JP5313536B2 - Method for producing thin film material for optoelectronic device - Google Patents
Method for producing thin film material for optoelectronic device Download PDFInfo
- Publication number
- JP5313536B2 JP5313536B2 JP2008095534A JP2008095534A JP5313536B2 JP 5313536 B2 JP5313536 B2 JP 5313536B2 JP 2008095534 A JP2008095534 A JP 2008095534A JP 2008095534 A JP2008095534 A JP 2008095534A JP 5313536 B2 JP5313536 B2 JP 5313536B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- matrix
- oxide
- crystal phase
- mainly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Physical Vapour Deposition (AREA)
Description
本発明は、可視光吸収特性量子サイズ効果を発現するGeを、光伝導率および化学的安定性に優れるアナタース型結晶相により、主に構成されるマトリクス中に分散させた光電子素子用薄膜材料の製造方法に関するものである。 The present invention relates to a thin film material for optoelectronic devices in which Ge, which expresses a visible light absorption characteristic quantum size effect, is dispersed in a matrix mainly composed of an anatase type crystal phase excellent in photoconductivity and chemical stability. It relates to a manufacturing method.
量子サイズ効果による光学波長の変化について図2で説明する。ナノスケール粒子が酸化物マトリクス中に分散された試料(図1)において、ナノ粒子サイズが図2中のA<B<Cのように変化する場合、光透過率が0になる波長、すなわち、光学的に光が吸収される波長が、粒径の減少と共に短波長側にシフトする。このように、ナノ粒子サイズの微小化と共に、光吸収端の短波長側へのシフトが物理的特性として広く知られている。一般に、粒径サイズは、ナノ粒子を構成する材料の濃度に比例して大きくなることから、光吸収波長は組成により制御することができる。この特性を利用して、例えば、光電子素子の場合、太陽光の放射スペクトルの最も強い放射エネルギー位置に調整したナノ粒子サイズを作製することにより、太陽エネルギーを高効率に吸収し、電子を多量に生成することができる。この生成電子を利用して、例えば、水溶液の電気分解を通じて水素を生成することができる。 Changes in optical wavelength due to the quantum size effect will be described with reference to FIG. In a sample (FIG. 1) in which nanoscale particles are dispersed in an oxide matrix, when the nanoparticle size changes as A <B <C in FIG. 2, the wavelength at which the light transmittance is 0, that is, The wavelength at which light is optically absorbed shifts to the short wavelength side as the particle size decreases. As described above, the shift to the short wavelength side of the light absorption edge along with the miniaturization of the nanoparticle size is widely known as a physical characteristic. In general, since the particle size increases in proportion to the concentration of the material constituting the nanoparticles, the light absorption wavelength can be controlled by the composition. Taking advantage of this property, for example, in the case of optoelectronic devices, by creating a nanoparticle size adjusted to the strongest radiant energy position of the solar radiation spectrum, solar energy can be absorbed efficiently and a large amount of electrons can be absorbed. Can be generated. Using the generated electrons, for example, hydrogen can be generated through electrolysis of an aqueous solution.
一方、ナノ粒子を用いない材料系も同様に検討されている。すなわち、シリコンや化合物半導体では、材料固有の禁制帯幅に対応する太陽光のエネルギーを、効率的に吸収して光電変換を行うシステムであり、また、有機色素増感型材料では有機色素が太陽光を吸収して光電変換を行うシステムである。シリコン系及び化合物半導体を用いて直接的に水素生成を行う場合、水素生成溶液に接触する材料の化学的劣化が課題となる。他方、間接的に生成を行う場合、回路を経由せざるを得ないことから電力損失を伴うことが課題である。また、有機色素増感型では、直接的に水素生成を行う場合、溶液中での色素脱離が課題である。他方、ナノ粒子を利用した材料系として、ナノ粒子にGe、マトリクスにTi酸化物を用いた複合材料が挙げられる。この材料系では、ナノ粒子の粒径により、光吸収波長を任意に可変させることが原理的に可能であると共に、マトリクスとして用いるTi酸化物は溶液中において化学的に安定であることから、有力な水素生成素子用材料とされる。 On the other hand, material systems that do not use nanoparticles are also being studied. In other words, in silicon and compound semiconductors, it is a system that performs photoelectric conversion by efficiently absorbing the energy of sunlight corresponding to the band gap inherent in the material. In organic dye-sensitized materials, organic dyes are solar This system performs photoelectric conversion by absorbing light. When hydrogen generation is performed directly using silicon-based and compound semiconductors, chemical degradation of the material in contact with the hydrogen generation solution becomes a problem. On the other hand, when the generation is performed indirectly, it is necessary to go through a circuit, so that it involves a power loss. Moreover, in the organic dye sensitizing type, when hydrogen is directly generated, dye desorption in a solution is a problem. On the other hand, as a material system using nanoparticles, there is a composite material using Ge as a nanoparticle and Ti oxide as a matrix. In this material system, the optical absorption wavelength can be arbitrarily varied depending on the particle size of the nanoparticles, and the Ti oxide used as the matrix is chemically stable in the solution. A material for a hydrogen generating element.
ナノ粒子が分散するTi酸化物マトリクスの結晶構造も生成効率の向上や化学的安定性のためには重要な要素である。すなわち、Ti酸化物の代表的な結晶構造としてルチル型、ブルッカイト型およびアナタース型が存在する。太陽光発電において、比較的光伝導率の高い結晶構造はアナタース型であり、これをマトリクスに用いることにより、光電変換効率を高めることができる。さらに、化学的に光触媒活性の高い結晶構造もアナタース型であり、当該結晶構造の禁制帯幅3.2eV以上の紫外光を吸収して水素生成に寄与することができる。すなわち、アナタース型マトリクスの紫外光吸収特性とGeナノ粒子による可視光吸収特性によるシナジー効果により、可視光および紫外光の光電変換を有効に行うことができる。したがって、量子サイズ効果による光電子素子用材料を用いて、直接的に水素生成を行うためには、可視光吸収性のナノスケールのGe粒子と、主にマトリクスであるアナタース型Ti酸化物結晶相を同時に含む複合構造薄膜材料を製造することが不可決である。 The crystal structure of the Ti oxide matrix in which the nanoparticles are dispersed is also an important factor for improving the production efficiency and chemical stability. That is, as a typical crystal structure of the Ti oxide, there are a rutile type, a brookite type, and an anatase type. In solar power generation, a crystal structure having a relatively high photoconductivity is an anatase type, and by using this as a matrix, photoelectric conversion efficiency can be increased. Further, the crystal structure having high chemical photocatalytic activity is also anatase type, and can absorb ultraviolet light having a forbidden band width of 3.2 eV or more and contribute to hydrogen generation. That is, photoelectric conversion of visible light and ultraviolet light can be effectively performed by a synergistic effect due to the ultraviolet light absorption characteristics of the anatase matrix and the visible light absorption characteristics of the Ge nanoparticles. Therefore, in order to directly generate hydrogen using an optoelectronic device material based on the quantum size effect, a nanoscale Ge particle that absorbs visible light and an anatase type Ti oxide crystal phase that is mainly a matrix are used. It is impossible to manufacture a composite structure thin film material including the same.
従来、Geナノ粒子をTi酸化物中に分散させた複合材料において、マトリクスはルチル型Ti酸化物結晶構造を有すること、およびGeナノ粒子による可視光吸収特性を有すること、透過型電子顕微鏡観察において、GeとTiが反応せずに存在していることが報告されている。 Conventionally, in a composite material in which Ge nanoparticles are dispersed in Ti oxide, the matrix has a rutile type Ti oxide crystal structure, and has visible light absorption characteristics by Ge nanoparticles, in transmission electron microscope observation It has been reported that Ge and Ti exist without reacting.
しかしながら、従来の研究では、マトリクスであるTi酸化物の結晶構造は、ルチル型の単一相であり、前述のように光伝導率や光触媒活性において、優れた特性を有するアナタース型結晶相を得ることはできなかった、したがって、これらの欠点により、当該複合材料では水素生成素子の実現に未だ至っていない。 However, in the conventional research, the crystal structure of the matrix Ti oxide is a rutile single phase, and as described above, an anatase crystal phase having excellent characteristics in photoconductivity and photocatalytic activity is obtained. Therefore, due to these drawbacks, the composite material has not yet realized a hydrogen generating element.
近年、原油の高騰および石油資源の枯渇を見据えて、バイオ燃料や水素エネルギー、または風力発電などの自然エネルギーの利用が注目されている。中でも、水素エネルギーは二酸化炭素を排出しないことから、地球温暖化対策に向けた二酸化炭素削減への寄与が期待され、燃料電池開発が活発に行われている。この際、燃料電池の発電過程においては、二酸化炭素を排出しないが、ガソリンや天然ガスなどの燃料から水素を抽出する過程において、二酸化炭素の排出が避けられない。したがって、水素供給源を再生可能エネルギーにシフトすることにより、一層効果的なエネルギーシステムとして位置づけられる。すなわち、燃料電池が必要とする資源である水素を、太陽光による自然エネルギーで供給することができれば、化石燃料を消費せず二酸化炭素も排出しない理想的なエネルギー体系を構築することができる。 In recent years, the use of natural energy such as biofuel, hydrogen energy, or wind power generation has attracted attention in anticipation of soaring crude oil and depletion of petroleum resources. In particular, hydrogen energy does not emit carbon dioxide, so it is expected to contribute to the reduction of carbon dioxide for global warming countermeasures, and fuel cell development is actively carried out. At this time, carbon dioxide is not discharged in the power generation process of the fuel cell, but carbon dioxide is inevitably discharged in the process of extracting hydrogen from fuel such as gasoline or natural gas. Therefore, it is positioned as a more effective energy system by shifting the hydrogen supply source to renewable energy. In other words, if hydrogen, which is a resource required by the fuel cell, can be supplied by natural energy from sunlight, an ideal energy system that does not consume fossil fuel and emit no carbon dioxide can be constructed.
太陽光を利用する水素生成システムに向けて様々な材料提案の内で、化学的安定性に優れ、かつ、紫外光および可視光を効率的に吸収する、ナノスケールのGe粒子と主にマトリクスであるアナタース型Ti酸化物結晶相を同時に含む複合構造薄膜材料が求められている。したがって、本発明の目的は、当該複合構造薄膜材料の製造方法を、新規に提供することにある。 Among various material proposals for a hydrogen generation system using sunlight, nanoscale Ge particles and mainly a matrix that have excellent chemical stability and efficiently absorb ultraviolet light and visible light. There is a need for a composite structure thin film material containing a certain anatase type Ti oxide crystal phase simultaneously. Accordingly, an object of the present invention is to provide a novel method for producing the composite structure thin film material.
本発明は、上述の点を鑑みてなされたものである。本発明者らは鋭意研究の結果、膜中のGe組成の調整と高周波スパッタリング成膜および熱処理を行うことにより、これらの問題点を解決できることを見出した。 The present invention has been made in view of the above points. As a result of intensive studies, the present inventors have found that these problems can be solved by adjusting the Ge composition in the film and performing high-frequency sputtering film formation and heat treatment.
本発明は、1原子%以上15原子%以下のGeと、その他が主にTiおよびOから構成されるアモルファス薄膜を、酸素流量0.5%以下の酸素含有雰囲気中で高周波スパッタリング法により成膜し、これを真空中、400〜800℃で15〜90分、熱処理することにより、ナノスケールのGe粒子と主にマトリクスであるアナタース型Ti酸化物結晶相を同時に含む複合構造を形成することを特徴とする、光電子素子用薄膜材料の製造方法である。 In the present invention , an amorphous thin film mainly composed of 1 atomic% or more and 15 atomic% or less of Ge and the other mainly composed of Ti and O is formed by high frequency sputtering in an oxygen-containing atmosphere with an oxygen flow rate of 0.5% or less. Then, this is heat-treated at 400 to 800 ° C. for 15 to 90 minutes in a vacuum to form a composite structure containing nanoscale Ge particles and anatase type Ti oxide crystal phase which is mainly a matrix at the same time. This is a method for producing a thin film material for an optoelectronic device.
本発明製造方法は、光電子素子、例えば水素生成素子の基盤技術である、ナノスケールのGe粒子と主にマトリクスであるアナタース型Ti酸化物結晶相を同時に含む複合構造薄膜材料をもたらすものである。当該材料は、太陽光の可視光および紫外光を高効率に吸収する水素生成素子用の材料として好適であり、さらに、当該材料は、太陽電池素子、光触媒素子としても好適であり、応用範囲が広い。 The production method of the present invention provides a composite structure thin film material that simultaneously contains nanoscale Ge particles and anatase-type Ti oxide crystal phase that is mainly a matrix, which is a basic technology of an optoelectronic device such as a hydrogen generation device. The material is suitable as a material for a hydrogen generating element that absorbs visible light and ultraviolet light of sunlight with high efficiency, and the material is also suitable as a solar cell element and a photocatalytic element, and has a range of applications. wide.
本発明の光電子素子用材料の製造方法を説明する。各原材料を薄膜製造装置、例えば、スパッタリング装置中に設置し、ガス雰囲気中、例えば、アルゴン及び酸素の混合ガス中で成膜を行う。なお、この際、基板として適当な基板、例えば石英を用い、成膜前に基板のスパッタエッチングを適当時間保持した後、成膜を行う。成膜終了後、当該薄膜材料の取り出しは、各部の温度が室温まで降下した後、真空槽内を適当なガス、例えば、窒素によりパージすることにより適当な形状の薄膜を製造する。また、所望の特性を発現させるために、成膜後に適当な雰囲気、例えば真空中において熱処理を施す。 The manufacturing method of the material for optoelectronic devices of this invention is demonstrated. Each raw material is placed in a thin film manufacturing apparatus, for example, a sputtering apparatus, and film formation is performed in a gas atmosphere, for example, in a mixed gas of argon and oxygen. At this time, an appropriate substrate, for example, quartz is used as the substrate, and the film is formed after holding the sputter etching of the substrate for an appropriate time before the film formation. After the film formation is completed, the thin film material is taken out after the temperature of each part has dropped to room temperature, and then the inside of the vacuum chamber is purged with a suitable gas, for example, nitrogen to produce a thin film having a suitable shape. In order to express desired characteristics, heat treatment is performed in a suitable atmosphere after film formation, for example, in a vacuum.
次に、本発明の製造方法を1原子分率以上15原子分率以下のGeと、その他が主にTiおよびOから構成されるアモルファス薄膜を、高周波スパッタリング法により成膜し、これを熱処理すること、好ましくは、上記製造方法において、酸素流量分率0.5以下の酸素含有雰囲気中で成膜し、当該熱処理の雰囲気、温度および時間を、それぞれ、真空中、400〜800℃および15〜90分とする製造方法と限定したのは、次の理由による。すなわち、Geの組成範囲を外れると、アナタース型結晶相が形成されないためである。また、熱処理温度を400〜800℃としたのは、400℃以下においては、Ti酸化物は成膜時と同様にアモルファス相であり、800℃を超える温度においては、熱的に安定なルチル型結晶相となり、いずれもアナタース型結晶相は形成されないためである。一方、熱処理時間を15〜90分としたのは、最も高い800℃の熱処理温度の場合、15分以下においてはアモルファス相であり、90分以上においては熱的に安定なルチル型の結晶相が支配的になり、いずれもアナタース型結晶相が形成されないためである。 Next, according to the manufacturing method of the present invention, an amorphous thin film mainly composed of Ge of 1 atomic fraction or more and 15 atomic fraction or less and mainly composed of Ti and O is formed by high-frequency sputtering, and this is heat-treated. Preferably, in the above production method, a film is formed in an oxygen-containing atmosphere having an oxygen flow rate fraction of 0.5 or less, and the atmosphere, temperature and time of the heat treatment are 400 to 800 ° C. and 15 to 15 The reason for limiting the manufacturing method to 90 minutes is as follows. That is, if the composition range of Ge is deviated, an anatase type crystal phase is not formed. Further, the heat treatment temperature is set to 400 to 800 ° C., and when the temperature is 400 ° C. or less, the Ti oxide is in an amorphous phase as in the film formation, and at a temperature exceeding 800 ° C., the thermally stable rutile type. This is because an anatase type crystal phase is not formed in any crystal phase. On the other hand, the heat treatment time was set to 15 to 90 minutes when the highest heat treatment temperature of 800 ° C. was an amorphous phase at 15 minutes or less, and a thermally stable rutile crystal phase at 90 minutes or more. This is because the anatase type crystal phase is not formed.
4インチTi酸化物ターゲット(TiO2)上に、5mm角のGeチップをカーボン製両面テープにより2枚貼り付け、スパッタリング装置中に設置し、1.5×10−7Torrの真空度に達するまで真空排気を行う。次に、アルゴンおよび0.1%酸素の混合ガスにより、2mTorrのガス圧に制御したもとで、投入電力2.47W/cm2で90分間の成膜を行った。この際、膜厚は1.3μmであった。なお、基板として石英を用い、成膜前に基板のスパッタエッチングを投入電力2.47W/cm2で1分間行った。次に、成膜された試料について、600℃で60分間、真空中において熱処理を行った。得られた試料について、組成分析を行ったところ、Ge6Ti32O62(各数字は原子比率を示す)であった。この材料について、X線回折パターン及び光透過スペクトルを、図3及び4に示す。図より、X線回折パターンにおいて、アナタース型およびルチル型のTi酸化物が観測されるが、(004)アナタース型ピークが極めて強い構造を有していることがわかる。したがって、Ti酸化物マトリクスは主にアナタース型結晶相により構成されていることがわかる。また、Geが低濃度であることから当該回折ピークは現れない。一方、光透過スペクトルにおいて、Geを含まないTi酸化物の透過スペクトルを比較例として同時に示す。図から明らかなように、Geの添加により光吸収領域が紫外光領域から可視光領域に大きく広がり、ナノスケールのGe粒子と主にマトリクスであるアナタース型Ti酸化物結晶相を同時に含む複合構造を、形成することにより、太陽光を効果的に吸収できることがわかる。この際、光透過率が20%以下に減衰する波長は595nmであった。 Two 5-mm square Ge chips are attached to a 4-inch Ti oxide target (TiO 2 ) with a double-sided carbon tape and placed in a sputtering apparatus until a vacuum of 1.5 × 10 −7 Torr is reached. Evacuate. Next, film formation was performed for 90 minutes at an input power of 2.47 W / cm 2 under a control of a gas pressure of 2 mTorr with a mixed gas of argon and 0.1% oxygen. At this time, the film thickness was 1.3 μm. Note that quartz was used as the substrate, and sputter etching of the substrate was performed at an input power of 2.47 W / cm 2 for 1 minute before film formation. Next, the film-formed sample was heat-treated in a vacuum at 600 ° C. for 60 minutes. The obtained sample was subjected to composition analysis and found to be Ge 6 Ti 32 O 62 (each number represents an atomic ratio). The X-ray diffraction pattern and light transmission spectrum for this material are shown in FIGS. From the figure, it can be seen that in the X-ray diffraction pattern, anatase type and rutile type Ti oxides are observed, but the (004) anatase type peak has a very strong structure. Therefore, it can be seen that the Ti oxide matrix is mainly composed of an anatase type crystal phase. In addition, since the Ge concentration is low, the diffraction peak does not appear. On the other hand, in the light transmission spectrum, the transmission spectrum of Ti oxide not containing Ge is shown simultaneously as a comparative example. As is apparent from the figure, the light absorption region broadly extends from the ultraviolet light region to the visible light region due to the addition of Ge, and a composite structure including nanoscale Ge particles and anatase Ti oxide crystal phase that is mainly a matrix at the same time. , It can be seen that sunlight can be effectively absorbed. At this time, the wavelength at which the light transmittance was attenuated to 20% or less was 595 nm.
本発明は、太陽光の可視光および紫外光を効率的に吸収し、光伝導率および化学的安定性に優れる水素生成素子の基盤材料の製造方法に関するものである。すなわち、ナノスケールのGe粒子と主にマトリクスであるアナタース型Ti酸化物結晶相を同時に含む複合構造薄膜材料をもたらすので、高効率の水素生成素子の作製に好適である。さらに、太陽光発電素子や光触媒素子としても好適であり応用範囲が広く、産業上の利用可能性は極めて大きい。 The present invention relates to a method for producing a base material of a hydrogen generating element that efficiently absorbs visible light and ultraviolet light of sunlight and is excellent in photoconductivity and chemical stability. That is, the composite structure thin film material containing nanoscale Ge particles and anatase-type Ti oxide crystal phase mainly serving as a matrix is provided, which is suitable for the production of a highly efficient hydrogen generating element. Furthermore, it is also suitable as a photovoltaic power generation element and a photocatalytic element, has a wide range of applications, and has very high industrial applicability.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008095534A JP5313536B2 (en) | 2008-03-04 | 2008-03-04 | Method for producing thin film material for optoelectronic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008095534A JP5313536B2 (en) | 2008-03-04 | 2008-03-04 | Method for producing thin film material for optoelectronic device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009209445A JP2009209445A (en) | 2009-09-17 |
JP5313536B2 true JP5313536B2 (en) | 2013-10-09 |
Family
ID=41182880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008095534A Active JP5313536B2 (en) | 2008-03-04 | 2008-03-04 | Method for producing thin film material for optoelectronic device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5313536B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5558395B2 (en) * | 2011-03-24 | 2014-07-23 | 公益財団法人電磁材料研究所 | Semiconductor nanocomposite structure thin film material and manufacturing method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001046882A (en) * | 1999-08-05 | 2001-02-20 | Nippon Sheet Glass Co Ltd | Coating method of photocatalytic film of titanium oxide |
JP4025886B2 (en) * | 2002-03-26 | 2007-12-26 | 学校法人早稲田大学 | Method for microfabrication of crystalline TiO2 and micromachined crystal TiO2 |
JP2003293119A (en) * | 2002-04-02 | 2003-10-15 | Asahi Glass Co Ltd | METHOD FOR DEPOSITING Ti OXIDE FILM USING TARGET |
JP2006152391A (en) * | 2004-11-30 | 2006-06-15 | Bridgestone Corp | METAL DOPED TiO2 FILM AND ITS DEPOSITION METHOD |
-
2008
- 2008-03-04 JP JP2008095534A patent/JP5313536B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009209445A (en) | 2009-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Aggregation of ZnO nanocrystallites for high conversion efficiency in dye‐sensitized solar cells | |
Zhang et al. | Electrospun nanofibers of ZnO− SnO2 heterojunction with high photocatalytic activity | |
Song et al. | Improved utilization of photogenerated charge using fluorine-doped TiO2 hollow spheres scattering layer in dye-sensitized solar cells | |
Xie et al. | Enhanced photoelectrochemical properties of TiO2 nanorod arrays decorated with CdS nanoparticles | |
Sawicka-Chudy et al. | Characteristics of TiO2, Cu2O, and TiO2/Cu2O thin films for application in PV devices | |
Xie et al. | Visible light photoelectrochemical properties of N‐doped TiO2 nanorod arrays from TiN | |
Huang et al. | Preparation and photocatalytic activity of CuO/ZnO composite nanostructured films | |
Mezzetti et al. | Hyperbranched TiO2–CdS nano-heterostructures for highly efficient photoelectrochemical photoanodes | |
Esakki et al. | Influence on the efficiency of dye-sensitized solar cell using Cd doped ZnO via solvothermal method | |
Liu et al. | Micro/nanostructures for light trapping in monocrystalline silicon solar cells | |
Xie et al. | Fabrication of Fe 2 O 3 nanowire arrays based on oxidation-assisted stress-induced atomic-diffusion and their photovoltaic properties for solar water splitting | |
Zhang et al. | Large-scale MoS2 (1− x) Se2x monolayers synthesized by confined-space CVD | |
Baiju et al. | Synthesis of hierarchical barium titanate micro flowers with superior light-harvesting characteristics for dye sensitized solar cells | |
An et al. | Thermal conduction effects impacting morphology during synthesis of columnar nanostructured TiO 2 thin films | |
JP5313536B2 (en) | Method for producing thin film material for optoelectronic device | |
Chang et al. | The differences in optical characteristics of TiO2 and TiO2/AAO nanotube arrays fabricated by atomic layer deposition | |
Sun et al. | Alkali-metal (Li, Na, and K)-adsorbed MoSi2N4 monolayer: an investigation of its outstanding electronic, optical, and photocatalytic properties | |
Tao et al. | Surface plasmon assisted high-performance photodetectors based on hybrid TiO2@ GaOxNy-Ag heterostructure | |
Dariani et al. | Fabrication of TiO2 nanostructures on TiO2/Au/quartz device for solar cell applications | |
Banerjee et al. | Oxygen mediated phase transformation in room temperature grown TiO2 thin films with enhanced photocatalytic activity | |
Wang et al. | Controllable in situ photo-assisted chemical deposition of CdSe quantum dots on ZnO/CdS nanorod arrays and its photovoltaic application | |
JP6150478B2 (en) | Multiphase thin film material | |
KR101564285B1 (en) | Efficient photocatalytic water splitting using muti-scale metamaterial photoelectrode | |
Liu et al. | Study on the chemical bond structure and chemical stability of N doped into TiO2 film by N ion beam implantation | |
JP5558395B2 (en) | Semiconductor nanocomposite structure thin film material and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110301 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110301 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120606 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120619 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120810 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130402 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130603 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130702 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130704 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5313536 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |