流基本波成分の時系列情報を求める差電流基本波成分算出手段と、
前記差電流基本波成分の時系列情報を振幅値演算して差電流基本波成分量を求める差電流基本波成分量算出手段と、
前記両端の同一時系列電流情報を演算して各端の電流時系列情報を求める電流時系列情報演算手段と、
前記各端の電流時系列情報をフィルタリング演算して各端の基本波電流時系列情報を求める基本波電流時系列情報算出手段と、
前記各端の基本波電流時系列情報を振幅値演算して各端の基本波電流成分量を算出する基本波電流成分量算出手段と、
前記差電流基本波成分量と各端の基本波電流成分量とから区間通過電流量を求める区間通過電流量演算手段と、
前記区間通過電流量に予め定める線路定数を乗じ、前記差電圧基本波成分量から減算して区間流入電流量等価差電圧を求める等価差電圧演算手段と、
前記区間流入電流量等価差電圧と予め定める定数とを比較判定し、区間故障を検出する区間故障検出手段とを備えたことを特徴とする交流ATき電回路のき電保護装置。
In the AC self-winding transformer feeding circuit, a feeder protection device that detects a failure of a train line that is bounded by the self-winding transformer of an electric station arranged for each arbitrary distance section,
Feeding voltage acquisition means for capturing the feeding voltage at both ends of the protection section from the secondary side of the instrument transformer at each electrical station end,
Voltage information terminal means for measuring the feeding voltage captured at each of the electrical station ends for each arbitrary period, and sharing the feeding voltage information at each end as the same time-series voltage information at both ends by high-speed communication with each other;
Difference voltage time series information calculating means for calculating the same time series voltage information at both ends to obtain difference voltage time series information;
A difference voltage fundamental wave component calculating means for filtering the difference voltage time series information to obtain time series information of the difference voltage fundamental wave component;
A difference voltage fundamental wave component amount calculating means for calculating an amplitude value of the time series information of the difference voltage fundamental wave component to obtain a difference voltage fundamental wave component amount;
Train line current acquisition means for taking in both ends of the protected section from the secondary side of the current transformer at the end of each electric station,
Current information terminal means for measuring the train line current captured at each end of the electric station for each arbitrary period, and sharing the train line current at each end as the same time-series current information at both ends by high-speed communication with each other,
Difference current calculation means for calculating the same time series current information at both ends to obtain difference current time series information;
A difference current fundamental wave component calculating means for filtering the difference current time series information to obtain time series information of the difference current fundamental wave component;
A difference current fundamental wave component amount calculating means for calculating a difference current fundamental wave component amount by calculating an amplitude value of the time series information of the difference current fundamental wave component;
Current time series information calculating means for calculating current time series information at each end by calculating the same time series current information at both ends;
Fundamental wave current time series information calculating means for obtaining fundamental wave current time series information at each end by filtering the current time series information at each end;
A fundamental wave current component amount calculating means for calculating a fundamental wave current component amount at each end by calculating an amplitude value of the fundamental wave current time series information at each end;
Section passage current amount calculation means for obtaining a section passage current amount from the difference current fundamental wave component amount and the fundamental wave current component amount at each end;
Equivalent difference voltage calculation means for multiplying the section passing current amount by a predetermined line constant and subtracting from the difference voltage fundamental wave component amount to obtain a section inflow current amount equivalent difference voltage;
A feeding protection device for an AC AT feeding circuit, comprising section fault detecting means for comparing and determining the section inflow current amount equivalent differential voltage and a predetermined constant to detect a section fault.
交流単巻変圧器き電回路において、任意距離区間毎に配置される電気所の単巻変圧器を境界とする電車線の故障を検出するき電保護装置であって、
保護区間の両端き電電圧をそれぞれの電気所端で計器用変圧器の二次側から取り込むき電電圧取得手段と、
前記電気所端それぞれで取り込むき電電圧を任意周期毎に測定し、相互に高速通信してそれぞれの端のき電電圧情報を両端の同一時系列電圧情報として一元共有する電圧情報端末手段と、
前記両端の同一時系列電圧情報を演算して差電圧時系列情報を求める差電圧時系列情報算出手段と、
前記差電圧時系列情報をフィルタリング演算して、差電圧基本波成分の時系列情報を求める差電圧基本波成分算出手段と、
前記差電圧基本波成分の時系列情報を振幅値演算して差電圧基本波成分量を求める差電圧基本波成分量算出手段と、
前記差電圧基本波成分量と予め定める定数とを比較判定して区間故障を検出する電圧ベース区間故障検出手段と、
前記差電圧時系列情報をフィルタリング演算して差電圧の第二高調波時系列情報を求める第二高調波時系列情報算出手段と、
差電圧の第二高調波時系列情報を振幅値演算して差電圧第二高調波成分量を算出する差電圧第二高調波成分量算出手段と、
前記差電圧第二高調波成分量と前記差電圧基本波成分量との比率演算から差電圧の第二高調波含有量を算出する第二高調波含有量算出手段と、
前記第二高調波含有量を予め定める判定定数と比較判定し、前記第二高調波含有量が予め定めた判定定数を超過する場合に前記電圧ベース区間故障検出手段による区間故障判定を抑止する区間故障判定抑止手段とを備えたことを特徴とする交流ATき電回路のき電保護装置。
In the AC self-winding transformer feeding circuit, a feeder protection device that detects a failure of a train line that is bounded by the self-winding transformer of an electric station arranged for each arbitrary distance section,
Feeding voltage acquisition means for capturing the feeding voltage at both ends of the protection section from the secondary side of the instrument transformer at each electrical station end,
Voltage information terminal means for measuring the feeding voltage captured at each of the electrical station ends for each arbitrary period, and sharing the feeding voltage information at each end as the same time-series voltage information at both ends by high-speed communication with each other;
Difference voltage time series information calculating means for calculating the same time series voltage information at both ends to obtain difference voltage time series information;
A difference voltage fundamental wave component calculating means for filtering the difference voltage time series information to obtain time series information of the difference voltage fundamental wave component;
A difference voltage fundamental wave component amount calculating means for calculating an amplitude value of the time series information of the difference voltage fundamental wave component to obtain a difference voltage fundamental wave component amount;
Voltage base section fault detection means for comparing and determining the difference voltage fundamental wave component amount and a predetermined constant to detect a section fault;
Second harmonic time series information calculating means for filtering the difference voltage time series information to obtain second harmonic time series information of the difference voltage;
A difference voltage second harmonic component amount calculating means for calculating a difference voltage second harmonic component amount by calculating an amplitude value of the second harmonic time series information of the difference voltage;
Second harmonic content calculating means for calculating the second harmonic content of the differential voltage from the ratio calculation of the differential voltage second harmonic component amount and the differential voltage fundamental wave component amount;
A section that compares and determines the second harmonic content with a predetermined determination constant, and suppresses a section failure determination by the voltage-based section failure detection means when the second harmonic content exceeds a predetermined determination constant. A feeding protection device for an AC AT feeding circuit, characterized by comprising failure determination inhibiting means.
交流単巻変圧器き電回路において、任意距離区間毎に配置される電気所の単巻変圧器を境界とする電車線の故障を検出するき電保護装置であって、
保護区間の両端き電電圧をそれぞれの電気所端で計器用変圧器の二次側から取り込むき電電圧取得手段と、
前記電気所端それぞれで取り込むき電電圧を任意周期毎に測定し、相互に高速通信してそれぞれの端のき電電圧情報を両端の同一時系列電圧情報として一元共有する電圧情報端末手段と、
前記保護区間の両端電車線電流をそれぞれの電気所端で計器用変流器の二次側から取り込む電車線電流取得手段と、
前記電気所端それぞれで取り込む電車線電流を任意周期毎に測定し、相互に高速通信してそれぞれの端の電車線電流を両端の同一時系列電流情報として一元共有する電流情報端末手段と、
前記両端の同一時系列電流情報を演算して差電流時系列情報を求める差電流算出手段と、
前記差電流時系列情報をフィルタリング演算して、差電流基本波成分の時系列情報を求める差電流基本波成分算出手段と、
前記差電流基本波成分の時系列情報を振幅値演算して差電流基本波成分量を求める差電流基本波成分量算出手段と、
前記差電流基本波成分量と予め定める定数とを比較判定して区間故障を検出する電流ベース区間故障検出手段と、
前記保護区間の両端の同一時系列電圧情報から各端それぞれの電圧時系列情報を求める電圧時系列情報算出手段と、
前記各端の電圧時系列情報をフィルタリング演算して各端の電圧の基本波時系列情報を求める電圧基本波時系列情報算出手段と、
前記各端の電圧の基本波時系列情報を振幅値演算して各端の電圧基本波成分量を求める電圧基本波成分量算出手段と、
前記各端の電圧基本波成分量の過去値と現在値との電圧変化量を各端毎に求める電圧変化量算出手段と、
前記各端毎の電圧変化量を加算してスカラ和量を求める電圧変化量算出手段と、
前記差電流基本波成分量と予め定める定数とを比較判定し、前記電圧変化量のスカラ和量と予め定める定数とを比較判定し、双方の判定結果から区間故障を検出する区間故障検出手段とを備えたことを特徴とする交流ATき電回路のき電保護装置。
In the AC self-winding transformer feeding circuit, a feeder protection device that detects a failure of a train line that is bounded by the self-winding transformer of an electric station arranged for each arbitrary distance section,
Feeding voltage acquisition means for capturing the feeding voltage at both ends of the protection section from the secondary side of the instrument transformer at each electrical station end,
Voltage information terminal means for measuring the feeding voltage captured at each of the electrical station ends for each arbitrary period, and sharing the feeding voltage information at each end as the same time-series voltage information at both ends by high-speed communication with each other;
Train line current acquisition means for taking in both ends of the protected section from the secondary side of the current transformer at the end of each electric station,
Current information terminal means for measuring the train line current captured at each end of the electric station for each arbitrary period, and sharing the train line current at each end as the same time-series current information at both ends by high-speed communication with each other,
Difference current calculation means for calculating the same time series current information at both ends to obtain difference current time series information;
A difference current fundamental wave component calculating means for filtering the difference current time series information to obtain time series information of the difference current fundamental wave component;
A difference current fundamental wave component amount calculating means for calculating a difference current fundamental wave component amount by calculating an amplitude value of the time series information of the difference current fundamental wave component;
A current base section failure detection means for comparing and determining the difference current fundamental wave component amount and a predetermined constant to detect a section failure;
Voltage time series information calculating means for obtaining voltage time series information at each end from the same time series voltage information at both ends of the protection section;
Voltage fundamental wave time series information calculating means for filtering the voltage time series information at each end to obtain fundamental wave time series information of the voltage at each end; and
Voltage fundamental wave component amount calculating means for calculating an amplitude value of the fundamental wave time-series information of the voltage at each end to obtain a voltage fundamental wave component amount at each end;
A voltage change amount calculating means for obtaining a voltage change amount between a past value and a current value of the voltage fundamental wave component amount at each end, for each end;
A voltage change amount calculating means for adding a voltage change amount at each end to obtain a scalar sum;
Section fault detection means for comparing and determining the difference current fundamental wave component amount and a predetermined constant, comparing and determining a scalar sum of the voltage change amount and a predetermined constant, and detecting a section fault from both determination results; A feeder protection device for an AC AT feeder circuit, comprising:
交流単巻変圧器き電回路において、任意距離区間毎に配置される電気所の単巻変圧器を境界とする電車線の故障を検出するき電保護方法であって、
保護区間の両端き電電圧をそれぞれの電気所端で計器用変圧器の二次側から取り込むき電電圧取得ステップと、
前記電気所端それぞれで取り込むき電電圧を任意周期毎に測定し、相互に高速通信してそれぞれの端のき電電圧情報を両端の同一時系列電圧情報として一元共有する電圧情報共有ステップと、
前記両端の同一時系列電圧情報を演算して差電圧時系列情報を求める差電圧演算ステップと、
前記差電圧時系列情報をフィルタリング演算して、差電圧基本波成分の時系列情報を求める差電圧基本波成分算出ステップと、
前記差電圧基本波成分の時系列情報を振幅値演算して差電圧基本波成分量を求める差電圧基本波成分量算出ステップと、
前記差電圧基本波成分量と予め定める定数とを比較判定して区間故障を検出する電圧ベース区間故障検出ステップとを有することを特徴とする交流ATき電回路のき電保護方法。
In the AC self-winding transformer feeding circuit, a feeding protection method for detecting a failure of a train line bordering on the self-winding transformer of an electric station arranged for each arbitrary distance section,
Feeding voltage acquisition step for capturing the feeding voltage at both ends of the protection section from the secondary side of the instrument transformer at each electrical station end,
Voltage information sharing step of measuring the feeding voltage captured at each of the electrical station ends for each arbitrary period, and performing high-speed communication with each other and sharing the feeding voltage information at each end as the same time-series voltage information at both ends,
A difference voltage calculation step for calculating the same time series voltage information at both ends to obtain difference voltage time series information;
A difference voltage fundamental wave component calculating step for filtering the difference voltage time series information to obtain time series information of the difference voltage fundamental wave component;
A difference voltage fundamental wave component amount calculating step for calculating an amplitude value of the time series information of the difference voltage fundamental wave component to obtain a difference voltage fundamental wave component amount; and
A feeding protection method for an AC AT feeder circuit, comprising: a voltage base section fault detection step of detecting a section fault by comparing and determining the difference voltage fundamental wave component amount and a predetermined constant.
前記差電圧基本波成分算出ステップは、任意時点の過去値に対する現在値の増加量に基づいて前記差電圧基本波成分量を算出することを特徴とする請求項7に記載の交流ATき電回路のき電保護方法。   8. The alternating current AT feeder circuit according to claim 7, wherein the difference voltage fundamental wave component calculation step calculates the difference voltage fundamental wave component amount based on an increase amount of a current value with respect to a past value at an arbitrary time point. Snorkeling protection method. 交流単巻変圧器き電回路において、任意距離区間毎に配置される電気所の単巻変圧器を境界とする電車線の故障を検出するき電保護方法であって、
保護区間の両端き電電圧をそれぞれの電気所端で計器用変圧器の二次側から取り込むき電電圧取得ステップと、
前記電気所端それぞれで取り込むき電電圧を任意周期毎に測定し、相互に高速通信してそれぞれの端のき電電圧情報を両端の同一時系列電圧情報として一元共有する電圧情報共有ステップと、
前記両端の同一時系列電圧情報を演算して差電圧時系列情報を求める差電圧演算ステップと、
前記差電圧時系列情報をフィルタリング演算して、差電圧基本波成分の時系列情報を求める差電圧基本波成分算出ステップと、
前記差電圧基本波成分の時系列情報を振幅値演算して差電圧基本波成分量を求める差電圧基本波成分量算出ステップと、
前記保護区間の両端電車線電流をそれぞれの電気所端で計器用変流器の二次側から取り込む電車線電流取得ステップと、
前記電気所端それぞれで取り込む電車線電流を任意周期毎に測定し、相互に高速通信してそれぞれの端の電車線電流を両端の同一時系列電流情報として一元共有する電流情報共有ステップと、
前記両端の同一時系列電流情報を演算して差電流時系列情報を求める差電流算出ステップと、
前記差電流時系列情報をフィルタリング演算して、差電流基本波成分の時系列情報を求める差電流基本波成分算出ステップと、
前記差電流基本波成分の時系列情報を振幅値演算して差電流基本波成分量を求める差電流基本波成分量算出ステップと、
前記差電圧基本波成分量と予め定める定数とを比較判定し、前記差電流基本波成分量と予め定めた定数とを比較判定し、当該双方の判定結果から区間故障を検出する区間故障検出ステップとを有することを特徴とする交流ATき電回路のき電保護方法。
In the AC self-winding transformer feeding circuit, a feeding protection method for detecting a failure of a train line bordering on the self-winding transformer of an electric station arranged for each arbitrary distance section,
Feeding voltage acquisition step for capturing the feeding voltage at both ends of the protection section from the secondary side of the instrument transformer at each electrical station end,
Voltage information sharing step of measuring the feeding voltage captured at each of the electrical station ends for each arbitrary period, and performing high-speed communication with each other and sharing the feeding voltage information at each end as the same time-series voltage information at both ends,
A difference voltage calculation step for calculating the same time series voltage information at both ends to obtain difference voltage time series information;
A difference voltage fundamental wave component calculating step for filtering the difference voltage time series information to obtain time series information of the difference voltage fundamental wave component;
A difference voltage fundamental wave component amount calculating step for calculating an amplitude value of the time series information of the difference voltage fundamental wave component to obtain a difference voltage fundamental wave component amount; and
Train line current acquisition step for capturing both-end train line currents of the protected section from the secondary side of the current transformer at each electrical station end;
A current information sharing step of measuring the train line current captured at each of the electrical station ends for each arbitrary cycle, and sharing the train line current at each end as the same time-series current information at both ends by performing high-speed communication with each other,
A difference current calculation step for calculating difference current time series information by calculating the same time series current information at both ends; and
A difference current fundamental wave component calculating step for filtering the difference current time series information to obtain time series information of the difference current fundamental wave component;
A difference current fundamental wave component amount calculating step for calculating a difference current fundamental wave component amount by calculating an amplitude value of the time series information of the difference current fundamental wave component;
Section failure detection step of comparing and determining the difference voltage fundamental wave component amount and a predetermined constant, comparing and determining the difference current fundamental wave component amount and a predetermined constant, and detecting a section failure from the determination results of both And a feeding protection method for an AC AT feeding circuit.
交流単巻変圧器き電回路において、任意距離区間毎に配置される電気所の単巻変圧器を境界とする電車線の故障を検出するき電保護方法であって、
保護区間の両端き電電圧をそれぞれの電気所端で計器用変圧器の二次側から取り込むき電電圧取得ステップと、
前記電気所端それぞれで取り込むき電電圧を任意周期毎に測定し、相互に高速通信してそれぞれの端のき電電圧情報を両端の同一時系列電圧情報として一元共有する電圧情報共有ステップと、
前記両端の同一時系列電圧情報を演算して差電圧時系列情報を求める差電圧演算ステップと、
前記差電圧時系列情報をフィルタリング演算して、差電圧基本波成分の時系列情報を求める差電圧基本波成分算出ステップと、
前記差電圧基本波成分の時系列情報を振幅値演算して差電圧基本波成分量を求める差電圧基本波成分量算出ステップと、
前記保護区間の両端電車線電流をそれぞれの電気所端で計器用変流器の二次側から取り込む電車線電流取得ステップと、
前記電気所端それぞれで取り込む電車線電流を任意周期毎に測定し、相互に高速通信してそれぞれの端の電車線電流を両端の同一時系列電流情報として一元共有する電流情報共有ステップと、
前記両端の同一時系列電流情報を演算して差電流時系列情報を求める差電流算出ステップと、
前記差電流時系列情報をフィルタリング演算して、差電流基本波成分の時系列情報を求める差電流基本波成分算出ステップと、
前記差電流基本波成分の時系列情報を振幅値演算して差電流基本波成分量を求める差電流基本波成分量算出ステップと、
前記両端の同一時系列電流情報を演算して各端の電流時系列情報を求める電流時系列情報演算ステップと、
前記各端の電流時系列情報をフィルタリング演算して各端の基本波電流時系列情報を求める基本波電流時系列情報算出ステップと、
前記各端の基本波電流時系列情報を振幅値演算して各端の基本波電流成分量を算出する基本波電流成分量算出ステップと、
前記差電流基本波成分量と各端の基本波電流成分量とから区間通過電流量を求める区間通過電流量演算ステップと、
前記区間通過電流量に予め定める線路定数を乗じ、前記差電圧基本波成分量から減算して区間流入電流量等価差電圧を求める等価差電圧演算ステップと、
前記区間流入電流量等価差電圧と予め定める定数とを比較判定し、区間故障を検出する区間故障検出ステップとを有することを特徴とする交流ATき電回路のき電保護方法。
In the AC self-winding transformer feeding circuit, a feeding protection method for detecting a failure of a train line bordering on the self-winding transformer of an electric station arranged for each arbitrary distance section,
Feeding voltage acquisition step for capturing the feeding voltage at both ends of the protection section from the secondary side of the instrument transformer at each electrical station end,
Voltage information sharing step of measuring the feeding voltage captured at each of the electrical station ends for each arbitrary period, and performing high-speed communication with each other and sharing the feeding voltage information at each end as the same time-series voltage information at both ends,
A difference voltage calculation step for calculating the same time series voltage information at both ends to obtain difference voltage time series information;
A difference voltage fundamental wave component calculating step for filtering the difference voltage time series information to obtain time series information of the difference voltage fundamental wave component;
A difference voltage fundamental wave component amount calculating step for calculating an amplitude value of the time series information of the difference voltage fundamental wave component to obtain a difference voltage fundamental wave component amount; and
Train line current acquisition step for capturing both-end train line currents of the protected section from the secondary side of the current transformer at each electrical station end;
A current information sharing step of measuring the train line current captured at each of the electrical station ends for each arbitrary cycle, and sharing the train line current at each end as the same time-series current information at both ends by performing high-speed communication with each other,
A difference current calculation step for calculating difference current time series information by calculating the same time series current information at both ends; and
A difference current fundamental wave component calculating step for filtering the difference current time series information to obtain time series information of the difference current fundamental wave component;
A difference current fundamental wave component amount calculating step for calculating a difference current fundamental wave component amount by calculating an amplitude value of the time series information of the difference current fundamental wave component;
A current time series information calculating step for calculating current time series information at each end by calculating the same time series current information at both ends;
A fundamental wave current time series information calculation step for obtaining a fundamental wave current time series information at each end by filtering the current time series information at each end; and
A fundamental wave current component amount calculating step for calculating a fundamental wave current component amount at each end by calculating an amplitude value of the fundamental wave current time series information at each end;
A section passing current amount calculation step for obtaining a section passing current amount from the difference current fundamental wave component amount and the fundamental wave current component amount at each end;
Equivalent difference voltage calculation step of multiplying the section passage current amount by a predetermined line constant and subtracting from the difference voltage fundamental wave component amount to obtain a section inflow current amount equivalent difference voltage;
An AC AT feeder circuit feeding protection method comprising: a section failure detection step of comparing and determining the section inflow current amount equivalent differential voltage and a predetermined constant to detect a section failure.
交流単巻変圧器き電回路において、任意距離区間毎に配置される電気所の単巻変圧器を境界とする電車線の故障を検出するき電保護方法であって、
保護区間の両端き電電圧をそれぞれの電気所端で計器用変圧器の二次側から取り込むき電電圧取得ステップと、
前記電気所端それぞれで取り込むき電電圧を任意周期毎に測定し、相互に高速通信してそれぞれの端のき電電圧情報を両端の同一時系列電圧情報として一元共有する電圧情報共有ステップと、
前記両端の同一時系列電圧情報を演算して差電圧時系列情報を求める差電圧演算ステップと、
前記差電圧時系列情報をフィルタリング演算して、差電圧基本波成分の時系列情報を求める差電圧基本波成分算出ステップと、
前記差電圧基本波成分の時系列情報を振幅値演算して差電圧基本波成分量を求める差電圧基本波成分量算出ステップと、
前記差電圧基本波成分量と予め定める定数とを比較判定して区間故障を検出する電圧ベース区間故障検出ステップと、
前記差電圧時系列情報をフィルタリング演算して差電圧の第二高調波時系列情報を求める第二高調波時系列情報算出ステップと、
差電圧の第二高調波時系列情報を振幅値演算して差電圧第二高調波成分量を算出する差電圧第二高調波成分量算出ステップと、
前記差電圧第二高調波成分量と前記差電圧基本波成分量との比率演算から差電圧の第二高調波含有量を算出する第二高調波含有量算出ステップと、
前記第二高調波含有量を予め定める判定定数と比較判定し、前記第二高調波含有量が予め定めた判定定数を超過する場合に前記電圧ベース区間故障検出ステップによる区間故障判定を抑止する区間故障判定抑止ステップとを有することを特徴とする交流ATき電回路のき電保護方法。
In the AC self-winding transformer feeding circuit, a feeding protection method for detecting a failure of a train line bordering on the self-winding transformer of an electric station arranged for each arbitrary distance section,
Feeding voltage acquisition step for capturing the feeding voltage at both ends of the protection section from the secondary side of the instrument transformer at each electrical station end,
Voltage information sharing step of measuring the feeding voltage captured at each of the electrical station ends for each arbitrary period, and performing high-speed communication with each other and sharing the feeding voltage information at each end as the same time-series voltage information at both ends,
A difference voltage calculation step for calculating the same time series voltage information at both ends to obtain difference voltage time series information;
A difference voltage fundamental wave component calculating step for filtering the difference voltage time series information to obtain time series information of the difference voltage fundamental wave component;
A difference voltage fundamental wave component amount calculating step for calculating an amplitude value of the time series information of the difference voltage fundamental wave component to obtain a difference voltage fundamental wave component amount; and
A voltage-based section failure detection step of comparing and determining the difference voltage fundamental wave component amount and a predetermined constant to detect a section failure;
Second harmonic time series information calculating step for filtering the difference voltage time series information to obtain second harmonic time series information of the difference voltage;
A difference voltage second harmonic component amount calculating step for calculating a difference voltage second harmonic component amount by calculating an amplitude value of the second harmonic time series information of the difference voltage;
A second harmonic content calculating step of calculating a second harmonic content of the differential voltage from a ratio calculation of the differential voltage second harmonic component amount and the differential voltage fundamental wave component amount;
A section that compares and determines the second harmonic content with a predetermined determination constant, and suppresses the section failure determination by the voltage-based section failure detection step when the second harmonic content exceeds a predetermined determination constant. A method for protecting the feeding of an AC AT feeding circuit, comprising: a step of inhibiting failure determination.
交流単巻変圧器き電回路において、任意距離区間毎に配置される電気所の単巻変圧器を境界とする電車線の故障を検出するき電保護方法であって、
保護区間の両端き電電圧をそれぞれの電気所端で計器用変圧器の二次側から取り込むき電電圧取得ステップと、
前記電気所端それぞれで取り込むき電電圧を任意周期毎に測定し、相互に高速通信してそれぞれの端のき電電圧情報を両端の同一時系列電圧情報として一元共有する電圧情報共有ステップと、
前記保護区間の両端電車線電流をそれぞれの電気所端で計器用変流器の二次側から取り込む電車線電流取得ステップと、
前記電気所端それぞれで取り込む電車線電流を任意周期毎に測定し、相互に高速通信してそれぞれの端の電車線電流を両端の同一時系列電流情報として一元共有する電流情報共有ステップと、
前記両端の同一時系列電流情報を演算して差電流時系列情報を求める差電流算出ステップと、
前記差電流時系列情報をフィルタリング演算して、差電流基本波成分の時系列情報を求める差電流基本波成分算出ステップと、
前記差電流基本波成分の時系列情報を振幅値演算して差電流基本波成分量を求める差電流基本波成分量算出ステップと、
前記差電流基本波成分量と予め定める定数とを比較判定して区間故障を検出する電流ベース区間故障検出ステップと、
前記保護区間の両端の同一時系列電圧情報から各端それぞれの電圧時系列情報を求める電圧時系列情報算出ステップと、
前記各端の電圧時系列情報をフィルタリング演算して各端の電圧の基本波時系列情報を求める電圧基本波時系列情報算出ステップと、
前記各端の電圧の基本波時系列情報を振幅値演算して各端の電圧基本波成分量を求める電圧基本波成分量算出ステップと、
前記各端の電圧基本波成分量の過去値と現在値との電圧変化量を各端毎に求める電圧変化量算出ステップと、
前記各端毎の電圧変化量を加算してスカラ和量を求める電圧変化量算出ステップと、
前記差電流基本波成分量と予め定める定数とを比較判定し、前記電圧変化量のスカラ和量と予め定める定数とを比較判定し、双方の判定結果から区間故障を検出する区間故障検出ステップとを有することを特徴とする交流ATき電回路のき電保護方法。
In the AC self-winding transformer feeding circuit, a feeding protection method for detecting a failure of a train line bordering on the self-winding transformer of an electric station arranged for each arbitrary distance section,
Feeding voltage acquisition step for capturing the feeding voltage at both ends of the protection section from the secondary side of the instrument transformer at each electrical station end,
Voltage information sharing step of measuring the feeding voltage captured at each of the electrical station ends for each arbitrary period, and performing high-speed communication with each other and sharing the feeding voltage information at each end as the same time-series voltage information at both ends,
Train line current acquisition step for capturing both-end train line currents of the protected section from the secondary side of the current transformer at each electrical station end;
A current information sharing step of measuring the train line current captured at each of the electrical station ends for each arbitrary cycle, and sharing the train line current at each end as the same time-series current information at both ends by performing high-speed communication with each other,
A difference current calculation step for calculating difference current time series information by calculating the same time series current information at both ends; and
A difference current fundamental wave component calculating step for filtering the difference current time series information to obtain time series information of the difference current fundamental wave component;
A difference current fundamental wave component amount calculating step for calculating a difference current fundamental wave component amount by calculating an amplitude value of the time series information of the difference current fundamental wave component;
A current base section fault detection step of comparing and determining the difference current fundamental wave component amount and a predetermined constant to detect a section fault;
A voltage time series information calculating step for obtaining voltage time series information at each end from the same time series voltage information at both ends of the protection section;
A voltage fundamental wave time series information calculating step for obtaining a fundamental wave time series information of a voltage at each end by filtering the voltage time series information at each end, and
A voltage fundamental wave component amount calculating step for calculating an amplitude value of the fundamental wave time-series information of the voltage at each end to obtain a voltage fundamental wave component amount at each end;
A voltage change amount calculating step for obtaining a voltage change amount between a past value and a current value of the voltage fundamental wave component amount at each end;
A voltage change amount calculating step for obtaining a scalar sum by adding the voltage change amount at each end; and
A section failure detection step of comparing and determining the difference current fundamental wave component amount and a predetermined constant, comparing and determining a scalar sum amount of the voltage change amount and a predetermined constant, and detecting a section failure from both determination results; A feeding protection method for an AC AT feeding circuit, comprising:
JP2009272106A 2009-11-30 2009-11-30 AC AT feeder circuit protection device and method Active JP5319503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009272106A JP5319503B2 (en) 2009-11-30 2009-11-30 AC AT feeder circuit protection device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009272106A JP5319503B2 (en) 2009-11-30 2009-11-30 AC AT feeder circuit protection device and method

Publications (2)

Publication Number Publication Date
JP2011111128A JP2011111128A (en) 2011-06-09
JP5319503B2 true JP5319503B2 (en) 2013-10-16

Family

ID=44233777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009272106A Active JP5319503B2 (en) 2009-11-30 2009-11-30 AC AT feeder circuit protection device and method

Country Status (1)

Country Link
JP (1) JP5319503B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151763B (en) * 2012-09-28 2015-08-05 西南交通大学 A kind of electric railway AT Traction networks fault distinguishing and guard method
CN104325896B (en) * 2014-09-30 2016-04-06 西南交通大学 A kind of electric railway traction net sectional power supply distributed protection system
EP3405913A4 (en) * 2016-01-22 2019-06-19 Biarri Networks Pty Ltd Method and system for designing an electricity distribution network
RU172643U1 (en) * 2016-09-14 2017-07-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Уральский государственный университет путей сообщения" (УрГУПС) DEVICE FOR DETERMINING THE SHORT-TERMINAL PLACES IN THE GROUPING POINTS AND THE SWITCHABLE SECTIONS OF THE CONTACT NETWORK OF THE DOCKING STATION
CN106410765B (en) * 2016-10-26 2019-01-08 成都交大许继电气有限责任公司 A kind of traction substation protection for feed line system and method under full parallel operation mode
KR102112062B1 (en) * 2018-10-25 2020-05-27 김현태 Monitoring apparatus for unbalances of track circuit
KR102120366B1 (en) * 2018-10-25 2020-06-08 이인숙 Monitoring method for unbalances of track circuit
CN111775782B (en) * 2020-07-22 2022-05-20 西南交通大学 Electrified railway traction emergency guarantee power supply system and control method
CN113991618B (en) * 2021-09-30 2023-03-24 国电南瑞科技股份有限公司 Multi-parameter self-adaptive gamma-shaped characteristic traction network feeder distance protection method and device
CN114421474B (en) * 2022-03-30 2022-06-07 南京易司拓电力科技股份有限公司 Power-voltage sensitivity estimation method between distribution network nodes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007076607A (en) * 2005-09-16 2007-03-29 Toshiba Corp Failure point sample quantity measuring device for alternating current feeding circuit
JP5287036B2 (en) * 2008-08-26 2013-09-11 富士電機株式会社 AC ΔI type fault detection method and fault detection apparatus

Also Published As

Publication number Publication date
JP2011111128A (en) 2011-06-09

Similar Documents

Publication Publication Date Title
JP5319503B2 (en) AC AT feeder circuit protection device and method
Crotti et al. Pantograph-to-OHL arc: Conducted effects in DC railway supply system
CN100360949C (en) Fault detection of electric line
EP2829887B1 (en) Method and device for estimating angle of zero-sequence voltage in single-phase earth fault
JP5319504B2 (en) AC AT feeder circuit protection device and method
Mariscotti et al. Distribution of the traction return current in AT electric railway systems
JP4745000B2 (en) Fault detection device for fault location device for AC AT feeder circuit
CN109387743A (en) Switch and thus generate the method for single end distance measurement of traveling wave Injection Signal using neutral point
Platero et al. Ground fault location in 2× 25 kV high-speed train power systems by (auto) transformers currents ratio
Dong et al. High-resistance grounding fault detection and location in DC railway system
RU2498328C1 (en) Method for control of automatic reclosure of feeder switch with short-circuiting control in overhead system
JP2023078110A (en) Railway vehicle
RU2747112C1 (en) Method for determining the distance of a short circuit in the ac contact network of a multipath section (options)
JP2013088256A (en) Ground accident section plotting device
RU108637U1 (en) DEVICE FOR DETERMINING THE DISTANCE FROM THE POWER SUPPLY TO THE PLACE OF TERMINATION OF THE INSULATED CONNECTOR OF THE THREE-PHASE AIR LINE WITH A VOLTAGE OVER 1000 V LOCATED ON THE SUPPLIES OF THE CONTACT AC NETWORK
Solak et al. Analysis of voltage dip source location methods
RU2237905C2 (en) Method for determining distance from short circuit location in multi-path traction nets of alternating and direct current and device for realization of said method (variants)
Xie Study on methods to reducing rail potential of high-speed railway
KR101470932B1 (en) System for estimating real time catenary impedance using the synchronized measuring power data between operation train and substation
Ooagu et al. Measurements and calculations of rail potential in DC traction power supply system
Jung et al. The New Approach of the Impedance Calculation Method of Fault Current Analysis in the AT Feeding Method of the Electric Railway
Battistelli et al. Short circuit modelling and simulation of 2× 25 kV high speed railways
RU116243U1 (en) DEVICE FOR DETERMINING THE DISTANCE TO THE PLACE OF A SHORT CIRCUIT TO THE GROUND OF THE AIRLINE LINES WITH A VOLTAGE OVER 1000 V LOCATED ON THE SUPPORTS OF THE AC CONTACT NETWORK
KR101537194B1 (en) Real time monitoring system for common ground facility of the electric railway
Cho et al. A study on the distance relay operation characteristics for Korean single track AC electrical railway system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130711

R150 Certificate of patent or registration of utility model

Ref document number: 5319503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350