JP5314895B2 - Glass heat treatment jig - Google Patents
Glass heat treatment jig Download PDFInfo
- Publication number
- JP5314895B2 JP5314895B2 JP2008008245A JP2008008245A JP5314895B2 JP 5314895 B2 JP5314895 B2 JP 5314895B2 JP 2008008245 A JP2008008245 A JP 2008008245A JP 2008008245 A JP2008008245 A JP 2008008245A JP 5314895 B2 JP5314895 B2 JP 5314895B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- heat treatment
- jig
- ceramic
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011521 glass Substances 0.000 title claims description 97
- 238000010438 heat treatment Methods 0.000 title claims description 59
- 239000000919 ceramic Substances 0.000 claims description 33
- 230000005484 gravity Effects 0.000 claims description 18
- 229910052878 cordierite Inorganic materials 0.000 claims description 11
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 239000000470 constituent Substances 0.000 claims description 6
- 230000003746 surface roughness Effects 0.000 claims description 6
- 239000000758 substrate Substances 0.000 description 18
- 239000000463 material Substances 0.000 description 13
- 230000035939 shock Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 238000000465 moulding Methods 0.000 description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 239000011449 brick Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 230000009257 reactivity Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- 239000006060 molten glass Substances 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Landscapes
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
Description
本発明は、ガラス製部品の製造の際に行う熱処理工程に用いられる熱処理用治具に関する。更に詳しくは、平坦化、結晶化などを目的として行われるガラスの熱処理工程、特に、高い平行度や平面度を有する面の形成を目的として行われるガラスの熱処理工程に用いられる熱処理用治具に関する。 The present invention relates to a heat treatment jig used in a heat treatment step performed when manufacturing a glass part. More particularly, the present invention relates to a heat treatment step for glass used for the purpose of flattening, crystallization, etc., and more particularly to a heat treatment jig used for a heat treatment step for glass performed for the purpose of forming a surface having high parallelism and flatness. .
ガラス材料からなる各種製品の製造工程では、その成形工程において、ガラスの変形や歪みを除去するため、或いは、非晶質状態から結晶化させるため等の目的で、熱処理工程が導入され、実施されている。例えば、高い平行度や平面度が要求されるガラスのプレートでは、従来の、1枚毎にガラスのプレートを切り出し、研磨する方法に変えて、生産性を高め、しかも高品位の製品を得るために、半溶融状態に加熱されたガラスを、目的とする形状の型で加圧成形(所謂プレス成形)する方法が実施されている。そして、高い平行度や平面度を達成するために、プレス成形後に研磨したり(例えば、引用文献1等参照)、成形用金型の母材のプレス成形面に特定の材料からなる保護膜を形成することで、超平滑な平面性を有する金型を形成し、該平面を高精度で転写させるガラスのプレートの製造方法が提案されている(例えば、引用文献2参照)。 In the manufacturing process of various products made of glass materials, a heat treatment process is introduced and carried out for the purpose of removing deformation and distortion of the glass or crystallizing from an amorphous state in the molding process. ing. For example, in the case of glass plates that require high parallelism and flatness, in order to increase productivity and obtain high-quality products, it is possible to replace the conventional method of cutting and polishing glass plates one by one. In addition, a method in which glass heated to a semi-molten state is subjected to pressure molding (so-called press molding) with a mold having a desired shape is being carried out. And in order to achieve high parallelism and flatness, it polishes after press molding (for example, refer to cited reference 1 etc.), or a protective film made of a specific material is formed on the press molding surface of the base material of the molding die. There has been proposed a glass plate manufacturing method in which a mold having ultra-smooth flatness is formed and the plane is transferred with high accuracy (see, for example, Reference 2).
また、溶融ガラスをプレス形成後、非晶質ガラスを再加熱して微細結晶をガラス中に析出させる結晶化処理をする際に、ガラス基板の両面を、平面度、平行度の良好なカーボン板で挟み、押圧部材にてガラス基板全体に均等に加圧する方法が開示されている(例えば、引用文献3参照)。そして、このようにすることで、ガラス基板の反りやねじれを確実に修正することができるとしている。これは、加圧成形後におけるガラスは、急激で不均一な冷却状態になるため、そのまま放置すると、局所的な変形や歪みが生じ、製品の品質の低下を生じる場合があるからである。 In addition, when press-forming molten glass and then recrystallizing amorphous glass to crystallize fine crystals in the glass, both sides of the glass substrate are carbon plates with good flatness and parallelism. And a method of evenly pressing the entire glass substrate with a pressing member is disclosed (see, for example, cited document 3). And it is supposed that the curvature and twist of a glass substrate can be corrected reliably by doing in this way. This is because the glass after pressure molding is in an abrupt and non-uniform cooling state, and if left as it is, local deformation and distortion may occur, and the quality of the product may be deteriorated.
上記した熱処理の際に用いられる熱処理用治具には、耐熱性、耐熱衝撃性及び耐摩耗性などの諸特性が要求される。耐熱性としては、治具自体が高温に耐える一方で、ガラスと反応しない材料であることが要求される。耐熱衝撃性としては、繰り返し運転による熱衝撃によっても、治具に亀裂が生じにくいことが要求される。耐摩耗性としては、加熱炉中を移動する際のこすれによる摩耗が少ない治具であることが要求される。上記の諸特性が求められる熱処理用治具の材料としては、従来より、耐火煉瓦、耐熱金属、或いは各種セラミックスなどが用いられている。 The heat treatment jig used in the above heat treatment is required to have various characteristics such as heat resistance, thermal shock resistance, and wear resistance. The heat resistance is required to be a material that does not react with glass while the jig itself can withstand high temperatures. As the thermal shock resistance, it is required that the jig is not easily cracked by thermal shock caused by repeated operation. The wear resistance is required to be a jig with little wear due to rubbing when moving in a heating furnace. Conventionally, refractory bricks, refractory metals, various ceramics, and the like have been used as materials for heat treatment jigs that require the above characteristics.
しかしながら、本発明者らの検討によれば、上記した諸特性の全てを満足することのできる材料は未だ知られていない。例えば、アルミナセラミックスは、治具とした場合に、耐熱性、耐摩耗性は十分であるものの、ガラスと反応して熔着したり、また、加熱、冷却の繰り返しによる熱衝撃でクラックが発生したりする、といった問題があった。 However, according to the study by the present inventors, a material that can satisfy all of the above-mentioned properties has not been known yet. For example, when alumina ceramic is used as a jig, it has sufficient heat resistance and wear resistance, but it reacts with glass and welds, and cracks occur due to thermal shock caused by repeated heating and cooling. There was a problem such as.
また、耐火煉瓦の場合は、耐熱性、耐熱衝撃性に優れた熱処理用治具となるが、前記したような高い平面度が要求されるガラスのプレートの熱処理に用いた場合には、下記のような課題がある。即ち、耐火煉瓦は、主に数ミリの大きさのセラミックス粒子で構成されていることから、ガラスを挟み込んで熱処理した場合に、これらの粒子に起因する凸凹をガラス表面に生じさせてしまうという問題がある。また、使用中にセラミックス粒子の脱落によりガラスのプレート表面にキズやくぼみが発生したり、ガラス表面に脱落したセラミックス粒子が残存し、ガラスの後工程に影響を及ぼすことがしばしば見られる。これに対し、加工によって治具表面の平面度を向上させる方法が考えられるが、耐火煉瓦を用いたものの場合は、機械加工性に劣るという問題がある。このため、上記したようなガラスのプレートの熱処理に使用する熱処理用治具としては、耐火煉瓦製のものは適当なものとは言い難かった。 In addition, in the case of refractory bricks, it becomes a heat treatment jig excellent in heat resistance and thermal shock resistance, but when used for heat treatment of glass plates that require high flatness as described above, There is a problem like this. That is, since refractory bricks are mainly composed of ceramic particles with a size of several millimeters, when glass is sandwiched and heat-treated, unevenness caused by these particles is caused on the glass surface. There is. Further, it is often seen that during use, scratches and dents are generated on the surface of the glass plate due to the dropping of the ceramic particles, or the dropped ceramic particles remain on the glass surface, affecting the subsequent process of the glass. On the other hand, although the method of improving the flatness of the jig | tool surface by processing is considered, in the case of using a refractory brick, there exists a problem that it is inferior to machinability. For this reason, it is difficult to say that a refractory brick is suitable as a heat treatment jig used for the heat treatment of the glass plate as described above.
さらに、耐熱金属製の熱処理用治具の場合も、表面酸化による耐久性の問題、ガラスとの反応性の問題、かさ比重がガラスのプレートに比較して大きいことなどから、実用上の問題が大きかった。 Furthermore, in the case of heat-resistant metal heat treatment jigs, there are practical problems due to problems such as durability due to surface oxidation, reactivity with glass, and bulk specific gravity is larger than that of glass plates. It was big.
本発明は、上記した従来技術の課題に鑑みてなされたものであって、熱処理用治具としての基本的な特性である、耐熱性、耐熱衝撃性及び耐摩耗性をいずれも兼備しつつ、さらに、治具自身の平面度を向上させるための機械加工が施しやすい、実用性の高い熱処理用治具を提供することにある。また、本発明の目的は、例えば、高い平面度や平行度が要求される平面の形成が必要となるガラスのプレートの製造に好適に用いることができる熱処理用治具を提供することにある。 The present invention has been made in view of the above-described problems of the prior art, and has the basic characteristics as a jig for heat treatment, both of heat resistance, thermal shock resistance and wear resistance, It is another object of the present invention to provide a highly practical heat treatment jig that can be easily machined to improve the flatness of the jig itself. Moreover, the objective of this invention is providing the jig | tool for heat processing which can be used suitably for manufacture of the plate of the glass which needs formation of the plane where high flatness and parallelism are requested | required, for example.
上記の目的は、下記の本発明によって達成される。即ち、本発明は、ガラス製部品の製造の際に行う熱処理工程に用いられる熱処理用治具であって、少なくとも一部の表面粗さRaが0.1〜5.0μmであり、且つ、かさ比重が1.8〜2.6であり、開気孔率が5%以下であるセラミックスからなることを特徴とするガラス熱処理用治具である。 The above object is achieved by the present invention described below. That is, the present invention is a heat treatment jig used in a heat treatment step performed in the production of a glass part, and at least a part of the surface roughness Ra is 0.1 to 5.0 μm, and is bulky. A glass heat treatment jig characterized by being made of ceramics having a specific gravity of 1.8 to 2.6 and an open porosity of 5% or less.
また、本発明の好ましい形態としては、セラミックスは、コーディエライトを主要構成相とする上記構成のガラス熱処理用治具が挙げられる。また、本発明の好ましい形態としては、その厚みが2.5mm以下である上記構成のガラス熱処理用治具が挙げられる。 Further, as a preferred embodiment of the present invention, the ceramic includes a glass heat treatment jig having the above-mentioned configuration in which cordierite is a main constituent phase. Moreover, as a preferable form of this invention, the jig | tool for glass heat processing of the said structure whose thickness is 2.5 mm or less is mentioned.
本発明では、かさ比重が1.8〜2.6であり、開気孔率が5%以下であるセラミックスを用いることで、ガラスの熱処理用治具としての基本的要求特性である、耐熱性、耐熱衝撃性及び耐摩耗性を兼備しつつ、さらに、治具自身の平面度を向上させるための機械加工が施しやすい、実用性の高い熱処理用治具の提供が可能となる。本発明では、特に、セラミックスとして、コーディエライトを主要構成相とするものを用いる形態によって、ガラスとの反応性が低く、より高寿命が期待できる熱処理用治具の提供が可能となる。 In the present invention, by using ceramics having a bulk specific gravity of 1.8 to 2.6 and an open porosity of 5% or less, heat resistance, which is a basic required characteristic as a jig for heat treatment of glass, It is possible to provide a highly practical jig for heat treatment that has both thermal shock resistance and wear resistance, and is easy to be machined to improve the flatness of the jig itself. In the present invention, it is possible to provide a heat treatment jig that is low in reactivity with glass and can be expected to have a longer life, particularly by using a ceramic that has cordierite as a main constituent phase.
以下に、好ましい形態を挙げて本発明について具体的に説明する。本発明者らは、前述した従来技術の課題を解決することを可能とできる、熱処理用治具用の形成材料について鋭意検討を行った。すなわち、従来の材料では達成できなかった、ガラス熱処理用治具とした場合に、所望の耐熱性、耐熱衝撃性を満たしつつ、耐摩耗性が良好で、しかもガラスとの反応性が小さい材料を開発すべく鋭意検討を行った。その結果、特定のかさ比重及び開気孔率を有するセラミックスを用いれば、ガラス熱処理用治具とした場合に、高い、耐熱性、耐熱衝撃性を満たすと同時に、ガラスとの反応性が低く、化学的な安定性を示し、耐摩耗性が良好な治具の提供が可能となることを見出した。更に、上記の材料は、上記の特性に加えて加工がし易く、表面粗さRaが0.1〜5.0μmという面の形成が可能となることを見出して本発明を完成するに至った。以下、本発明のガラス熱処理用治具の形成に用いる具体的なセラミックスについて説明する。 Hereinafter, the present invention will be specifically described with reference to preferred embodiments. The present inventors have intensively studied a forming material for a heat treatment jig that can solve the above-described problems of the prior art. That is, when using a glass heat treatment jig that could not be achieved with conventional materials, a material that satisfies the desired heat resistance and thermal shock resistance, has good wear resistance, and has low reactivity with glass. We conducted intensive studies to develop it. As a result, if ceramics with a specific bulk specific gravity and open porosity are used, when it is used as a jig for glass heat treatment, it satisfies high heat resistance and thermal shock resistance, and at the same time has low reactivity with glass, It has been found that it is possible to provide a jig that exhibits good stability and good wear resistance. In addition to the above properties, the above materials are easy to process, and it has been found that a surface with a surface roughness Ra of 0.1 to 5.0 μm can be formed, thereby completing the present invention. . Hereinafter, specific ceramics used for forming the glass heat treatment jig of the present invention will be described.
本発明では、ガラス熱処理用治具の形成材料として、かさ比重が1.8〜2.6であり、開気孔率が5%以下であるセラミックスを用いる。本発明のガラス熱処理用治具を用いてガラスのプレートの熱処理を行う場合には、処理効率を考慮して、複数枚のガラスのプレートについて同時に処理を行うのが通常である。具体的には、例えば、平板状の本発明のガラス熱処理用治具を複数使用し、各治具の平坦な面の間に、それぞれ半溶融状態のガラスのプレートを挟み込み(図1参照)、熱処理を行う。このようにすることで、本発明のガラス熱処理用治具の平坦な面がガラスのプレートの表面に転写されるので、両面がそれぞれ平坦化処理された複数のガラスのプレートが容易に得られる。本発明のガラス熱処理用治具を上記したような製造に用いる場合には、ガラスと交互に重ねて使用されるため、かさ比重が2.6を超えた場合には、ガラスとの比重差が大きくなるので、ガラスへの負荷が大きくなり、セラミックスとガラスの反応が局所的に加速する可能性もある。また、かさ比重が2.6を超えた場合は、積重ねた状態でのセラミックスの総重量が重くなるので、熱処理設備、特に、搬送用の設備に支障を及ぼすという問題もある。一方、かさ比重が1.8未満である場合には、ガラスへの負荷が小さくなり、ガラスを平坦化する効果が減少する。この場合には、ガラスの粘性を下げるために熱処理温度を高温にする必要が生じてしまい、熱処理治具とガラスの反応が加速し、ガラスを変質させたりガラスが治具に熔着する可能性が高くなる。 In the present invention, a ceramic having a bulk specific gravity of 1.8 to 2.6 and an open porosity of 5% or less is used as a material for forming a glass heat treatment jig. When heat-treating a glass plate using the glass heat-treating jig of the present invention, it is usual to perform processing on a plurality of glass plates simultaneously in consideration of processing efficiency. Specifically, for example, a plurality of glass heat treatment jigs of the present invention having a flat plate shape are used, and a glass plate in a semi-molten state is sandwiched between flat surfaces of the jigs (see FIG. 1). Heat treatment is performed. By doing in this way, since the flat surface of the glass heat treatment jig of the present invention is transferred to the surface of the glass plate, a plurality of glass plates each having both surfaces flattened can be easily obtained. When the glass heat treatment jig of the present invention is used for the production as described above, it is used by alternately overlapping with the glass. Therefore, when the bulk specific gravity exceeds 2.6, the specific gravity difference with the glass is Since it becomes large, the load on glass becomes large, and there is a possibility that the reaction between ceramics and glass is locally accelerated. Further, when the bulk specific gravity exceeds 2.6, the total weight of the ceramics in the stacked state becomes heavy, so that there is a problem that the heat treatment equipment, particularly, the transportation equipment is hindered. On the other hand, when the bulk specific gravity is less than 1.8, the load on the glass is reduced, and the effect of flattening the glass is reduced. In this case, it is necessary to increase the heat treatment temperature in order to lower the viscosity of the glass, the reaction between the heat treatment jig and the glass accelerates, and the glass may be altered or the glass may be fused to the jig. Becomes higher.
さらに、セラミックスの開気孔率が5%よりも大きい場合には、ガラスのプレートなどを平滑化する際に開気孔にガラスがくい込み、ガラス表面に凸部が発生し、目的を満足することを妨げることになる。ここでの開気孔のサイズは、かさ比重が1.8〜2.6で開気孔率が5%以下と規定した場合、通常の製造方法の範囲では0.1mm以下であり、本発明においては多くの場合0.05mm程度である。本発明における開気孔率の測定方法及びかさ密度の測定方法は、イオン交換水を媒液に用い、JISR1634に準拠して行った。 Further, when the open porosity of the ceramic is larger than 5%, when the glass plate or the like is smoothed, the glass penetrates into the open pores, and a convex portion is generated on the glass surface, preventing the satisfaction of the purpose. It will be. Here, the size of the open pores is 0.1 mm or less in the range of the normal production method when the bulk specific gravity is 1.8 to 2.6 and the open porosity is 5% or less. In many cases, it is about 0.05 mm. The method for measuring the open porosity and the method for measuring the bulk density in the present invention was performed in accordance with JIS R1634 using ion-exchanged water as a medium.
本発明においては、かさ比重が1.8〜2.6であり、開気孔率が5%以下である範囲内にあれば、セラミックスの種類および組成に特段の制約はない。本発明者らの検討によれば、特にコーディエライトを主要構成相とするセラミックスが好適である。当該セラミックスは、シリカ−アルミナ−マグネシアを主成分とする低熱膨張セラミックスであり、耐熱衝撃性に優れるため、治具とした場合に他の材料に比して耐久性の点で優位である。また、この材料は、アルミナを主成分とするセラミックス材料と比較してかさ比重が低いことから、結果として、得られた焼結体(セラミックス)は、開気孔率を5%以下に制御することで、かさ比重は1.8〜2.6となる。 In the present invention, if the bulk specific gravity is 1.8 to 2.6 and the open porosity is within the range of 5% or less, there are no particular restrictions on the type and composition of ceramics. According to the study by the present inventors, ceramics having cordierite as a main constituent phase is particularly suitable. The ceramic is a low thermal expansion ceramic mainly composed of silica-alumina-magnesia, and is excellent in thermal shock resistance. Therefore, when used as a jig, it is superior in terms of durability compared to other materials. Moreover, since this material has a lower bulk specific gravity than a ceramic material mainly composed of alumina, as a result, the obtained sintered body (ceramics) has an open porosity controlled to 5% or less. The bulk specific gravity is 1.8 to 2.6.
また、本発明で使用する好適なセラミックス材料であるコーディエライトは、不可避の不純物成分(Fe2O3、TiO2、CaO、Na2O、K2O、P2O5等)が含まれていても、全量に対し2%程度であれば、コーディエライトの低熱膨張性を失うことがなく、ガラスとの反応性に影響を及ぼさない。しかし、本発明者らの検討によれば、シリカ及びマグネシア含有量がコーディエライトの量論組成より著しく多くなった場合、ガラス用熱処理治具の焼成時に多量の溶融物を形成する。生成した溶融物は粒界にガラス相を形成し、ガラス用熱処理治具の使用時にガラスと著しく反応や変形を伴う。従って、本発明においては、量論組成近傍組成のコーディエライトを使用することが好ましい。アルミナ含有量が量論組成より若干の過剰側、具体的には、35〜38%程度過剰に含まれている組成のコーディエライトを主要構成相とすることがさらに好ましい。 Cordierite, which is a suitable ceramic material used in the present invention, contains inevitable impurity components (Fe 2 O 3 , TiO 2 , CaO, Na 2 O, K 2 O, P 2 O 5, etc.). However, if it is about 2% of the total amount, the low thermal expansion property of cordierite is not lost, and the reactivity with glass is not affected. However, according to the study by the present inventors, when the silica and magnesia contents are significantly higher than the stoichiometric composition of cordierite, a large amount of melt is formed during firing of the glass heat treatment jig. The produced melt forms a glass phase at the grain boundary, and is significantly reacted and deformed with glass when a heat treatment jig for glass is used. Therefore, in the present invention, cordierite having a composition near the stoichiometric composition is preferably used. It is more preferable that cordierite having a composition in which the alumina content is included in a slight excess from the stoichiometric composition, specifically about 35 to 38%, is the main constituent phase.
本発明のガラス熱処理用治具の形状は、少なくとも一部の表面粗さRaが0.1〜5.0μmであればよく、それ以外は、製造するガラス製部品との兼ね合いで決定される任意の形状であればよく、特に限定されない。例えば、最終製品としてはナノオーダーの平面度を要求されるガラスのハードディスク基板では、平面度が10μm以下、好ましくは5μm以下とする。一方、厚みの薄い円板状或いは角状のガラス製部品を加熱により結晶化する場合の熱処理治具としては、結晶化後に求められる精度程度は必要であり、形状寸法は若干大きいものが挙げられる。本発明において、表面粗さRaの測定は、蝕針式の表面粗さ計を用いた。 The glass heat treatment jig according to the present invention may have any shape as long as at least a part of the surface roughness Ra is 0.1 to 5.0 μm, and the others are determined in consideration of the glass component to be manufactured. The shape is not particularly limited. For example, in a glass hard disk substrate that requires a nano-order flatness as a final product, the flatness is 10 μm or less, preferably 5 μm or less. On the other hand, as a heat treatment jig for crystallizing a thin disk-shaped or square glass part by heating, the degree of accuracy required after crystallization is necessary, and the shape dimension is slightly large. . In the present invention, the surface roughness Ra was measured using a stylus type surface roughness meter.
以下、本発明の実施例を挙げて、本発明を更に詳細に説明する。
(実施例1)
直径が100mm、厚みが2mm程度となるようにアルミナ含有量36%のコーディエライトを主要な構成相とする原料を成形後、1,400℃で焼成し、厚み方向を研削加工し、表面粗さRaを0.4μm、平面度を5.3μmのガラス熱処理用治具を複数作製した。得られた治具のかさ比重は2.4であり、開気孔率は1.1%であった。これらのセラミックス板の間に、直径90mm程度の型で、半溶融状態のガラスをプレスで成形して作製した厚み1mm程度のガラス基板を、セラミックスとガラスが交互になるように挟み込んだ。この際、図1に示したように、ガラス基板が10枚、セラミックス板が11枚で積み上げた。この際のガラス基板は、成形時の局所的な冷却速度の差異、及び型からの取り出し時の側面に発生する摩擦により、中央部が約0.3mmほどのソリが認められるものであった。
Hereinafter, the present invention will be described in more detail with reference to examples of the present invention.
Example 1
After forming a raw material whose main constituent phase is cordierite with an alumina content of 36% so that the diameter is about 100 mm and the thickness is about 2 mm, it is fired at 1,400 ° C., the thickness direction is ground, and the surface is roughened. A plurality of glass heat treatment jigs having a thickness Ra of 0.4 μm and a flatness of 5.3 μm were produced. The resulting jig had a bulk specific gravity of 2.4 and an open porosity of 1.1%. Between these ceramic plates, a glass substrate having a thickness of about 1 mm produced by pressing a semi-molten glass with a mold having a diameter of about 90 mm was sandwiched so that the ceramics and the glass were alternately arranged. At this time, as shown in FIG. 1, 10 glass substrates and 11 ceramic plates were stacked. In this case, the glass substrate was found to have a warp of about 0.3 mm in the center due to a difference in local cooling rate during molding and friction generated on the side surface during removal from the mold.
上記のようにして積み上げたセラミックス板とガラス基板を、800℃に加熱した炉に入れ熱処理を行った。熱処理時間はガラスの種類によって異なるが、今回の実施例では4時間保持とした。冷却後、セラミックス板の間からガラス基板を取り出した。熱処理後のガラス基板のソリは、いずれの場所においても0.05mm以下であり、熱処理によって改善されたことが確認された。また、ガラス基板がセラミックス板に熔着することはなく、セラミックス板との反応はないことが確認された。 The ceramic plates and glass substrates stacked as described above were placed in a furnace heated to 800 ° C. and subjected to heat treatment. Although the heat treatment time varies depending on the type of glass, it was held for 4 hours in this example. After cooling, the glass substrate was taken out from between the ceramic plates. The warpage of the glass substrate after the heat treatment was 0.05 mm or less at any location, and it was confirmed that the glass substrate was improved by the heat treatment. Further, it was confirmed that the glass substrate was not welded to the ceramic plate and there was no reaction with the ceramic plate.
(実施例2)
80×40×1mmの角状となるように成形して作製されたガラス基板は、各辺周辺に0.1〜0.3mm程度めくれたような変形を有していた。これらのガラス基板10枚を、実施例1で使用したと同様のコーディエライトを主な構成相である板11枚に挟み込み、700℃で5時間加熱して、熱処理を行った。熱処理後のガラス基板の変形はいずれの場所においても0.03mm以下であった。また、ガラス表面の分析を行ったところ、セラミックス成分の熔着や溶解もなく良好であることが確認された。更に、上記のようにして、ガラス基板に繰り返し熱処理を行ったところ、300サイクル(実際の生産ラインでは約3年に相当)までの加速試験の結果では、セラミックス板の表面での変形や亀裂の発生は認められなかった。
(Example 2)
The glass substrate formed by molding so as to have a square shape of 80 × 40 × 1 mm had a deformation that turned around 0.1 to 0.3 mm around each side. These 10 glass substrates were sandwiched with 11 sheets of cordierite similar to those used in Example 1 and heated at 700 ° C. for 5 hours for heat treatment. The deformation of the glass substrate after the heat treatment was 0.03 mm or less at any place. Moreover, when the glass surface was analyzed, it was confirmed that the ceramic component was good without being fused or dissolved. Furthermore, when the glass substrate was repeatedly heat-treated as described above, the results of accelerated tests up to 300 cycles (corresponding to about 3 years in an actual production line) show that deformation and cracks on the surface of the ceramic plate Occurrence was not observed.
(比較例1)
かさ比重が3.6であり、開気孔率が1.9%のアルミナ平板(アルミナ含有量96%)を作製し、これを用いた以外は実施例1と同一条件で、ガラス基板の熱処理を行った。この結果、熱処理後のガラスは約50%の数量がセラミックスと反応してアルミナ平板に熔着した。
(Comparative Example 1)
An alumina flat plate (alumina content 96%) having a bulk specific gravity of 3.6 and an open porosity of 1.9% was prepared, and the glass substrate was subjected to heat treatment under the same conditions as in Example 1 except that this was used. went. As a result, about 50% of the glass after the heat treatment reacted with the ceramic and fused to the alumina plate.
(比較例2)
かさ比重2.5で、開気孔率が8.9%のムライトの平板を作製し、これを用いた以外は実施例1と同一条件で、ガラス基板の熱処理を行った。この結果、熱処理後のガラスは約30%の数量がセラミックス板に熔着した。この際の熔着の程度は、断面の観察結果から比較例1と異なりガラスの一部がセラミックス板の開気孔にめり込んだ状態であった。また、熔着が認められなかった平板を数回繰り返して加熱冷却を行ったところ、全数破断した。この結果はムライトの理論的な比重から算出できる開気孔率が約20%であることから、加熱冷却により亀裂が導入され、破断したと思われる。
(Comparative Example 2)
A mullite flat plate having a bulk specific gravity of 2.5 and an open porosity of 8.9% was prepared, and the glass substrate was heat-treated under the same conditions as in Example 1 except that this was used. As a result, about 30% of the glass after the heat treatment was welded to the ceramic plate. The degree of welding at this time was a state in which a part of the glass was embedded in the open pores of the ceramic plate, unlike Comparative Example 1, from the observation result of the cross section. Moreover, when the flat plate in which welding was not recognized was repeated several times and it heat-cooled, all were fractured. This result shows that the open porosity that can be calculated from the theoretical specific gravity of mullite is about 20%. Therefore, it seems that cracks were introduced by heating and cooling, and the fracture occurred.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008008245A JP5314895B2 (en) | 2008-01-17 | 2008-01-17 | Glass heat treatment jig |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008008245A JP5314895B2 (en) | 2008-01-17 | 2008-01-17 | Glass heat treatment jig |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009167062A JP2009167062A (en) | 2009-07-30 |
JP5314895B2 true JP5314895B2 (en) | 2013-10-16 |
Family
ID=40968704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008008245A Active JP5314895B2 (en) | 2008-01-17 | 2008-01-17 | Glass heat treatment jig |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5314895B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210009459A1 (en) * | 2019-07-12 | 2021-01-14 | Corning Incorporated | Methods for forming glass ceramic articles |
CN118206275B (en) * | 2024-05-22 | 2024-09-06 | 安徽亿晶包装科技有限公司 | Batch quenching clamp for glass cosmetic bottle production |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09219018A (en) * | 1996-02-13 | 1997-08-19 | Futou Denshi Kogyo Kk | Production of disk substrate for information memory |
JP3653957B2 (en) * | 1997-11-14 | 2005-06-02 | 松下電器産業株式会社 | Press mold |
JP2000015546A (en) * | 1998-06-26 | 2000-01-18 | Ngk Insulators Ltd | Manufacture of glass substrate |
JP2006059853A (en) * | 2004-08-17 | 2006-03-02 | Mitsubishi Gas Chem Co Inc | Tray for vapor phase process |
-
2008
- 2008-01-17 JP JP2008008245A patent/JP5314895B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009167062A (en) | 2009-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101172245B1 (en) | A roll for pulling a glass ribbon and a method for manufacturing sheet glass | |
EP1979512B1 (en) | Crucible for the treatment of molten silicon and process for its manufacture | |
JP4556962B2 (en) | Method for reducing residual stress of blank material, method for manufacturing blank material and glass substrate for information recording medium | |
JPWO2007125878A1 (en) | Aluminum-silicon carbide composite and heat dissipation component using the same | |
EP2024298B1 (en) | Refractory article and production process thereof | |
US9336810B2 (en) | Method for manufacturing glass blank for magnetic disk, method for manufacturing glass substrate for magnetic disk | |
JPWO2013001841A1 (en) | Glass substrate for magnetic disk and manufacturing method thereof | |
JP2016507460A (en) | High quality nickel mold for optical quality glass molding and glass plate molding method using this mold | |
US20180105470A1 (en) | Bonded zirconia refractories and methods for making the same | |
CN111362676A (en) | High-wear-resistance quick-drying refractory castable and preparation method thereof | |
WO2012160818A1 (en) | Method of manufacturing glass substrate for magnetic disk | |
WO2016017689A1 (en) | Aluminum-silicon carbide composite and production method therefor | |
JP5314895B2 (en) | Glass heat treatment jig | |
JP6447422B2 (en) | Cylindrical forming mold, cylindrical ceramic molded body and manufacturing method thereof | |
JP5449938B2 (en) | Glass blank, glass blank manufacturing method, information recording medium substrate manufacturing method, and information recording medium manufacturing method | |
JP2014114473A (en) | Flat plate type sputtering target and production method thereof | |
JP2008254962A (en) | Flattening treatment method for setter | |
TWI408119B (en) | A molded film for glass hard disk substrates | |
JP2015171991A (en) | Iron-making vessel | |
JP7294887B2 (en) | Flat glass manufacturing method | |
JP2000351679A (en) | Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form | |
JP6546294B2 (en) | Fireproof article and method of manufacturing the same | |
WO2012150654A1 (en) | Disc roll and base material thereof | |
WO2021132150A1 (en) | Molding device, production facility equipped with said molding device, and method for producing glass plate | |
JP5578068B2 (en) | Method for producing crystallized glass article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101229 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130611 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130708 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5314895 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |