JP5287036B2 - AC ΔI type fault detection method and fault detection apparatus - Google Patents

AC ΔI type fault detection method and fault detection apparatus Download PDF

Info

Publication number
JP5287036B2
JP5287036B2 JP2008216956A JP2008216956A JP5287036B2 JP 5287036 B2 JP5287036 B2 JP 5287036B2 JP 2008216956 A JP2008216956 A JP 2008216956A JP 2008216956 A JP2008216956 A JP 2008216956A JP 5287036 B2 JP5287036 B2 JP 5287036B2
Authority
JP
Japan
Prior art keywords
current
harmonic
suppression
failure
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008216956A
Other languages
Japanese (ja)
Other versions
JP2010057219A (en
Inventor
勲 千原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2008216956A priority Critical patent/JP5287036B2/en
Publication of JP2010057219A publication Critical patent/JP2010057219A/en
Application granted granted Critical
Publication of JP5287036B2 publication Critical patent/JP5287036B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

本発明は、変電所から電車線路を通じて電気車に交流電力を供給する交流き電回路の故障を検出する交流ΔI形故障検出方法及び故障検出装置に関する。   The present invention relates to an AC ΔI type fault detection method and a fault detection apparatus for detecting a fault in an AC feeder circuit that supplies AC power to an electric vehicle from a substation through a train line.

この種の交流き電回路の故障検出方法としては、例えば、変電所から電車線路を通して電気車に交流電力を供給する交流電気鉄道において、電気車の負荷電流ベクトルを〔I〕とし、電車線路に故障が発生した場合の故障電流ベクトルを〔I〕としたとき、
〔ΔI〕=〔I〕−〔I
により演算される差ベクトル〔ΔI〕の大きさが所定値を越えた場合に故障と選択するようにした交流ΔI形故障選択方法が提案されている(例えば、特許文献1参照)。
特開平9−93791号公報
As a fault detection method for this type of AC feeder circuit, for example, in an AC electric railway that supplies AC power to an electric vehicle from a substation through a train line, the load current vector of the electric vehicle is set to [I L ], and the train line When the failure current vector when a failure occurs is [I S ],
[ΔI] = [I S ] − [I L ]
There has been proposed an AC ΔI type fault selection method in which a fault is selected when the magnitude of the difference vector [ΔI] calculated by (1) exceeds a predetermined value (see, for example, Patent Document 1).
JP-A-9-93791

しかしながら、上記特許文献1に記載された従来例にあっては、PWM制御車両の場合でも容易に故障検出を行うことができるものであるが、電車線路に電気車負荷電流が流れている場合の電流ベクトル図は、図4(a)に示すようになる。この図4(a)に示すように、電気車負荷電流Iが流れている場合に故障電流Iが同時に重畳されると、下記式で求められる故障時に立ち上がる電流差ベクトル〔ΔI11〕は小さい値となる。
〔ΔI11〕=〔I〕−〔I
However, in the conventional example described in Patent Document 1 above, failure detection can be easily performed even in the case of a PWM control vehicle, but in the case where an electric vehicle load current is flowing through the train line. The current vector diagram is as shown in FIG. As shown in FIG. 4 (a), when the case fault current I S that electric vehicle load current I L flows are superimposed simultaneously, the current difference vector [[Delta] I 11] which rises at the time of failure to be determined by the following formula Small value.
[ΔI 11 ] = [I S ] − [I L ]

一方、図5(a)の時点t0〜t1の間で、正常な電気車負荷電流Iが流れている場合に、図5(b)に示すように特性曲線L1で示すき電電流に、特性曲線L2で示す20%程度以下の第3高調波成分等が含まれ、図5(a)の時点t1以降の故障中は、き電電圧が低下し、高調波成分を含む電気車負荷電流Iが増加し、図5(b)の特性曲線L2で示すように、き電電流の高調波成分(第3高調波等)が減少する。これらを利用し、故障前電流を抑制する抑制係数Kfを電流ベクトル〔I〕に乗じ、さらに、故障後電流を抑制する抑制係数Kfを電流ベクトル〔I〕に乗じることで、故障時に立ち上がるΔI12は図4(b)に示すように見かけ上大きくなり、故障検出を容易にすることができる。なお、抑制係数Kfは、き電電流の高調波成分(第3高調波等)がほぼ0となることから、Kf≒1となる。
〔ΔI12〕=〔I〕×Kf−〔I〕×Kf
On the other hand, between the time t0~t1 of FIG. 5 (a), when the normal electrical vehicle load current I L is flowing, the Denden stream Ki indicated by the characteristic curve L1, as shown in FIG. 5 (b), The third harmonic component or the like of about 20% or less indicated by the characteristic curve L2 is included, and during the failure after the time t1 in FIG. 5A, the feeding voltage decreases, and the electric vehicle load current includes the harmonic component. I S increases, as shown by the characteristic curve L2 in FIG. 5 (b), the harmonic components of the feeding circuit current (third harmonic, etc.) is reduced. Utilizing these, multiplied by inhibiting suppression coefficient Kf L pre-fault current to the current vector [I L], further, by multiplying suppressing reduction coefficient Kf S the post-fault current to the current vector [I S], failure As shown in FIG. 4B, ΔI 12 that sometimes rises apparently increases, and failure detection can be facilitated. Note that suppression coefficient Kf S, since it becomes a harmonic component of the feeding circuit current (third harmonic, etc.) approximately 0, the Kf S ≒ 1.
[ΔI 12 ] = [I S ] × Kf S − [I L ] × Kf L

しかしながら、故障時の電流変化により、過渡高調波成分(第3高調波等)が発生し、高調波含有率が100%を越す場合がある。この影響を受けると、正確な高調波抑制による交流ΔI形故障検出は困難となるという未解決の課題がある。
そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、故障時の電流変化により発生する過渡高調波成分の影響を受けず、故障前後の高調波含有率を正確に求めることで、電車線路で発生した故障を高感度に検出することができる交流ΔI形故障検出方法及び故障検出装置を提供することを目的としている。
However, a transient harmonic component (the third harmonic or the like) is generated due to a current change at the time of failure, and the harmonic content may exceed 100%. Under this influence, there is an unsolved problem that it is difficult to detect an AC ΔI type fault by accurate harmonic suppression.
Therefore, the present invention has been made paying attention to the above-mentioned unsolved problems of the conventional example, and is not affected by the transient harmonic component generated by the current change at the time of failure, and the harmonic content before and after the failure is determined. It is an object of the present invention to provide an AC ΔI type fault detection method and fault detection apparatus that can detect a fault that has occurred on a train track with high sensitivity by obtaining it accurately.

上記目的を達成するために、請求項1に係る交流ΔI形故障検出方法は、変電所から電車線路を通じて電気車に交流電力を供給する交流き電回路の故障を電流差ベクトルΔIを演算することにより検出する交流ΔI形故障検出方法であって、前記電車線路に供給される電流を検出し、前記検出した電流の基本波成分及び高調波成分に基づいて高調波含有率を演算し、現在から故障時に過渡高調波成分が発生する所定時間分を遡った期間内の高周波含有率から最小値である最小高調波含有率を検出し、前記最小高調波含有率に基づいて抑制係数を演算し、前記抑制係数と前記検出した電流の基本波成分とを乗算して高調波抑制電流を演算し、現在の高調波抑制電流と、現在から故障時に発生する過渡高調波成分が減衰する所定時間を越えて遡った時点での高調波抑制電流と、に基づいて電流差ベクトルΔIを演算し、当該電流差ベクトルΔIを設定値と比較して故障検出を行うことを特徴としている。   In order to achieve the above object, an AC ΔI type fault detection method according to claim 1 calculates a current difference vector ΔI for a fault of an AC feeder circuit that supplies AC power from a substation to an electric vehicle through a train line. And detecting the current supplied to the train line, calculating the harmonic content based on the fundamental component and the harmonic component of the detected current, Detecting the minimum harmonic content that is the minimum value from the high-frequency content in the period going back a predetermined amount of time when a transient harmonic component occurs at the time of failure, and calculating the suppression coefficient based on the minimum harmonic content, The harmonic suppression current is calculated by multiplying the suppression coefficient and the detected fundamental wave component of the current, and the current harmonic suppression current and the transient harmonic component generated at the time of failure from the current time exceeds the predetermined time. Dating back A harmonic suppression current at the point, calculates a current difference vector ΔI based on, is characterized by the failure detection by comparing the current difference vector ΔI and settings.

また、請求項2に係る交流ΔI形故障検出装置は、変電所から電車線路を通じて電気車に交流電力を供給する交流き電回路の故障を、電流差ベクトルΔIを演算することにより検出する交流ΔI形故障検出装置であって、
前記電車線路に供給される電流を検出する電流検出部と、検出した電流の基本波成分及び高調波成分を抽出するフィルタ部と、抽出した基本波成分及び高調波成分に基づいて高調波含有率を演算する高調波含有率演算部と、演算した高周波含有率を順次記憶する高周波含有率記憶部と、前記高調波含有率演算部で演算された現在高周波含有率と前記高周波含有率記憶部に記憶された現在から故障時に過渡高調波成分が発生する所定時間分を遡った期間内の高周波含有率と、から最小値である最小高調波含有率を検出する最小高調波含有率検出部と、検出した最小高調波含有率に基づいて抑制係数を演算し、演算した抑制係数と前記フィルタ部で抽出した電流の基本波成分とを乗算して高調波抑制電流を演算する高調波抑制電流演算部と、該高調波抑制電流演算部で演算した高調波抑制電流を順次記憶する高調波抑制電流記憶部と、前記高調波抑制電流演算部で演算した現在の高調波抑制電流と、前記高調波抑制電流記憶部に記憶された現在から故障時に発生する過渡高調波成分が減衰する所定時間を越えて遡った時点での高調波抑制電流と、に基づいて電流差ベクトルΔIを演算する電流差ベクトル演算部と、演算した電流差ベクトルΔIを設定値と比較して故障検出を行う故障検出部とを備えたことを特徴としている。
Further, the AC ΔI type fault detection apparatus according to claim 2 detects an AC ΔI fault detecting a fault of an AC feeding circuit that supplies AC power from a substation to an electric vehicle through a train line by calculating a current difference vector ΔI. Type fault detection device,
A current detection unit for detecting a current supplied to the train line, a filter unit for extracting a fundamental wave component and a harmonic component of the detected current, and a harmonic content based on the extracted fundamental wave component and the harmonic component A high-frequency content rate calculating unit, a high-frequency content rate storage unit that sequentially stores the calculated high-frequency content rate, a current high-frequency content rate calculated by the harmonic content rate calculating unit, and the high-frequency content rate storage unit A high-frequency content rate in a period that goes back a predetermined amount of time when a transient harmonic component is generated at the time of failure from the stored current, and a minimum harmonic content rate detection unit that detects a minimum harmonic content rate that is a minimum value, A harmonic suppression current calculation unit that calculates a suppression coefficient based on the detected minimum harmonic content and multiplies the calculated suppression coefficient by the fundamental component of the current extracted by the filter unit. And the high In the harmonic suppression current storage unit that sequentially stores the harmonic suppression current calculated in the wave suppression current calculation unit, the current harmonic suppression current calculated in the harmonic suppression current calculation unit, and the harmonic suppression current storage unit A current difference vector calculation unit for calculating a current difference vector ΔI based on a harmonic suppression current at a time point that goes back beyond a predetermined time when a transient harmonic component generated at the time of failure attenuates from the stored current; And a failure detection unit that detects a failure by comparing the current difference vector ΔI with a set value.

本発明によれば、故障前後の高調波抑制電流を演算するための抑制係数を求める際に、故障時の電流変化で発生する過渡高調波成分が存在する期間を越える一定時間の高調波含有率の最小値に基づいて抑制係数Kfを求めるようにしたので、交流き電回路の電車線路に故障が発生したときに、確実且つ高速に故障を検出することができ、この故障検出時に交流き電線遮断器を開放することが可能となり、故障点及び各種設備機器らの破損事故を未然に防止して、故障の拡大を最小限に抑えることができるという効果が得られる。   According to the present invention, when obtaining the suppression coefficient for calculating the harmonic suppression current before and after the failure, the harmonic content ratio for a certain time exceeding the period in which the transient harmonic component generated by the current change at the time of the failure exists. Since the suppression coefficient Kf is obtained based on the minimum value of the power line, when a failure occurs in the train line of the AC feeder circuit, the failure can be detected reliably and at high speed. It becomes possible to open the circuit breaker, and it is possible to prevent the failure point and various facilities and equipment from being damaged and to minimize the expansion of the failure.

また、電気車負荷電流に含まれる高調波電流(第3高調波等)は電気車がダイオード整流器車両やサイリスタ位相制御車両である場合に多く、本発明の故障検出方法及び装置が有効的であり、PWM制御車の電気車負荷電流に含まれる高調波電流は減少方向であるが、故障時の電流変化で発生する過渡高調波成分の影響を受けないよう電流差ベクトルΔIの演算を実施する必要性は同じであり、本発明により、電車制御方式に係わらず正確な交流ΔI形故障検出を行うことができる。   The harmonic current (third harmonic etc.) included in the electric vehicle load current is often when the electric vehicle is a diode rectifier vehicle or a thyristor phase control vehicle, and the failure detection method and apparatus of the present invention is effective. The harmonic current included in the electric vehicle load current of the PWM control vehicle is decreasing, but it is necessary to calculate the current difference vector ΔI so as not to be affected by the transient harmonic component generated by the current change at the time of failure. The present invention is the same, and according to the present invention, accurate AC ΔI type fault detection can be performed regardless of the train control system.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は本発明に係る交流ΔI形故障検出装置を適用した交流き電システムを示す基本構成図である。
この図1において、1は交流き電システムであって、この交流き電システム1は、変電所2から出力される交流電力が電車線路3に供給され、この電車線路3に供給される交流電力がレール4上を走行する電気車5にパンタグラフ6を介して供給される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a basic configuration diagram showing an AC feeding system to which an AC ΔI type fault detection apparatus according to the present invention is applied.
In FIG. 1, reference numeral 1 denotes an AC power feeding system. The AC power feeding system 1 is supplied with AC power output from a substation 2 to a train track 3, and AC power supplied to the train track 3. Is supplied to the electric vehicle 5 traveling on the rail 4 via the pantograph 6.

電車線路3に印加される交流電圧は計器用変圧器7で降圧されて交流ΔI形故障検出装置8に入力電圧として入力され、この交流ΔI形故障検出装置8には電車線路3に配設された計器用変流器9で検出された入力電流Iiが入力されている。
交流ΔI形故障検出装置8は、例えばマイクロコンピュータで構成され、機能ブロック図で表すと図2に示すようになる。
The AC voltage applied to the train line 3 is stepped down by the instrument transformer 7 and input as an input voltage to the AC ΔI type failure detection device 8. The AC ΔI type failure detection device 8 is disposed on the train line 3. The input current Ii detected by the current transformer 9 is input.
The AC ΔI type failure detection device 8 is constituted by a microcomputer, for example, and is shown in FIG. 2 in a functional block diagram.

すなわち、先ず、計器用変流器9で検出された入力電流Iiがフィルタ部11に供給され、このフィルタ部11で、電気車負荷電流の基本波成分If1と第3高調波成分If3とを抽出する。そして、抽出された基本波成分If1及び第3高調波成分If3が高調波含有率演算部12に供給される。この高調波含有率演算部12では、基本波成分If1が略零であるときに高調波含有率nf(t)を最大値である“1”に設定し、基本波成分If1が略零ではないときには、下記(1)式に従って高調波含有率nf(t)を演算する。
nf(t)=|If3|÷|If1| ・・・(1)
That is, first, the input current Ii detected by the current transformer 9 is supplied to the filter unit 11, and the filter unit 11 extracts the fundamental wave component If1 and the third harmonic component If3 of the electric vehicle load current. To do. Then, the extracted fundamental wave component If1 and third harmonic component If3 are supplied to the harmonic content calculating unit 12. In the harmonic content calculation unit 12, when the fundamental wave component If1 is substantially zero, the harmonic content nf (t) is set to “1” which is the maximum value, and the fundamental wave component If1 is not substantially zero. Sometimes, the harmonic content nf (t) is calculated according to the following equation (1).
nf (t) = | If3 | ÷ | If1 | (1)

そして、高調波含有率演算部12で演算された高調波含有率nf(t)が順次所定段数に設定されたシフトレジスタで構成された高調波含有率記憶部13に記憶される。
そして、高調波含有率演算部12で演算された高調波含有率nf(t)のうち故障時の電流変化で発生する過渡高調波成分が存在する期間を越える所定時間内の高調波含有率記憶部13に記憶されている高調波含有率nf(t)が最小高調波含有率演算部14に供給される。例えば、故障時の電流変化で発生する過渡高調波成分が存在する期間を越える所定時間が2サイクルとすれば、最新時刻tの高調波含有率nf(t)、1サイクル前の時刻t−1の高調波含有率nf(t-1)及び2サイクル前の時刻t−2の高調波含有率nf(t-2)が最小高調波含有率演算部14に供給される。
Then, the harmonic content rate nf (t) calculated by the harmonic content rate calculation unit 12 is sequentially stored in the harmonic content rate storage unit 13 including a shift register set to a predetermined number of stages.
Then, the harmonic content storage within a predetermined time exceeding the period in which the transient harmonic component generated by the current change at the time of the failure is included in the harmonic content nf (t) calculated by the harmonic content calculation unit 12. The harmonic content rate nf (t) stored in the unit 13 is supplied to the minimum harmonic content calculation unit 14. For example, if the predetermined time exceeding the period in which the transient harmonic component generated due to the current change at the time of failure is 2 cycles, the harmonic content nf (t) at the latest time t, the time t−1 before 1 cycle The harmonic content rate nf (t-1) and the harmonic content rate nf (t-2) at time t-2 two cycles before are supplied to the minimum harmonic content calculation unit 14.

この最小高調波含有率演算部14では、下記(2)式の演算を行って最小高調波含有率nfminを演算する。
nfmin=min{nf(t),nf(t-1),・・・,nf(t-P)} ・・・(2)
ここで、min{ }は{ }内の最小値を求める関数であり、Pは故障時の電流変化で発生する過渡高調波成分が存在する期間を越える所定時間のサイクル数である。
The minimum harmonic content rate calculation unit 14 calculates the minimum harmonic content rate nfmin by performing the calculation of the following equation (2).
nfmin = min {nf (t), nf (t−1),..., nf (t−P)} (2)
Here, min {} is a function for obtaining the minimum value in {}, and P is the number of cycles for a predetermined time exceeding the period in which the transient harmonic component generated by the current change at the time of failure exists.

故障発生時における過渡高調波が発生した場合の高調波含有率nf(t)は、故障発生前および過渡高調波が減衰した故障発生中の高調波含有率nf(t)よりも大きいため、上記のように最小高調波含有率nfminを演算することで、故障発生時における過渡高調波が発生した場合の高調波含有率nf(t)が除かれることとなる。   Since the harmonic content rate nf (t) when a transient harmonic is generated at the time of the failure is higher than the harmonic content rate nf (t) before the failure and during the failure where the transient harmonic is attenuated, Thus, by calculating the minimum harmonic content rate nfmin, the harmonic content rate nf (t) in the case where a transient harmonic is generated at the time of failure occurrence is removed.

そして、最小高調波含有率演算部14で演算された最小高調波含有率nfminが抑制係数演算部15に供給される。この抑制係数演算部15では、まず下記(3)式の演算を行って抑制係数Kfを演算する。
Kf=1−nfmin×K ・・・(3)
ここで、Kは補正係数であって、電気車負荷電流が流れている場合に、き電電流に含まれる第3高調波は20%程度以下であることから、最大の電流抑制効果を確保し、また抑制係数Kfが負の値にならないように例えばK=3.33に設定される。しかし、Kfが負の値となる場合もあるため、係る場合にはKf=0を再設定する。例えば、本波成分If1が略零であるときにはnfmin=1となり、係る場合に該当する。そして、抑制係数演算部15で演算される抑制係数Kf及び前述したフィルタ部11で抽出された基本波成分If1が高調波抑制電流演算部16に供給される。この高調波抑制電流演算部16では、下記(4)式の演算を行って高調波抑制電流Ifs(t)を演算する。
Ifs(t)=If1×Kf ・・・(4)
Then, the minimum harmonic content rate nfmin calculated by the minimum harmonic content rate calculation unit 14 is supplied to the suppression coefficient calculation unit 15. The suppression coefficient calculator 15 first calculates the suppression coefficient Kf by calculating the following equation (3).
Kf = 1−nfmin × K (3)
Here, K is a correction coefficient, and when the electric vehicle load current is flowing, the third harmonic contained in the feeding current is about 20% or less, so that the maximum current suppressing effect is secured. For example, K = 3.33 is set so that the suppression coefficient Kf does not become a negative value. However, since Kf may be a negative value, Kf = 0 is reset in such a case. For example, when the main wave component If1 is substantially zero, nfmin = 1, which corresponds to this case. Then, the suppression coefficient Kf calculated by the suppression coefficient calculation unit 15 and the fundamental wave component If1 extracted by the filter unit 11 are supplied to the harmonic suppression current calculation unit 16. The harmonic suppression current calculation unit 16 calculates the harmonic suppression current Ifs (t) by performing the calculation of the following equation (4).
Ifs (t) = If1 × Kf (4)

そして、高調波抑制電流演算部16で演算された高調波抑制電流Ifs(t)が順次例えばシフトレジスタで構成される高調波抑制電流記憶部17に記憶される。
そして、故障発生時における過渡高調波成分が存在する期間を越え、かつ、過渡高調波が減衰するサイクルをQとすれば、高調波抑制電流演算部16で演算された高調波抑制電流Ifs(t)及び高調波抑制電流記憶部17に記憶されているQサイクル前の高調波抑制電流If(t−Q)が電流差ベクトル演算部18に供給される。例えば3サイクルから5サイクルで故障発生時における過渡高調波成分が存在する期間を越え、かつ、過渡高調波が減衰するとき、高調波抑制電流If(t-3)、If(t-4)及びIf(t-5)のうちの1つ例えばIf(t-4)が電流差ベクトル演算部18に供給される。
Then, the harmonic suppression current Ifs (t) calculated by the harmonic suppression current calculation unit 16 is sequentially stored in the harmonic suppression current storage unit 17 configured by, for example, a shift register.
Then, if the cycle in which the transient harmonic component exists at the time of the failure is exceeded and the cycle in which the transient harmonic is attenuated is Q, the harmonic suppression current Ifs (t (t) calculated by the harmonic suppression current calculation unit 16 is assumed. ) And the harmonic suppression current If (t−Q) before the Q cycle stored in the harmonic suppression current storage unit 17 are supplied to the current difference vector calculation unit 18. For example, when the transient harmonic component exceeds the period in which the transient harmonic component exists at the time of occurrence of the failure in 3 to 5 cycles and the transient harmonic is attenuated, the harmonic suppression currents If (t-3), If (t-4) and One of If (t-5), for example, If (t-4) is supplied to the current difference vector calculation unit 18.

この電流差ベクトル演算部18では、下記(5)式の演算を行って電流差ベクトルΔIfを演算する。
ΔIf=|Ifs(t)−Ifs(t-Q)| ・・・(5)
この(5)式の演算を行うことにより、Ifs(t)が故障後の高調波抑制電流を表し、Ifs(t-Q)が故障前の高調波抑制電流を表すことから、下記(6)式及び(7)式で表すことができる。
〔I〕×Kf=Ifs(t) ・・・(6)
〔I〕×Kf=Ifs(t-Q) ・・・(7)
The current difference vector calculation unit 18 calculates the current difference vector ΔIf by calculating the following equation (5).
ΔIf = | Ifs (t) −Ifs (t−Q) | (5)
By performing the calculation of equation (5), Ifs (t) represents the harmonic suppression current after the failure, and Ifs (t-Q) represents the harmonic suppression current before the failure, the following (6) It can represent with Formula and (7) Formula.
[I S ] × Kf S = Ifs (t) (6)
[I L ] × Kf L = Ifs (t−Q) (7)

したがって、前記(5)式は故障時の電流変化で発生する過渡高調波成分の影響を受けない電流差ベクトル〔ΔI〕を演算していることになる。
〔ΔI〕=〔I〕×Kf−〔I〕×Kf ・・・(8)
この電流差ベクトル演算部18で演算した電流差ベクトルΔIが故障検出部19に供給される。この故障検出部19では、入力された電流差ベクトルΔIが所定値ΔIs以上であるか否かを判定し、ΔI<ΔIsであるときには故障が発生していないものと判断し、ΔI≧ΔIsであるときには故障が発生しているものと判断して交流き電線遮断器20を開放する故障検出信号BSを出力する。
Therefore, the equation (5) calculates the current difference vector [ΔI] that is not affected by the transient harmonic component generated by the current change at the time of failure.
[ΔI] = [I S ] × Kf S − [I L ] × Kf L (8)
The current difference vector ΔI calculated by the current difference vector calculation unit 18 is supplied to the failure detection unit 19. The failure detection unit 19 determines whether or not the input current difference vector ΔI is greater than or equal to a predetermined value ΔIs. If ΔI <ΔIs, it is determined that no failure has occurred, and ΔI ≧ ΔIs. Sometimes, it is determined that a failure has occurred, and a failure detection signal BS for opening the AC feeder breaker 20 is output.

また、交流ΔI形故障検出装置8は図3に示す故障検出処理を実行する。
この故障検出処理は、図3に示すように、所定時間毎のタイマ割込処理として実行され、先ず、ステップS1で、計器用変流器9で検出した電車線路電流Iiを読込み、次いで、ステップS2に移行して、フィルタ処理を行って電車線路電流Iiの基本波成分If1及び第3高調波成分If3を抽出する。
Further, the AC ΔI type failure detection device 8 executes the failure detection process shown in FIG.
As shown in FIG. 3, this failure detection process is executed as a timer interruption process at predetermined time intervals. First, in step S1, the train line current Ii detected by the instrument current transformer 9 is read, and then the step The process proceeds to S2, and a filter process is performed to extract a fundamental wave component If1 and a third harmonic component If3 of the train line current Ii.

次いでステップS3に移行して、抽出した基本波成分If1の絶対値が所定値δI以下で略“0”であるか否かを判定し(|If1|<δI)、基本波成分If1が略“0”であるときにはステップS4に移行して、高調波含有率nf(t)を“1”に設定してからステップS6に移行し、基本波成分If1が略“0”ではないときにはステップS5に移行して、前記(1)式の演算を行って高調波含有率nf(t)を算出する。   Subsequently, the process proceeds to step S3, where it is determined whether or not the absolute value of the extracted fundamental wave component If1 is equal to or less than a predetermined value δI and is substantially “0” (| If1 | <δI), and the fundamental wave component If1 is substantially “ When it is “0”, the process proceeds to step S4, the harmonic content rate nf (t) is set to “1” and then the process proceeds to step S6, and when the fundamental wave component If1 is not substantially “0”, the process proceeds to step S5. Then, the harmonic content nf (t) is calculated by performing the calculation of the equation (1).

次いで、ステップS6に移行して、算出した高調波含有率nf(t)をRAM等に形成したシフトレジスタ構成の高調波含有率記憶領域に格納し、次いでステップS7に移行する。ここで、故障時の電流変化で発生する過渡高調波成分が存在する時間を越える所定時間のサイクル数をPとすると、ステップS4又はS5で算出した高調波含有率nf(t)と、高調波含有記憶領域に格納されている1サイクル前の高調波含有率nf(t-1)からPサイクル前の高調波含有率nf(t-P)までを読込み、前記(2)式の演算を行って最小高調波含有率nfminを算出する。   Next, the process proceeds to step S6, where the calculated harmonic content ratio nf (t) is stored in the harmonic content storage area of the shift register configuration formed in the RAM or the like, and then the process proceeds to step S7. Here, assuming that the number of cycles in a predetermined time exceeding the time in which the transient harmonic component generated due to the current change at the time of failure is P, the harmonic content nf (t) calculated in step S4 or S5, and the harmonic Read from the harmonic content ratio nf (t-1) one cycle before stored in the content storage area to the harmonic content ratio nf (t-P) before P cycle, and perform the calculation of equation (2) above To calculate the minimum harmonic content nfmin.

次いで、ステップS8に移行して、ステップS7で算出した最小高調波含有率nfminに基づいて前記(3)式の演算を行って抑制係数Kfを算出し、次いでステップS9に移行して算出した抑制係数Kfが負値であるか否かを判定し、Kf<0であるときにはステップS10に移行して、算出した抑制係数Kfを“0”に変更してからステップS11に移行し、Kf≧0であるときにはそのままステップS11に移行する。
ステップS11では、ステップS8又はS10で算出した抑制係数Kfに前記ステップS2で抽出した基本波成分If1を乗算する前記(4)式の演算を行って高調波抑制電流Ifs(t)を算出してからステップS12に移行する。
Next, the process proceeds to step S8, the suppression coefficient Kf is calculated by performing the calculation of the equation (3) based on the minimum harmonic content rate nfmin calculated in step S7, and then the process proceeds to step S9. It is determined whether or not the coefficient Kf is a negative value. If Kf <0, the process proceeds to step S10, the calculated suppression coefficient Kf is changed to “0”, the process proceeds to step S11, and Kf ≧ 0. If so, the process proceeds to step S11.
In step S11, the suppression coefficient Kf calculated in step S8 or S10 is multiplied by the fundamental wave component If1 extracted in step S2 to calculate the harmonic suppression current Ifs (t). To step S12.

このステップS12では、ステップS11で算出した高調波抑制電流Ifs(t)をRAM等に形成したシフトレジスタ構成の高調波抑制電流記憶領域に記憶し、次いでステップS13に移行して、ステップS12で算出した高調波抑制電流Ifs(t)と高調波抑制電流記憶領域に記憶されている、故障発生時における過渡高調波成分が存在する期間を越え、かつ、過渡高調波が減衰するサイクルQだけ前の高調波抑制電流Ifs(t-Q)とを読込み、これらに基づいて前記(5)式の演算を行って、電流差ベクトルΔIを算出してからステップS14に移行する。   In this step S12, the harmonic suppression current Ifs (t) calculated in step S11 is stored in a harmonic suppression current storage area of a shift register configuration formed in a RAM or the like, and then the process proceeds to step S13 and calculated in step S12. The harmonic suppression current Ifs (t) and the harmonic suppression current storage area stored in the storage region of the harmonic suppression current exceed the period in which the transient harmonic component is present and the cycle Q before the transient harmonic is attenuated. The harmonic suppression current Ifs (t-Q) is read, and based on these, the calculation of the equation (5) is performed to calculate the current difference vector ΔI, and then the process proceeds to step S14.

このステップS14では、ステップS13で算出した電流差ベクトルΔIが予め設定した設定値ΔIs以上であるか否かを判定し、ΔI<ΔIsであるときには電車線路3に故障が発生していないものと判断して、そのままタイマ割込処理を終了して所定のメインプログラムに復帰し、ΔI≧ΔIsであるときには電車線路3に故障が発生しているものと判断してステップS15に移行し、交流き電線遮断器20に故障信号BSを出力してから故障検出処理を終了する。   In step S14, it is determined whether or not the current difference vector ΔI calculated in step S13 is greater than or equal to a preset set value ΔIs. If ΔI <ΔIs, it is determined that no failure has occurred in the train line 3. Then, the timer interruption process is terminated as it is, and the routine returns to the predetermined main program. When ΔI ≧ ΔIs, it is determined that a failure has occurred in the train line 3, and the process proceeds to step S15, and the AC feeder After the failure signal BS is output to the circuit breaker 20, the failure detection process is terminated.

この図3の処理において、ステップS2の処理がフィルタ部11に対応し、ステップS3〜S5の処理が高調波含有率演算部12に対応し、ステップS6の処理が高調波含有率記憶部13に対応し、ステップS7の処理が最小高調波含有率演算部14に対応し、ステップS8〜S9の処理が抑制係数演算部15に対応し、ステップS11の処理が高調波抑制電流演算部16に対応し、ステップS12の処理が抑制電流記憶部17に対応し、ステップS13の処理が電流差ベクトル演算部18に対応し、ステップS14及びS15の処理が故障検出部19に対応している。   In the process of FIG. 3, the process of step S <b> 2 corresponds to the filter unit 11, the process of steps S <b> 3 to S <b> 5 corresponds to the harmonic content calculating unit 12, and the process of step S <b> 6 is stored in the harmonic content storage unit 13. Correspondingly, the processing of step S7 corresponds to the minimum harmonic content calculation unit 14, the processing of steps S8 to S9 corresponds to the suppression coefficient calculation unit 15, and the processing of step S11 corresponds to the harmonic suppression current calculation unit 16. The process in step S12 corresponds to the suppressed current storage unit 17, the process in step S13 corresponds to the current difference vector calculation unit 18, and the processes in steps S14 and S15 correspond to the failure detection unit 19.

次に、上記実施形態の動作を具体例をもって説明する。
今、電車線路3に流れる電車負荷電流が略零の状態を継続しているものとすると、交流ΔI形故障検出装置8に入力される入力電流Iiも略零となるので、ステップS2で抽出した基本波成分If1も略零となって、設定値δI以下の値となる。このため、ステップS3からステップS4に移行して算出される高調波含有率nf(t)は“1”を継続することになる。なお、故障時の電流変化で発生する過渡高調波成分が存在する時間を越える所定時間のサイクル数Pを2サイクルとし、故障発生時における過渡高調波成分が存在する期間を越え、かつ、過渡高調波が減衰するサイクル数Qを4サイクルとする。
Next, the operation of the above embodiment will be described with a specific example.
If it is assumed that the train load current flowing through the train track 3 continues to be substantially zero, the input current Ii input to the AC ΔI type fault detection device 8 is also substantially zero, and thus is extracted in step S2. The fundamental wave component If1 is also substantially zero, and is a value equal to or less than the set value δI. For this reason, the harmonic content nf (t) calculated by shifting from step S3 to step S4 continues to be “1”. Note that the number of cycles P for a predetermined time exceeding the time during which a transient harmonic component generated due to a current change at the time of failure exists is set to two cycles, the period of time when the transient harmonic component at the time of the failure is exceeded, and the transient harmonic The cycle number Q at which the wave attenuates is 4 cycles.

このため、最小高調波含有率演算部14で演算される最小高調波含有率nfminは“1”となるが、前記(3)式で算出される抑制係数Kfが負値となるので、ステップS9からステップS10に移行して抑制係数Kfは“0”に設定される。このため、前記(4)式で算出される抑制電流Ifs(t)はIfs(t)=If1×Kf=If1×0=0となり、入力電流Iiと略同じ零となる。そして、4サイクル前の抑制電流Ifs(t-4)も“0”となるので、ステップS14で算出される電流差ベクトルΔIも“0”となり、所定値ΔIs未満となるので、き電システムが正常であると判断してタイマ割込を終了して所定のメインプログラムに復帰する。   Therefore, the minimum harmonic content rate nfmin calculated by the minimum harmonic content rate calculation unit 14 is “1”, but the suppression coefficient Kf calculated by the above equation (3) is a negative value, so step S9. From step S10, the suppression coefficient Kf is set to "0". For this reason, the suppression current Ifs (t) calculated by the equation (4) is Ifs (t) = If1 × Kf = If1 × 0 = 0, which is substantially the same as the input current Ii. Since the suppression current Ifs (t-4) four cycles before is also “0”, the current difference vector ΔI calculated in step S14 is also “0”, which is less than the predetermined value ΔIs. It is determined that the timer is normal, the timer interrupt is terminated, and the program returns to a predetermined main program.

この電車負荷電流が略零である状態から電車負荷電流が流れると、高調波含有率nf(t)は電車負荷電流が略零であるときのnf(t)=1から電車負荷電流が流れ始めたときには過渡高調波によって高周波含有率nf(t-1)は正常時の20%を超えて、前記(3)式で算出される抑制係数Kfが負値となると、ステップS10に移行して抑制係数Kfが“0”に変更されるので、過渡高調波による高周波含有率nf(t)が増加した場合でも前記(4)式で算出される抑制電流Ifs(t)は“0”となり、前記(5)式で算出される電流差ベクトルΔIは“0”を維持する。   When the train load current flows from the state where the train load current is substantially zero, the harmonic content rate nf (t) starts to flow from nf (t) = 1 when the train load current is substantially zero. If the high frequency content nf (t-1) exceeds 20% of the normal value due to transient harmonics and the suppression coefficient Kf calculated by the above equation (3) becomes a negative value, the process proceeds to step S10 and is suppressed. Since the coefficient Kf is changed to “0”, even when the high-frequency content ratio nf (t) due to the transient harmonic increases, the suppression current Ifs (t) calculated by the equation (4) becomes “0”. The current difference vector ΔI calculated by the equation (5) maintains “0”.

その後、電車負荷電流が安定して、過渡高調波が収まったときには、第3高調波成分If3が基本波成分If1の20%以下の値となり、高調波含有量nf(t)が0.2以下となる。
このため、nf(t)<nf(t-1),nf(t-2)となり、最小高調波含有率nfmin=nf(t)となり、この最小高調波含有率nfminに基づいて前記(3)式によって抑制係数Kfが算出される。
After that, when the train load current is stabilized and the transient harmonics are settled, the third harmonic component If3 becomes 20% or less of the fundamental component If1, and the harmonic content nf (t) is 0.2 or less. It becomes.
Therefore, nf (t) <nf (t-1), nf (t-2), and the minimum harmonic content rate nfmin = nf (t). Based on this minimum harmonic content rate nfmin, (3) The suppression coefficient Kf is calculated by the equation.

したがって、抑制係数Kfは過渡高調波の影響を受けることなく算出されることになり、この抑制係数Kfを基本波成分If1に乗算して高調波含有率nf(t)に対応した比較的小さい値の抑制電流Ifs(t)を算出し、この抑制電流Ifs(t)から4サイクル前の抑制電流Ifs(t-4)を減算して電流差ベクトルΔIを算出するので、算出される電流差ベクトルΔIは設定値ΔIsを超えることはなく、過渡高調波により故障と誤判断されることを確実に防止することができる。   Therefore, the suppression coefficient Kf is calculated without being affected by the transient harmonic, and the suppression coefficient Kf is multiplied by the fundamental wave component If1 to be a relatively small value corresponding to the harmonic content nf (t). The suppression current Ifs (t) is calculated, and the current difference vector ΔI is calculated by subtracting the suppression current Ifs (t-4) four cycles before from the suppression current Ifs (t). ΔI does not exceed the set value ΔIs, and can be reliably prevented from being erroneously determined as a failure due to transient harmonics.

この電車負荷電流が流れている状態から、交流き電システムが故障したときには、図5(b)に示すように、き電電圧が低下し、高調波成分を含む電気車負荷電流が増加し、過渡高調波が収まった後に、き電電流の第3高調波成分If3が零近傍に減少することから、このときの故障後電流を抑制する抑制係数KfsはKfs≒1.0となり、故障前電流の高調波成分含有率nf(t-4)を正常時の最大値0.2としたときの抑制係数Kf=0.33に比較して大きくなると共に、基本波成分If1も増加するので、前述した(5)式で算出される電流差ベクトルΔIが大きな値となり、設定値ΔIsを超えることになって、故障と判断されて故障信号BSが交流き電線路遮断器20に供給され、この交流き電線路遮断器20が開放制御される。この結果、故障点及び各種設備機器らの破損事故を未然に防止して、故障の拡大を最小限に抑えることができる。   When the AC feeding system fails from the state where the train load current is flowing, as shown in FIG. 5 (b), the feeding voltage decreases, and the electric vehicle load current including the harmonic component increases, After the transient harmonics are settled, the third harmonic component If3 of the feeding current is reduced to near zero. Therefore, the suppression coefficient Kfs for suppressing the current after failure at this time becomes Kfs≈1.0, and the current before failure. Since the harmonic wave component content nf (t-4) is larger than the suppression coefficient Kf = 0.33 when the normal value is 0.2, the fundamental wave component If1 also increases. The current difference vector ΔI calculated by the equation (5) becomes a large value and exceeds the set value ΔIs, so that it is determined that there is a failure and the failure signal BS is supplied to the AC feeder circuit breaker 20. The feeder circuit breaker 20 is controlled to be opened. As a result, it is possible to prevent failure points and various facilities and equipment from being damaged and to minimize the expansion of failures.

また、電気車負荷電流に含まれる高調波電流(第3高調波等)は電気車がダイオード整流器車両やサイリスタ位相制御車両である場合に多く、本発明の故障検出方法及び装置が有効的であり、PWM制御車の電気車負荷電流に含まれる高調波電流は減少方向であるが、故障時の電流変化で発生する過渡高調波成分の影響を受けないよう電流差ベクトルΔIの演算を実施する必要性は同じであり、本発明により、電車制御方式に係わらず正確な交流ΔI形故障検出を行うことができる。
なお、上記実施形態においては、過渡高調波成分が存在する時間を越える所定時間(例えば2サイクル間の3点)の最小値を求め、故障前電流の算出時点を3サイクル前〜5サイクル前の間のサイクルとした場合について説明したが、これに限定されるものではなく、上記所定時間に合わせて2サイクル前の値とするようにしてもよい。
The harmonic current (third harmonic etc.) included in the electric vehicle load current is often when the electric vehicle is a diode rectifier vehicle or a thyristor phase control vehicle, and the failure detection method and apparatus of the present invention is effective. The harmonic current included in the electric vehicle load current of the PWM control vehicle is decreasing, but it is necessary to calculate the current difference vector ΔI so as not to be affected by the transient harmonic component generated by the current change at the time of failure. The present invention is the same, and according to the present invention, accurate AC ΔI type fault detection can be performed regardless of the train control system.
In the above embodiment, the minimum value of a predetermined time (for example, three points between two cycles) exceeding the time during which the transient harmonic component exists is obtained, and the calculation time point of the pre-failure current is 3 cycles to 5 cycles before. Although the case where the cycle is between has been described, the present invention is not limited to this, and it may be set to a value two cycles before the predetermined time.

本発明を交流き電システムに適用した場合の一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment at the time of applying this invention to an AC feeder system. 交流ΔI形故障検出装置の機能ブロック図である。It is a functional block diagram of an AC ΔI type fault detection device. 交流ΔI形故障検出装置で実行する故障検出処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the failure detection processing procedure performed with an alternating current ΔI type failure detection device. 従来例の負荷電流と故障電流が重なった場合の故障検出原理を説明するベクトル図である。It is a vector diagram explaining the failure detection principle when the load current and the failure current of the conventional example overlap. 負荷電流と故障電流との関係及び電流変化時の過渡高調波を説明する特性線図である。It is a characteristic diagram explaining the relationship between the load current and the fault current and the transient harmonic when the current changes.

符号の説明Explanation of symbols

1…交流き電システム
2…変電所
3…電車線路
4…レール
5…電気車
7…計器用変圧器
8…交流ΔI形故障検出装置
9…計器用変流器
11…フィルタ部
12…高調波含有率演算部
13…高調波含有率記憶部
14…最小高調波含有率演算部
15…抑制係数演算部
16…高調波抑制電流演算部
17…高調波抑制電流記憶部
18…電流差ベクトル演算部
19…故障検出部
20…交流き電線路遮断器
DESCRIPTION OF SYMBOLS 1 ... AC feeding system 2 ... Substation 3 ... Train line 4 ... Rail 5 ... Electric vehicle 7 ... Instrument transformer 8 ... AC delta type I fault detection device 9 ... Instrument current transformer 11 ... Filter part 12 ... Harmonic Content calculation unit 13 ... Harmonic content storage unit 14 ... Minimum harmonic content calculation unit 15 ... Suppression coefficient calculation unit 16 ... Harmonic suppression current calculation unit 17 ... Harmonic suppression current storage unit 18 ... Current difference vector calculation unit 19 ... Failure detection unit 20 ... AC feeder circuit breaker

Claims (2)

変電所から電車線路を通じて電気車に交流電力を供給する交流き電回路の故障を電流差ベクトルΔIを演算することにより検出する交流ΔI形故障検出方法であって、
前記電車線路に供給される電流を検出し、
前記検出した電流の基本波成分及び高調波成分に基づいて高調波含有率を演算し、
現在から故障時に過渡高調波成分が発生する所定時間分を遡った期間内の高周波含有率から最小値である最小高調波含有率を検出し、
前記最小高調波含有率に基づいて抑制係数を演算し、
前記抑制係数と前記検出した電流の基本波成分とを乗算して高調波抑制電流を演算し、
現在の高調波抑制電流と、現在から故障時に発生する過渡高調波成分が減衰する所定時間を越えて遡った時点での高調波抑制電流と、に基づいて電流差ベクトルΔIを演算し、
当該電流差ベクトルΔIを設定値と比較して故障検出を行うことを特徴とする交流ΔI形故障検出方法。
An AC ΔI type fault detection method for detecting a fault in an AC feeding circuit that supplies AC power to an electric car from a substation through a train line by calculating a current difference vector ΔI,
Detecting the current supplied to the train track;
Calculate the harmonic content based on the detected fundamental and harmonic components of the current,
Detects the minimum harmonic content that is the minimum value from the high frequency content in the period that goes back a predetermined time when transient harmonic components occur at the time of failure from the present,
Calculate a suppression coefficient based on the minimum harmonic content,
Multiplying the suppression coefficient and the fundamental component of the detected current to calculate the harmonic suppression current,
A current difference vector ΔI is calculated based on the current harmonic suppression current and the harmonic suppression current at the time of going back beyond a predetermined time when the transient harmonic component generated at the time of failure attenuates from the present,
An AC ΔI type fault detection method, wherein fault detection is performed by comparing the current difference vector ΔI with a set value.
変電所から電車線路を通じて電気車に交流電力を供給する交流き電回路の故障を、電流差ベクトルΔIを演算することにより検出する交流ΔI形故障検出装置であって、
前記電車線路に供給される電流を検出する電流検出部と、検出した電流の基本波成分及び高調波成分を抽出するフィルタ部と、
抽出した基本波成分及び高調波成分に基づいて高調波含有率を演算する高調波含有率演算部と、
演算した高周波含有率を順次記憶する高周波含有率記憶部と、
前記高調波含有率演算部で演算された現在の高周波含有率と、前記高周波含有率記憶部に記憶された現在から故障時に過渡高調波成分が発生する所定時間を越えて遡った期間内の高周波含有率と、から最小値である最小高調波含有率を検出する最小高調波含有率検出部と、
検出した最小高調波含有率に基づいて抑制係数を演算し、演算した抑制係数と前記フィルタ部で抽出した電流の基本波成分とを乗算して高調波抑制電流を演算する高調波抑制電流演算部と、
該高調波抑制電流演算部で演算した高調波抑制電流を順次記憶する高調波抑制電流記憶部と、
前記高調波抑制電流演算部で演算した現在の高調波抑制電流と、前記高調波抑制電流記憶部に記憶された現在から故障時に発生する過渡高調波成分が減衰する所定時間を越えて遡った時点での高調波抑制電流と、に基づいて電流差ベクトルΔIを演算する電流差ベクトル演算部と、
演算した電流差ベクトルΔIを設定値と比較して故障検出を行う故障検出部と、
を備えたことを特徴とする交流ΔI形故障検出装置。
An AC ΔI type fault detection device that detects a fault in an AC feeding circuit that supplies AC power to an electric vehicle from a substation through a train line by calculating a current difference vector ΔI,
A current detection unit for detecting a current supplied to the train line, a filter unit for extracting a fundamental wave component and a harmonic component of the detected current,
A harmonic content calculation unit that calculates the harmonic content based on the extracted fundamental wave component and harmonic component;
A high-frequency content storage unit for sequentially storing the calculated high-frequency content,
The current high-frequency content rate calculated by the harmonic content rate calculation unit, and the high frequency in a period that goes back beyond a predetermined time when a transient harmonic component is generated at the time of failure from the current value stored in the high-frequency content rate storage unit A minimum harmonic content detection unit that detects the minimum harmonic content that is the minimum value from the content rate;
A harmonic suppression current calculation unit that calculates a suppression coefficient based on the detected minimum harmonic content and multiplies the calculated suppression coefficient by the fundamental component of the current extracted by the filter unit. When,
A harmonic suppression current storage unit that sequentially stores the harmonic suppression current calculated by the harmonic suppression current calculation unit;
When the current harmonic suppression current calculated by the harmonic suppression current calculation unit and the transient harmonic component generated at the time of failure from the present stored in the harmonic suppression current storage unit go back beyond a predetermined time A current difference vector calculation unit that calculates a current difference vector ΔI based on the harmonic suppression current at
A failure detection unit that detects the failure by comparing the calculated current difference vector ΔI with a set value;
An AC ΔI type fault detection apparatus comprising:
JP2008216956A 2008-08-26 2008-08-26 AC ΔI type fault detection method and fault detection apparatus Active JP5287036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008216956A JP5287036B2 (en) 2008-08-26 2008-08-26 AC ΔI type fault detection method and fault detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008216956A JP5287036B2 (en) 2008-08-26 2008-08-26 AC ΔI type fault detection method and fault detection apparatus

Publications (2)

Publication Number Publication Date
JP2010057219A JP2010057219A (en) 2010-03-11
JP5287036B2 true JP5287036B2 (en) 2013-09-11

Family

ID=42072562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008216956A Active JP5287036B2 (en) 2008-08-26 2008-08-26 AC ΔI type fault detection method and fault detection apparatus

Country Status (1)

Country Link
JP (1) JP5287036B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5319503B2 (en) * 2009-11-30 2013-10-16 独立行政法人鉄道建設・運輸施設整備支援機構 AC AT feeder circuit protection device and method
JP5537318B2 (en) * 2010-07-26 2014-07-02 株式会社東芝 Accident section discrimination means for distribution lines

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2866767B2 (en) * 1992-08-12 1999-03-08 財団法人鉄道総合技術研究所 AC feeder circuit failure selection relay for railways
JPH0993791A (en) * 1995-09-29 1997-04-04 Railway Technical Res Inst Ac deltai type failure selection method
JP3715517B2 (en) * 2000-08-21 2005-11-09 財団法人鉄道総合技術研究所 Vector relay for AC feeding

Also Published As

Publication number Publication date
JP2010057219A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
US8971066B2 (en) Harmonic current suppression method and harmonic current suppression device of power conversion device
KR101129072B1 (en) Instantaneous voltage-drop compensation circuit, power conversion apparatus, instantaneous voltage-drop compensation method and computer readable medium storing instantaneous voltage-drop compensation program
US8873207B2 (en) Method for operating a ground fault interrupter as well as ground fault interrupter for a frequency converter
EP2747229A1 (en) Method for predicting and detecting current transformer saturation under sympathetic inrush
JP5287036B2 (en) AC ΔI type fault detection method and fault detection apparatus
JP2010104158A (en) Uninterruptible power supply unit and method for selectively interrupting uninterruptible power supply unit
CN110768218A (en) Method for automatically adjusting failure protection time delay through trailing current identification
JP2019122157A (en) Uninterruptible power supply device
JP2015210136A (en) Residual voltage arithmetic circuit, power down decision circuit, and system interconnection device
US20190293704A1 (en) Method and control system for fault direction detection
KR20060052197A (en) Detecting device for voltage lowering
US20150293166A1 (en) Differential Protection Method and Protective Apparatus for Carrying Out a Differential Protection Method
KR100567815B1 (en) Apparatus for detecting defect in direct current line
JP4946642B2 (en) Harmonic current compensator
JP2008199853A (en) Device, system and method for compensating reactive power
JP2009092504A (en) Voltage fault detector
JPS6356121A (en) Ratio differential relay
JP4973147B2 (en) Inverter output voltage controller
JP4561366B2 (en) Digital ground fault current protection relay
JP5631200B2 (en) Synchronous motor control device and synchronous generator control device
JP5383580B2 (en) Circuit breaker control device
JP2010115018A (en) Controller of ac-powered vehicle
JP5272678B2 (en) Overexcitation detection device
JP2010044621A (en) Earth fault detection device of reactive power compensator
CN110676813A (en) Power supply unit and method for determining Rogowski current measurement direct current component on power supply unit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R150 Certificate of patent or registration of utility model

Ref document number: 5287036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250