JP5316792B2 - Die casting mold and core pin - Google Patents

Die casting mold and core pin Download PDF

Info

Publication number
JP5316792B2
JP5316792B2 JP2009146430A JP2009146430A JP5316792B2 JP 5316792 B2 JP5316792 B2 JP 5316792B2 JP 2009146430 A JP2009146430 A JP 2009146430A JP 2009146430 A JP2009146430 A JP 2009146430A JP 5316792 B2 JP5316792 B2 JP 5316792B2
Authority
JP
Japan
Prior art keywords
low
rigidity
casting
pin
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009146430A
Other languages
Japanese (ja)
Other versions
JP2011000622A (en
Inventor
隆 中道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009146430A priority Critical patent/JP5316792B2/en
Publication of JP2011000622A publication Critical patent/JP2011000622A/en
Application granted granted Critical
Publication of JP5316792B2 publication Critical patent/JP5316792B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ダイカスト鋳造型および該ダイカスト鋳造型に使用される鋳抜きピンに関する。   The present invention relates to a die casting mold and a core pin used in the die casting mold.

ダイカスト鋳造法においては、キャビティに充填された溶湯が凝固収縮してキャビティに露出した鋳抜きピンの造形部に曲げ応力が繰り返し作用することにより、当該鋳抜きピンの根元部分(造形部と型部材の取付孔に挿入される挿入部との境界部分)に亀裂が発生することがある。そこで、鋳抜きピンにおいては、挿入部に他の部分よりも外径が小さく形成された部分(以下、小径軸部という)を有するものが知られている(例えば、特許文献1参照)。このような鋳抜きピンは、小径軸部を積極的に撓ませることで造形部に作用する曲げ応力を逃がし、その結果、鋳抜きピンの造形部と挿入部との境界部分に疲労による亀裂が発生するのを防ぐことができる。   In the die-casting method, the molten metal filled in the cavity is solidified and contracted, and bending stress acts repeatedly on the shaped part of the core pin exposed to the cavity, whereby the base part of the core pin (the shaped part and the mold member) In some cases, a crack may occur in a boundary portion with the insertion portion inserted into the mounting hole. In view of this, a cast pin having a portion (hereinafter referred to as a small-diameter shaft portion) having an outer diameter smaller than the other portion is known in the insertion portion (see, for example, Patent Document 1). Such a cast pin releases the bending stress acting on the shaped part by positively bending the small-diameter shaft part, and as a result, cracks due to fatigue occur at the boundary between the shaped part and the inserted part of the cast pin. It can be prevented from occurring.

しかしながら、上記鋳抜きピンにおいては、小径軸部を含む鋳抜きピンの撓みが軸方向へ広範囲に伝播すると、鋳抜きピンの挿入部と型部材の取付孔との間に形成されるギャップが広がり、そのギャップからキャビティに充填された溶湯が取付孔内へ浸入するおそれがある。浸入した溶湯が鋳抜きピン、特に小径軸部と型部材の取付孔との間の空間で凝固すると、鋳抜きピンの撓みが阻害され、その結果、造形部に作用する曲げ応力が造形部と挿入部との境界部分に集中し、当該境界部分に疲労による亀裂が発生することがある。そこで、特許文献2には、小径軸部と取付孔との間の空間にシリコンゴム(弾性部材)を充填することで、鋳抜きピンの撓みを阻害することなく当該空間に溶湯が浸入するのを防ぐ技術が開示されているが、シリコンゴム(弾性部材)の耐熱性が十分でないことから鋳抜きピンと型部材(取付孔)との間のシール性に問題があり、さらに鋳抜きピンの製造コストが増大する。   However, in the above-described core pin, when the deflection of the core pin including the small-diameter shaft portion propagates in a wide range in the axial direction, a gap formed between the core pin insertion portion and the die member mounting hole widens. There is a possibility that the molten metal filled in the cavity may enter the mounting hole from the gap. When the infiltrated molten metal solidifies in the space between the cast pin, particularly the small-diameter shaft portion and the mounting hole of the mold member, bending of the cast pin is inhibited, and as a result, bending stress acting on the shaped portion is It may concentrate on the boundary portion with the insertion portion, and a crack due to fatigue may occur at the boundary portion. Therefore, in Patent Document 2, by filling the space between the small-diameter shaft portion and the mounting hole with silicon rubber (elastic member), the molten metal enters the space without hindering the bending of the core pin. Although the technology for preventing this is disclosed, the heat resistance of silicon rubber (elastic member) is not sufficient, so there is a problem in the sealability between the cast pin and the mold member (mounting hole), and the manufacture of the cast pin Cost increases.

特開平3−5058号公報Japanese Patent Laid-Open No. 3-5058 特開2005−329446号公報JP 2005-329446 A

そこで本発明は、上記事情に鑑みてなされたもので、鋳造時における鋳抜きピンの撓み性と、鋳抜きピンと型部材との間のシール性の確保とが高いレベルで両立可能なダイカスト鋳造型および該ダイカスト鋳造型に使用される鋳抜きピンを提供することを課題としてなされたものである。   Therefore, the present invention has been made in view of the above circumstances, and is a die-casting die that can achieve both a high level of flexibility of the casting pin at the time of casting and securing of the sealing property between the casting pin and the mold member. Another object of the present invention is to provide a cast pin used in the die casting mold.

上記課題を解決するために、本発明のダイカスト鋳造型は、型部材の取付孔に着脱可能に取り付けられる鋳抜きピンを有するダイカスト鋳造型であって、前記鋳抜きピンは、前記ダイカスト鋳造型のキャビティに露出する造形部と、前記取付孔に挿入される挿入部とを含み、該挿入部は、前記造形部側に設けられて前記取付孔に嵌合される嵌合部と、該嵌合部に連続して設けられて前記嵌合部の外径よりも小さい外径を有する小径軸部とを含み、前記嵌合部の外周には、前記型部材に対して剛性が低い低剛性部が形成され、鋳造時における前記鋳抜きピンの挙動により前記低剛性部を変形させることを特徴とする。   In order to solve the above-described problems, a die casting mold of the present invention is a die casting mold having a casting pin that is detachably attached to a mounting hole of a mold member, and the casting pin is a part of the die casting casting mold. A modeling part exposed in the cavity; and an insertion part inserted into the mounting hole, the insertion part being provided on the modeling part side and fitted into the mounting hole; and the fitting And a small-diameter shaft portion having an outer diameter smaller than the outer diameter of the fitting portion, and a low-rigidity portion having low rigidity with respect to the mold member on the outer periphery of the fitting portion The low-rigidity portion is deformed by the behavior of the core pin during casting.

上記課題を解決するために、本発明の鋳抜きピンは、ダイカスト鋳造型のキャビティに露出する造形部と、型部材の取付孔に挿入される挿入部とを含む鋳抜きピンであって、前記挿入部は、前記造形部側に設けられて前記取付孔に嵌合される嵌合部と、該嵌合部に連続して設けられて前記嵌合部の外径よりも小さい外径を有する小径軸部とを含み、前記嵌合部の外周には、前記型部材に対して剛性が低い低剛性部が形成され、鋳造時における前記鋳抜きピンの挙動により前記低剛性部を変形させることを特徴とする。   In order to solve the above-mentioned problem, a cast pin of the present invention is a cast pin including a modeling part exposed in a cavity of a die-casting mold and an insertion part inserted into an attachment hole of a mold member, The insertion portion is provided on the modeling portion side and is fitted in the mounting hole, and the insertion portion is provided continuously with the fitting portion and has an outer diameter smaller than the outer diameter of the fitting portion. A low-rigidity portion having low rigidity relative to the mold member is formed on the outer periphery of the fitting portion, and the low-rigidity portion is deformed by the behavior of the core pin during casting. It is characterized by.

(発明の態様)
以下に、本願において特許請求が可能と認識されている発明(以下、請求可能発明と称する)の態様を例示し、例示された各態様について説明する。ここでは、各態様を、特許請求の範囲と同様に、項に区分すると共に各項に番号を付し、必要に応じて他の項の記載を引用する形式で記載する。これは、請求可能発明の理解を容易にするためであり、請求可能発明を構成する構成要素の組み合わせを、以下の各項に記載されたものに限定する趣旨ではない。つまり、請求可能発明は、各項に付随する記載、実施形態の記載等を参酌して解釈されるべきであり、その解釈に従う限りにおいて、各項の態様にさらに他の構成要素を付加した態様も、また、各項の態様から構成要素を削除した態様も、請求可能発明の一態様となり得る。
なお、以下の各項において、(1)−(8)項の各々が、請求項1−8の各々に相当する。
(Aspect of the Invention)
In the following, aspects of the invention that is recognized as being capable of being claimed in the present application (hereinafter referred to as claimable invention) will be exemplified, and each exemplified aspect will be described. Here, as in the claims, each aspect is divided into paragraphs, numbers are assigned to the respective paragraphs, and the descriptions of other paragraphs are cited as necessary. This is for the purpose of facilitating the understanding of the claimable invention, and is not intended to limit the combination of the constituent elements constituting the claimable invention to those described in the following sections. In other words, the claimable invention should be construed in consideration of the description accompanying each section, the description of the embodiment, etc., and as long as the interpretation is followed, another aspect is added to the aspect of each section. Moreover, the aspect which deleted the component from the aspect of each term can also be one aspect of the claimable invention.
In the following items, each of items (1) to (8) corresponds to each of claims 1-8.

(1)型部材の取付孔に着脱可能に取り付けられる鋳抜きピンを有するダイカスト鋳造型であって、鋳抜きピンは、ダイカスト鋳造型のキャビティに露出する造形部と、取付孔に挿入される挿入部とを含み、該挿入部は、造形部側に設けられて取付孔に嵌合される嵌合部と、該嵌合部に連続して設けられて嵌合部の外径よりも小さい外径を有する小径軸部とを含み、嵌合部の外周には、型部材に対して剛性が低い低剛性部が形成され、鋳造時における鋳抜きピンの挙動により低剛性部を変形させることを特徴とするダイカスト鋳造型。
ダイカスト鋳造型においては、キャビティに充填された溶湯の凝固収縮による力や熱応力が鋳抜きピンに作用し、鋳抜きピンが複数個配置されている場合、鋳造時に作用する力は各鋳抜きピンごとに異なるため、各鋳抜きピンは、鋳造時にそれぞれ固有の挙動を示す。本項に記載のダイカスト鋳造型によれば、鋳造を複数回実施すると、鋳造時における鋳抜きピンの挙動に応じて低剛性部が変形(塑性変形)し、各鋳抜きピンごとに低剛性部にそれぞれ固有の形状が形成される。例えば、鋳造時に作用する力が相対的に小さい位置に配置された鋳抜きピンは、低剛性部の変形(塑性変形)が小さいことから、高いシール性が確保される。これに対し、鋳造時に作用する力が相対的に大きい位置に配置された鋳抜きピンでは、低剛性部の変形(塑性変形)が大きいことから、シール性よりも撓み性が優先された形状に低剛性部が変形(塑性変形)する。このように、本項の態様では、鋳造を複数回実施して各鋳抜きピンの低剛性部を固有の形状に変形(塑性変形)させることにより、鋳造時における鋳抜きピンの撓み性と、鋳抜きピンと型部材との間のシール性の確保とを高いレベルで両立させる形状の低剛性部を形成するものである。この低剛性部により、取付孔内に浸入した溶湯が取付孔内で凝固して小径軸部の撓みが阻害されることを防止することができる。さらに、型部材側の改造が不要であるため、低コスト且つ容易に実施が可能である。
本項の態様において、鋳抜きピンの嵌合部外周に形成される低剛性部は、必ずしも嵌合部の外周全体に形成する必要はなく、シール性を確保することができることを条件に、ピン軸方向に所定幅で形成することができる。例えば、低剛性部を、特にシール性が要求される嵌合部の造形部側に所定幅で形成することができる。
(1) A die-casting mold having a cast pin that is removably attached to a mounting hole of a mold member, wherein the cast pin is exposed in a cavity of the die-casting mold, and inserted into the mounting hole. The insertion portion includes a fitting portion provided on the modeling portion side and fitted in the mounting hole, and an outer portion provided continuously to the fitting portion and smaller than the outer diameter of the fitting portion. A small-diameter shaft portion having a diameter, and a low-rigidity portion having low rigidity with respect to the mold member is formed on the outer periphery of the fitting portion, and the low-rigidity portion is deformed by the behavior of the core pin during casting. Die-casting mold that is characteristic.
In die casting molds, force and thermal stress due to solidification shrinkage of the molten metal filled in the cavity acts on the casting pin, and when multiple casting pins are arranged, the force acting during casting is determined by each casting pin. Therefore, each core pin exhibits a unique behavior during casting. According to the die-casting mold described in this section, when casting is performed a plurality of times, the low-rigidity part is deformed (plastically deformed) according to the behavior of the casting pin during casting, and the low-rigidity part is provided for each casting pin. Each has a unique shape. For example, a cast pin arranged at a position where a force acting at the time of casting is relatively small has a small deformation (plastic deformation) of the low-rigidity portion, and thus high sealing performance is ensured. On the other hand, in the cast pin arranged at a position where the force acting at the time of casting is relatively large, the deformation (plastic deformation) of the low-rigidity part is large, so that the flexibility is given priority over the sealing performance. The low rigidity portion is deformed (plastic deformation). Thus, in the aspect of this section, by performing the casting a plurality of times and deforming (plastic deformation) the low rigidity portion of each core pin into a unique shape, the flexibility of the core pin during casting, A low-rigidity portion having a shape that achieves a high level of sealing performance between the core pin and the mold member is formed. By this low rigidity portion, it is possible to prevent the molten metal that has entered the mounting hole from solidifying in the mounting hole and hindering the bending of the small diameter shaft portion. Furthermore, since no modification on the side of the mold member is necessary, it is possible to implement at low cost and easily.
In the aspect of this section, the low-rigidity portion formed on the outer periphery of the fitting portion of the core pin does not necessarily need to be formed on the entire outer periphery of the fitting portion. It can be formed with a predetermined width in the axial direction. For example, the low-rigidity part can be formed with a predetermined width on the modeling part side of the fitting part that particularly requires sealing performance.

(2)鋳抜きピンの低剛性部は、嵌合部の外周に型部材と異種材料からなる層を形成することにより構成される(1)のダイカスト鋳造型。
本項に記載のダイカスト鋳造型によれば、鋳造を複数回実施して鋳造時における鋳抜きピンの挙動に応じて各鋳抜きピンの低剛性の層(低剛性部)をそれぞれ固有の形状に変形(塑性変形)させることにより、鋳造時における鋳抜きピンの撓み性と、鋳抜きピンと型部材との間のシール性の確保とを高いレベルで両立させることができる。
本項の態様において、鋳抜きピンの低剛性の層(低剛性部)は、例えば、チタン合金により構成することができる。
(2) The die-casting die according to (1), wherein the low-rigidity portion of the cast pin is formed by forming a layer made of a different material from the die member on the outer periphery of the fitting portion.
According to the die-casting die described in this section, casting is performed a plurality of times, and the low-rigidity layer (low-rigidity portion) of each casting pin is made into a unique shape according to the behavior of the casting pin during casting. By deforming (plastically deforming), it is possible to achieve both the flexibility of the core pin during casting and the securing of the sealing performance between the core pin and the mold member at a high level.
In the aspect of this section, the low-rigidity layer (low-rigidity part) of the core pin can be made of, for example, a titanium alloy.

(3)鋳抜きピンの低剛性部は、嵌合部の外周方向へ延びる稜により構成される(1)のダイカスト鋳造型。
本項に記載のダイカスト鋳造型によれば、鋳造を複数回実施して鋳造時における鋳抜きピンの挙動に応じて各鋳抜きピンの嵌合部の外周方向へ延びる稜(低剛性部)をそれぞれ固有の形状に変形(塑性変形)させることにより、鋳造時における鋳抜きピンの撓み性と、鋳抜きピンと型部材との間のシール性の確保とを高いレベルで両立させることができる。
本項の態様において、鋳抜きピンの低剛性部は、円環状に閉じた形状の稜をピン軸方向へ一定間隔あるいは不定間隔で配置して構成することができ、また、雄ねじのように一条の稜を嵌合部の外周に螺旋状に形成して構成することもできる。この場合、低剛性部は、円環状に閉じた形状の稜を配置した方がシール性を確保する上でより有利である。
(3) The die-casting die according to (1), wherein the low-rigidity portion of the core pin is constituted by a ridge extending in the outer peripheral direction of the fitting portion.
According to the die-casting die described in this section, a ridge (low-rigidity portion) extending in the outer peripheral direction of the fitting portion of each core pin is performed according to the behavior of the core pin at the time of casting after performing casting a plurality of times. By deforming (plastic deformation) into a unique shape, it is possible to achieve both a high level of flexibility of the casting pin during casting and securing of the sealing property between the casting pin and the mold member.
In the aspect of this section, the low-rigidity portion of the cast pin can be configured by arranging ridges having an annularly closed shape in the pin axis direction at a constant interval or an indefinite interval. These ridges can also be formed in a spiral shape on the outer periphery of the fitting portion. In this case, it is more advantageous for the low-rigidity portion to ensure sealing performance when the ridges having a closed shape are arranged in an annular shape.

(4)鋳抜きピンの低剛性部は、鋳抜きピン半径方向の寸法が、造形部側から小径軸部側へ向けて漸増される(1)、(2)、(3)のダイカスト鋳造型。
ダイカスト鋳造型に鋳抜きピンが複数個配置されている場合、鋳造を複数回実施することで鋳造時における鋳抜きピンの挙動に応じて各鋳抜きピンの低剛性部が変形(塑性変形)し、低剛性部には鋳抜きピンごとにそれぞれ固有の形状が形成される。そして、変形(塑性変形)後の低剛性部により鋳造時における鋳抜きピンの撓み性と、鋳抜きピンと型部材との間のシール性の確保とを高いレベルで両立させることは、(1)で説明したとおりである。本項に記載のダイカスト鋳造型では、低剛性部の鋳抜きピン半径方向の寸法(層の厚さあるいは稜の高さ)を造形部側から小径軸部側へ向けて漸増させることにより、鋳造時における鋳抜きピンの撓み性とシール性とのいずれかを優先させて低剛性部を変形(塑性変形)させるように構成した。例えば、鋳造時における挙動が相対的に小さい鋳抜きピン、すなわち、鋳造時に作用する力が相対的に小さい位置に配置された鋳抜きピンは、低剛性部の変形(塑性変形)が小さいことから、高いシール性が確保される。これに対し、鋳造時における挙動が相対的に大きい鋳抜きピン、すなわち、鋳造時に作用する力が相対的に大きい位置に配置された鋳抜きピンは、低剛性部、特に低剛性部の小径軸部側の変形(塑性変形)が大きいことから、低剛性部の鋳抜きピン半径方向の寸法が造形部側から小径軸部側にかけて一定である場合と比較して、低剛性部がシール性よりも撓み性がより優先された形状に変形(塑性変形)される。
(4) The die cast die of (1), (2), (3), wherein the dimension in the radial direction of the cast pin is gradually increased from the shaped part side toward the small diameter shaft part side. .
When multiple die-casting pins are arranged in a die-casting mold, the low-rigidity part of each die pin is deformed (plastically deformed) according to the behavior of the die pin during casting. In the low-rigidity part, a unique shape is formed for each cast pin. And it is (1) to make both the flexibility of the cast pin at the time of casting and the securing of the sealing property between the cast pin and the mold member at a high level by the low rigidity portion after deformation (plastic deformation). As explained in. In the die-casting die described in this section, casting is performed by gradually increasing the radial direction dimension (layer thickness or ridge height) of the low-rigidity part from the modeling part side toward the small-diameter shaft part side. The low-rigidity portion is deformed (plastically deformed) by giving priority to either the flexibility or sealing property of the core pin at the time. For example, a cast pin having a relatively small behavior at the time of casting, that is, a cast pin arranged at a position where a force acting at the time of casting is relatively small has a small deformation (plastic deformation) of the low rigidity portion. High sealing performance is ensured. On the other hand, a cast pin having a relatively large behavior during casting, that is, a cast pin arranged at a position where a force acting during casting is relatively large is a low-rigidity portion, particularly a small-diameter shaft of the low-rigidity portion. Since the deformation on the part side (plastic deformation) is large, the low rigidity part is more sealed than the case where the radial dimension of the low rigidity part is constant from the molding part side to the small diameter shaft part side. Also, it is deformed (plastic deformation) into a shape in which flexibility is prioritized.

(5)ダイカスト鋳造型のキャビティに露出する造形部と、型部材の取付孔に挿入される挿入部とを含む鋳抜きピンであって、挿入部は、造形部側に設けられて取付孔に嵌合される嵌合部と、該嵌合部に連続して設けられて嵌合部の外径よりも小さい外径を有する小径軸部とを含み、嵌合部の外周には、型部材に対して剛性が低い低剛性部が形成され、鋳造時における鋳抜きピンの挙動により低剛性部を変形させることを特徴とする鋳抜きピン。
ダイカスト鋳造型においては、キャビティに充填された溶湯の凝固収縮による力や熱応力が鋳抜きピンに作用し、鋳抜きピンが複数個配置されている場合、鋳造時に作用する力は各鋳抜きピンごとに異なるため、各鋳抜きピンは、鋳造時にそれぞれ固有の挙動を示す。本項に記載の鋳抜きピンによれば、鋳造を複数回実施すると、鋳造時における鋳抜きピンの挙動に応じて低剛性部が変形(塑性変形)し、各鋳抜きピンごとに低剛性部にそれぞれ固有の形状が形成される。例えば、鋳造時に作用する力が相対的に小さい位置に配置された鋳抜きピンは、低剛性部の変形(塑性変形)が小さいことから、高いシール性が確保される。これに対し、鋳造時に作用する力が相対的に大きい位置に配置された鋳抜きピンでは、低剛性部の変形(塑性変形)が大きいことから、シール性よりも撓み性が優先された形状に低剛性部が変形(塑性変形)する。このように、本項の態様では、鋳造を複数回実施して各鋳抜きピンの低剛性部を固有の形状に変形(塑性変形)させることにより、鋳造時における鋳抜きピンの撓み性と、鋳抜きピンと型部材との間のシール性の確保とを高いレベルで両立させる形状の低剛性部を形成するものである。この低剛性部により、取付孔内に浸入した溶湯が取付孔内で凝固して小径軸部の撓みが阻害されることを防止することができる。さらに、型部材側の改造が不要であるため、低コスト且つ容易に実施が可能である。
本項の態様において、嵌合部外周に形成される低剛性部は、必ずしも嵌合部の外周全体に形成する必要はなく、シール性を確保することができることを条件に、ピン軸方向に所定幅で形成することができる。例えば、低剛性部を、特にシール性が要求される嵌合部の造形部側に所定幅で形成することができる。
(5) A cast pin including a modeling part exposed in the cavity of the die-casting mold and an insertion part inserted into the mounting hole of the mold member, and the insertion part is provided on the modeling part side and provided in the mounting hole Including a fitting portion to be fitted, and a small-diameter shaft portion that is continuously provided in the fitting portion and has an outer diameter smaller than the outer diameter of the fitting portion. A cast pin characterized in that a low-rigidity portion having a low rigidity is formed and the low-rigidity portion is deformed by the behavior of the cast pin during casting.
In die casting molds, force and thermal stress due to solidification shrinkage of the molten metal filled in the cavity acts on the casting pin, and when multiple casting pins are arranged, the force acting during casting is determined by each casting pin. Therefore, each core pin exhibits a unique behavior during casting. According to the core pin described in this section, when casting is performed a plurality of times, the low rigidity portion is deformed (plastically deformed) according to the behavior of the core pin during casting, and the low rigidity portion is determined for each core pin. Each has a unique shape. For example, a cast pin arranged at a position where a force acting at the time of casting is relatively small has a small deformation (plastic deformation) of the low-rigidity portion, and thus high sealing performance is ensured. On the other hand, in the cast pin arranged at a position where the force acting at the time of casting is relatively large, the deformation (plastic deformation) of the low-rigidity part is large, so that the flexibility is given priority over the sealing performance. The low rigidity portion is deformed (plastic deformation). Thus, in the aspect of this section, by performing the casting a plurality of times and deforming (plastic deformation) the low rigidity portion of each core pin into a unique shape, the flexibility of the core pin during casting, A low-rigidity portion having a shape that achieves a high level of sealing performance between the core pin and the mold member is formed. By this low rigidity portion, it is possible to prevent the molten metal that has entered the mounting hole from solidifying in the mounting hole and hindering the bending of the small diameter shaft portion. Furthermore, since no modification on the side of the mold member is necessary, it is possible to implement at low cost and easily.
In the aspect of this section, the low-rigidity portion formed on the outer periphery of the fitting portion is not necessarily formed on the entire outer periphery of the fitting portion, and is predetermined in the pin axis direction on the condition that sealing performance can be secured. Can be formed with a width. For example, the low-rigidity part can be formed with a predetermined width on the modeling part side of the fitting part that particularly requires sealing performance.

(6)低剛性部は、嵌合部の外周に型部材と異種材料からなる層を形成することにより構成される(5)の鋳抜きピン。
本項に記載の鋳抜きピンによれば、鋳造を複数回実施して鋳造時における鋳抜きピンの挙動に応じて鋳抜きピンの低剛性の層(低剛性部)を固有の形状に変形(塑性変形)させることにより、鋳造時における撓み性と、鋳抜きピンと型部材との間のシール性の確保とを高いレベルで両立させることができる。
本項の態様において、低剛性の層(低剛性部)は、例えば、チタン合金により構成することができる。
(6) The cast pin according to (5), wherein the low-rigidity portion is formed by forming a layer made of a different material from the mold member on the outer periphery of the fitting portion.
According to the core pin described in this section, casting is performed a plurality of times, and the low-rigidity layer (low-rigidity portion) of the core pin is deformed into a unique shape according to the behavior of the core pin during casting ( By plastic deformation), it is possible to achieve both high flexibility at the time of casting and securing of the sealing performance between the core pin and the mold member.
In the aspect of this section, the low-rigidity layer (low-rigidity part) can be composed of, for example, a titanium alloy.

(7)低剛性部は、嵌合部の外周方向へ延びる稜により構成される(5)の鋳抜きピン。
本項に記載の鋳抜きピンによれば、鋳造を複数回実施して鋳造時における鋳抜きピンの挙動に応じて鋳抜きピンの嵌合部の外周方向へ延びる稜(低剛性部)を固有の形状に変形(塑性変形)させることにより、鋳造時における鋳抜きピンの撓み性と、鋳抜きピンと型部材との間のシール性の確保とを高いレベルで両立させることができる。
本項の態様において、低剛性部は、円環状に閉じた形状の稜をピン軸方向へ一定間隔あるいは不定間隔で配置して構成することができ、また、雄ねじのように一条の稜を嵌合部の外周に螺旋状に形成して構成することもできる。この場合、低剛性部は、円環状に閉じた形状の稜を配置した方がシール性を確保する上でより有利である。
(7) The cast pin according to (5), wherein the low-rigidity portion is configured by a ridge extending in the outer peripheral direction of the fitting portion.
According to the core pin described in this section, a ridge (low-rigidity portion) extending in the outer peripheral direction of the fitting portion of the core pin according to the behavior of the core pin at the time of casting after being cast a plurality of times is inherent. By deforming into a shape (plastic deformation), it is possible to achieve both the flexibility of the core pin during casting and the securing of the sealing property between the core pin and the mold member at a high level.
In the aspect of this section, the low-rigidity portion can be configured by arranging ridges with a closed ring shape in the pin axis direction at regular intervals or irregular intervals, and a single ridge is fitted like a male screw. It can also be formed by forming a spiral on the outer periphery of the joint. In this case, it is more advantageous for the low-rigidity portion to ensure sealing performance when the ridges having a closed shape are arranged in an annular shape.

(8)低剛性部は、鋳抜きピン半径方向の寸法が、造形部側から小径軸部側へ向けて漸増される(5)、(6)、(7)の鋳抜きピン。
ダイカスト鋳造型に鋳抜きピンが複数個配置されている場合、鋳造を複数回実施することで鋳造時における鋳抜きピンの挙動に応じて各鋳抜きピンの低剛性部が変形(塑性変形)し、低剛性部には鋳抜きピンごとにそれぞれ固有の形状が形成される。そして、変形(塑性変形)後の低剛性部により鋳造時における鋳抜きピンの撓み性と、鋳抜きピンと型部材との間のシール性の確保とを高いレベルで両立させることは、(5)で説明したとおりである。本項に記載の鋳抜きピンでは、低剛性部の鋳抜きピン半径方向の寸法(層の厚さあるいは稜の高さ)を造形部側から小径軸部側へ向けて漸増させることにより、鋳造時における撓み性とシール性とのいずれかを優先させて低剛性部を変形(塑性変形)させるように構成した。例えば、鋳造時における挙動が相対的に小さい鋳抜きピン、すなわち、鋳造時に作用する力が相対的に小さい位置に配置された鋳抜きピンは、低剛性部の変形(塑性変形)が小さいことから、高いシール性が確保される。これに対し、鋳造時における挙動が相対的に大きい鋳抜きピン、すなわち、鋳造時に作用する力が相対的に大きい位置に配置された鋳抜きピンは、低剛性部、特に低剛性部の小径軸部側の変形(塑性変形)が大きいことから、低剛性部の鋳抜きピン半径方向の寸法が造形部側から小径軸部側にかけて一定である場合と比較して、低剛性部がシール性よりも撓み性がより優先された形状に変形(塑性変形)される。
(8) The low-rigidity part is a cored pin according to (5), (6), or (7) whose dimension in the radial direction of the cored pin is gradually increased from the molded part side toward the small-diameter shaft part side.
When multiple die-casting pins are arranged in a die-casting mold, the low-rigidity part of each die pin is deformed (plastically deformed) according to the behavior of the die pin during casting. In the low-rigidity part, a unique shape is formed for each cast pin. And it is (5) to make both the flexibility of the cast pin at the time of casting and the securing of the sealing property between the cast pin and the mold member at a high level by the low rigidity portion after deformation (plastic deformation). As explained in. In the cast pin described in this section, the radial dimension of the cast pin of the low rigidity portion (layer thickness or ridge height) is gradually increased from the modeled portion side toward the small-diameter shaft portion side. The low-rigidity portion is deformed (plastically deformed) with priority given to either flexibility or sealing performance at the time. For example, a cast pin having a relatively small behavior at the time of casting, that is, a cast pin arranged at a position where a force acting at the time of casting is relatively small has a small deformation (plastic deformation) of the low rigidity portion. High sealing performance is ensured. On the other hand, a cast pin having a relatively large behavior during casting, that is, a cast pin arranged at a position where a force acting during casting is relatively large is a low-rigidity portion, particularly a small-diameter shaft of the low-rigidity portion. Since the deformation on the part side (plastic deformation) is large, the low rigidity part is more sealed than the case where the radial dimension of the low rigidity part is constant from the molding part side to the small diameter shaft part side. Also, it is deformed (plastic deformation) into a shape in which flexibility is prioritized.

本発明によれば、鋳造時における鋳抜きピンの撓み性と、鋳抜きピンと型部材との間のシール性の確保とが高いレベルで両立可能なダイカスト鋳造型および該ダイカスト鋳造型に使用される鋳抜きピンを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it is used for the die-casting die and this die-casting die which can be compatible with the flexibility of the casting pin at the time of casting, and ensuring the sealing performance between a casting pin and a mold member at a high level. A cast pin can be provided.

本実施形態に係る鋳抜きピンの取付構造を説明するために型部材および低剛性部を断面で示した図である。It is the figure which showed the type | mold member and the low-rigidity part in the cross section in order to demonstrate the attachment structure of the cast pin which concerns on this embodiment. 図1におけるA部拡大図である。It is the A section enlarged view in FIG. 図2に示される状態で鋳造を複数回実施することにより低剛性部に形成された形状を示す図である。It is a figure which shows the shape formed in the low-rigidity part by implementing casting in multiple times in the state shown by FIG. 図2に対応する他の実施形態であり、コーティング層を造形部側にのみ所定幅で形成して低剛性部を構成した場合を示す。It is another embodiment corresponding to FIG. 2, and shows a case where a low rigidity portion is configured by forming a coating layer on the modeling portion side only with a predetermined width. 図4に示される状態で鋳造を複数回実施することにより低剛性部に形成された形状を示す図である。It is a figure which shows the shape formed in the low rigidity part by implementing casting in multiple times in the state shown by FIG. 図2に対応する他の実施形態であり、円環形状の稜を所定間隔で配置して低剛性部を構成した場合を示す。This is another embodiment corresponding to FIG. 2, and shows a case where a low-rigidity portion is configured by arranging annular ridges at predetermined intervals. 図6に示されるよりも小さい間隔で稜を配置して低剛性部を構成した場合を示す図である。It is a figure which shows the case where a low-rigidity part is comprised by arrange | positioning a ridge with a space | interval smaller than FIG. 図2に対応する他の実施形態であり、造形部側から小径軸部側へ向けてコーティング層の厚さを直線状に漸増させて形成された低剛性部を示す図である。FIG. 4 is a view showing a low-rigidity portion that is another embodiment corresponding to FIG. 2 and is formed by gradually increasing the thickness of the coating layer linearly from the modeling portion side toward the small-diameter shaft portion side. 図8に示される状態で鋳造を複数回実施することにより低剛性部に形成された形状を示す図である。It is a figure which shows the shape formed in the low-rigidity part by implementing casting in multiple times in the state shown by FIG. 図2に対応する他の実施形態であり、造形部側から小径軸部側へ向けてコーティング層の厚さを曲線状に漸増させて形成された低剛性部を示す図である。FIG. 4 is a view showing a low-rigidity portion that is another embodiment corresponding to FIG. 2 and is formed by gradually increasing the thickness of the coating layer in a curved shape from the modeling portion side toward the small-diameter shaft portion side. 図10に示される状態で鋳造を複数回実施することにより低剛性部に形成された形状を示す図である。It is a figure which shows the shape formed in the low-rigidity part by implementing casting in multiple times in the state shown by FIG. 図2に対応する他の実施形態であり、円環状の稜を、その高さが造形部側から小径軸部側へ向けて漸増させて形成された低剛性部を示す図である。FIG. 9 is a view showing a low-rigidity portion formed by gradually increasing the height of an annular ridge from the modeling portion side toward the small-diameter shaft portion side, which is another embodiment corresponding to FIG. 2.

本発明の一実施形態を添付した図を参照して説明する。なお、本実施形態のダイカスト鋳造型は、固定型、可動型および可動中子を含む基本構造が従来技術のダイカスト鋳造型と同一であるので、ここでは、鋳抜きピン1の取付構造に係る部分を中心に説明し、ダイカスト鋳造型の詳細な説明を省略する。
図1に示されるように、鋳抜きピン1は、基材がステンレス鋼により構成され、入子型等の型部材2に設けられた取付孔3に取り付けられる。また、鋳抜きピン1は、ダイカスト鋳造型内部に形成されたキャビティ4に露出させて鋳造品に孔を造形する造形部5と、取付孔3に挿入される挿入部6とを有する。造形部5は、截頭円柱状に形成され、その根元部分がR形状5aを介して挿入部6に連続する。
An embodiment of the present invention will be described with reference to the accompanying drawings. In addition, since the basic structure including the fixed mold, the movable mold, and the movable core is the same as that of the conventional die casting mold, the die casting mold of the present embodiment is a portion related to the mounting structure of the core pin 1 here. And a detailed description of the die casting mold will be omitted.
As shown in FIG. 1, the core pin 1 has a base made of stainless steel and is attached to an attachment hole 3 provided in a mold member 2 such as a telescopic die. The cast pin 1 has a modeling portion 5 that is exposed to a cavity 4 formed inside a die-casting mold and forms a hole in a cast product, and an insertion portion 6 that is inserted into the mounting hole 3. The modeling part 5 is formed in a truncated columnar shape, and its root part continues to the insertion part 6 via the R shape 5a.

挿入部6は、造形部5側(図1における右側)に設けられて取付孔3に嵌合される円柱形状の嵌合部7と、円柱状に形成されてボルトにより型部材2に固定される固定部8と、外径が嵌合部7の外径よりも小さい円柱状に形成されて両端がそれぞれR形状9a、9bを介して嵌合部7と固定部8とに接続される小径軸部9とを有する。そして、図2に示されるように、本実施形態の鋳抜きピン1は、嵌合部7の外周全部に、型部材2を構成する材料に対して剛性が低い材料により構成された低剛性部10が設けられる。該低剛性部10は、例えばチタン合金により構成された一定厚さTのコーティング層により構成され、鋳抜きピン1が取付孔3に取り付けられた状態で、取付孔3と嵌合部7とのギャップをシールするように構成される。   The insertion portion 6 is provided on the modeling portion 5 side (the right side in FIG. 1) and is fitted to the mounting hole 3 and is fitted to the mounting hole 3, and is formed in a cylindrical shape and fixed to the mold member 2 by bolts. And a small diameter that is formed in a columnar shape whose outer diameter is smaller than the outer diameter of the fitting portion 7 and whose both ends are connected to the fitting portion 7 and the fixing portion 8 via R shapes 9a and 9b, respectively. And a shaft portion 9. As shown in FIG. 2, the core pin 1 of the present embodiment has a low-rigidity portion that is made of a material having low rigidity relative to the material constituting the mold member 2 on the entire outer periphery of the fitting portion 7. 10 is provided. The low-rigidity portion 10 is constituted by a coating layer having a constant thickness T made of, for example, a titanium alloy, and the mounting hole 3 and the fitting portion 7 are in a state where the core pin 1 is attached to the attachment hole 3. Configured to seal the gap.

次に、本実施形態の作用を説明する。
鋳造時には、キャビティ4に充填された溶湯の凝固収縮による力や熱応力が鋳抜きピン1に作用する。ここで、キャビティ4に鋳抜きピン1が複数個配置されている場合、鋳造時に鋳抜きピン1に作用する力Fは各鋳抜きピン1ごとに異なり、その結果、鋳造時における各鋳抜きピン1は、各鋳抜きピン1ごとにそれぞれ固有の挙動を示す。そして、鋳造が複数回実施されると、各鋳抜きピン1は、その挙動に応じて低剛性部10が変形(塑性変形)して当該低剛性部10にそれぞれ固有の形状が形成される。
Next, the operation of this embodiment will be described.
At the time of casting, force and thermal stress due to solidification shrinkage of the molten metal filled in the cavity 4 act on the core pin 1. Here, when a plurality of core pins 1 are arranged in the cavity 4, the force F acting on the core pins 1 at the time of casting differs for each core pin 1, and as a result, each core pin at the time of casting. 1 indicates a unique behavior for each core pin 1. When casting is performed a plurality of times, each of the core pins 1 is deformed (plastically deformed) according to the behavior thereof, and a unique shape is formed in each of the low rigidity portions 10.

例えば、鋳造時における挙動が相対的に小さい鋳抜きピン1、すなわち、鋳造時に作用する力が相対的に小さい位置に配置された鋳抜きピン1は、低剛性部10の変形(塑性変形)が小さいことから、高いシール性が確保される。これに対し、鋳造時における挙動が相対的に大きい鋳抜きピン1、すなわち、鋳造時に作用する力が相対的に大きい位置に配置された鋳抜きピン1は、図3に示されるように、低剛性部10の軸方向(図1における左右方向)両側の変形(塑性変形)が大きいことから、シール性よりも撓み性が優先された形状に変形(塑性変形)する。なお、この場合も、低剛性部10の軸方向中央部分(変形が小さい部分)により、要求されるシール性が確保される。   For example, a cast pin 1 having a relatively small behavior during casting, that is, a cast pin 1 arranged at a position where a force acting during casting is relatively small has a deformation (plastic deformation) of the low-rigidity portion 10. Since it is small, high sealing performance is ensured. On the other hand, the cast pin 1 having a relatively large behavior during casting, that is, the cast pin 1 arranged at a position where the force acting during casting is relatively large is low as shown in FIG. Since the deformation (plastic deformation) on both sides in the axial direction (left-right direction in FIG. 1) of the rigid portion 10 is large, the rigid portion 10 is deformed (plastic deformation) into a shape in which flexibility is given priority over sealing performance. In this case as well, the required sealing performance is ensured by the axially central portion (the portion where deformation is small) of the low-rigidity portion 10.

この実施形態では以下の効果を奏する。
本実施形態によれば、嵌合部7の外周に型部材2を構成する材料に対して剛性が低い材料により構成された低剛性部10を形成して鋳抜きピン1を構成したので、鋳造時に作用する力による当該鋳抜きピン1の挙動に応じて低剛性部10を固有の形状に変形(塑性変形)させることにより、鋳造時における鋳抜きピン1の撓み性と、鋳抜きピン1と型部材2との間のシール性の確保とを高いレベルで両立させることができる。
そして、鋳造時における鋳抜きピン1の撓み性が確保されることから、鋳抜きピン1の造形部5の根元部分に作用する曲げ応力が緩和され、鋳抜きピン1の交換サイクルを延ばすことができる。また、型部材2側の改造が不要であるため、低コスト且つ容易に実施が可能である。
This embodiment has the following effects.
According to the present embodiment, the cast pin 1 is configured by forming the low-rigidity portion 10 made of a material having low rigidity with respect to the material constituting the mold member 2 on the outer periphery of the fitting portion 7. By deforming (plastic deformation) the low-rigidity portion 10 into a unique shape according to the behavior of the core pin 1 due to the force acting at times, the flexibility of the core pin 1 at the time of casting, Ensuring sealing performance with the mold member 2 can be achieved at a high level.
And since the flexibility of the core pin 1 at the time of casting is ensured, the bending stress which acts on the root part of the modeling part 5 of the core pin 1 is relieved, and the replacement cycle of the core pin 1 can be extended. it can. Further, since modification on the side of the mold member 2 is not necessary, it can be easily performed at low cost.

なお、実施形態は上記に限定されるものではなく、例えば次のように構成してもよい。
本実施形態では、低剛性のコーティング層を嵌合部7の外周全体に形成して低剛性部10を構成したが、低剛性部10は、必ずしも嵌合部7の外周全体に形成する必要はなく、図4に示されるように、低剛性のコーティング層を、特にシール性が要求される嵌合部7の造形部5側(図4における右側)に必要な幅(シール性が確保できる幅)で形成して低剛性部10を構成することができる。この場合、低剛性部10を嵌合部7の外周全体に形成した場合(図2、図3参照)と比較して、鋳抜きピン1(小径軸部9)の撓み性が優先される。なお、図5に、図4に示される態様の低剛性部10の変形(塑性変形)後の形状を示す。
本実施形態では、低剛性のコーティング層を嵌合部7の外周に形成して低剛性部10を構成したが、図6、図7に示されるように、嵌合部7の外周方向へ延びる円環状の稜11を軸方向へ一定間隔あるいは不定間隔で設けることで低剛性部10を構成することができる。この場合、鋳造を複数回実施して鋳造時における鋳抜きピンの挙動に応じて稜11(低剛性部)を固有の形状に変形(塑性変形)させることにより、鋳造時における鋳抜きピン1の撓み性と、鋳抜きピン1と型部材2との間のシール性の確保とを高いレベルで両立させることができる。なお、稜11(低剛性部10)は、嵌合部7の外周を旋盤により加工することで得ることができる。また、低剛性部10は、雄ねじのように一条の稜11を嵌合部7の外周に螺旋状に形成して構成することもできるが、円環状に閉じた形状の稜11を設けた方がシール性を確保する上でより有利である。
本実施形態では、嵌合部7の外周にコーティング層を一定の厚さで形成して低剛性部10を構成したが、図8に示されるように、嵌合部7の外周にコーティング層を厚さ(鋳抜きピン1半径方向の寸法)が造形部5側(図8における右側)から小径軸部9側(図8における左側)へ向けて直線状に漸増されるように形成して低剛性部10を構成することができる。この場合、シール性を確保するために取付孔3に対する嵌合部7の造形部5側のギャップを小さく設定すると共に、嵌合部7の外周が小径軸部9側へ向けて先細り形状に形成される。そして、鋳造が複数回実施されると、低剛性部10は、鋳抜きピン1の挙動に応じて変形(塑性変形)して、例えば図9に示されるような固有の形状に形成される。このように取付孔3と低剛性部10とのギャップが小径軸部9側へ向けて漸増するように低剛性部10を変形(塑性変形)させた場合、より撓み性が優先される。
また、図10に示されるように、嵌合部7の外周にコーティング層を厚さ(鋳抜きピン1半径方向の寸法)が造形部5側(図10における右側)から小径軸部9側(図10における左側)へ向けて曲線状に漸増されるように形成して低剛性部10を構成することができる。この場合、低剛性部10は、鋳抜きピン1の挙動に応じて、例えば図11に示されるように変形(塑性変形)する。
さらに、図12に示されるように、嵌合部7の外周方向へ延びる円環状の稜11を、高さ(鋳抜きピン1半径方向の寸法)が造形部5側(図12における右側)から小径軸部9側(図12における左側)へ向けて漸増するように一定間隔あるいは不定間隔で設けることで低剛性部10を構成することができる。同様に、螺旋状に延びる一条の量を、高さ(鋳抜きピン1半径方向の寸法)が造形部5側から小径軸部9側へ向けて漸増するように設けることで低剛性部10を構成することができる。この場合も、シール性を確保するために取付孔3に対する嵌合部7の造形部5側のギャップを小さく設定すると共に、嵌合部7の外周が小径軸部9側へ向けて先細り形状に形成される。
In addition, embodiment is not limited above, For example, you may comprise as follows.
In this embodiment, the low-rigidity coating layer is formed on the entire outer periphery of the fitting portion 7 to configure the low-rigidity portion 10. However, the low-rigidity portion 10 is not necessarily formed on the entire outer periphery of the fitting portion 7. As shown in FIG. 4, a low-rigidity coating layer is required for the molding part 5 side (the right side in FIG. 4) of the fitting part 7, which particularly requires sealing performance (width that can ensure sealing performance). ) To form the low rigidity portion 10. In this case, the flexibility of the core pin 1 (small-diameter shaft portion 9) is given priority over the case where the low-rigidity portion 10 is formed on the entire outer periphery of the fitting portion 7 (see FIGS. 2 and 3). FIG. 5 shows a shape after deformation (plastic deformation) of the low-rigidity portion 10 of the aspect shown in FIG.
In the present embodiment, the low-rigidity coating layer is formed on the outer periphery of the fitting portion 7 to configure the low-rigidity portion 10, but extends in the outer peripheral direction of the fitting portion 7 as shown in FIGS. 6 and 7. The low-rigidity portion 10 can be configured by providing the annular ridges 11 at regular intervals or indefinite intervals in the axial direction. In this case, casting is performed a plurality of times, and the ridge 11 (low-rigidity portion) is deformed (plastically deformed) into a unique shape according to the behavior of the casting pin at the time of casting. Flexibility and securing of the sealing performance between the core pin 1 and the mold member 2 can be made compatible at a high level. In addition, the ridge 11 (low-rigidity part 10) can be obtained by processing the outer periphery of the fitting part 7 with a lathe. The low-rigidity portion 10 can be formed by forming a single ridge 11 on the outer periphery of the fitting portion 7 like a male screw. Is more advantageous in securing sealing performance.
In this embodiment, the coating layer is formed on the outer periphery of the fitting portion 7 with a constant thickness to form the low-rigidity portion 10. However, as shown in FIG. 8, the coating layer is applied to the outer periphery of the fitting portion 7. The thickness (dimension in the radial direction of the cast pin 1) is formed and gradually increased linearly from the modeling part 5 side (right side in FIG. 8) toward the small diameter shaft part 9 side (left side in FIG. 8). The rigid portion 10 can be configured. In this case, in order to ensure sealing performance, the gap on the modeling portion 5 side of the fitting portion 7 with respect to the mounting hole 3 is set small, and the outer periphery of the fitting portion 7 is tapered toward the small diameter shaft portion 9 side. Is done. When casting is performed a plurality of times, the low-rigidity portion 10 is deformed (plastically deformed) according to the behavior of the core pin 1 and is formed into a unique shape as shown in FIG. 9, for example. Thus, when the low-rigidity portion 10 is deformed (plastically deformed) so that the gap between the mounting hole 3 and the low-rigidity portion 10 gradually increases toward the small-diameter shaft portion 9, flexibility is given priority.
Further, as shown in FIG. 10, the coating layer is formed on the outer periphery of the fitting portion 7 with a thickness (dimension in the radial direction of the casting pin 1) from the modeling portion 5 side (right side in FIG. 10) to the small diameter shaft portion 9 side ( The low-rigidity portion 10 can be formed by gradually increasing in a curved shape toward the left side in FIG. In this case, the low-rigidity portion 10 is deformed (plastically deformed), for example, as shown in FIG. 11 according to the behavior of the core pin 1.
Further, as shown in FIG. 12, the annular ridge 11 extending in the outer peripheral direction of the fitting portion 7 has a height (dimension in the radial direction of the casting pin 1) from the modeling portion 5 side (right side in FIG. 12). The low-rigidity portion 10 can be configured by providing at regular intervals or irregular intervals so as to gradually increase toward the small-diameter shaft portion 9 side (left side in FIG. 12). Similarly, the low-rigidity portion 10 is provided by providing the amount of one line extending in a spiral manner so that the height (dimension in the radial direction of the casting pin 1) gradually increases from the modeling portion 5 side toward the small-diameter shaft portion 9 side. Can be configured. Also in this case, in order to ensure the sealing property, the gap on the modeling portion 5 side of the fitting portion 7 with respect to the mounting hole 3 is set small, and the outer periphery of the fitting portion 7 is tapered toward the small diameter shaft portion 9 side. It is formed.

1 鋳抜きピン、2 型部材、3 取付孔、4 キャビティ、5 造形部、6 挿入部、7 嵌合部、8 固定部、9 小径軸部、10 低剛性部、11 稜 DESCRIPTION OF SYMBOLS 1 Casting pin, 2 type | mold member, 3 mounting hole, 4 cavity, 5 modeling part, 6 insertion part, 7 fitting part, 8 fixed part, 9 small diameter shaft part, 10 low-rigidity part, 11 ridge

Claims (8)

型部材の取付孔に着脱可能に取り付けられる鋳抜きピンを有するダイカスト鋳造型であって、
前記鋳抜きピンは、前記ダイカスト鋳造型のキャビティに露出する造形部と、前記取付孔に挿入される挿入部とを含み、該挿入部は、前記造形部側に設けられて前記取付孔に嵌合される嵌合部と、該嵌合部に連続して設けられて前記嵌合部の外径よりも小さい外径を有する小径軸部とを含み、前記嵌合部の外周には、前記型部材に対して剛性が低い低剛性部が形成され、
鋳造時における前記鋳抜きピンの挙動により前記低剛性部を変形させることを特徴とするダイカスト鋳造型。
A die-casting mold having a cast pin that is detachably attached to the mounting hole of the mold member,
The core pin includes a modeling part exposed in the cavity of the die casting mold and an insertion part inserted into the mounting hole, and the insertion part is provided on the modeling part side and fits into the mounting hole. A fitting portion to be joined, and a small-diameter shaft portion that is continuously provided in the fitting portion and has an outer diameter smaller than the outer diameter of the fitting portion. A low-rigidity portion having low rigidity relative to the mold member is formed,
A die casting mold, wherein the low-rigidity portion is deformed by the behavior of the core pin during casting.
前記低剛性部は、前記嵌合部の外周に前記型部材と異種材料からなる層を形成することにより構成されることを特徴とする請求項1に記載のダイカスト鋳造型。 The die-casting mold according to claim 1, wherein the low-rigidity part is configured by forming a layer made of a material different from that of the mold member on an outer periphery of the fitting part. 前記低剛性部は、前記嵌合部の外周方向へ延びる稜により構成されることを特徴とする請求項1に記載のダイカスト鋳造型。 The die-casting mold according to claim 1, wherein the low-rigidity part is configured by a ridge extending in an outer peripheral direction of the fitting part. 前記低剛性部は、鋳抜きピン半径方向の寸法が、前記造形部側から前記小径軸部側へ向けて漸増されることを特徴とする請求項1−3のいずれかに記載のダイカスト鋳造型。 The die-casting die according to any one of claims 1 to 3, wherein the low-rigidity portion has a dimension in the radial direction of the core pin gradually increased from the modeling portion side toward the small-diameter shaft portion side. . ダイカスト鋳造型のキャビティに露出する造形部と、型部材の取付孔に挿入される挿入部とを含む鋳抜きピンであって、
前記挿入部は、前記造形部側に設けられて前記取付孔に嵌合される嵌合部と、該嵌合部に連続して設けられて前記嵌合部の外径よりも小さい外径を有する小径軸部とを含み、前記嵌合部の外周には、前記型部材に対して剛性が低い低剛性部が形成され、鋳造時における前記鋳抜きピンの挙動により前記低剛性部を変形させることを特徴とする鋳抜きピン。
A die-casting pin including a modeling part exposed in a cavity of a die-casting mold and an insertion part inserted into an attachment hole of a mold member,
The insertion portion is provided on the modeling portion side and has a fitting portion that is fitted into the mounting hole, and an outer diameter that is provided continuously with the fitting portion and is smaller than the outer diameter of the fitting portion. A low-rigidity portion having low rigidity with respect to the mold member is formed on the outer periphery of the fitting portion, and the low-rigidity portion is deformed by the behavior of the core pin during casting. Cast pin characterized by that.
前記低剛性部は、前記嵌合部の外周に前記型部材と異種材料からなる層を形成することにより構成されることを特徴とする請求項5に記載の鋳抜きピン。 The cast pin according to claim 5, wherein the low-rigidity portion is configured by forming a layer made of a material different from that of the mold member on an outer periphery of the fitting portion. 前記低剛性部は、前記嵌合部の外周方向へ延びる稜により構成されることを特徴とする請求項5に記載の鋳抜きピン。 The cast pin according to claim 5, wherein the low-rigidity portion is configured by a ridge extending in an outer peripheral direction of the fitting portion. 前記低剛性部は、鋳抜きピン半径方向の寸法が、前記造形部側から前記小径軸部側へ向けて漸増されることを特徴とする請求項5−7のいずれかに記載のダイカスト鋳造型。 The die casting mold according to any one of claims 5 to 7, wherein the low-rigidity portion is gradually increased in dimension in the radial direction of the core pin from the modeling portion side toward the small-diameter shaft portion side. .
JP2009146430A 2009-06-19 2009-06-19 Die casting mold and core pin Expired - Fee Related JP5316792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009146430A JP5316792B2 (en) 2009-06-19 2009-06-19 Die casting mold and core pin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009146430A JP5316792B2 (en) 2009-06-19 2009-06-19 Die casting mold and core pin

Publications (2)

Publication Number Publication Date
JP2011000622A JP2011000622A (en) 2011-01-06
JP5316792B2 true JP5316792B2 (en) 2013-10-16

Family

ID=43559032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009146430A Expired - Fee Related JP5316792B2 (en) 2009-06-19 2009-06-19 Die casting mold and core pin

Country Status (1)

Country Link
JP (1) JP5316792B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5780390B2 (en) * 2011-05-27 2015-09-16 トヨタ自動車株式会社 Die casting pin

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228347U (en) * 1988-08-04 1990-02-23
JP2004268077A (en) * 2003-03-07 2004-09-30 Nissan Motor Co Ltd Casting method and metallic mold for casting
JP2005334961A (en) * 2004-05-28 2005-12-08 Honda Motor Co Ltd Core pin
JP2006110606A (en) * 2004-10-15 2006-04-27 Aisin Seiki Co Ltd Casting method
JP2007090378A (en) * 2005-09-28 2007-04-12 Toyota Motor Corp Core pin, mold member fitted with core pin, and fitting structure for core pin

Also Published As

Publication number Publication date
JP2011000622A (en) 2011-01-06

Similar Documents

Publication Publication Date Title
US20070086907A1 (en) Gearwheel and method for manufacturing a gearwheel
JP6080245B2 (en) Turbine engine casing and manufacturing method
JP2015520677A (en) Tool for producing a casting core for a turbine engine blade and method for producing the same
JP5316792B2 (en) Die casting mold and core pin
JP5960106B2 (en) Mold used for caliper casting apparatus, caliper casting apparatus, and caliper manufacturing method
JP5890690B2 (en) Steering shaft
CN106014495A (en) Multi-airfoil guide vane unit
JP2008149359A (en) Insert for full-mold casting, and casting method for press die using the same
JP2008265026A (en) Plastic injection molding mold and plastic molded article
JP5835473B2 (en) Manufacturing method of optical components
JP2010183969A (en) Method of manufacturing golf club head
JP5720197B2 (en) Casting pin and mold
JP4555239B2 (en) Mold
JP2018130935A (en) Injection mold, method for manufacturing injection mold, and method for manufacturing gear
JP5640525B2 (en) Die casting mold, casting method
JP5594122B2 (en) Mold, casting method using mold, and mold design method
JP6629588B2 (en) Die-casting mold, cast product produced using die-casting mold, and method for producing cast product using die-casting mold
JP7024467B2 (en) Molding mold
JP6045389B2 (en) Turbine nozzle and manufacturing method thereof
US11077489B2 (en) Core pack
JP2010221515A (en) Mold for in-mold coating
JP6308066B2 (en) Mold manufacturing method
JP5780390B2 (en) Die casting pin
JP6355062B2 (en) Hinge manufacturing method
US9259781B2 (en) Case corrosion-resistant liners in nozzles and case bodies to eliminate overlays

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130625

R151 Written notification of patent or utility model registration

Ref document number: 5316792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees