JP5315893B2 - Adsorption heat pump - Google Patents

Adsorption heat pump Download PDF

Info

Publication number
JP5315893B2
JP5315893B2 JP2008244613A JP2008244613A JP5315893B2 JP 5315893 B2 JP5315893 B2 JP 5315893B2 JP 2008244613 A JP2008244613 A JP 2008244613A JP 2008244613 A JP2008244613 A JP 2008244613A JP 5315893 B2 JP5315893 B2 JP 5315893B2
Authority
JP
Japan
Prior art keywords
adsorber
heat exchanger
adsorbent
heat pump
aggregator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008244613A
Other languages
Japanese (ja)
Other versions
JP2010078182A (en
Inventor
徳康 安曽
文雄 武井
宏章 吉田
丈夫 笠嶋
和史 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2008244613A priority Critical patent/JP5315893B2/en
Publication of JP2010078182A publication Critical patent/JP2010078182A/en
Application granted granted Critical
Publication of JP5315893B2 publication Critical patent/JP5315893B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adsorption type heat pump preventing dew condensation of a refrigerant evaporated by a heat exchanger of an adsorber, on an inner wall of a container of the adsorber. <P>SOLUTION: This adsorption type heat pump 10 has the adsorber 12 and a condenser 14. The heat exchanger 22 disposed in the adsorber 12 is covered by a structure 30, excluding a part 25 facing the condenser 14. The structure 30 separates the inside of the adsorber 12 into a first space 27 including the heat exchanger 22 and communicatable with a space in the condenser 14, and a second space 28 not including the heat exchanger 22 and blocked from the first space 27. An adsorbent 24 in the heat exchanger 22 is arranged so that it has high gas permeability at a side of the part 25 facing the condenser 14 in comparison with that at an opposite side. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、吸着器及び凝集器を有する吸着式ヒートポンプに関する。   The present invention relates to an adsorption heat pump having an adsorber and an aggregator.

近年、エネルギーの有効利用の観点から、吸着式ヒートポンプが注目されている。吸着式ヒートポンプは、発熱体から排出された熱を利用して、別の発熱体を冷却すること、又は温風や温水を生成することが可能である。吸着式ヒートポンプは、一般的に大量の熱を排出するシステムに適用されてきたが、電子機器への適用も提案されるに至っている。   In recent years, adsorption heat pumps have attracted attention from the viewpoint of effective use of energy. The adsorption heat pump can cool another heat generating element or generate hot air or hot water using heat discharged from the heat generating element. The adsorption heat pump has been generally applied to a system that discharges a large amount of heat, but application to an electronic device has also been proposed.

図1は吸着器及び凝集器を有する典型的な吸着式ヒートポンプ100を概略的に示す。吸着式ヒートポンプ100は、真空状態にされた吸着器112及び凝集器114を有する。吸着器112及び凝集器114は、必要に応じてのバルブ117を有する冷媒配管116によって接続されている。吸着器112は、デシカント式熱交換器とも呼ばれる例えばシリカゲル又はゼオライト等の吸着剤124が格納された熱交換器122を有し、熱交換器122の内部には、排熱により加熱された流体を運ぶ配管123が導かれている。熱交換器122内に格納された吸着剤124は、吸着過程において、例えば水である冷媒を吸着し、脱着過程において、配管123内を流れる例えば温水である加熱流体から熱量を奪い、吸着していた冷媒を気化させる(脱着する)。凝集器114もまた熱交換器142を有し、熱交換器142の内部には水又は空気などの流体を運ぶ配管143が導かれている。凝集器114は冷媒118を収容しており、上記吸着過程において、吸着器112内の吸着剤124に吸着される冷媒を供給する。また、凝集器114は、上記脱着過程において、冷却流を運ぶ配管143が導かれた熱交換器142にて、吸着器112の熱交換器122にて気化された冷媒を凝縮させ、その凝縮熱を利用して配管143内の流体を加熱することができる。
特開平5−272832号公報 特開2002−100891号公報
FIG. 1 schematically illustrates a typical adsorption heat pump 100 having an adsorber and an aggregator. The adsorption heat pump 100 includes an adsorber 112 and an aggregator 114 that are in a vacuum state. The adsorber 112 and the aggregator 114 are connected by a refrigerant pipe 116 having a valve 117 as necessary. The adsorber 112 has a heat exchanger 122 in which an adsorbent 124 such as silica gel or zeolite, which is also called a desiccant heat exchanger, is stored. Inside the heat exchanger 122, a fluid heated by exhaust heat is stored. A carrying pipe 123 is guided. The adsorbent 124 stored in the heat exchanger 122 adsorbs, for example, a refrigerant that is water in the adsorption process, and desorbs and absorbs heat from a heated fluid that is, for example, warm water flowing in the pipe 123 in the desorption process. Vaporize (desorb) the refrigerant. The aggregator 114 also has a heat exchanger 142, and a pipe 143 that carries a fluid such as water or air is led into the heat exchanger 142. The aggregator 114 contains a refrigerant 118 and supplies the refrigerant adsorbed by the adsorbent 124 in the adsorber 112 in the adsorption process. Further, in the desorption process, the aggregator 114 condenses the refrigerant vaporized in the heat exchanger 122 of the adsorber 112 in the heat exchanger 142 through which the pipe 143 carrying the cooling flow is led, and the condensation heat thereof. Can be used to heat the fluid in the pipe 143.
Japanese Patent Laid-Open No. 5-272732 JP 2002-100891 A

吸着式ヒートポンプにおいては、ヒートポンプの効率の観点から、吸着器の熱交換器にて熱量を奪って気化した冷媒が凝集器の熱交換器で凝縮して熱量を全量渡すことが重要である。しかしながら、実際には、吸着器の熱交換器で気化した冷媒の一部は、図1に示すように吸着器容器の内壁で凝縮して結露119を生じさせ、ヒートポンプの効率を低下させる。   In the adsorption heat pump, from the viewpoint of the efficiency of the heat pump, it is important that the refrigerant vaporized by depriving the amount of heat in the heat exchanger of the adsorber is condensed in the heat exchanger of the aggregator and the entire amount of heat is passed. However, in practice, a part of the refrigerant evaporated in the heat exchanger of the adsorber is condensed on the inner wall of the adsorber container as shown in FIG. 1 to cause dew condensation 119, thereby reducing the efficiency of the heat pump.

そこで、本発明は、上記の点に鑑みてなされたものであって、吸着器の熱交換器にて気化した冷媒が吸着器の内壁で結露することを防止し、ヒートポンプの効率を向上させることが可能な吸着式ヒートポンプを提供することを目的とする。   Therefore, the present invention has been made in view of the above points, and prevents the refrigerant evaporated in the heat exchanger of the adsorber from condensing on the inner wall of the adsorber and improves the efficiency of the heat pump. It is an object of the present invention to provide an adsorption heat pump capable of performing the above-mentioned.

本発明の実施の形態の一観点に従った吸着式ヒートポンプは、吸着器及び凝集器を有する。吸着式ヒートポンプは、吸着器内に配置された熱交換器を有し、更に、吸着器内に設けられ、熱交換器を含み、凝集器に連通する第1の空間と、吸着器内に設けられ、第1の空間から構造体を介して遮断された第2の空間とを備える。   An adsorption heat pump according to an aspect of an embodiment of the present invention includes an adsorber and an aggregator. The adsorption heat pump has a heat exchanger disposed in the adsorber, and further includes a first space that is provided in the adsorber, includes a heat exchanger, and communicates with the aggregator, and is provided in the adsorber. And a second space cut off from the first space through the structure.

開示される実施形態によれば、吸着器の熱交換器にて気化した冷媒が吸着器の内壁で結露することが防止され、吸着式ヒートポンプの効率が向上され得る。   According to the disclosed embodiment, the refrigerant vaporized in the heat exchanger of the adsorber can be prevented from condensing on the inner wall of the adsorber, and the efficiency of the adsorption heat pump can be improved.

以下、添付図面を参照しながら実施形態について詳細に説明する。図面全体を通して、対応する要素には同一あるいは類似の参照符号を付する。   Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. Corresponding elements are given the same or similar reference numerals throughout the drawings.

図2を用いて、一実施形態に係る吸着式ヒートポンプ10を説明する。吸着式ヒートポンプ10は、吸着器12及び凝集器14を有する。吸着器12及び凝集器14は冷媒配管16によって接続されており、冷媒配管16には必要に応じてバルブ17が設けられる。凝集器14は例えば水である冷媒18を収容している。   The adsorption heat pump 10 according to an embodiment will be described with reference to FIG. The adsorption heat pump 10 includes an adsorber 12 and an aggregator 14. The adsorber 12 and the aggregator 14 are connected by a refrigerant pipe 16, and a valve 17 is provided in the refrigerant pipe 16 as necessary. The aggregator 14 contains a refrigerant 18 that is, for example, water.

吸着器12は、外囲器を成す容器21と、熱交換器22と、排熱により加熱された流体を熱交換器22の内部に導く配管23とを有する。熱交換器22は、例えば、デシカント式熱交換器とも呼ばれる、例えばシリカゲル又はゼオライト等の吸着剤24を格納した熱交換器である。吸着剤24は、吸着過程において、例えば水蒸気である冷媒18の蒸気を吸着し、脱着過程において、配管23内を流れる例えば温水である加熱流体から熱量を奪い、吸着していた冷媒を気化させる。   The adsorber 12 includes a container 21 that forms an envelope, a heat exchanger 22, and a pipe 23 that guides a fluid heated by exhaust heat to the inside of the heat exchanger 22. The heat exchanger 22 is a heat exchanger storing an adsorbent 24 such as silica gel or zeolite, which is also called a desiccant heat exchanger, for example. The adsorbent 24 adsorbs the vapor of the refrigerant 18, for example, water vapor in the adsorption process, and takes heat from the heated fluid that is, for example, warm water flowing in the pipe 23 in the desorption process, and vaporizes the adsorbed refrigerant.

凝集器14は、外囲器を成す容器41と、熱交換器42と、水又は空気などの流体を熱交換器42の内部に導く配管43とを有する。凝集器14は、上記吸着過程において、吸着器12内の吸着剤24に吸着される冷媒18を供給する。また、凝集器14は、上記脱着過程において、配管43が導かれた熱交換器42にて、吸着器12の熱交換器22にて気化された冷媒18を凝縮させ、その凝縮熱を利用して配管43内の流体を加熱することができる。   The aggregator 14 includes a container 41 that forms an envelope, a heat exchanger 42, and a pipe 43 that guides a fluid such as water or air to the inside of the heat exchanger 42. The aggregator 14 supplies the refrigerant 18 that is adsorbed by the adsorbent 24 in the adsorber 12 in the adsorption process. Further, in the desorption process, the aggregator 14 condenses the refrigerant 18 vaporized in the heat exchanger 22 of the adsorber 12 in the heat exchanger 42 through which the pipe 43 is guided, and uses the heat of condensation. Thus, the fluid in the pipe 43 can be heated.

吸着式ヒートポンプ10において、吸着器12の熱交換器22は、凝集器14に面する部分、すなわち、冷媒配管16及びバルブ17を介して凝集器容器41内の空間に面する部分25を除いて、例えば金属又はプラスチック等の材料を有する構造体30で覆われて閉鎖されている。ここでは、熱交換器22の露出された部分25の反対側の、構造体30により閉鎖された面を閉鎖面26と呼ぶ。構造体30は、熱交換器22に接しており、露出部分25に対応する開口31を有する枠部32と、開口31の位置を冷媒配管16の位置に整合させるように枠部32を吸着器容器21に取り付ける脚部33とを有する。構造体30は全体として1つの連続体を形成し、吸着器12内を、熱交換器22を含む第1の空間27と、熱交換器22を含まない、吸着器12内に密閉された第2の空間28とに分離している。換言すると、熱交換器22は、バルブ17を介して凝集器14内の空間と連通可能な第1の空間27内に置かれ、第2の空間28から遮断されている。   In the adsorption heat pump 10, the heat exchanger 22 of the adsorber 12 is except for a part facing the aggregator 14, that is, a part 25 facing the space in the aggregator container 41 via the refrigerant pipe 16 and the valve 17. , Covered and closed with a structure 30 comprising a material such as metal or plastic. Here, the surface closed by the structure 30 on the opposite side of the exposed portion 25 of the heat exchanger 22 is referred to as a closed surface 26. The structure 30 is in contact with the heat exchanger 22, and the frame 32 having an opening 31 corresponding to the exposed portion 25 and the frame 32 are adsorbed so that the position of the opening 31 is aligned with the position of the refrigerant pipe 16. And a leg 33 attached to the container 21. The structure 30 forms one continuous body as a whole, and the adsorber 12 includes a first space 27 including the heat exchanger 22 and a first space 27 not including the heat exchanger 22 and sealed in the adsorber 12. It is separated into two spaces 28. In other words, the heat exchanger 22 is placed in the first space 27 that can communicate with the space in the aggregator 14 via the valve 17, and is cut off from the second space 28.

構造体30を有することにより、吸着器12の熱交換器22で気化した冷媒18を、吸着器容器21の内壁で結露させずに、効率的に凝集器14の熱交換器42に集めることができる。   By having the structure 30, the refrigerant 18 vaporized by the heat exchanger 22 of the adsorber 12 can be efficiently collected in the heat exchanger 42 of the aggregator 14 without being condensed on the inner wall of the adsorber container 21. it can.

密閉された第2の空間28は、吸着器容器21の外気と熱交換器22との間の熱の伝播を低減する。このような断熱性の観点から、第2の空間28は、第1の空間27及び凝集器14内の空間と同様に、真空状態にされることが好ましい。また、構造体30は、熱交換器22側、又は図2に示すように吸着器容器21側の少なくとも一方で断熱材34により覆われ、金属又はプラスチックと断熱材34との積層構造を有していてもよい。さらに、構造体30の脚部33は、断熱材35を介して吸着器容器21に取り付けられることができる。これらの断熱材34及び35には、断熱性を有する樹脂や接着剤、例えば、シリコーン樹脂、ポリプロピレン、ABS、POM、シリコンゴム等を用い得る。   The sealed second space 28 reduces heat propagation between the outside air of the adsorber container 21 and the heat exchanger 22. From the viewpoint of such heat insulation, it is preferable that the second space 28 is in a vacuum state, similarly to the first space 27 and the space in the aggregator 14. The structure 30 is covered with a heat insulating material 34 on at least one of the heat exchanger 22 side and the adsorber container 21 side as shown in FIG. 2, and has a laminated structure of metal or plastic and the heat insulating material 34. It may be. Furthermore, the leg 33 of the structure 30 can be attached to the adsorber container 21 via the heat insulating material 35. For these heat insulating materials 34 and 35, a heat-insulating resin or adhesive, for example, silicone resin, polypropylene, ABS, POM, silicon rubber or the like can be used.

このような断熱構造の1つ又は組み合わせを用いることにより、熱交換器22と吸着器12の外気との間の熱の伝播を低減し、熱交換器22内の温度を均一化することが可能である。この温度の均一化は熱交換器22全体で効率的に冷媒18を吸着/脱着することを可能にする。   By using one or a combination of such heat insulation structures, it is possible to reduce the propagation of heat between the heat exchanger 22 and the outside air of the adsorber 12, and to equalize the temperature in the heat exchanger 22. It is. This uniform temperature makes it possible to efficiently adsorb / desorb the refrigerant 18 throughout the heat exchanger 22.

吸着器12内の第2の空間28が真空状態にされる場合、構造体30は強度の観点から金属又は十分な厚さを有するプラスチックで形成されることが望ましい。構造体30を形成し得る金属には例えば、銅、アルミニウム又は真鍮が含まれ、例えば、熱伝導性の点から銅、熱容量の点からアルミニウム、耐酸化性や加工性の点から真鍮、などのように、吸着式ヒートポンプ10に要求される特性に応じて選択される。   When the second space 28 in the adsorber 12 is evacuated, the structure 30 is preferably formed of metal or plastic having a sufficient thickness from the viewpoint of strength. The metal that can form the structure 30 includes, for example, copper, aluminum, or brass. For example, copper from the viewpoint of thermal conductivity, aluminum from the viewpoint of heat capacity, brass from the viewpoint of oxidation resistance and workability, and the like. Thus, it is selected according to the characteristics required for the adsorption heat pump 10.

なお、実施形態に係る吸着式ヒートポンプは、図2の形態に限られず、例えば、凝集器と蒸発器とを別々に有する形態など、その他の形態を有していてもよい。   In addition, the adsorption heat pump which concerns on embodiment is not restricted to the form of FIG. 2, For example, you may have other forms, such as a form which has a coagulator and an evaporator separately.

図2に示した吸着式ヒートポンプ10においては、吸着器12の熱交換器22は、凝集器14側の露出部25を除いて、構造体30で覆われて閉鎖されている。そのため、閉鎖面26側の吸着剤24は、例えば水蒸気である冷媒蒸気に直接的に接しない。これによる冷媒18の吸着/脱着量の低下ひいては吸着式ヒートポンプ10の効率の低下を回避するため、吸着器12の熱交換器22は、好ましくは、冷媒蒸気が露出部25を介して閉鎖面26側の吸着剤24まで到達することを促進させる構成を有する。この構成は、露出部25側のガス透過性を高めるように吸着剤24を充填することにより実現される。   In the adsorption heat pump 10 shown in FIG. 2, the heat exchanger 22 of the adsorber 12 is covered and closed with a structure 30 except for the exposed portion 25 on the aggregator 14 side. For this reason, the adsorbent 24 on the closed surface 26 side does not directly contact the refrigerant vapor, for example, water vapor. In order to avoid a decrease in the adsorption / desorption amount of the refrigerant 18 and thus a decrease in the efficiency of the adsorption heat pump 10, the heat exchanger 22 of the adsorber 12 is preferably configured such that the refrigerant vapor passes through the exposed portion 25 and the closed surface 26. It has a configuration that facilitates reaching the adsorbent 24 on the side. This configuration is realized by filling the adsorbent 24 so as to improve the gas permeability on the exposed portion 25 side.

図3は、露出部25側のガス透過性を高めるための吸着剤の充填方法の一例を示す。図3(a)は熱交換器22の斜視図を表し、図3(b)は鉛直平面で切断したときの図3(a)の断面図を表す。   FIG. 3 shows an example of a method for filling an adsorbent for improving gas permeability on the exposed portion 25 side. 3A shows a perspective view of the heat exchanger 22, and FIG. 3B shows a cross-sectional view of FIG. 3A when cut along a vertical plane.

吸着器12の熱交換器22は露出部25及び閉鎖面26を有し、複数のフィン51を有するラジエター52を含む。フィン51の隙間において、閉鎖面26側には第1の吸着剤24−1、露出面側には第2の吸着剤24−2が充填されている。第1の吸着剤24−1の層53及び第2の吸着剤24−2の層54は、例えば金属から成るメッシュ55により互いに隔てられている。また、露出部25にもメッシュ56が配置されている。メッシュ55は第1の吸着剤24−1の粒径より小さいメッシュ幅を有し、メッシュ56は第2の吸着剤24−2の粒径より小さいメッシュ幅を有することが好ましいが、これら2つのメッシュ55及び56は同一の設計を有していてもよい。   The heat exchanger 22 of the adsorber 12 includes an exposed portion 25 and a closing surface 26, and includes a radiator 52 having a plurality of fins 51. In the gap between the fins 51, the first adsorbent 24-1 is filled on the closed surface 26 side, and the second adsorbent 24-2 is filled on the exposed surface side. The layer 53 of the first adsorbent 24-1 and the layer 54 of the second adsorbent 24-2 are separated from each other by a mesh 55 made of metal, for example. A mesh 56 is also disposed in the exposed portion 25. The mesh 55 preferably has a mesh width smaller than the particle size of the first adsorbent 24-1, and the mesh 56 preferably has a mesh width smaller than the particle size of the second adsorbent 24-2. Meshes 55 and 56 may have the same design.

図3に示した例では、第1の吸着剤24−1と第2の吸着剤24−2との間で吸着剤粒子の粒径を異ならせることにより、2つの吸着剤層53及び54の嵩密度に差異を生じさせている。吸着剤24−1及び24−2は、例えばシリカゲルである。粒径が0.01mm〜1mmのシリカゲルを用いて、嵩密度を0.01g/mL〜1.0g/mLの範囲で制御することができる。吸着剤24−1及び24−2は、粒径に関して分級されており、閉鎖面26側から露出部25側に向かって粒径が大きくなるように充填される。例えば、第1の吸着剤24−1は200μm以下の粒径を有し、第2の吸着剤24−2は200〜400μmの粒径を有する。さらに、例えば、400〜800μmの粒径を有する第3の吸着剤の層を露出面側に設けるなど、三層以上の吸着剤層を設けてもよい。粒径の大きい吸着剤の層は、粒径の小さい吸着剤の層より、吸着剤粒子間に大きい空隙を有し、嵩密度が小さくなる。従って、第2の吸着剤の層54は第1の吸着剤の層53より高いガス透過性を有し、冷媒蒸気は閉鎖面26側の第1の吸着剤24−1まで容易に到達し得る。   In the example shown in FIG. 3, the two adsorbent layers 53 and 54 are made different by changing the particle diameter of the adsorbent particles between the first adsorbent 24-1 and the second adsorbent 24-2. It makes a difference in the bulk density. The adsorbents 24-1 and 24-2 are, for example, silica gel. Using silica gel having a particle size of 0.01 mm to 1 mm, the bulk density can be controlled in the range of 0.01 g / mL to 1.0 g / mL. The adsorbents 24-1 and 24-2 are classified in terms of particle size, and are filled so that the particle size increases from the closed surface 26 side toward the exposed portion 25 side. For example, the first adsorbent 24-1 has a particle size of 200 μm or less, and the second adsorbent 24-2 has a particle size of 200 to 400 μm. Further, for example, three or more adsorbent layers may be provided such that a third adsorbent layer having a particle size of 400 to 800 μm is provided on the exposed surface side. The adsorbent layer having a large particle size has larger voids between the adsorbent particles than the adsorbent layer having a small particle size, and the bulk density is small. Therefore, the second adsorbent layer 54 has higher gas permeability than the first adsorbent layer 53, and the refrigerant vapor can easily reach the first adsorbent 24-1 on the closed surface 26 side. .

なお、ガス透過性の調整は、吸着剤粒子の粒径を調整することに限らず、吸着剤24の疎密、嵩密度又は充填率を変化させるその他の手法によって行ってもよい。例えば、同一範囲(例えば、200〜400μm)内の粒径のシリカゲルを用いて、その含有率を変化させてもよい。また、図3の例ではメッシュ55を用いて複数の吸着剤層を形成しているが、メッシュ55を用いずに吸着剤24の嵩密度を段階的あるいは連続的に変化させるよう、接着剤を使用して吸着剤24を固定してもよい。接着剤の量は、好ましくは、接着剤により塞がれる粒子表面の細孔が半分以下となるようにされる。   The adjustment of gas permeability is not limited to adjusting the particle size of the adsorbent particles, but may be performed by other methods for changing the density, bulk density, or filling rate of the adsorbent 24. For example, the content may be changed using silica gel having a particle size in the same range (for example, 200 to 400 μm). In the example of FIG. 3, a plurality of adsorbent layers are formed using the mesh 55, but an adhesive is used so as to change the bulk density of the adsorbent 24 stepwise or continuously without using the mesh 55. The adsorbent 24 may be fixed by use. The amount of the adhesive is preferably adjusted so that the pores on the particle surface blocked by the adhesive are less than half.

このように、露出部25側のガス透過性を高めるように吸着剤24を充填することにより、吸着器12の熱交換器22内での冷媒蒸気の拡散性を高め、閉鎖面26側の吸着剤も効率的に冷媒を吸着/脱着することが可能である。従って、熱交換器22全体で見て、実際に吸着/脱着を行う吸着剤の表面積を、熱交換器22内に吸着剤を均一且つ高密度に充填した場合より増大させることが可能である。   In this way, by filling the adsorbent 24 so as to increase the gas permeability on the exposed portion 25 side, the diffusibility of the refrigerant vapor in the heat exchanger 22 of the adsorber 12 is enhanced, and the adsorption on the closed surface 26 side. The agent can also efficiently adsorb / desorb the refrigerant. Accordingly, it is possible to increase the surface area of the adsorbent that is actually adsorbed / desorbed as compared with the heat exchanger 22 as compared with the case where the adsorbent is uniformly and densely packed in the heat exchanger 22.

図2に示した吸着式ヒートポンプ10は、熱交換器22の露出部25側のガス透過性を高めるように吸着剤24を充填することにより、冷媒18の吸着/脱着量の低下を抑制あるいは回避しながら、冷媒18が吸着器容器21の内壁で結露することを防止することができる。このような吸着剤24の充填方法により、吸着式ヒートポンプ10の効率は更に向上され得る。   The adsorption heat pump 10 shown in FIG. 2 suppresses or avoids a decrease in the amount of adsorption / desorption of the refrigerant 18 by filling the adsorbent 24 so as to increase the gas permeability on the exposed portion 25 side of the heat exchanger 22. However, it is possible to prevent the refrigerant 18 from condensing on the inner wall of the adsorber container 21. By such a filling method of the adsorbent 24, the efficiency of the adsorption heat pump 10 can be further improved.

図4に示すように、吸着器容器21及び凝集器容器41として、それぞれ大きさが400×400×150mmの2つのポリアセタール製の容器(肉厚20mm)を、冷媒配管16で接続して配置した。凝集器14内部に200×200×30mmの大きさの熱交換器42(フィンピッチ1mm)を設置した。吸着器12には、凝集器14の熱交換器42と同一の大きさを有し、且つ上面及び側面に真鍮板32を張った熱交換器22を配置した。熱交換器22を、その底面と吸着器容器21との間隔が15mmになるように、真鍮板から成る脚部33を用いて吸着器容器21に固定した。脚部33と吸着器容器21との間には断熱材(図2の35を参照)としてシリコーン樹脂を介在させた。 As shown in FIG. 4, as the adsorber container 21 and the aggregator container 41, two polyacetal containers (thickness 20 mm) each having a size of 400 × 400 × 150 mm 3 are connected by the refrigerant pipe 16. did. Inside the aggregator 14, a heat exchanger 42 (fin pitch 1 mm) having a size of 200 × 200 × 30 mm 3 was installed. In the adsorber 12, a heat exchanger 22 having the same size as the heat exchanger 42 of the aggregator 14 and having a brass plate 32 stretched on the upper surface and the side surface is disposed. The heat exchanger 22 was fixed to the adsorber container 21 by using a leg portion 33 made of a brass plate so that the distance between the bottom surface and the adsorber container 21 was 15 mm. A silicone resin was interposed between the leg 33 and the adsorber container 21 as a heat insulating material (see 35 in FIG. 2).

吸着器12の熱交換器22は二層構造とし、各層を金属製メッシュ(メッシュ幅0.2mm、線幅0.4mm)で区切り、各層に吸着剤としてシリカゲルを充填した。シリカゲルは粒径が異なるものを用意し、凝集器14に面する側から順に、φ0.6〜0.8mm、φ0.4〜0.6mmの粒子を充填した。   The heat exchanger 22 of the adsorber 12 has a two-layer structure, each layer is separated by a metal mesh (mesh width 0.2 mm, line width 0.4 mm), and each layer is filled with silica gel as an adsorbent. Silica gels having different particle diameters were prepared, and filled with particles of φ0.6 to 0.8 mm and φ0.4 to 0.6 mm in order from the side facing the aggregator 14.

吸着器12及び凝集器14の熱交換器22及び42を、それぞれ、配管23及び43を介して外部ポンプに接続するとともに、吸着用容器21及び凝集器容器41の内部をそれぞれ減圧し、凝集器容器41内に冷媒として水を注入した。   The heat exchangers 22 and 42 of the adsorber 12 and the aggregator 14 are connected to an external pump via pipes 23 and 43, respectively, and the insides of the adsorption container 21 and the aggregator container 41 are depressurized, respectively. Water was injected into the container 41 as a refrigerant.

以上の吸着式ヒートポンプの設置作業の後、作動試験を行って結露の状態を評価した。先ず、シリカゲルへの水蒸気の吸着工程として、凝集器(蒸発器)14の配管43に30℃の水、吸着器12の配管23に20℃の水を流し、凝集器(蒸発器)14にて蒸発した水をシリカゲルに吸着させた。次に、シリカゲルからの水蒸気の脱着工程として、吸着器12の配管23に100℃の水を流し、凝集器14の配管43に20℃の水を流し、シリカゲルから水を蒸発させ、凝集器14の熱交換器42にて凝集させた。吸着器12の配管23からの排水はその入水より温度が低く、凝集器14の配管43からの排水はその入水より温度が高くなることを確認し、ヒートポンプとしての動作に問題がないことを確認した。そして、吸着器12内には結露がないことを確認した。   After the above installation work of the adsorption heat pump, an operation test was conducted to evaluate the state of condensation. First, as a process for adsorbing water vapor onto silica gel, water at 30 ° C. is passed through the pipe 43 of the aggregator (evaporator) 14 and water at 20 ° C. is passed through the pipe 23 of the adsorber 12. The evaporated water was adsorbed on silica gel. Next, as a process for desorbing water vapor from silica gel, water at 100 ° C. is caused to flow through the pipe 23 of the adsorber 12, water at 20 ° C. is caused to flow through the pipe 43 of the aggregator 14, and water is evaporated from the silica gel. It was made to coagulate with the heat exchanger 42 of. Confirm that the drainage from the pipe 23 of the adsorber 12 has a lower temperature than the incoming water, and the drainage from the pipe 43 of the aggregator 14 has a higher temperature than the incoming water, and that there is no problem in the operation as a heat pump. did. And it confirmed that there was no dew condensation in adsorption machine 12.

以上、実施形態について詳述したが、本発明は特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形及び変更が可能である。   Although the embodiment has been described in detail above, the present invention is not limited to the specific embodiment, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. is there.

従来技術に係る吸着式ヒートポンプを概略的に示す図である。It is a figure which shows roughly the adsorption type heat pump which concerns on a prior art. 実施形態に係る吸着式ヒートポンプを概略的に示す図である。It is a figure showing roughly the adsorption type heat pump concerning an embodiment. 吸着剤の充填方法の一例を示す図である。It is a figure which shows an example of the filling method of adsorption agent. 一実施例に係る吸着式ヒートポンプを示す図である。It is a figure which shows the adsorption type heat pump which concerns on one Example.

符号の説明Explanation of symbols

10 吸着式ヒートポンプ
12 吸着器
14 凝集器
16 冷媒配管
17 バルブ
18 冷媒
21、41 容器
22、42 熱交換器
23、43 配管
24、24−1、24−2 吸着剤
25 熱交換器の露出部
26 熱交換器の閉鎖面
27、28 吸着器内の空間
30 構造体
31 開口部
32 枠部
33 脚部
34、35 断熱材
53、54 吸着剤層
55、56 メッシュ
DESCRIPTION OF SYMBOLS 10 Adsorption-type heat pump 12 Adsorber 14 Aggregator 16 Refrigerant piping 17 Valve 18 Refrigerant 21, 41 Container 22, 42 Heat exchanger 23, 43 Piping 24, 24-1, 24-2 Adsorbent 25 Exposed part 26 of heat exchanger Heat exchanger closing surfaces 27 and 28 Space 30 in adsorber Structure 31 Opening portion 32 Frame portion 33 Leg portions 34 and 35 Insulating material 53 and 54 Adsorbent layer 55 and 56 mesh

Claims (5)

吸着器及び凝集器を有する吸着式ヒートポンプであって、
吸着器容器内に配置された熱交換器と、
前記吸着器容器内に配置され、凝集器側を露出させて前記熱交換器を覆う構造体と、
前記構造体によって囲まれ、前記熱交換器を含み、前記凝集器に連通する前記吸着器容器内の第1の空間と、
前記構造体と前記吸着器容器との間に形成され、前記第1の空間から前記構造体を介して遮断された前記吸着器容器内の第2の空間と、
を備えることを特徴とする吸着式ヒートポンプ。
An adsorption heat pump having an adsorber and an aggregator,
A heat exchanger disposed in the adsorber vessel ;
A structure that is disposed in the adsorber vessel and exposes the aggregator side to cover the heat exchanger;
A first space in the adsorber vessel surrounded by the structure , including the heat exchanger and communicating with the agglomerator;
And wherein the structure is formed between the adsorber vessel and the second space of the first of the adsorber vessel that is blocked through the structure from the space,
An adsorption heat pump comprising:
前記構造体は前記吸着器容器に断熱材を介して取り付けられていることを特徴とする請求項1に記載の吸着式ヒートポンプ。 Adsorption heat pump according to claim 1 wherein the structure, characterized in that attached via a heat insulating material to said suction Utsuwayo device. 前記構造体は金属及び断熱材を含む積層構造を有することを特徴とする請求項1又は2に記載の吸着式ヒートポンプ。   The adsorption heat pump according to claim 1, wherein the structure has a laminated structure including a metal and a heat insulating material. 前記熱交換器は、吸着剤を有し、
前記凝集器に面する露出側の前記吸着剤は、該露出側の反対側よりも高いガス透過性を有することを特徴とする請求項1乃至3の何れか一項に記載の吸着式ヒートポンプ。
The heat exchanger has an adsorbent;
The adsorption heat pump according to any one of claims 1 to 3, wherein the adsorbent on the exposed side facing the aggregator has higher gas permeability than the opposite side of the exposed side.
前記露出側の前記吸着剤は、前記反対側よりも粗い密度で充填されていることを特徴とする請求項4に記載の吸着式ヒートポンプ。   The adsorption heat pump according to claim 4, wherein the adsorbent on the exposed side is filled with a coarser density than the opposite side.
JP2008244613A 2008-09-24 2008-09-24 Adsorption heat pump Active JP5315893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008244613A JP5315893B2 (en) 2008-09-24 2008-09-24 Adsorption heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008244613A JP5315893B2 (en) 2008-09-24 2008-09-24 Adsorption heat pump

Publications (2)

Publication Number Publication Date
JP2010078182A JP2010078182A (en) 2010-04-08
JP5315893B2 true JP5315893B2 (en) 2013-10-16

Family

ID=42208844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008244613A Active JP5315893B2 (en) 2008-09-24 2008-09-24 Adsorption heat pump

Country Status (1)

Country Link
JP (1) JP5315893B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013076805A1 (en) * 2011-11-22 2013-05-30 富士通株式会社 Suction-type heat pump system and suction-type heat pump driving method
JP6083123B2 (en) * 2012-03-30 2017-02-22 富士通株式会社 Adsorption heat pump system and drive method of adsorption heat pump

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272832A (en) * 1992-03-25 1993-10-22 Nishiyodo Kuuchiyouki Kk Adsorption type heat accumulating device
JP3669003B2 (en) * 1995-05-18 2005-07-06 株式会社デンソー Adsorber
JP3831964B2 (en) * 1996-01-17 2006-10-11 株式会社デンソー Adsorption type refrigerator
JP2000257895A (en) * 1999-03-11 2000-09-22 Ngk Insulators Ltd Heater

Also Published As

Publication number Publication date
JP2010078182A (en) 2010-04-08

Similar Documents

Publication Publication Date Title
KR100975108B1 (en) Solid substance sorption heat pump
US9618238B2 (en) Adsorption refrigerator
JP5872578B2 (en) Vacuum container for removing foreign gas from adsorption refrigerator
JP5761205B2 (en) Adsorber and adsorption heat pump
US9435573B2 (en) Adsorption heat pump
JP5315893B2 (en) Adsorption heat pump
JP2009121710A (en) Adsorption type heat pump device
JP4357340B2 (en) Adsorption refrigerator
JP2009036429A (en) Integrated adsorber
US20160131400A1 (en) Adsorption system heat exchanger
JP5625571B2 (en) Adsorption heat pump
JP4134841B2 (en) Adsorber for adsorption refrigerator
JPH07301469A (en) Adsorption type refrigerator
JP5418401B2 (en) Method for producing adsorbent block
JP3831962B2 (en) Adsorber and manufacturing method thereof
JP2007064573A (en) Adsorber and its manufacturing method
JP2000303916A (en) Canister
JP2005214552A (en) Adsorption type heat accumulator and heat accumulation method by using it
JP2007040592A (en) Adsorber
JPS61147133A (en) Heat energy sensor and device utilizing said sensor
JP2004317011A (en) Adsorber of adsorption refrigerator
JP6980337B2 (en) Air conditioner for vehicles with adsorption refrigeration system and adsorption refrigeration system
JP4821746B2 (en) Adsorption heat exchanger
JP3709638B2 (en) Cooling device and adsorption cooling device
JP6578876B2 (en) Adsorber for refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130624

R150 Certificate of patent or registration of utility model

Ref document number: 5315893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150