JP5315434B2 - Drive device - Google Patents

Drive device Download PDF

Info

Publication number
JP5315434B2
JP5315434B2 JP2012050659A JP2012050659A JP5315434B2 JP 5315434 B2 JP5315434 B2 JP 5315434B2 JP 2012050659 A JP2012050659 A JP 2012050659A JP 2012050659 A JP2012050659 A JP 2012050659A JP 5315434 B2 JP5315434 B2 JP 5315434B2
Authority
JP
Japan
Prior art keywords
degrees
piezoelectric element
movable body
phase difference
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012050659A
Other languages
Japanese (ja)
Other versions
JP2012110228A (en
Inventor
祐介 足立
秀明 向江
賢 東陰地
英一 長岡
謙一 本庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2012050659A priority Critical patent/JP5315434B2/en
Publication of JP2012110228A publication Critical patent/JP2012110228A/en
Application granted granted Critical
Publication of JP5315434B2 publication Critical patent/JP5315434B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress a noise in a slight motion mode in a drive device. <P>SOLUTION: A vibration actuator has a piezoelectric element, a driver provided on the piezoelectric element, and a movable body supported by the driver. A controller supplies first and second voltages having the same frequency to the piezoelectric element. The controller supplies the first voltage and the second voltage having a phase different by 90&deg; from the first voltage to the piezoelectric element, thereby vibrating the piezoelectric element so that expansion/shrinkage vibration is combined with torsional vibration of a secondary mode, and the vibration moves the driver in a substantial elliptic circular manner to move the movable body. In the slight motion mode, the phase difference of the first and second voltages is switched between 90&deg; and a prescribed angle which is larger than 0&deg; and less than 90&deg; by the controller. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、駆動装置に関するものである。   The present invention relates to a drive device.

従来から、各種電気機器等に用いられる、圧電素子(電気機械変換素子)を備えた振動型アクチュエータが知られている(例えば、特許文献1参照)。この圧電素子は、圧電体と電極とを交互に積層してなる。そして、前記振動型アクチュエータでは、電極に電圧を印加することにより圧電素子を振動させ、これにより、可動体を移動させる。   2. Description of the Related Art Conventionally, a vibration type actuator including a piezoelectric element (electromechanical conversion element) that is used in various electric devices is known (see, for example, Patent Document 1). This piezoelectric element is formed by alternately laminating piezoelectric bodies and electrodes. In the vibration type actuator, the piezoelectric element is vibrated by applying a voltage to the electrode, thereby moving the movable body.

特開2006−115583号公報JP 2006-115583 A

ところで、可動体を精度よく位置決めする場合、可動体を高速移動させる粗動モードから可動体を微動させる微動モードに切り換えるが、この微動モードに用いる駆動方式として、いわゆるバースト駆動方式がある。   By the way, when positioning the movable body with high accuracy, the coarse movement mode in which the movable body is moved at a high speed is switched to the fine movement mode in which the movable body is finely moved. There is a so-called burst drive system as a drive system used in this fine movement mode.

しかしながら、このバースト駆動方式では、所定周期(バースト周期。例えば100Hz)毎に圧電素子が振動したりその振動が止まったりするので、騒音が発生する。   However, in this burst driving method, noise is generated because the piezoelectric element vibrates or stops at every predetermined period (burst period, for example, 100 Hz).

本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、駆動装置において、微動モード時の騒音を抑制することにある。   The present invention has been made in view of such a point, and an object of the present invention is to suppress noise in the fine movement mode in the drive device.

その課題を解決するために、本発明は、圧電素子に供給される2相の電圧の位相差を、90度と、0度よりも大きく90度よりも小さい範囲内、又は90度よりも大きく180度よりも小さい範囲内の所定角度との間で切り換える。具体的には、本発明は、圧電素子と、該圧電素子に設けられた駆動子と、該駆動子に支持された可動体とを有する振動型アクチュエータと、前記圧電素子に周波数が同じ第1及び第2電圧を供給する制御装置とを備え、前記制御装置により前記圧電素子に前記第1電圧と該第1電圧と位相差が90度の第2電圧を供給することにより、前記圧電素子を伸縮振動と屈曲振動とが合成された振動をさせ、該振動により前記駆動子を略楕円運動させて前記可動体を移動させる駆動装置であって、前記制御装置は、微動モード時には、前記第1電圧と前記第2電圧との位相差を、90度と、0度よりも大きく90度よりも小さい範囲内、又は90度よりも大きく180度よりも小さい範囲内の所定角度との間で切り換えるように構成されていることを特徴とするものである。 In order to solve the problem, the present invention provides a phase difference between the two-phase voltages supplied to the piezoelectric element in the range of 90 degrees and larger than 0 degrees and smaller than 90 degrees, or larger than 90 degrees. Switching between predetermined angles within a range smaller than 180 degrees. Specifically, the present invention provides a vibration type actuator having a piezoelectric element, a driver provided on the piezoelectric element, and a movable body supported by the driver, and a first frequency having the same frequency as the piezoelectric element. And a control device for supplying a second voltage, and supplying the first voltage to the piezoelectric element by the control device and a second voltage having a phase difference of 90 degrees from the first voltage. A driving device that generates a combined vibration of stretching vibration and bending vibration and moves the movable body by causing the driver to move substantially elliptically by the vibration, and the control device is configured to move the first body in the fine movement mode. the phase difference between voltage and the second voltage switches between a predetermined angle within 90 degrees and, in the range smaller than the larger 90 degrees than 0 degrees, or less than 180 degrees greater than 90 degrees range That is configured to It is an butterfly.

本発明によれば、微動モード時に、圧電素子に供給される2相の電圧の位相差を、90度と、0度よりも大きく90度よりも小さい範囲内、又は90度よりも大きく180度よりも小さい範囲内の所定角度との間で切り換えるので、圧電素子が常に振動し、微動モード時の騒音の発生を抑制できる。 According to the present invention, in the fine movement mode, the phase difference between the two-phase voltages supplied to the piezoelectric element is 90 degrees, within a range larger than 0 degrees and smaller than 90 degrees, or larger than 90 degrees and 180 degrees. since switching between a predetermined angle within a range smaller than constantly vibrate the piezoelectric element, it is possible to suppress the generation of noise during fine motion mode.

振動型アクチュエータの斜視図である。It is a perspective view of a vibration type actuator. (a)は、圧電素子の斜視図であり、(b)は、圧電素子の分解斜視図である。(A) is a perspective view of a piezoelectric element, (b) is an exploded perspective view of a piezoelectric element. 圧電体層の上側主面を示す図である。It is a figure which shows the upper side main surface of a piezoelectric material layer. 1次モードの伸縮振動の変位図である。It is a displacement figure of the expansion-contraction vibration of a primary mode. 2次モードの屈曲振動の変位図である。It is a displacement figure of the bending vibration of a secondary mode. 圧電素子の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of a piezoelectric element. 振動型アクチュエータの制御装置のブロック図である。It is a block diagram of a control device of a vibration type actuator. ドライバーの構成図である。It is a block diagram of a driver. 通常モード及び微動モードの説明図である。It is explanatory drawing of normal mode and fine movement mode. 位相差の変化を示す図である。It is a figure which shows the change of a phase difference. 駆動子の移動軌跡を示す図である。It is a figure which shows the movement locus | trajectory of a driver element. 位相ずれと可動体の移動速度との関係を示す図であり、(a)は、可動体の負荷が軽い場合の図であり、(b)は、可動体の負荷が重い場合の図である。It is a figure which shows the relationship between a phase shift and the moving speed of a movable body, (a) is a figure when the load of a movable body is light, (b) is a figure when the load of a movable body is heavy. . 位相差の変化を示す図である。It is a figure which shows the change of a phase difference. 位相差の変化を示す図である。It is a figure which shows the change of a phase difference. 位相差の変化を示す図である。It is a figure which shows the change of a phase difference. 通常モード及び微動モードの説明図である。It is explanatory drawing of normal mode and fine movement mode. 振動型アクチュエータの変形例の斜視図である。It is a perspective view of the modification of a vibration type actuator.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

−振動型アクチュエータの構成−
図1及び図2に示すように、振動型アクチュエータは、略直方体状の圧電素子12(例えば、長さ6.0mm×幅1.7mm×厚み2.4mmのもの)を備えている。この圧電素子12は、互いに対向する一対の主面と、この主面と直交して圧電素子12の主面の長手方向に延びる、互いに対向する一対の端面と、これらの主面及び端面の両方と直交して圧電素子12の主面の短手方向に延びる、互いに対向する一対の側面とを有している。主面、端面及び側面が圧電素子12の外面を構成し、端面及び側面が圧電素子12の周囲面を構成している。本実施形態では、主面、端面及び側面のうち主面が最大の面積を有している。
−Configuration of vibration actuator−
As shown in FIGS. 1 and 2, the vibration actuator includes a substantially rectangular parallelepiped piezoelectric element 12 (for example, a length of 6.0 mm × width of 1.7 mm × thickness of 2.4 mm). The piezoelectric element 12 includes a pair of main surfaces that face each other, a pair of end surfaces that face each other and extend in the longitudinal direction of the main surface of the piezoelectric element 12, and both the main surface and the end surface. And a pair of side surfaces facing each other and extending in the short direction of the main surface of the piezoelectric element 12. The main surface, the end surface, and the side surface constitute the outer surface of the piezoelectric element 12, and the end surface and the side surface constitute the peripheral surface of the piezoelectric element 12. In this embodiment, a main surface has the largest area among a main surface, an end surface, and a side surface.

圧電素子12は、3つの支持部13a〜13cを介してケース11に収容支持されている。圧電素子12の一方の端面には、屈曲振動の腹の部分に駆動子8,8が設けられており、これらの駆動子8,8は平板状の可動体9を支持している。圧電素子12の他方の端面(駆動子8,8が設けられた端面とは反対側の端面)の支持体13bは、駆動子8,8を可動体9に押圧している。これにより、駆動子8,8の先端部と可動体9との摩擦力が高められ、圧電素子12の振動が駆動子8,8を介して確実に可動体9に伝搬される。   The piezoelectric element 12 is accommodated and supported by the case 11 via three support portions 13a to 13c. On one end face of the piezoelectric element 12, driver elements 8 are provided at the antinodes of bending vibration, and these driver elements 8, 8 support a plate-shaped movable body 9. The support body 13 b on the other end face of the piezoelectric element 12 (the end face opposite to the end face on which the drive elements 8, 8 are provided) presses the drive elements 8, 8 against the movable body 9. Thereby, the frictional force between the tip portions of the driver elements 8 and 8 and the movable body 9 is increased, and the vibration of the piezoelectric element 12 is reliably transmitted to the movable body 9 via the driver elements 8 and 8.

圧電素子12は、略矩形状の圧電体層1(例えば、厚み100umのもの)と内部電極層2とを交互に積層してなるものである。この圧電体層1は、例えばチタン酸ジルコン酸鉛などのセラミック材料からなる絶縁体層であり、例えば24層積層されている。内部電極層2は、積層方向(圧電素子12の厚み方向)に圧電体層1を介して交互に配された給電電極層(プラス電極層)3及び共通電極層(マイナス電極層)4からなる。   The piezoelectric element 12 is formed by alternately laminating substantially rectangular piezoelectric layers 1 (for example, having a thickness of 100 μm) and internal electrode layers 2. The piezoelectric layer 1 is an insulating layer made of a ceramic material such as lead zirconate titanate, and is laminated in, for example, 24 layers. The internal electrode layer 2 includes a feeding electrode layer (plus electrode layer) 3 and a common electrode layer (minus electrode layer) 4 that are alternately arranged in the stacking direction (thickness direction of the piezoelectric element 12) via the piezoelectric layers 1. .

給電電極層3は、圧電体層1の上側主面に設けられた第1給電電極層3aと、上側主面にこの第1給電電極層3aが設けられた圧電体層1とは異なる圧電体層1の上側主面に設けられた第2給電電極層3bとからなる。そして、給電電極層3は、第1給電電極層3a及び第2給電電極層6bが積層方向に交互に配されてなる。   The feeding electrode layer 3 includes a first feeding electrode layer 3a provided on the upper main surface of the piezoelectric layer 1 and a piezoelectric body different from the piezoelectric layer 1 provided with the first feeding electrode layer 3a on the upper main surface. It consists of the 2nd feed electrode layer 3b provided in the upper main surface of the layer 1. FIG. The power supply electrode layer 3 is formed by alternately arranging the first power supply electrode layers 3a and the second power supply electrode layers 6b in the stacking direction.

第1給電電極層3aは、圧電体層1の上側主面をその長手方向L及び短手方向Sにそれぞれ2等分してなる4つの領域A1〜A4(図3参照)にそれぞれ設けられた4つの分割電極3c,3c,…と、これらの4つの分割電極3c,3c,…のうち圧電体層1の上側主面の第1対角線方向D1に対向する2つの領域A1,A3にそれぞれ形成された一対の分割電極3c,3cを互いに接続する接続電極3dとを有している。   The first feeding electrode layer 3a is provided in each of four regions A1 to A4 (see FIG. 3) obtained by dividing the upper main surface of the piezoelectric layer 1 into two equal parts in the longitudinal direction L and the short direction S, respectively. .. And four divided electrodes 3c, 3c,... Formed in two regions A1, A3 facing the first diagonal direction D1 of the upper main surface of the piezoelectric layer 1, respectively. And a connection electrode 3d for connecting the pair of divided electrodes 3c, 3c to each other.

第2給電電極層3bは、前記4つの領域A1〜A4にそれぞれ設けられた4つの分割電極3c,3c,…と、これらの4つの分割電極3c,3c,…のうち圧電体層1の上側主面の第2対角線方向D2に対向する2つの領域A2,A4にそれぞれ形成された一対の分割電極3c,3cを互いに接続する接続電極3dとを有している。   The second feeding electrode layer 3b includes four divided electrodes 3c, 3c,... Provided in the four regions A1 to A4, respectively, and the upper side of the piezoelectric layer 1 among these four divided electrodes 3c, 3c,. It has a connection electrode 3d that connects a pair of divided electrodes 3c, 3c formed respectively in two regions A2, A4 facing the second diagonal direction D2 of the main surface.

各分割電極3cは略矩形状の電極であり、積層方向から見て共通電極層4と重なっている。つまり、各分割電極3cは、共通電極層4と圧電体層1を挟んで対向している。各分割電極3cには、その長手方向中央部から圧電素子12の端面に向かって延びる引出電極3eが設けられている。この各引出電極3eは、積層方向から見て共通電極層4と重なっていない。つまり、各引出電極3eは、共通電極層4と対向していない。このため、圧電体層1の各引出電極3eに対向する部分には電界が生じない。つまり、この部分は圧電的に不活性な部分となる。各分割電極3cは、引出電極3eを介して外部電極7a,7bに接続されている。これらの外部電極7a,7bは、圧電素子12の両端面にそれぞれ1つずつ設けられている。   Each divided electrode 3c is a substantially rectangular electrode and overlaps the common electrode layer 4 when viewed from the stacking direction. That is, each divided electrode 3 c is opposed to the common electrode layer 4 and the piezoelectric layer 1. Each divided electrode 3c is provided with an extraction electrode 3e extending from the central portion in the longitudinal direction toward the end face of the piezoelectric element 12. Each extraction electrode 3e does not overlap the common electrode layer 4 when viewed from the stacking direction. That is, each extraction electrode 3 e does not face the common electrode layer 4. For this reason, an electric field does not arise in the part which opposes each extraction electrode 3e of the piezoelectric material layer 1. FIG. That is, this part becomes a piezoelectrically inactive part. Each divided electrode 3c is connected to the external electrodes 7a and 7b via the extraction electrode 3e. Each of these external electrodes 7 a and 7 b is provided on each end face of the piezoelectric element 12.

共通電極層4は、圧電体層1の上側主面のほぼ全面に亘って設けられた略矩形状の共通電極4aを有している。この共通電極4aには、その長手方向中央部から圧電素子12の両端面に向かってそれぞれ延びる引出電極4b,4bが設けられている。共通電極4aは、引出電極4b,4bを介して外部電極7gに接続されている。この外部電極7gは、圧電素子12の両端面にそれぞれ1つずつ設けられている。   The common electrode layer 4 has a substantially rectangular common electrode 4 a provided over substantially the entire upper main surface of the piezoelectric layer 1. The common electrode 4a is provided with extraction electrodes 4b and 4b extending from the longitudinal center portion toward both end faces of the piezoelectric element 12, respectively. The common electrode 4a is connected to the external electrode 7g via the extraction electrodes 4b and 4b. One external electrode 7 g is provided on each end face of the piezoelectric element 12.

そして、圧電体層1は、図2の矢印で示すように、第1給電電極層3a又は第2給電電極層3b側から共通電極層4側へと分極されている。   The piezoelectric layer 1 is polarized from the first feeding electrode layer 3a or the second feeding electrode layer 3b side to the common electrode layer 4 side, as indicated by the arrows in FIG.

ところで、圧電素子12の伸縮振動の共振周波数及び屈曲振動の共振周波数は、それぞれ圧電素子12の材料や形状等により決定される。そして、圧電素子12の材料や形状等は、伸縮振動の共振周波数及び屈曲振動の共振周波数が略一致するように決められている。本実施形態では、圧電素子12の材料や形状等は、1次モードの伸縮振動の共振周波数及び2次モードの屈曲振動の共振周波数が略一致するように決定されている。   By the way, the resonance frequency of the stretching vibration and the resonance frequency of the bending vibration of the piezoelectric element 12 are determined by the material and shape of the piezoelectric element 12, respectively. The material, shape, and the like of the piezoelectric element 12 are determined so that the resonance frequency of the stretching vibration and the resonance frequency of the bending vibration are approximately the same. In the present embodiment, the material, shape, and the like of the piezoelectric element 12 are determined so that the resonance frequency of the primary mode stretching vibration and the resonance frequency of the secondary mode bending vibration are approximately the same.

−振動型アクチュエータの動作−
以下、振動型アクチュエータの動作について説明する。図4は、1次モードの伸縮振動の変位図であり、図5は、2次モードの屈曲振動の変位図であり、図6は、圧電素子12の動作を示す概念図である。なお、図4〜図6においては、圧電素子12の主面はその紙面と平行な位置関係にある。
−Operation of vibration type actuator−
Hereinafter, the operation of the vibration type actuator will be described. 4 is a displacement diagram of stretching vibration in the primary mode, FIG. 5 is a displacement diagram of bending vibration in the secondary mode, and FIG. 6 is a conceptual diagram showing the operation of the piezoelectric element 12. 4 to 6, the principal surface of the piezoelectric element 12 is in a positional relationship parallel to the paper surface.

ワイヤー(図示せず)及び外部電極7を介して、給電電極層3の領域A1,A3の分割電極3c,3cと共通電極層4の共通電極4aとの間に、前記共振周波数近傍の周波数の正弦波の基準交流電圧(以下、第1電圧という)を印加し、給電電極層3の領域A2,A4の分割電極3c,3cと共通電極層4の共通電極4aとの間に、第1電圧とほぼ同じ大きさ・周波数の正弦波の交流電圧(以下、第2電圧という)を印加する。これにより、領域A1,A3の分割電極3c,3cに同位相の電圧が加わり、領域A2,A4の分割電極3c,3cに同位相の電圧が加わる。第1電圧と第2電圧との位相差が0度の場合、圧電素子12には図4に示す1次モードの伸縮振動が誘起される。一方、その位相差が180度の場合、圧電素子12には図5に示す2次モードの屈曲振動が誘起される。   Through a wire (not shown) and the external electrode 7, the frequency near the resonance frequency is between the divided electrodes 3 c and 3 c in the regions A 1 and A 3 of the feeding electrode layer 3 and the common electrode 4 a in the common electrode layer 4. A sine-wave reference AC voltage (hereinafter referred to as a first voltage) is applied, and a first voltage is applied between the divided electrodes 3 c and 3 c in the regions A 2 and A 4 of the feeding electrode layer 3 and the common electrode 4 a of the common electrode layer 4. A sine wave AC voltage (hereinafter referred to as a second voltage) having substantially the same magnitude and frequency is applied. As a result, voltages having the same phase are applied to the divided electrodes 3c and 3c in the regions A1 and A3, and voltages having the same phase are applied to the divided electrodes 3c and 3c in the regions A2 and A4. When the phase difference between the first voltage and the second voltage is 0 degree, the piezoelectric element 12 is induced to expand and contract in the primary mode shown in FIG. On the other hand, when the phase difference is 180 degrees, the piezoelectric element 12 is induced to bend in the second mode shown in FIG.

また、給電電極層3の領域A1,A3の分割電極3c,3cと共通電極層4の共通電極4aとの間に、共振周波数近傍の周波数の正弦波の第1電圧を印加し、給電電極層3の領域A2,A4の分割電極3c,3cと共通電極層4の共通電極4aとの間に、位相が第1電圧と90度又は−90度だけ異なる、第1電圧とほぼ同じ大きさ・周波数の正弦波の第2電圧を印加すると、圧電素子12には、図4に示す1次モードの伸縮振動と図5に示す2次モードの屈曲振動とが調和的に誘起される。   Further, a first voltage of a sine wave having a frequency near the resonance frequency is applied between the divided electrodes 3c and 3c in the regions A1 and A3 of the power supply electrode layer 3 and the common electrode 4a of the common electrode layer 4 to thereby supply the power supply electrode layer. Between the divided electrodes 3c and 3c in the three regions A2 and A4 and the common electrode 4a of the common electrode layer 4, the phase is different from the first voltage by 90 degrees or -90 degrees, almost the same magnitude as the first voltage. When a second voltage of a sine wave having a frequency is applied, the piezoelectric element 12 is induced harmonically with the primary mode stretching vibration shown in FIG. 4 and the secondary mode bending vibration shown in FIG.

そして、圧電素子12の形状が、図6(a)〜(d)に示すような順で変化する。その結果、圧電素子12に設けられた駆動子8,8が、図6の紙面を貫く方向から見て略楕円運動する。つまり、圧電素子12の伸縮振動及び屈曲振動の合成振動により駆動子8,8が楕円運動する。この楕円運動により駆動子8,8に支持された可動体9が圧電素子12との間で相対運動して、図1に示す矢印A又は矢印Bの方向に移動する。   Then, the shape of the piezoelectric element 12 changes in the order as shown in FIGS. As a result, the driver elements 8 provided on the piezoelectric element 12 move substantially elliptically as viewed from the direction penetrating the paper surface of FIG. That is, the driver elements 8 and 8 are elliptically moved by the combined vibration of the expansion / contraction vibration and the bending vibration of the piezoelectric element 12. Due to this elliptical movement, the movable body 9 supported by the driver elements 8 and 8 moves relative to the piezoelectric element 12 and moves in the direction of arrow A or arrow B shown in FIG.

ここで、伸縮振動の伸縮方向は、圧電素子12の主面の長手方向、つまり、可動体9の移動方向であり、屈曲振動の振動方向は、駆動子8,8が可動体9を支持する方向である。圧電素子12の積層方向は、伸縮振動の伸縮方向及び屈曲振動の振動方向の両方と垂直な方向である。   Here, the expansion / contraction direction of the expansion / contraction vibration is the longitudinal direction of the main surface of the piezoelectric element 12, that is, the moving direction of the movable body 9. The vibration direction of the bending vibration is the driver elements 8, 8 supporting the movable body 9. Direction. The stacking direction of the piezoelectric elements 12 is a direction perpendicular to both the stretching direction of stretching vibration and the vibration direction of bending vibration.

−振動型アクチュエータの制御−
以下、振動型アクチュエータの制御について説明する。図7は、振動型アクチュエータの制御装置のブロック図である。可動体9の位置を検出する位置検出部21からの位置情報に基づいて、速度指令部22は可動体9の移動速度を決定し、その速度情報を制御部23に伝達する。制御部23は、速度指令部22からの速度情報に基づいて、第1及び第2電圧の周波数、並びに第1電圧と第2電圧との位相差を決定し、その周波数情報を周波数発生部24に伝達し、その位相差情報を位相差演算部25に伝達する。位相差演算部25は、制御部23からの位相差情報とバースト周期発生部26からのバースト情報とに基づいて、モードに応じて位相差を決定し、その位相差情報を位相差発生部27に伝達する。周波数発生部24から発生した所定周波数の正弦波電圧が、ドライバー28を通じて圧電素子12に第1電圧として印加される。周波数発生部24から発生した電圧は、位相差発生部27により位相がずらされ、ドライバー29を通じて圧電素子12に第1電圧と周波数が同じで位相が異なる第2電圧として印加される。
-Control of vibration type actuators-
Hereinafter, control of the vibration type actuator will be described. FIG. 7 is a block diagram of a control device for the vibration type actuator. Based on the position information from the position detection unit 21 that detects the position of the movable body 9, the speed command unit 22 determines the moving speed of the movable body 9 and transmits the speed information to the control unit 23. The control unit 23 determines the frequency of the first and second voltages and the phase difference between the first voltage and the second voltage based on the speed information from the speed command unit 22, and uses the frequency information as the frequency generation unit 24. And the phase difference information is transmitted to the phase difference calculation unit 25. The phase difference calculation unit 25 determines a phase difference according to the mode based on the phase difference information from the control unit 23 and the burst information from the burst period generation unit 26, and uses the phase difference information as the phase difference generation unit 27. To communicate. A sine wave voltage having a predetermined frequency generated from the frequency generator 24 is applied to the piezoelectric element 12 through the driver 28 as a first voltage. The voltage generated from the frequency generating unit 24 is shifted in phase by the phase difference generating unit 27 and applied to the piezoelectric element 12 through the driver 29 as a second voltage having the same frequency as the first voltage but having a different phase.

図8は、ドライバー28,29の構成図である。2つのハーフブリッジの構成により、同図に示すCH1、CH2には、Vddの電源電圧(例えば5V)と0Vの独立している矩形波が印加される。そして、振動型アクチュエータ(コンデンサー)Cとこれに直列接続された抵抗Lがローパスフィルターを構成し、このローパスフィルターにより矩形波の高周波成分を除去することで、電源電圧近傍と0Vの正弦波を得ている。   FIG. 8 is a configuration diagram of the drivers 28 and 29. Due to the configuration of the two half bridges, a power supply voltage of Vdd (for example, 5 V) and an independent rectangular wave of 0 V are applied to CH1 and CH2 shown in FIG. The vibration type actuator (capacitor) C and the resistor L connected in series with this constitute a low-pass filter. By removing the high-frequency component of the rectangular wave by this low-pass filter, the vicinity of the power supply voltage and a 0 V sine wave are obtained. ing.

図9は、通常モード及び微動モードの説明図である。可動体9の所望の移動速度が所定速度(例えば50mm/s)以上である通常モード時は、周波数発生部24では、前記共振周波数(例えば270kHz)よりも高い駆動周波数を発生させる。そして、可動体9の移動速度を増加したいときには、駆動周波数を低くする一方、可動体9の移動速度を減少したいときには、駆動周波数を高くする。つまり、可動体9の移動速度が大きいほど、駆動周波数を低くする。   FIG. 9 is an explanatory diagram of the normal mode and the fine movement mode. In the normal mode in which the desired moving speed of the movable body 9 is a predetermined speed (for example, 50 mm / s) or more, the frequency generator 24 generates a drive frequency higher than the resonance frequency (for example, 270 kHz). When it is desired to increase the moving speed of the movable body 9, the driving frequency is lowered. On the other hand, when the moving speed of the movable body 9 is desired to be decreased, the driving frequency is increased. That is, the drive frequency is lowered as the moving speed of the movable body 9 increases.

以上のように、通常モード時は、可動体9の移動速度に応じて駆動周波数を制御しながら、第1及び第2電圧を常時供給するようになっている。   As described above, in the normal mode, the first and second voltages are constantly supplied while controlling the drive frequency according to the moving speed of the movable body 9.

一方、可動体9の所望の移動速度が前記所定速度よりも小さい微動モード時(可動体9をゆっくり動かす間欠駆動時)は、周波数発生部24では、共振周波数よりも若干高い固定駆動周波数(通常モードの最高周波数と同じ周波数。例えば276kHz)を発生させる。バースト周期発生部26では、図10に示す所定周期(バースト周期)として、駆動周波数の5分の1以下の周波数、例えば、10Hz〜100kHzの周波数を発生させるのが望ましく、10Hz〜200Hz又は20kHz〜100kHzの周波数(可聴周波数帯域外の周波数)を発生させるのがより望ましい。本実施形態では、所定周期を100Hz(10ms)としている。そして、この所定周期毎に第1電圧と第2電圧との位相差を90度と0度(参考例に係る所定角度)との間で切り換える。具体的には、位相差を0度から90度まで時間に比例するように滑らかに変化させた後、90度に保ち、それから、位相差を90度から0度まで時間に比例するように滑らかに変化させた後、0度に保つ。つまり、1所定周期中に、位相差を0度と90度との間で台形状に変化させた後、0度に維持する。位相差を0度から90度まで変化させるのに要する時間は約1msである。 On the other hand, in the fine movement mode in which the desired moving speed of the movable body 9 is smaller than the predetermined speed (during intermittent driving in which the movable body 9 is slowly moved), the frequency generator 24 has a fixed drive frequency (usually slightly higher than the resonance frequency). The same frequency as the highest frequency of the mode (for example, 276 kHz) is generated. In the burst cycle generation unit 26, it is desirable to generate a frequency of 1/5 or less of the drive frequency, for example, a frequency of 10 Hz to 100 kHz, as a predetermined cycle (burst cycle) shown in FIG. It is more desirable to generate a frequency of 100 kHz (a frequency outside the audible frequency band). In the present embodiment, the predetermined cycle is 100 Hz (10 ms). Then, the phase difference between the first voltage and the second voltage is switched between 90 degrees and 0 degrees (predetermined angle according to the reference example ) for each predetermined period. Specifically, the phase difference is smoothly changed from 0 degrees to 90 degrees so as to be proportional to the time, and then maintained at 90 degrees, and then the phase difference is smoothly changed from 90 degrees to 0 degrees so as to be proportional to the time. After changing to, keep at 0 degree. That is, during one predetermined period, the phase difference is changed to a trapezoid between 0 degree and 90 degrees, and then maintained at 0 degree. The time required to change the phase difference from 0 degree to 90 degrees is about 1 ms.

ここで、所定周期において、位相差を0度と90度との間で台形状に変化させる期間を第1所定期間(バーストON期間)、位相差を0度に保つ期間を第2所定期間(バーストOFF期間)とすると、可動体9の移動速度を増加したいときには、第1所定期間を長くして第2所定期間を短くする一方、可動体9の移動速度を減少したいときには、第1所定期間を短くして第2所定期間を長くする。つまり、可動体9の移動速度が大きいほど、第2所定期間を短くする。   Here, in a predetermined cycle, a period in which the phase difference is changed to a trapezoid between 0 degrees and 90 degrees is a first predetermined period (burst ON period), and a period in which the phase difference is kept at 0 degrees is a second predetermined period ( (Burst OFF period), when it is desired to increase the moving speed of the movable body 9, the first predetermined period is lengthened and the second predetermined period is shortened, while when the moving speed of the movable body 9 is desired to be decreased, the first predetermined period To shorten the second predetermined period. That is, the second predetermined period is shortened as the moving speed of the movable body 9 increases.

以上のように、微動モード時は、第1電圧と第2電圧との位相差を制御しながら、第1及び第2電圧を絶えず供給するようになっている。   As described above, in the fine movement mode, the first and second voltages are continuously supplied while controlling the phase difference between the first voltage and the second voltage.

駆動子8,8の移動軌跡を図11に示す。第2電圧の位相が第1電圧に対し90度ずれているときは、駆動子8,8は、長径又は短径が可動体9の移動方向とほぼ一致する、時計回りの楕円運動をし、本実施形態では、可動体9が図1に示す矢印Aの方向(右方向)に移動する。位相ずれが270度(第1電圧と第2電圧との位相差が90度)のときは、駆動子8,8が逆に反時計回りに楕円回転することで、可動体9が図1に示す矢印Bの方向(左方向)に移動する。位相ずれが0度又は180度のときは、駆動子8,8は斜めに直線運動し、可動体9は移動しない。これらを利用して、駆動子8,8を間欠的に楕円運動させることで、可動体9を微動させる。なお、位相ずれが45度のときは、駆動子8,8は、長径及び短径が可動体9の移動方向からずれた楕円運動をする。このとき、可動体9は、位相ずれが90度のときと比較して、ゆっくり矢印Aの方向に進む。これと同様のことは、位相ずれが135度、225度、又は315度(第1電圧と第2電圧との位相差が45度又は135度)のときも言える。   The movement trajectory of the driver elements 8 is shown in FIG. When the phase of the second voltage is shifted by 90 degrees with respect to the first voltage, the driver elements 8 and 8 perform a clockwise elliptical motion in which the major axis or minor axis substantially coincides with the moving direction of the movable body 9, In the present embodiment, the movable body 9 moves in the direction of arrow A (right direction) shown in FIG. When the phase shift is 270 degrees (the phase difference between the first voltage and the second voltage is 90 degrees), the driving elements 8 and 8 are rotated elliptically counterclockwise, so that the movable body 9 is moved to FIG. It moves in the direction of the arrow B shown (left direction). When the phase shift is 0 degree or 180 degrees, the driver elements 8 and 8 linearly move diagonally, and the movable body 9 does not move. Utilizing these, the movable elements 9 are finely moved by intermittently moving the driver elements 8 and 8 elliptically. When the phase shift is 45 degrees, the driver elements 8 and 8 make an elliptical motion in which the major axis and the minor axis deviate from the moving direction of the movable body 9. At this time, the movable body 9 proceeds slowly in the direction of the arrow A compared to when the phase shift is 90 degrees. The same can be said when the phase shift is 135 degrees, 225 degrees, or 315 degrees (the phase difference between the first voltage and the second voltage is 45 degrees or 135 degrees).

以上のように、本実施形態によれば、通常のバースト駆動と比較して、圧電素子12が常に動いていることにより、圧電素子12が動き出すときに発生するバースト騒音が軽減される。さらに、第1電圧と第2電圧との位相差を徐々に変化させることで、バースト騒音がさらに軽減されるのに加えて、位相の急激な変化による圧電素子12の異常振動も抑えられ、高い信頼性が実現できる。その上、駆動周波数を通常モードの最高周波数と同じ、比較的高い周波数にすることにより、圧電素子12の振幅が抑えられ、バースト騒音がより一層軽減される。   As described above, according to the present embodiment, the burst noise generated when the piezoelectric element 12 starts moving is reduced by the constant movement of the piezoelectric element 12 as compared with the normal burst drive. Furthermore, by gradually changing the phase difference between the first voltage and the second voltage, in addition to further reducing burst noise, abnormal vibration of the piezoelectric element 12 due to a sudden change in phase can also be suppressed, which is high. Reliability can be realized. In addition, by setting the driving frequency to a relatively high frequency that is the same as the highest frequency in the normal mode, the amplitude of the piezoelectric element 12 is suppressed, and the burst noise is further reduced.

前記位相ずれと可動体9の移動速度との関係を図12に示す。可動体9の負荷(重さ)が軽い場合は、同図(a)に示すように、位相ずれが変わるに従って可動体9の移動速度は連続的に変化するが、可動体9の負荷(重さ)が重い場合は、同図(b)に示すように、0度近傍、180度近傍で不感帯を生じる。このことより、位相差バースト駆動時の位相差を90度と0度との間ではなく、90度と0度よりも大きい所定角度との間で変更することで、圧電素子12の変化が小さくなり、圧電素子12への衝撃が小さくなるので、高信頼性が得られる。また、バースト騒音に関しても、その衝撃が小さくなる分、低減できる。さらに、前記第2所定期間中の駆動子8,8の運動軌跡が直線状ではなく、若干楕円状になるので、駆動子8,8の可動体9との接触範囲が広がり、可動体9の耐久性が向上する。   The relationship between the phase shift and the moving speed of the movable body 9 is shown in FIG. When the load (weight) of the movable body 9 is light, the moving speed of the movable body 9 changes continuously as the phase shift changes, as shown in FIG. When the height is heavy, as shown in FIG. 5B, a dead zone is generated in the vicinity of 0 degrees and in the vicinity of 180 degrees. Accordingly, the change in the piezoelectric element 12 is reduced by changing the phase difference during the phase difference burst drive between 90 degrees and 0 degrees instead of between 90 degrees and 0 degrees. Thus, since the impact on the piezoelectric element 12 is reduced, high reliability can be obtained. Also, burst noise can be reduced as the impact is reduced. Further, since the movement locus of the driving elements 8 and 8 during the second predetermined period is not linear but slightly elliptical, the contact range of the driving elements 8 and 8 with the movable body 9 is widened. Durability is improved.

なお、本参考例では、微動モード時は、所定周期毎に第1電圧と第2電圧との位相差を90度と0度との間で切り換えているが、図13に示すように、位相差を、90度と、0度よりも大きく90度よりも小さい範囲内、又は90度よりも大きく180度よりも小さい範囲内の所定角度との間で変更してもよい。位相差を90度と45度又は135度との間で切り換えると、上述のように、長径及び短径が可動体9の移動方向からずれた楕円運動をするので、可動体9の寿命が延びる。 In this reference example , in the fine movement mode, the phase difference between the first voltage and the second voltage is switched between 90 degrees and 0 degrees every predetermined cycle. However, as shown in FIG. the phase difference, and 90 degrees, may be varied between a predetermined angle within a range smaller than 180 degrees greater than the smaller range, or 90 degrees than 90 degrees greater than 0 degrees. When position switches the phase difference between the 90 degrees and 45 degrees or 135 degrees, as described above, since the major axis and minor axis to the ellipse motion deviated from the moving direction of the movable member 9, it extends the life of the movable body 9 .

また、本実施形態では、位相差を0度から90度まで及び90度から0度まで時間に比例するように変化させているが、これに限らない。例えば、図14に示すように、位相差を0度から90度まで及び90度から0度まで急激に変化させてもよいし、図15に示すように、位相差を0度から90度まで及び90度から0度まで段階的に変化させてもよい。   In the present embodiment, the phase difference is changed from 0 degrees to 90 degrees and from 90 degrees to 0 degrees in proportion to the time, but the present invention is not limited to this. For example, as shown in FIG. 14, the phase difference may be suddenly changed from 0 degrees to 90 degrees and from 90 degrees to 0 degrees, and as shown in FIG. 15, the phase difference is changed from 0 degrees to 90 degrees. Further, it may be changed stepwise from 90 degrees to 0 degrees.

また、本実施形態では、微動モード時は、第1及び第2電圧の固定駆動周波数を通常モード時の最高周波数と同じにしているが、図16に示すように、第1及び第2電圧の固定駆動周波数を通常モード時の最高周波数よりも低くしてもよい。この場合、効率が良くなる。   In the present embodiment, in the fine movement mode, the fixed drive frequency of the first and second voltages is the same as the highest frequency in the normal mode. However, as shown in FIG. The fixed drive frequency may be lower than the maximum frequency in the normal mode. In this case, the efficiency is improved.

(その他の実施形態)
圧電素子12の構成は、前記実施形態のものに限らない。例えば、共通電極層4の代わりに、給電電極層3と同じく、4つの分割電極を有する電極層を設けてもよい。
(Other embodiments)
The configuration of the piezoelectric element 12 is not limited to that of the above embodiment. For example, instead of the common electrode layer 4, an electrode layer having four divided electrodes may be provided in the same manner as the feeding electrode layer 3.

また、前記実施形態では、分割電極3cを略矩形状の電極としたが、これに限らず、例えば、これらを振動による応力の分布に応じた形状のものとしてもよい。   In the above-described embodiment, the divided electrode 3c is a substantially rectangular electrode. However, the present invention is not limited to this. For example, the divided electrode 3c may have a shape corresponding to the distribution of stress due to vibration.

また、前記実施形態では、ワイヤーによる給電について説明したが、導電性ゴムによる給電、フレキシブル基板による給電や、コンタクトピンによる給電など、他の給電方法を用いてもよい。これらにより、前記実施形態と同様の効果が得られる。   In the above-described embodiment, power supply using a wire has been described. However, other power supply methods such as power supply using conductive rubber, power supply using a flexible substrate, and power supply using a contact pin may be used. As a result, the same effects as those of the above embodiment can be obtained.

また、前記実施形態では、振動型アクチュエータの駆動力が付与されて駆動される可動体9は平板状であるが、これに限られるものではなく、可動体9の構成としては任意の構成を採用できる。例えば、図17に示すように、可動体は所定の軸X回りに回動可能な円板体9であり、振動型アクチュエータの駆動子8,8が円板体9の側周面9aに当接するように構成されていてもよい。かかる構成の場合、振動型アクチュエータを駆動すると、駆動子8,8の略楕円運動によって、円板体9が所定の軸X回りに回動させられる。   Moreover, in the said embodiment, although the movable body 9 driven by the drive force of a vibration type actuator is flat form, it is not restricted to this, Arbitrary structures are employ | adopted as a structure of the movable body 9. it can. For example, as shown in FIG. 17, the movable body is a disc body 9 that can rotate about a predetermined axis X, and the drive elements 8, 8 of the vibration type actuators contact the side peripheral surface 9 a of the disc body 9. You may be comprised so that it may touch. In the case of such a configuration, when the vibration type actuator is driven, the disk body 9 is rotated about the predetermined axis X by the substantially elliptical motion of the driver elements 8.

また、前記実施形態では、駆動子8,8を圧電素子12の一方の端面に設けた構成について説明したが、圧電素子12の一方の側面に形成してもよい。この場合、1次モードの伸縮振動の伸縮方向は、駆動子8,8が可動体9を支持する方向となり、2次モードの屈曲振動の振動方向は、可動体9の移動方向となる。   In the above-described embodiment, the configuration in which the driver elements 8 are provided on one end face of the piezoelectric element 12 has been described. However, the driver elements 8 may be formed on one side face of the piezoelectric element 12. In this case, the expansion / contraction direction of the primary mode expansion / contraction vibration is the direction in which the driver elements 8 support the movable body 9, and the vibration mode of the secondary mode bending vibration is the moving direction of the movable body 9.

本発明は、実施形態に限定されず、その精神又は主要な特徴から逸脱することなく他の色々な形で実施できる。   The present invention is not limited to the embodiments, and can be implemented in various other forms without departing from the spirit or main features thereof.

このように、上述の実施形態はあらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書には何ら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。   As described above, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner. The scope of the present invention is defined by the claims, and is not limited by the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

以上説明したように、本発明にかかる駆動装置は、微動モード時の騒音を抑制するための用途等について適用できる。   As described above, the drive device according to the present invention can be applied to applications for suppressing noise in the fine movement mode.

8 駆動子
9 可動体
12 圧電素子
21 位置検出部(制御装置)
22 速度指令部(制御装置)
23 制御部(制御装置)
24 周波数発生部(制御装置)
25 位相演算部(制御装置)
26 バースト周期発生部(制御装置)
27 位相差発生部(制御装置)
28,29 ドライバー(制御装置)
8 Driving Element 9 Movable Body 12 Piezoelectric Element 21 Position Detection Unit (Control Device)
22 Speed command section (control device)
23 Control unit (control device)
24 Frequency generator (control device)
25 Phase calculator (control device)
26 Burst period generator (control device)
27 Phase difference generator (control device)
28, 29 Driver (control device)

Claims (7)

圧電素子と、該圧電素子に設けられた駆動子と、該駆動子に支持された可動体とを有する振動型アクチュエータと、
前記圧電素子に周波数が同じ第1及び第2電圧を供給する制御装置とを備え、
前記制御装置により前記圧電素子に前記第1電圧と該第1電圧と位相差が90度の第2電圧を供給することにより、前記圧電素子を伸縮振動と屈曲振動とが合成された振動をさせ、前記振動により前記駆動子を略楕円運動させて前記可動体を移動させる駆動装置であって、
前記制御装置は、微動モード時には、前記第1電圧と前記第2電圧との位相差を、90度と、0度よりも大きく90度よりも小さい範囲内、又は90度よりも大きく180度よりも小さい範囲内の所定角度との間で切り換えるように構成されていることを特徴とする駆動装置。
A vibration type actuator having a piezoelectric element, a driver provided in the piezoelectric element, and a movable body supported by the driver;
A controller for supplying first and second voltages having the same frequency to the piezoelectric element;
By supplying the first voltage and a second voltage having a phase difference of 90 degrees from the control device to the piezoelectric element, the piezoelectric element is caused to vibrate by combining stretching vibration and bending vibration. A drive device that moves the movable body by causing the driver to move substantially elliptically by the vibration,
In the fine movement mode, the control device sets the phase difference between the first voltage and the second voltage to 90 degrees, in a range larger than 0 degrees and smaller than 90 degrees, or larger than 90 degrees and larger than 180 degrees . A driving device configured to switch between a predetermined angle within a small range.
請求項1記載の駆動装置において、
前記制御装置は、前記微動モード時には、所定周期毎に前記位相差の切換えを行うように構成されていることを特徴とする駆動装置。
The drive device according to claim 1, wherein
The control device is configured to switch the phase difference at predetermined intervals in the fine movement mode.
請求項1又は2記載の駆動装置において、
前記制御装置は、前記微動モード時には、前記位相差が90度と前記所定角度との間で徐々に変化するように前記位相差の切換えを行うように構成されていることを特徴とする駆動装置。
The drive device according to claim 1 or 2,
The control device is configured to switch the phase difference so that the phase difference gradually changes between 90 degrees and the predetermined angle in the fine movement mode. .
請求項1〜3のいずれか1つに記載の駆動装置において、
前記所定角度は、45度又は135度であることを特徴とする駆動装置。
In the drive device according to any one of claims 1 to 3,
The drive device according to claim 1, wherein the predetermined angle is 45 degrees or 135 degrees.
請求項1〜4のいずれか1つに記載の駆動装置において、
前記制御装置は、前記微動モード時には、前記可動体の所望の移動速度が大きいほど、前記位相差を前記所定角度に保つ期間を短くするように構成されていることを特徴とする駆動装置。
In the drive device according to any one of claims 1 to 4,
In the fine movement mode, the control device is configured to shorten a period during which the phase difference is maintained at the predetermined angle as the desired moving speed of the movable body increases.
請求項1〜のいずれか1つに記載の駆動装置において、
前記制御装置は、通常モード時には、前記可動体の所望の移動速度が大きいほど、前記第1及び第2電圧の周波数を低くする一方、前記微動モード時には、該第1及び第2電圧の周波数を前記通常モード時の最高周波数と同じにするように構成されていることを特徴とする駆動装置。
In the drive device according to any one of claims 1 to 5 ,
In the normal mode, the control device lowers the frequency of the first and second voltages as the desired moving speed of the movable body increases, while in the fine movement mode, the control device decreases the frequency of the first and second voltages. A driving apparatus configured to be the same as a maximum frequency in the normal mode.
請求項1〜のいずれか1つに記載の駆動装置において、
前記制御装置は、通常モード時には、前記可動体の所望の移動速度が大きいほど、前記第1及び第2電圧の周波数を低くする一方、前記微動モード時には、該第1及び第2電圧の周波数を前記通常モード時の最高周波数よりも低くするように構成されていることを特徴とする駆動装置。
In the drive device according to any one of claims 1 to 5 ,
In the normal mode, the control device lowers the frequency of the first and second voltages as the desired moving speed of the movable body increases, while in the fine movement mode, the control device decreases the frequency of the first and second voltages. A driving apparatus configured to be lower than a maximum frequency in the normal mode.
JP2012050659A 2012-03-07 2012-03-07 Drive device Expired - Fee Related JP5315434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012050659A JP5315434B2 (en) 2012-03-07 2012-03-07 Drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012050659A JP5315434B2 (en) 2012-03-07 2012-03-07 Drive device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007122284A Division JP5127293B2 (en) 2007-05-07 2007-05-07 Drive device

Publications (2)

Publication Number Publication Date
JP2012110228A JP2012110228A (en) 2012-06-07
JP5315434B2 true JP5315434B2 (en) 2013-10-16

Family

ID=46495183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012050659A Expired - Fee Related JP5315434B2 (en) 2012-03-07 2012-03-07 Drive device

Country Status (1)

Country Link
JP (1) JP5315434B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015128367A (en) 2013-11-27 2015-07-09 キヤノン株式会社 Vibration type actuator driving device, focus lens driving device, and imaging apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2670370B2 (en) * 1989-12-15 1997-10-29 アルプス電気株式会社 Ultrasonic motor controller
JPH04145873A (en) * 1990-10-02 1992-05-19 Olympus Optical Co Ltd Ultrasonic motor
JPH07131986A (en) * 1993-10-29 1995-05-19 Matsushita Electric Ind Co Ltd Method for driving ultrasonic motor
JPH09163765A (en) * 1995-12-07 1997-06-20 Matsushita Electric Ind Co Ltd Driving method and driving circuit of ultrasonic motor
JPH10210775A (en) * 1997-01-24 1998-08-07 Canon Inc Driver for oscillatory actuator and lens driver
JPH1189255A (en) * 1997-09-01 1999-03-30 Nikon Corp Driving device for vibration actuator
JP4672828B2 (en) * 2000-03-31 2011-04-20 セイコーインスツル株式会社 Ultrasonic motor and electronic device with ultrasonic motor

Also Published As

Publication number Publication date
JP2012110228A (en) 2012-06-07

Similar Documents

Publication Publication Date Title
JP5127293B2 (en) Drive device
JP4209465B2 (en) Drive device
JP4069160B2 (en) Ultrasonic actuator
JP4069161B2 (en) Piezoelectric element and ultrasonic actuator
JP5277010B2 (en) Drive device
JP4795158B2 (en) Ultrasonic motor
JP5587418B2 (en) Actuator
JP4954784B2 (en) Drive device
JP5201873B2 (en) Drive device
JP4814948B2 (en) Control device for vibration actuator
JP5315434B2 (en) Drive device
JP4954783B2 (en) Piezoelectric element and vibration type actuator
JP2008236820A (en) Driving device
JP2007312600A (en) Piezoelectric element and ultrasonic actuator
JP2008278676A (en) Drive apparatus
JP2002101676A (en) Actuator
KR20120138374A (en) Piezoelectric vibrator of ultrasonic motor
JP2007300798A (en) Piezoelectric element and ultrasonic actuator
JP5571521B2 (en) Ultrasonic motor and driving method thereof
JP2005102368A (en) Driving device
JP4818858B2 (en) Ultrasonic motor element
JP5491718B2 (en) Ultrasonic motor
JP2008245350A (en) Ultrasonic motor and its drive method
JP4408721B2 (en) Drive device
JP2007336614A (en) Vibratory actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5315434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees