JP5313387B1 - Methods for treating radioactive material contaminants - Google Patents

Methods for treating radioactive material contaminants Download PDF

Info

Publication number
JP5313387B1
JP5313387B1 JP2012115085A JP2012115085A JP5313387B1 JP 5313387 B1 JP5313387 B1 JP 5313387B1 JP 2012115085 A JP2012115085 A JP 2012115085A JP 2012115085 A JP2012115085 A JP 2012115085A JP 5313387 B1 JP5313387 B1 JP 5313387B1
Authority
JP
Japan
Prior art keywords
radioactive material
radioactive
contaminated soil
soil
contaminants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012115085A
Other languages
Japanese (ja)
Other versions
JP2013242210A (en
Inventor
好治 三苫
秀匡 小林
英彰 松江
猛三 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miike Tekkou KK
Original Assignee
Miike Tekkou KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miike Tekkou KK filed Critical Miike Tekkou KK
Priority to JP2012115085A priority Critical patent/JP5313387B1/en
Application granted granted Critical
Publication of JP5313387B1 publication Critical patent/JP5313387B1/en
Publication of JP2013242210A publication Critical patent/JP2013242210A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

【課題】余分な廃棄物を発生させることなく効率的に放射性物質汚染土壌を除染し、また減量化することができる放射性物質汚染土壌の処理方法及び処理装置を提供する。
【解決手段】被処理物である放射性物質汚染土壌の中から予め定める粒度以上の粗粒土壌を分離する乾式分級工程と、粗粒土壌が取り除かれた放射性物質汚染土壌の粒子表面を削り取る研削工程と、研削工程で発生する微粉に固化剤を添加、混合し、放射性物質を不溶化する微粉不溶化工程と、研削工程により得られる粒子表面が削り取られた研削土壌に少なくとも一部がナノサイズの大きさからなる、強磁性粉末と固化剤とに親和な金属粒子、及び前記強磁性粉末が前記固化剤に分散したナノ分散体を添加、混合し、放射性物質を不溶化すると共に濃縮分離可能にする不溶化・濃縮分離可能化工程と、不溶化・濃縮分離可能化工程後の土壌を磁力選別し、放射性物質を濃縮分離する濃縮分離工程と、を含む。
【選択図】図7
The present invention provides a method and an apparatus for treating radioactive material contaminated soil that can efficiently decontaminate and reduce the amount of radioactive material contaminated soil without generating extra waste.
SOLUTION: A dry classification process for separating coarse soil having a predetermined particle size or more from a radioactive material contaminated soil that is an object to be treated, and a grinding process for scraping the particle surface of the radioactive material contaminated soil from which the coarse soil has been removed. And at least a part of the size of the nano-size in the grinding soil from which the particle surface obtained by grinding process is scraped off. The metal particles having an affinity for the ferromagnetic powder and the solidifying agent, and the nano-dispersion in which the ferromagnetic powder is dispersed in the solidifying agent are added and mixed to insolubilize the radioactive substance and make it separable. A concentration separation step, and a concentration separation step of magnetically sorting the soil after the insolubilization / concentration separation enabling step to concentrate and separate radioactive substances.
[Selection] Figure 7

Description

本発明は、セシウムに汚染された土壌、瓦礫、廃プラスチック、木くず、紙くずなどのような放射性物質に汚染された汚染物の処理方法に関する。
本発明において、放射性物質汚染物は、放射性物質汚染土壌、放射性物質に汚染された瓦礫、廃プラスチック、木くず、紙くずのような放射性物質汚染産業廃棄物、又は放射性物質汚染土壌と放射性物質に汚染された瓦礫、廃プラスチック、木くず、紙くずのような放射性物質汚染産業廃棄物との混合物、さらにはこれらと放射性物質を含有する焼却灰との混合物を言う。
The present invention also relates soil contaminated with cesium, rubble, waste plastics, wood chips, the process how the contaminated contaminants radioactive material such as waste paper.
In the present invention, radioactive material contaminants are contaminated with radioactive material-contaminated soil, radioactive material-contaminated industrial waste such as rubble, waste plastic, wood scrap, and waste paper, or radioactive material-contaminated soil and radioactive material. A mixture of radioactive debris contaminated industrial waste such as rubble, waste plastic, wood and paper, and a mixture of these and incinerated ash containing radioactive material.

東日本大震災に端を発する福島第1原発事故により、原発周辺地域への放射性物質の拡散が深刻な社会問題となっている。放出された放射性物質は主としてヨウ素(I)131、セシウムCs134、Cs137である。但し、I131は、半減期が8日と短いため、長期的問題となるのは半減期が約2年のCs134と半減期が約30年のCs137と考えられる。   Due to the Fukushima Daiichi Nuclear Power Plant accident, which originated from the Great East Japan Earthquake, the diffusion of radioactive materials to the surrounding area has become a serious social problem. The released radioactive materials are mainly iodine (I) 131, cesium Cs134, and Cs137. However, since I131 has a short half-life of 8 days, the long-term problem is considered to be Cs134 with a half-life of about 2 years and Cs137 with a half-life of about 30 years.

原発から排出直後の放射性Cs(零価)は瞬時に酸化物や炭酸化物となり,それら潮解性のため徐々に水酸化物へ変化する。アルカリ金属であるCsの溶解性に、対アニオンの種類は影響しない。そのため大気中の放射性Csはいずれの形態でもCsとして雨粒等の水相へ移行し、降雨により土壌汚染を引き起こす。 The radioactive Cs (zero value) immediately after emission from the nuclear power plant instantly becomes oxides and carbonates, and gradually changes to hydroxides due to their deliquescence. The kind of counter anion does not affect the solubility of Cs, which is an alkali metal. Therefore, in any form, radioactive Cs in the atmosphere is transferred to an aqueous phase such as raindrops as Cs + and causes soil contamination by rainfall.

他方、土壌中の放射性Csの存在形態は、大別して、(1)フミン物質等の有機物にイオン吸着、(2)土壌粒子表面にイオン吸着、(3)粘土などの層状鉱物内部に捕捉されるものに分類される。要するに、土壌表面に吸着、あるいは、土壌の層状構造内部に吸着した状態となる。上記(1)や(2)の放射性Csも、いずれ(3)として安定化されるが、その移行速度は共存する有機物質量等に依存するため明確には予測できない。事実、原子力委員会へ報告された資料(第34回原子力委員会資料第1号)では、事故より半年以上経過した現在でも、大部分の放射性Csが土壌粒子表面にあるとされた。   On the other hand, the existence form of radioactive Cs in the soil can be broadly classified as follows: (1) ion adsorption on organic substances such as humic substances, (2) ion adsorption on the surface of soil particles, and (3) trapped inside layered minerals such as clay. It is classified as a thing. In short, it becomes adsorbed on the soil surface or adsorbed inside the layered structure of the soil. The radioactive Cs of (1) and (2) is also stabilized as (3), but the migration rate depends on the amount of coexisting organic substances and cannot be clearly predicted. In fact, according to the materials reported to the Atomic Energy Commission (34th Atomic Energy Commission Material No. 1), even today, more than half a year after the accident, most of the radioactive Cs was found on the soil particle surface.

また、層状構造内部の放射性Csは比較的安定であるが,施肥による高濃度KやNH 及び2価の陽イオン(融雪剤や酸性雨水中の弱酸性下のCa2+等)の供給等の複合要因下では、放射性Csの再溶出の可能性がある。溶出した放射性Csは人に吸収されるリスクが高まるため、可能な限り放射性Csを長期間安定に不溶化することが望まれる。 In addition, radioactive Cs inside the layered structure is relatively stable, but supply of high concentrations of K + and NH 4 + and divalent cations (snow melting agent, weakly acidic Ca 2+ in acid rainwater, etc.) by fertilization Under such complex factors, there is a possibility of re-elution of radioactive Cs. Since the eluted radioactive Cs increases the risk of being absorbed by humans, it is desirable to make the radioactive Cs insoluble as stably as possible for a long period of time.

既存の土壌処理技術としては,向日葵によるファイトレメディエーションやセメント固化があったに過ぎない。実証試験の結果、前者は殆ど効果が認められず、また、後者は津波被害による塩や油汚染を伴う汚染土壌の固化には課題も多い。   Existing soil treatment technologies were only phytoremediation and cement solidification by sunflower. As a result of the demonstration test, the former has almost no effect, and the latter has many problems in solidifying contaminated soil with salt and oil pollution caused by tsunami damage.

最近、既存の重金属処理技術の転用が図られ、その代表例として、水洗/篩分け法(京都大:豊原准教授ら、朝日新聞2011.8.17、例えば非特許文献1参照)、セルロース系ポリイオンによる固化(PIC)法(チェルノブイリ事故で利用)、酸抽出/紺青吸着法(産総研:八瀬 ナノシステム研究部門長ら、プレス発表2011.8.31、例えば非特許文献2参照)、水洗/粘土吸着法(東北大:石井教授ら、原子力委員会定例会議資料2011.9.6)、紺青直接吸着法(東工大:有冨教授ら,日テレ 2011、4.20、例えば非特許文献3参照)等がある。この他、平成23年度「除染技術実証試験事業」として多く除染技術が紹介されている(例えば非特許文献4参照)。   Recently, diversion of existing heavy metal processing technology has been attempted, and typical examples thereof include a washing / sieving method (Kyoto Univ .: Associate Professor Toyohara et al., Asahi Shimbun 20111.8.17, for example, Non-Patent Document 1), cellulosic Solidification with polyion (PIC) method (used in Chernobyl accident), acid extraction / bitumen adsorption method (AIST: Yase, Head of Nanosystem Research Division et al., Press release 2011.8.31, see Non-Patent Document 2, for example), water washing / Clay adsorption method (Tohoku University: Prof. Ishii et al., Nuclear Committee Regular Meeting Material 2011.9.6), Bitumen Direct Adsorption Method (Tokyo Tech: Prof. Arisu et al., NTV 2011, 4.20, see Non-patent Document 3, for example) ) Etc. In addition, many decontamination technologies have been introduced as “Decontamination Technology Demonstration Test Project” in 2011 (see Non-Patent Document 4, for example).

本発明者らは、ナノカルシウムを用い乾式で汚染土壌を処理するナノカルシウム法を開発し(例えば非特許文献5参照)、特許出願中である。ナノカルシウム法は、酸化カルシウム中にナノサイズの金属カルシウムを分散させたナノ分散体を汚染土壌に添加、混合し、放射性Csを不溶化させる方法である。さらに鉄粉を添加したナノ分散体を使用すれば、磁選により放射性物質を濃縮分離することができる。   The present inventors have developed a nanocalcium method for treating contaminated soil in a dry manner using nanocalcium (see, for example, Non-Patent Document 5), and a patent is pending. The nano calcium method is a method in which a nano dispersion in which nano-sized metallic calcium is dispersed in calcium oxide is added to and mixed with contaminated soil to insolubilize radioactive Cs. Furthermore, if a nano-dispersion added with iron powder is used, the radioactive substance can be concentrated and separated by magnetic separation.

http://www.asahi.com/science/update/0816/OSK201108160253.htmlhttp://www.asahi.com/science/update/0816/OSK201108160253.html http://www.aist.go.jp/aist_j/press_release/pr2011/pr20110831/pr20110831.htmlhttp://www.aist.go.jp/aist_j/press_release/pr2011/pr20110831/pr20110831.html www.news24.jp/articles/2011/04/20/07181347.htmlwww.news24.jp/articles/2011/04/20/07181347.html www.aec.go.jp/jicst/NC/iinkai/teirei/siryo2012/siryo12/siryo1-3.pdfwww.aec.go.jp/jicst/NC/iinkai/teirei/siryo2012/siryo12/siryo1-3.pdf http://c-collabo.jp/act/img/nplan/cch23/rp_ic(2)_1.pdfhttp://c-collabo.jp/act/img/nplan/cch23/rp_ic(2)_1.pdf

しかしながら前記処理方法にも課題がある。例えば,水洗/篩分け法、PIC法、及び粘土吸着法では、土壌中のCs洗浄に多量の水を必要とし、かつ、廃液処理を要すること、さらに含水粘土の篩分けが困難であり、分離に凝集剤を添加するため廃棄物が増すこと、酸抽出法では耐腐食性の高い装置部材の使用や中和等で高コストとなること、紺青直接吸着法では、紫外線分解等でシアンガスを発生する可能性があること等である。平成23年度「除染技術実証試験事業」として紹介されている除染技術も殆どが水を使用しており、排水処理が必要となる。   However, the processing method has a problem. For example, the water washing / sieving method, the PIC method, and the clay adsorption method require a large amount of water for Cs washing in the soil and require waste liquid treatment, and further, sieving of the hydrous clay is difficult. The coagulant is added to the waste to increase waste, the acid extraction method is expensive due to the use and neutralization of highly corrosion-resistant equipment, and the bitumen direct adsorption method generates cyanide gas by ultraviolet decomposition. There is a possibility of doing. Most of the decontamination technologies introduced as “Decontamination Technology Demonstration Test Project” in 2011 use water, and wastewater treatment is required.

本発明者らが開発したナノカルシウム法は、少量のナノ分散体を汚染土壌に添加、混合するだけで放射性Csを不溶化させることができ、さらに磁選により放射性物質を濃縮分離することができる優れた方法であるが、大量の汚染土壌の処理に適用するには、薬剤であるナノ分散体の使用量も必然的に多くなる。大量の汚染土壌を安価に処理するには、薬剤の使用量が少なく、効率的に処理することができる処理プロセスの開発が必要である。   The nano-calcium method developed by the present inventors is excellent in that radioactive Cs can be insolubilized by adding and mixing a small amount of nano-dispersion to contaminated soil, and that radioactive substances can be concentrated and separated by magnetic separation. Although the method is applied to the treatment of a large amount of contaminated soil, the amount of the nanodispersion that is a drug is inevitably increased. In order to treat a large amount of contaminated soil at a low cost, it is necessary to develop a treatment process that can efficiently treat a small amount of chemicals.

本発明の目的は、余分な廃棄物を発生させることなく効率的に放射性物質汚染物を除染し、また減量化することができる放射性物質汚染物の処理方法を提供することである。 An object of the present invention is to provide a process how extra waste decontaminate efficiently radioactive contaminants without generating and radioactive materials contaminants capable of volume reduction.

本発明は、被処理物である放射性物質汚染物を乾式分級により、被処理物に比べ放射性物質の濃度が低い予め定める大きさ以上の低濃度汚染物と、被処理物に比べ放射性物質の濃度が高い予め定める大きさ未満の高濃度汚染物とに分離し、該高濃度汚染物を除去することで被処理物である放射性物質汚染物を除染する放射性物質汚染物の処理方法において、
前記乾式分級に先立ち、被処理物である放射性物質汚染物に、放射性物質汚染物の凝集固化を抑え、かつ小さい放射性物質汚染物を優先的に吸着可能な吸着剤を添加、混合し、該吸着剤に小さい放射性物質汚染物を吸着させ、前記乾式分級において前記高濃度汚染物として、予め定める大きさ未満の放射性物質汚染物及び放射性物質汚染物を吸着した前記吸着剤を分離することを特徴とする放射性物質汚染物の処理方法である。
In the present invention, the radioactive material contaminants to be treated are dry classified, and the concentration of radioactive material is lower than the predetermined size, and the concentration of radioactive materials is lower than the predetermined size. In a method for treating radioactive material contaminants, which are separated into high-concentration contaminants having a high size less than a predetermined size and decontaminating the radioactive material contaminants to be treated by removing the high-concentration contaminants ,
Prior to the dry classification, an adsorbent capable of suppressing the aggregation and solidification of radioactive material contaminants and preferentially adsorbing small radioactive material contaminants is added to and mixed with the radioactive material contaminants to be treated. A small radioactive substance contaminant is adsorbed on an adsorbent, and the adsorbent adsorbing the radioactive substance contaminant of less than a predetermined size and the radioactive substance contaminant is separated as the high-concentration contaminant in the dry classification. This is a method for treating radioactive material contaminants.

また本発明の放射性物質汚染物の処理方法は、前記吸着剤が、可燃性の吸着剤であることを特徴とする。   In the method for treating radioactive material contaminants according to the present invention, the adsorbent is a combustible adsorbent.

また本発明の放射性物質汚染物の処理方法は、さらに前記乾式分級により分離された前記高濃度汚染物を焼却し、前記高濃度汚染物の焼却灰を得る焼却工程を含むことを特徴とする。 In addition, the method for treating radioactive material contaminants of the present invention further includes an incineration step of incinerating the high-concentration contaminants separated by the dry classification to obtain incineration ash of the high-concentration contaminants .

また本発明の放射性物質汚染物の処理方法は、さらに前記乾式分級により分離された前記高濃度汚染物及び/又は前記低濃度汚染物に固化剤を添加、混合し、放射性物質を不溶化する不溶化工程を含むことを特徴とする。 Processing method for a radioactive material contamination of the invention, adding a solidifying agent to the high concentration contaminants separated by pre Symbol dry classification to further and / or the low density contaminants mixed and insoluble radioactive material An insolubilization step is included.

また本発明の放射性物質汚染物の処理方法は、さらに前記高濃度汚染物の焼却灰に、固化剤を添加、混合し、放射性物質を不溶化する不溶化工程を含むことを特徴とする。 The method for treating radioactive material contaminants of the present invention further includes an insolubilization step of adding and mixing a solidifying agent to the incinerated ash of the high-concentration contaminants to insolubilize the radioactive material.

また本発明の放射性物質汚染物の処理方法は、さらに前記固化剤とともに固化助剤を添加、混合し、放射性物質を不溶化することを特徴とする。 Further, the method for treating radioactive material contaminants of the present invention is characterized by further adding and mixing a solidification aid together with the solidifying agent to insolubilize the radioactive material.

また本発明の放射性物質汚染物の処理方法は、前記固化剤が酸化カルシウムであることを特徴とする。 The method for treating a radioactive pollution of the present invention is characterized in that the solidifying agent is an oxide calcium.

また本発明の放射性物質汚染物の処理方法は、前記固化助剤がリン酸塩であることを特徴とする。   The radioactive substance contaminant treatment method of the present invention is characterized in that the solidification aid is a phosphate.

また本発明の放射性物質汚染物の処理方法は、前記放射性物質汚染物が、放射性物質汚染土壌、放射性物質汚染産業廃棄物、又は放射性物質汚染土壌と放射性物質汚染産業廃棄物との混合物、さらにこれらと放射性物質を含有する焼却灰との混合物であることを特徴とする。 The process how radioactive pollution of the present invention, the radioactive material contamination, radioactive material contaminated soil, radioactive pollution industrial waste, or a mixture of a radioactive material contaminated soil with radioactive materials contaminated industrial waste, further It is a mixture of these and incinerated ash containing radioactive substances.

また本発明の放射性物質汚染物の処理方法は、前記放射性物質汚染産業廃棄物が、少なくとも瓦礫、廃プラスチック、木くず、紙くず、又はこれらの破砕物のうちいずれか1種以上を含むことを特徴とする。 The process how radioactive pollution of the invention, characterized in that the radioactive material contamination industrial waste, comprising at least rubble, waste plastics, waste wood, waste paper, or one or more any of these crushed And

本発明の放射性物質汚染物の処理方法を用いることで、余分な廃棄物を発生させることなく効率的に放射性物質汚染物を除染し、また減量化することができる By using the method for treating radioactive material contaminants of the present invention, it is possible to efficiently decontaminate and reduce the amount of radioactive material contaminants without generating extra waste .

本発明の第1実施形態の放射性物質汚染土壌の処理手順を示すフロー図である。It is a flowchart which shows the process sequence of the radioactive material contamination soil of 1st Embodiment of this invention. 分級した放射性物質汚染土壌の粒度分布を示した図である。It is the figure which showed the particle size distribution of the classified radioactive material contamination soil. 分級した放射性物質汚染土壌の粒度と放射能量との関係を示した図である。It is the figure which showed the relationship between the particle size of the radioactive substance contaminated soil classified, and the amount of radioactivity. 本発明の第2実施形態の放射性物質汚染土壌の処理手順を示すフロー図である。It is a flowchart which shows the process sequence of the radioactive material contamination soil of 2nd Embodiment of this invention. 本発明の第3実施形態の放射性物質汚染土壌の処理手順を示すフロー図である。It is a flowchart which shows the process sequence of the radioactive material contamination soil of 3rd Embodiment of this invention. 本発明の第4実施形態の放射性物質汚染土壌の処理手順を示すフロー図である。It is a flowchart which shows the process sequence of the radioactive material contamination soil of 4th Embodiment of this invention. 本発明の第5実施形態の放射性物質汚染土壌の処理手順を示すフロー図である。It is a flowchart which shows the process sequence of the radioactive material contamination soil of 5th Embodiment of this invention. 本発明の第5実施形態の放射性物質汚染土壌の処理方法を実施可能な放射性物質汚染土壌の処理装置1の構成を示すプロセスフロー図である。It is a process flowchart which shows the structure of the processing apparatus 1 of the radioactive material contaminated soil which can implement the processing method of the radioactive material contaminated soil of 5th Embodiment of this invention. 本発明の第5実施形態の放射性物質汚染土壌の処理方法における不溶化・濃縮分離可能化メカニズム(想定)を説明するための模式図である。It is a schematic diagram for demonstrating the insolubilization / concentration separation possible mechanism (assuming) in the processing method of radioactive substance contaminated soil of 5th Embodiment of this invention. 本発明の第5実施形態の放射性物質汚染土壌の処理方法における不溶化・濃縮分離可能化処理された土壌に含まれる放射性物質を物理的に濃縮分離するメカニズム(想定)を説明するための模式図である。In the processing method of the radioactive material contaminated soil of 5th Embodiment of this invention, it is a schematic diagram for demonstrating the mechanism (presumption) which physically concentrates and isolates the radioactive substance contained in the soil in which the insolubilization and concentration separation possible processing were carried out. is there. 本発明の実施例で使用したナノ分散体の粒度分布を示す図である。It is a figure which shows the particle size distribution of the nano dispersion used in the Example of this invention.

本発明の放射性物質汚染物の処理方法及び処理装置においては、放射性物質汚染土壌、放射性物質に汚染された瓦礫、廃プラスチック、木くず、紙くずのような放射性物質汚染産業廃棄物、又は放射性物質汚染土壌と前記放射性物質汚染産業廃棄物との混合物、さらにはこれらと放射性物質を含有する焼却灰との混合物を被処理物とする。このため放射性物質に汚染された土壌以外に、放射性物質に汚染された瓦礫、廃プラスチック、木くず、紙くずなどを除染、減量化することができる。   In the method and apparatus for treating radioactive material contaminants of the present invention, radioactive material-contaminated soil, radioactive material-contaminated industrial waste such as rubble, waste plastic, wood scrap, and waste paper contaminated with radioactive material, or radioactive material-contaminated soil And a mixture of the radioactive material-contaminated industrial waste, and a mixture of these and incinerated ash containing the radioactive material are treated materials. For this reason, in addition to soil contaminated with radioactive substances, debris, waste plastic, wood scraps, paper scraps and the like contaminated with radioactive substances can be decontaminated and reduced in volume.

以下、放射性物質汚染土壌を被処理物として具体的な実施形態を説明するが、本発明は、上記のように放射性物質汚染土壌の他、瓦礫、廃プラスチック、木くず、紙くずなどの放射性物質汚染産業廃棄物等を被処理物とするものであり、以下に示す実施形態において、放射性物質汚染土壌に代え、放射性物質汚染産業廃棄物、放射性物質汚染土壌と放射性物質汚染産業廃棄物との混合物などを同様の方法で処理することができる。   Hereinafter, specific embodiments will be described in which radioactive material-contaminated soil is treated, but the present invention is not limited to radioactive material-contaminated soil as described above, but is also a radioactive material-contaminated industry such as rubble, waste plastic, wood waste, paper waste, etc. In the embodiment shown below, in place of radioactive material contaminated soil, radioactive material contaminated industrial waste, a mixture of radioactive material contaminated soil and radioactive material contaminated industrial waste, etc. are used. It can be processed in a similar manner.

図1は、本発明の第1実施形態の放射性物質汚染土壌の処理手順を示すフロー図である。本発明の第1実施形態の放射性物質汚染土壌の処理方法は、被処理物である放射性物質汚染土壌の中から予め定める粒度未満の放射性物質汚染土壌を乾式分級により分離し、放射性物質汚染土壌を除染する。   FIG. 1 is a flowchart showing a processing procedure for radioactive material-contaminated soil according to the first embodiment of the present invention. In the method for treating radioactive material-contaminated soil according to the first embodiment of the present invention, radioactive material-contaminated soil having a particle size less than a predetermined particle size is separated from the radioactive material-contaminated soil that is the object to be treated by dry classification, Decontaminate.

被処理物である放射性物質汚染土壌は、特定の土壌に限定されるものではない。また汚染物質である放射性物質も特定の物質に限定されるものではなく、セシウムCs、プルトニウムPu、ウランU、ラジウムRaなど幅広い放射性物質を対象とすることができる。   The radioactive material-contaminated soil that is the object to be treated is not limited to a specific soil. Moreover, the radioactive substance which is a pollutant is not limited to a specific substance, but can cover a wide range of radioactive substances such as cesium Cs, plutonium Pu, uranium U, and radium Ra.

被処理物である放射性物質汚染土壌中の水分が10重量%を超えるときは、乾式分級に先立ち、放射性物質汚染土壌を乾燥させ、放射性物質汚染土壌中の水分を10重量%以下とする。好ましい水分量は、1〜5重量%である。放射性物質汚染土壌中の水分が10重量%を越えると放射性物質汚染土壌同士が凝集し、または粒度の大きな放射性物質汚染土壌に粒度の小さい放射性物質汚染土壌が付着した状態となり易い。特に粒度の小さい土壌は、凝集、付着し易いので、水分が10重量%を越えるような放射性物質汚染土壌を乾式分級すると、粒度の小さい土壌を十分に分級することができず好ましくない。   When the moisture in the radioactive substance-contaminated soil to be treated exceeds 10% by weight, prior to dry classification, the radioactive substance-contaminated soil is dried to make the moisture in the radioactive substance-contaminated soil 10% by weight or less. A preferable water content is 1 to 5% by weight. When the moisture in the radioactive material contaminated soil exceeds 10% by weight, the radioactive material contaminated soils are aggregated, or the radioactive material contaminated soil having a small particle size is likely to adhere to the radioactive material contaminated soil having a large particle size. In particular, soil with a small particle size tends to agglomerate and adhere. Therefore, dry classification of radioactive material-contaminated soil whose water content exceeds 10% by weight is not preferable because it cannot sufficiently classify soil with a small particle size.

乾式分級は、予め定める粒度に分級することが可能であれば、分級方法、装置型式は特に限定されない。分級効率が高く、安価で処理速度の大きい乾式分級装置であることが好ましいことは改めて言うまでもない。必要に応じて集じん装置を併設してもよい。乾式分級装置としては、篩、振動篩、重力分級機(風力分級機)、サイクロンなどの遠心分級機、ルーバー型分級機などの慣性分級機を使用可能であり、分級する粒度、処理速度等を考慮し、適宜選択することができる。   As long as the dry classification can be classified to a predetermined particle size, the classification method and the apparatus type are not particularly limited. It goes without saying that it is preferable to use a dry classifier having high classification efficiency, low cost and high processing speed. A dust collector may be provided if necessary. As dry classifiers, sieves, vibrating sieves, gravity classifiers (wind classifiers), centrifugal classifiers such as cyclones, and inertia classifiers such as louver classifiers can be used. It can be selected as appropriate in consideration.

図2及び図3は、放射性物質汚染土壌を分級し、粒度毎の放射能量を測定し、粒度分布、及び放射性物質汚染土壌の粒度と放射能量との関係を示した図である。また表1は、放射性物質汚染土壌中のCs137及びCs134の濃度を粒度別に示したものである。   2 and 3 are diagrams showing classification of radioactive material-contaminated soil, measurement of the amount of radioactivity for each particle size, and the relationship between the particle size distribution and the particle size of the radioactive material-contaminated soil and the amount of radioactivity. Table 1 shows the concentrations of Cs137 and Cs134 in the radioactive material-contaminated soil according to particle size.

図2に示すように放射性物質汚染土壌は、粒度0.5〜2mmのものが多いが、Cs137及びCs134は、図3に示すように粒度0.125mm以下の土壌にも多く含まれている。また表1に示すように粒度が小さい程、放射性物質汚染土壌中のCs137及びCs134の濃度は大きい。一方、7mmを超える土壌中のCs137及びCs134の濃度は非常に小さい。上記放射性物質汚染土壌の場合、0.25mmの粒度で放射性物質汚染土壌を分級し、0.25mm未満の放射性物質汚染土壌を分離すれば除染率が48%、減量率が76%となる。   As shown in FIG. 2, radioactive material-contaminated soil has a large particle size of 0.5 to 2 mm, but Cs137 and Cs134 are also contained in a large amount of soil having a particle size of 0.125 mm or less as shown in FIG. As shown in Table 1, the smaller the particle size, the higher the concentration of Cs137 and Cs134 in the radioactive material contaminated soil. On the other hand, the concentration of Cs137 and Cs134 in the soil exceeding 7 mm is very small. In the case of the radioactive material contaminated soil, if the radioactive material contaminated soil is classified with a particle size of 0.25 mm and the radioactive material contaminated soil of less than 0.25 mm is separated, the decontamination rate is 48% and the weight loss rate is 76%.

ここで除染率は、分級前の放射性物質汚染土壌に含まれるCs137及びCs134の量に対する分離された放射性物質汚染土壌に含まれるCs137及びCs134の量である。また、減量率は、分級前の放射性物質汚染土壌重量に対する残存する放射性物質汚染土壌重量、ここでは0.25mm以上の放射性物質汚染土壌重量である。   Here, the decontamination rate is the amount of Cs137 and Cs134 contained in the separated radioactive material contaminated soil with respect to the amount of Cs137 and Cs134 contained in the radioactive material contaminated soil before classification. Further, the weight loss rate is the weight of the radioactive material contaminated soil remaining with respect to the weight of the radioactive material contaminated soil before classification, in this case, the weight of radioactive material contaminated soil of 0.25 mm or more.

分級する粒度は、予め放射性物質汚染土壌をサンプリング、分級し、粒度毎の放射能量を測定し、その結果に基づいて決定することが好ましい。分級する粒度は、必ずしも1点である必要はないが、表1にも示されるように粒度が小さくなるに従って、放射性物質汚染土壌中のCs137及びCs134の濃度は高くなるので、ある1点の粒度、例えば0.25mmで分級し、0.25mm以上の汚染土壌と0.25mm未満の汚染土壌とに区分することが効率的である。   The particle size to be classified is preferably determined based on the result of sampling and classifying radioactive material-contaminated soil in advance and measuring the amount of radioactivity for each particle size. The particle size to be classified does not necessarily need to be one point, but as shown in Table 1, the concentration of Cs137 and Cs134 in the radioactive material contaminated soil increases as the particle size decreases. For example, it is efficient to classify by 0.25 mm, and to classify into contaminated soil of 0.25 mm or more and contaminated soil of less than 0.25 mm.

上記のように第1実施形態の放射性物質汚染土壌の処理方法は、被処理物である放射性物質汚染土壌の中から予め定める粒度未満の放射性物質汚染土壌を乾式分級により分離し、放射性物質汚染土壌を除染する方法であるから湿式処理方法と異なり、水の処理が不要であり、容易に実施することができる。本方法は、除染率が十分に高いとは言えないが、操作が簡単であるので大量処理に適しており、放射性物質汚染土壌の前処理として好適に使用することができる。   As described above, the radioactive material-contaminated soil treatment method according to the first embodiment separates radioactive material-contaminated soil having a particle size less than a predetermined particle size from the radioactive material-contaminated soil that is the object to be treated by dry classification. Unlike the wet treatment method, water treatment is not necessary and can be easily carried out. Although this method cannot be said to have a sufficiently high decontamination rate, it is suitable for mass treatment because of its simple operation, and can be suitably used as a pretreatment of radioactive material contaminated soil.

図4は、本発明の第2実施形態の放射性物質汚染土壌の処理手順を示すフロー図である。本発明の第2実施形態の放射性物質汚染土壌の処理方法は、被処理物である放射性物質汚染土壌に、土壌粒子の凝集固化を抑え、かつ粒度の小さい放射性物質汚染土壌を優先的に吸着可能な吸着剤を添加、混合し、該吸着剤に粒度の小さい放射性物質汚染土壌を吸着させ、これらを乾式分級し、予め定める粒度未満の放射性物質汚染土壌及び放射性物質汚染土壌を吸着した前記吸着剤を分離し、放射性物質汚染土壌を除染する。第1実施形態の放射性物質汚染土壌の処理方法と共通する部分は説明を省略し、本発明の第1実施形態の放射性物質汚染土壌の処理方法と異なる部分を中心に説明する。   FIG. 4 is a flowchart showing a processing procedure for radioactive material-contaminated soil according to the second embodiment of the present invention. The method for treating radioactive material-contaminated soil according to the second embodiment of the present invention can preferentially adsorb radioactive material-contaminated soil having a small particle size to the radioactive material-contaminated soil that is the object to be treated, while suppressing aggregation and solidification of soil particles. The adsorbent adsorbs radioactive material-contaminated soil and radioactive material-contaminated soil having a particle size less than a predetermined particle size by adding and mixing various adsorbents, adsorbing the radioactive material-contaminated soil having a small particle size to the adsorbent, dry-classifying them. And decontaminate radioactive material contaminated soil. Description of parts common to the method for treating radioactive material-contaminated soil of the first embodiment will be omitted, and description will be made focusing on parts different from the method for treating radioactive material-contaminated soil of the first embodiment of the present invention.

本発明の第2実施形態の放射性物質汚染土壌の処理方法の基本的な考え方は、本発明の第1実施形態の放射性物質汚染土壌の処理方法と同じであるが、放射性物質汚染土壌に吸着剤を添加、混合し、該吸着剤に粒度の小さい放射性物質汚染土壌を吸着させた後、これらを乾式分級する点が本発明の第1実施形態の放射性物質汚染土壌の処理方法と異なる。   The basic concept of the method for treating radioactive material-contaminated soil according to the second embodiment of the present invention is the same as the method for treating radioactive material-contaminated soil according to the first embodiment of the present invention. Is different from the method for treating radioactive material-contaminated soil according to the first embodiment of the present invention in that after the radioactive material-contaminated soil having a small particle size is adsorbed to the adsorbent, these are dry-classified.

吸着剤には、物理的作用により放射性物質汚染土壌を吸着する物理吸着剤を使用する。表面に微細な凹凸、細孔を有する物理吸着剤と放射性物質汚染土壌とを撹拌混合させると、土壌粒子の凝集固化を抑え、放射性物質汚染土壌の一部が、物理吸着剤の表面に付着し、又は物理吸着剤の凹凸、細孔内に入り込む。特に粒度の小さい放射性物質汚染土壌は、物理吸着剤の表面に付着し、又は物理吸着剤の凹凸、細孔内に入り込み易いので、粒度の小さい放射性物質汚染土壌が優先的に物理吸着剤に捕捉される。一般的に物理的作用を利用した物理吸着剤は、化学的作用を利用した化学吸着剤に比較して吸着力は弱いが、吸着速度が速いので本放射性物質汚染土壌のような大量の処理に適している。   As the adsorbent, a physical adsorbent that adsorbs radioactive material-contaminated soil by physical action is used. When the physical adsorbent with fine irregularities and pores on the surface and the radioactive material contaminated soil are mixed with stirring, the soil particles are prevented from coagulating and solidified, and a part of the radioactive material contaminated soil adheres to the surface of the physical adsorbent. Or, the physical adsorbent gets into the irregularities and pores. In particular, radioactive material contaminated soil with small particle size adheres to the surface of the physical adsorbent or easily enters the irregularities and pores of the physical adsorbent, so the radioactive material contaminated soil with small particle size is preferentially captured by the physical adsorbent. Is done. In general, physical adsorbents that use physical action have lower adsorption power than chemical adsorbents that use chemical action, but the adsorption rate is fast, so they can be used for large-scale treatments such as soil contaminated with this radioactive material. Is suitable.

また吸着剤と放射性物質汚染土壌とを一緒に撹拌混合すると、これらは互いに接触し、吸着剤は、放射性物質汚染土壌の表面を拭き取るように作用する。このため吸着剤と放射性物質汚染土壌とを一緒に撹拌すると、粒度の大きい放射性物質汚染土壌から粒度の小さい放射性物質汚染土壌が拭き取られる。   Further, when the adsorbent and the radioactive material contaminated soil are stirred and mixed together, they come into contact with each other, and the adsorbent acts to wipe off the surface of the radioactive material contaminated soil. Therefore, when the adsorbent and the radioactive material contaminated soil are stirred together, the radioactive material contaminated soil having a small particle size is wiped from the radioactive material contaminated soil having a large particle size.

表1に示すように放射性物質は、粒度の小さい放射性物質汚染土壌に多く含まれるため、粒度の小さい放射性物質汚染土壌を取り除くことは、除染率を高める上で効果的である。また一般的に粒度が小さくなると分級が難しくなるが、本方法では、粒度の小さい放射性物質汚染土壌は、吸着剤に吸着されるので分級の点からも吸着剤を放射性物質汚染土壌に添加、混合することは好ましい。   As shown in Table 1, since radioactive substances are contained in a large amount in radioactive substance-contaminated soil with a small particle size, removing radioactive material-contaminated soil with a small particle size is effective in increasing the decontamination rate. In general, when the particle size is small, classification becomes difficult, but in this method, radioactive material-contaminated soil with small particle size is adsorbed by the adsorbent, so the adsorbent is added to the radioactive material-contaminated soil and mixed from the viewpoint of classification. It is preferable to do.

吸着剤は、放射性物質汚染土壌のうち粒度の小さい放射性物質汚染土壌を吸着させるものであるから、吸着剤が備える凹凸、細孔径が極端に大きくても、逆に極端に小さくても好ましくない。吸着除去しようとする放射性物質汚染土壌を吸着し易い大きさの凹凸、細孔径を有する吸着剤が好ましい。   Since the adsorbent adsorbs radioactive substance-contaminated soil having a small particle size out of radioactive substance-contaminated soil, it is not preferable that the adsorbent has extremely large irregularities and pore diameters, or conversely extremely small. An adsorbent having irregularities and pore sizes that are easy to adsorb radioactive material-contaminated soil to be adsorbed and removed is preferable.

吸着剤自身の大きさは、特定の大きさのものに限定されるものではないが、大き過ぎると放射性物質汚染土壌との接触効率が小さくなり好ましくない。容易に分級できる範囲内で可能な限り小さいものが好ましい。放射性物質汚染土壌に対する吸着剤の添加量は特に限定されないが、必要以上に多く添加すると撹拌混合及び乾式分級の処理時間が長くなり処理速度が低下するので、この点に留意して添加量を決定することが好ましい。上記特性を備える吸着剤としては、紙、綿、もみ殻、炭、ゼオライトなどが例示される。   The size of the adsorbent itself is not limited to a specific size, but if it is too large, the contact efficiency with the radioactive material contaminated soil is reduced, which is not preferable. A thing as small as possible within the range which can be classified easily is preferable. The amount of adsorbent added to radioactive material-contaminated soil is not particularly limited, but adding more than necessary will increase the processing time for stirring and dry classification and decrease the processing speed. It is preferable to do. Examples of the adsorbent having the above characteristics include paper, cotton, rice husk, charcoal, and zeolite.

放射性物質汚染土壌に吸着剤を添加、混合し、該吸着剤に放射性物質汚染土壌を吸着させた後は、第1実施形態の放射性物質汚染土壌の処理方法と同じ要領で乾式分級し、予め定める粒度未満の放射性物質汚染土壌及び放射性物質汚染土壌を吸着した吸着剤を分離すればよい。なお、乾式分級は、必ずしも1種類の乾式分級装置のみで行う必要はなく、2種類以上の乾式分級装置を使用してもよいことは当然である。   After adding and mixing the adsorbent to the radioactive material-contaminated soil and adsorbing the radioactive material-contaminated soil to the adsorbent, dry classification is performed in the same manner as the radioactive material-contaminated soil treatment method of the first embodiment, and predetermined. What is necessary is just to isolate | separate the adsorbent which adsorb | sucked the radioactive substance contaminated soil of less than particle size, and radioactive substance contaminated soil. Note that the dry classification is not necessarily performed with only one type of dry classifier, and naturally two or more types of dry classifiers may be used.

上記方法により本発明の第1実施形態の放射性物質汚染土壌の処理方法と同等以上の効果が得られる。   By the above method, an effect equal to or greater than that of the radioactive material contaminated soil treatment method of the first embodiment of the present invention can be obtained.

上記吸着剤において、可燃性の吸着剤を使用すれば、乾式分級後に放射性物質汚染土壌を吸着した吸着剤を燃やすことで焼却灰として回収することができる。このような方法を併用すれば、減容化することができるので好ましい。   If a flammable adsorbent is used in the adsorbent, it can be recovered as incinerated ash by burning the adsorbent that has adsorbed radioactive material-contaminated soil after dry classification. Use of such a method in combination is preferable because the volume can be reduced.

図5は、本発明の第3実施形態の放射性物質汚染土壌の処理手順を示すフロー図である。本発明の第3実施形態の放射性物質汚染土壌の処理方法は、本発明の第2実施形態の放射性物質汚染土壌の処理方法と同様の吸着剤を添加した後に乾式分級(乾式分級工程:ステップS1)を行い、さらに分級された粒度の小さい放射性物質汚染土壌、及び放射性物質汚染土壌を吸着した吸着剤を焼却(焼却工程:ステップS2)し得られる焼却灰に固化剤を添加、混合し、放射性物質を不溶化する(不溶化工程:ステップS3)。   FIG. 5 is a flowchart showing a processing procedure for radioactive material-contaminated soil according to the third embodiment of the present invention. In the method for treating radioactive material-contaminated soil of the third embodiment of the present invention, dry classification (dry classification step: step S1) is performed after adding the same adsorbent as the method for treating radioactive material-contaminated soil of the second embodiment of the present invention. ), And further, the solidified agent is added to and mixed with the incinerated ash obtained by incineration of the classified radioactive material-contaminated soil with a small particle size and the adsorbent adsorbing the radioactive material-contaminated soil (incineration process: step S2). The substance is insolubilized (insolubilization step: step S3).

ここでは吸着剤に可燃性の吸着剤を使用する。分級方法は、本発明の第2実施形態の放射性物質汚染土壌の処理方法に示した分級方法と同一であるので説明を省略する。図5では、粒度の小さい放射性物質汚染土壌と放射性物質汚染土壌を吸着した吸着剤とを別々に分級する例を示しているが、これらが混合された状態であってもよい。この場合には、分級された粒度の小さい放射性物質汚染土壌と吸着剤との混合物を焼却する。   Here, a flammable adsorbent is used as the adsorbent. The classification method is the same as the classification method shown in the method for treating radioactive material-contaminated soil according to the second embodiment of the present invention, and the description thereof will be omitted. Although FIG. 5 shows an example in which the radioactive material-contaminated soil having a small particle size and the adsorbent adsorbing the radioactive material-contaminated soil are classified separately, they may be in a mixed state. In this case, the classified mixture of the radioactive material-contaminated soil having a small particle size and the adsorbent is incinerated.

不溶化工程では、分級された粒度の小さい放射性物質汚染土壌及び焼却灰に固化剤を添加、混合し、放射性物質を不溶化する。固化剤は、放射性物質汚染土壌及び焼却灰に含まれる水分と反応し、自身が固化する過程で放射性物質汚染土壌の粒子表面をコーティングする。固化剤は、固化した後は水に不溶である。固化剤によって粒子表面がコーティングされた放射性物質汚染土壌は、水に不溶であるので放射性物質の溶出を防ぐことができる。   In the insolubilization step, the radioactive material is insolubilized by adding and mixing the solidifying agent to the classified radioactive material contaminated soil and incinerated ash having a small particle size. The solidifying agent reacts with moisture contained in the radioactive material contaminated soil and incinerated ash, and coats the particle surface of the radioactive material contaminated soil in the process of solidifying itself. The solidifying agent is insoluble in water after solidifying. The radioactive substance-contaminated soil whose particle surface is coated with a solidifying agent is insoluble in water, so that elution of the radioactive substance can be prevented.

上記機能を発揮する固化剤であれば、特定の固化剤に限定されないが、少量で固化し、かつ安価なものが好ましく、酸化カルシウム(CaO)を好適に使用することができる。この他、固化剤として酸化マグネシウム(MgO)が例示される。固化剤は、粒度の小さいものが接触性、撹拌混合性の点から好ましい。   The solidifying agent that exhibits the above functions is not limited to a specific solidifying agent, but is preferably solidified in a small amount and inexpensive, and calcium oxide (CaO) can be suitably used. In addition, magnesium oxide (MgO) is exemplified as the solidifying agent. A solidifying agent having a small particle size is preferred from the viewpoint of contactability and stirring and mixing properties.

不溶化工程の被処理物である放射性物質汚染土壌及び焼却灰に含まれる水分は少ないが、これらに含まれる水分は零ではないので固化剤を添加すると、固化剤は放射性物質汚染土壌等に含まれる水分と反応する。なお、放射性物質汚染土壌等に含まれる水分が不足する場合には、固化剤を添加する前に放射性物質汚染土壌等に少量の水を噴霧すればよい。撹拌混合装置は、公知の紛体を撹拌混合する装置を使用することができる。   The radioactive material-contaminated soil and incineration ash that are treated in the insolubilization process contain a small amount of water, but the water contained in these is not zero, so when a solidifying agent is added, the solidifying agent is included in the radioactive material-contaminated soil, etc. Reacts with moisture. In addition, when the moisture contained in the radioactive substance contaminated soil or the like is insufficient, a small amount of water may be sprayed on the radioactive substance contaminated soil or the like before the solidifying agent is added. As the stirring and mixing apparatus, a known apparatus for stirring and mixing powders can be used.

本発明の第3実施形態の放射性物質汚染土壌の処理方法では、分級された粒度の小さい放射性物質汚染土壌及び焼却灰に固化剤を添加、混合し、放射性物質を不溶化する例を示したが、分級された粒度の大きい放射性物質汚染土壌にも固化剤を添加、混合し、放射性物質を不溶化するようにしてもよい。また放射性物質汚染土壌の不溶化は、分級された粒度の小さい放射性物質汚染土壌、分級された粒度の小さい放射性物質汚染土壌及び放射性物質汚染土壌を吸着した吸着剤に対しても好適に適用することができるので、本発明の第1及び第2実施形態の放射性物質汚染土壌の処理方法に不溶化工程を組み込んでもよい。   In the method for treating radioactive material-contaminated soil according to the third embodiment of the present invention, the solidifying agent is added to and mixed with the classified radioactive material-contaminated soil and incinerated ash, and the radioactive material is insolubilized. A solidifying agent may also be added to and mixed with the classified radioactive material-contaminated soil with a large particle size to insolubilize the radioactive material. Insolubilization of radioactive material-contaminated soil can also be suitably applied to classified small-sized radioactive material-contaminated soil, classified small-sized radioactive material-contaminated soil, and adsorbents that adsorb radioactive material-contaminated soil. Therefore, an insolubilization step may be incorporated into the radioactive material contaminated soil treatment method of the first and second embodiments of the present invention.

前記不溶化工程において、固化助剤を同時に添加してもよい。固化助剤は、放射性物質汚染土壌の固化を助長すると共に放射性物質の溶出を防止する機能を備える。ここで使用可能な固化助剤としては、リン酸二水素ナトリウム、リン酸二水素カリウムなどのリン酸二水素塩、その他リン酸塩が例示され、リン酸二水素ナトリウムを好適に使用することができる。リン酸二水素ナトリウムを使用し固化した放射性物質汚染土壌は、表面が中性に近づき、水溶液のpHが中性であることを確認済である。このため最終処分場等での長期保管前に他の場所で仮置きされる場合の、溶出や飛散による拡散や生物・植物への取り込みを減少させられる可能性がある。固化剤と固化助剤とを同時に添加、混合し、放射性物質を不溶化するときも、固化剤のみを添加して放射性物質を不溶化するときと同じ要領で行うことができる。   In the insolubilization step, a solidification aid may be added simultaneously. The solidification aid has a function of promoting solidification of the radioactive substance-contaminated soil and preventing elution of the radioactive substance. Examples of the solidification aid that can be used here include dihydrogen phosphates such as sodium dihydrogen phosphate and potassium dihydrogen phosphate, and other phosphates. Sodium dihydrogen phosphate is preferably used. it can. Radioactive substance-contaminated soil solidified using sodium dihydrogen phosphate has been confirmed to have a neutral surface and a neutral pH of the aqueous solution. For this reason, there is a possibility that diffusion due to elution and scattering and uptake into living organisms and plants when it is temporarily placed in another place before long-term storage at a final disposal site or the like may be reduced. Even when the solidifying agent and the solidification aid are added and mixed at the same time to insolubilize the radioactive substance, it can be carried out in the same manner as when only the solidifying agent is added to insolubilize the radioactive substance.

分級された粒度の小さい放射性物質汚染土壌、分級された粒度の小さい放射性物質汚染土壌及び放射性物質汚染土壌を吸着した吸着剤、又は分級された粒度の小さい放射性物質汚染土壌及び放射性物質汚染土壌を吸着した吸着剤を焼却した焼却灰に固化剤、固化助剤を添加、混合し、これらを不溶化させれば、放射性物質の溶出が防止され、これらの保管が容易となる。   Adsorbed classified small-sized radioactive material contaminated soil, classified small-sized radioactive material contaminated soil and radioactive material-contaminated soil, or classified small-sized radioactive material contaminated soil and radioactive material-contaminated soil If a solidifying agent and a solidification aid are added to and mixed with the incinerated ash obtained by incinerating the adsorbent, the elution of radioactive substances can be prevented and the storage thereof becomes easy.

なお、上記実施形態において、被処理物に、廃プラスチック、木くず、紙くずのような放射性物質汚染産業廃棄物、又は放射性物質汚染土壌と前記放射性物質汚染産業廃棄物との混合物のように可燃物が含まれている場合には、分級された大きさの小さい被処理物を焼却した焼却灰に、固化剤、固化助剤を添加、混合し、これらを不溶化させることが好ましい。   In the above embodiment, combustible material such as waste plastic, wood waste, industrial waste such as waste paper, or a mixture of radioactive material contaminated soil and the radioactive material contaminated industrial waste is included in the object to be treated. If it is contained, it is preferable to add and mix a solidifying agent and a solidification aid to the incinerated ash obtained by incineration of the classified objects to be processed, thereby insolubilizing them.

図6は、本発明の第4実施形態の放射性物質汚染土壌の処理手順を示すフロー図である。本発明の第4実施形態の放射性物質汚染土壌の処理方法は、放射性物質汚染土壌を乾燥する乾燥工程(ステップS11)と、乾燥した放射性物質汚染土壌から予め定める粒度以上の粗粒土壌を分離する乾式分級工程(ステップS12)と、粗粒土壌が取り除かれた放射性物質汚染土壌の粒子表面を削り取り、該放射性物質汚染土壌に付着する放射性物質を取り除く研削工程(ステップS13)と、を含む。   FIG. 6 is a flowchart showing a processing procedure for radioactive material-contaminated soil according to the fourth embodiment of the present invention. The processing method of radioactive substance contaminated soil of 4th Embodiment of this invention isolate | separates the coarse grain soil more than a predetermined particle size from the drying process (step S11) which dries radioactive substance contaminated soil, and the dried radioactive substance contaminated soil. It includes a dry classification process (step S12) and a grinding process (step S13) for removing the radioactive substance adhering to the radioactive substance-contaminated soil by scraping the particle surface of the radioactive substance-contaminated soil from which coarse-grained soil has been removed.

乾燥工程は、第1実施形態の放射性物質汚染土壌の処理方法と同様に、粒度の大きい放射性物質汚染土壌に粒度の小さい放射性物質汚染土壌が付着すること、放射性物質汚染土壌同士が凝集することを防止するためのものであり、第1実施形態の放射性物質汚染土壌の処理方法と同様に水分量を10重量%以下、より好ましくは1〜5重量%とする。放射性物質汚染土壌に含まれる水分量が10重量%以下であれば、乾燥工程は不要である。   The drying process is similar to the method for treating radioactive material-contaminated soil of the first embodiment. The radioactive material-contaminated soil with small particle size adheres to the radioactive material-contaminated soil with large particle size, and the radioactive material-contaminated soil aggregates. In order to prevent this, the water content is set to 10% by weight or less, more preferably 1 to 5% by weight, in the same manner as the method for treating radioactive material-contaminated soil of the first embodiment. If the amount of water contained in the radioactive material contaminated soil is 10% by weight or less, the drying step is unnecessary.

乾式分級工程は、乾燥した放射性物質汚染土壌から予め定める粒度以上の粗粒土壌を分離する工程である。放射性物質汚染土壌は、表1に示すように粒度が大きい土壌ほど放射性物質の含有量は少なく、後述の実施例に示すように7mmを超えるような粗粒土壌に含まれる放射性物質の量は非常に少ない。よってこのような粗粒土壌は、除染することなく低濃度汚染土壌として取り扱うことができる。   A dry classification process is a process of isolate | separating coarse-grained soil more than a predetermined particle size from the dried radioactive substance contaminated soil. As shown in Table 1, radioactive material-contaminated soil has a smaller content of radioactive material as the particle size becomes larger, and the amount of radioactive material contained in coarse-grained soil exceeding 7 mm as shown in the examples below is very high. Very few. Therefore, such coarse-grained soil can be handled as low-concentration contaminated soil without decontamination.

また後工程である研削工程において、土壌粒子相互の摩擦を利用し、土壌粒子の破砕を防止しつつ土壌粒子の表面を削り取る粒々研削(粒々摩擦)方式を採用する場合には、被処理物である放射性物質汚染土壌の粒度分布がシャープなことが好ましい。粒度が揃い、粒度分布がシャープであれば、粒々研削において土壌粒子が破砕し難い。   In addition, in the grinding process, which is a subsequent process, when using a particle grinding (grain friction) method that uses the friction between soil particles to prevent soil particle crushing and scrapes the surface of the soil particles, It is preferable that the particle size distribution of some radioactive material contaminated soil is sharp. If the particle size is uniform and the particle size distribution is sharp, the soil particles are difficult to crush during grain grinding.

研削工程は、粗粒土壌が取り除かれた放射性物質汚染土壌の粒子表面を削り取り、該放射性物質汚染土壌に付着する放射性物質を取り除く工程である。放射性物質汚染土壌に含まれる放射性物質は、土壌表面に多く存在するため、放射性物質汚染土壌の表面を削り取ることで除染率及び減量率を高めることができる。   The grinding step is a step of scraping off the particle surface of the radioactive material contaminated soil from which the coarse soil has been removed, and removing the radioactive material adhering to the radioactive material contaminated soil. Since many radioactive substances contained in the radioactive material contaminated soil exist on the soil surface, the decontamination rate and the weight loss rate can be increased by scraping the surface of the radioactive material contaminated soil.

研削工程で使用する研削装置は、特定の装置に限定されないが、土壌粒子を破砕することなく、表面のみを研削できる装置が好ましい。土壌粒子が破砕されると、粒度が小さい土壌粒子及び微粉(以下、土壌粒子が破砕されることに伴い発生する粒度が小さい土壌及び微粉を破砕小粒子と記す)が発生する。破砕小粒子のうち土壌粒子の表面の研削に伴い発生する微粉(研削微粉)と同程度の大きさの破砕小粒子は、研削微粉と分級することができない。放射性物質汚染土壌に含まれる放射性物質は、土壌表面に多く、逆に内部には少ないため、破砕小粒子は、研削微粉と比較して放射性物質の含有量が少ない。このため破砕小粒子が多く発生し、これが研削微粉と一緒に分離されると、除染率はあまり増加せず、逆に減量率が低下するので好ましくない。   The grinding apparatus used in the grinding step is not limited to a specific apparatus, but an apparatus capable of grinding only the surface without crushing soil particles is preferable. When the soil particles are crushed, soil particles and fine powder having a small particle size (hereinafter, soil and fine particles having a small particle size generated as the soil particles are crushed are referred to as crushed small particles) are generated. Among the crushed small particles, crushed small particles having the same size as the fine powder (grinding fine powder) generated with the grinding of the surface of the soil particles cannot be classified as the ground fine powder. Since radioactive material contained in radioactive material-contaminated soil is large on the soil surface and conversely small in the interior, the crushed small particles contain less radioactive material than ground fine powder. For this reason, if a lot of crushed small particles are generated and separated together with the grinding fine powder, the decontamination rate does not increase so much and, conversely, the weight reduction rate decreases.

放射性物質汚染土壌粒子の破砕を防止しつつ表面を研削する装置としては、土壌粒子を互いに接触させ、互いの表面を研磨する粒々摩擦を利用した研削装置が好ましい。なお、粒々摩擦を利用した研削装置には、加圧した状態で粒々摩擦を行う加圧摩擦方式の装置もある。このような研削装置としては、鋳物砂などの再生が可能な砂再生装置(太洋マシナリー株式会社)、精米機などがある。   As an apparatus that grinds the surface while preventing crushing of radioactive material-contaminated soil particles, a grinding apparatus that uses particle friction to bring soil particles into contact with each other and polish each other's surface is preferable. In addition, there is also a pressure friction type device that performs particle friction in a pressurized state as a grinding device using the particle friction. As such a grinding apparatus, there are a sand recycling apparatus (Taiyo Machinery Co., Ltd.), a rice mill and the like that can regenerate cast sand and the like.

粒子表面を研削する研削装置の種類、型式によっては、研削物である微粉を分離する機能を備えないものもあるが、そのような場合には、別途、乾式分級装置、集じん装置で微粉を分離すればよい。   Depending on the type and model of the grinding device that grinds the particle surface, there are some that do not have the function of separating the fine powder that is the ground material. In such a case, the fine powder is separately collected using a dry classifier or dust collector. What is necessary is just to separate.

本発明の第4実施形態の放射性物質汚染土壌の処理方法は、全体的に粒度が大きく放射性物質濃度が比較的小さい放射性物質汚染土壌の処理に好適に使用することができる。粒度が大きい放射性物質汚染土壌の場合、比表面積が小さいため土壌表面を削り取ることで効率的に除染することができる。さらに本発明の第1又は第2実施形態の放射性物質汚染土壌の処理方法と組み合わせ、所定の粒度の放射性物質汚染土壌のみを研削工程の被処理物としてもよい。これにより研削すべき放射性物質汚染土壌の量が少なくなり、効率的に処理することができる。   The method for treating radioactive material-contaminated soil according to the fourth embodiment of the present invention can be suitably used for treating radioactive material-contaminated soil having a large particle size and a relatively small concentration of radioactive material as a whole. In the case of radioactive material-contaminated soil with a large particle size, the specific surface area is small, so it can be efficiently decontaminated by scraping the soil surface. Furthermore, in combination with the radioactive substance contaminated soil treatment method according to the first or second embodiment of the present invention, only radioactive substance contaminated soil of a predetermined particle size may be used as an object to be treated in the grinding step. As a result, the amount of radioactive material contaminated soil to be ground is reduced and the soil can be treated efficiently.

第4実施形態の放射性物質汚染土壌の処理方法において、研削工程により発生する研削物である微粉は、先に示した不溶化処理の方法で不溶化処理することが好ましい。また表面が削り取られた放射性物質汚染土壌も先に示した不溶化処理の方法で不溶化処理することが好ましい。   In the method for treating radioactive material-contaminated soil according to the fourth embodiment, it is preferable to insolubilize the fine powder, which is a ground material generated in the grinding step, by the insolubilization method described above. Moreover, it is preferable to insolubilize the radioactive material-contaminated soil whose surface has been cut off by the insolubilization method described above.

図7は、本発明の第5実施形態の放射性物質汚染土壌の処理手順を示すフロー図である。図8は、本発明の第5実施形態の放射性物質汚染土壌の処理方法を実施可能な放射性物質汚染土壌の処理装置1の構成を示すプロセスフロー図である。   FIG. 7 is a flowchart showing a processing procedure for radioactive material-contaminated soil according to the fifth embodiment of the present invention. FIG. 8 is a process flow diagram showing the configuration of the radioactive substance-contaminated soil treatment apparatus 1 capable of implementing the radioactive substance-contaminated soil treatment method of the fifth embodiment of the present invention.

本発明の第5実施形態の放射性物質汚染土壌の処理方法は、本発明の第4実施形態の放射性物質汚染土壌の処理工程に、さらに3つの工程が加わる。この3つの工程は、研削工程で発生する微粉に固化剤を添加、混合し、放射性物質を不溶化する微粉不溶化工程(ステップS14)と、研削工程により得られる表面が削り取られた放射性物質汚染土壌(研削土壌)に薬剤を添加、混合し、放射性物質を不溶化すると共に濃縮分離可能にする不溶化・濃縮分離可能化工程(ステップS15)と、不溶化・濃縮分離可能化工程後の土壌を磁力選別し、放射性物質を濃縮分離する濃縮分離工程(ステップS16)である。   In the method for treating radioactive material-contaminated soil according to the fifth embodiment of the present invention, three steps are added to the treatment step for radioactive material-contaminated soil according to the fourth embodiment of the present invention. These three processes include a fine powder insolubilization process (step S14) in which a solidifying agent is added to and mixed with the fine powder generated in the grinding process to insolubilize the radioactive substance, and a radioactive substance contaminated soil in which the surface obtained by the grinding process is scraped ( Grinding soil) is added and mixed with chemicals to insolubilize radioactive substances and to enable concentration / separation (step S15), and to magnetically sort the soil after the insolubilization / concentration separation enabling process, This is a concentration separation step (step S16) for concentrating and separating radioactive substances.

図8に示す放射性物質汚染土壌の処理装置1は、連続式の処理装置である。放射性物質汚染土壌は、乾燥器3に送られ、水分量が10重量%以下、好ましくは1〜5重量%に乾燥される(乾燥工程)。図8では、蒸気を加熱媒体とするロータリーキルン方式の乾燥器を示すが、乾燥器は加熱媒体を含め、特定の型式のものに限定されることなく、処理量、
放射性物質汚染土壌の水分量に応じて種々の乾燥器を使用することができる。乾燥時、外部に粉塵が排出されるおそれがあるときは集じん装置を設ける。なお、水分量が10重量%未満の放射性物質汚染土壌を被処理物とするときには、乾燥工程を省略することができるので、乾燥器3を設ける必要はない。
The radioactive substance contaminated soil treatment apparatus 1 shown in FIG. 8 is a continuous treatment apparatus. Radioactive substance-contaminated soil is sent to the dryer 3 and dried to a moisture content of 10% by weight or less, preferably 1 to 5% by weight (drying step). FIG. 8 shows a rotary kiln type dryer using steam as a heating medium, but the dryer is not limited to a specific type including the heating medium,
Various dryers can be used according to the moisture content of the radioactive material contaminated soil. When dust may be discharged outside during drying, a dust collector is provided. In addition, when a radioactive substance contaminated soil having a moisture content of less than 10% by weight is used as the object to be treated, the drying step can be omitted, and thus there is no need to provide the dryer 3.

乾燥器3から排出される乾燥した放射性物質汚染土壌は振動篩5に送り、予め定める粗粒土壌を分離する(乾式分級工程)。   The dried radioactive substance-contaminated soil discharged from the dryer 3 is sent to the vibrating sieve 5 to separate a predetermined coarse-grained soil (dry classification step).

粗粒土壌が分離された放射性物質汚染土壌は、研削装置7に送り、放射性物質汚染土壌の表面を削り取る(研削工程)。研削装置7は、本発明の第4実施形態の放射性物質汚染土壌の処理方法のところで説明した研削装置を使用する。   The radioactive material contaminated soil from which the coarse soil has been separated is sent to the grinding device 7 and the surface of the radioactive material contaminated soil is scraped off (grinding step). The grinding device 7 uses the grinding device described in the method for treating radioactive material contaminated soil according to the fourth embodiment of the present invention.

研削工程で発生する研削物である微粉は、撹拌混合装置9へ送り、ここで固化剤及び固化助剤を添加、混合し、放射性物質を不溶化する(微粉不溶化工程)。ここでは、固化剤の他に、固化助剤を添加しているが、固化剤のみを添加、混合し放射性物質を不溶化させてもよい。微粉の不溶化処理は、先に示した本発明の第3実施形態の不溶化工程と同様に行うことができる。撹拌混合装置9は、公知の紛体を撹拌混合可能な装置を使用することができる。   The fine powder, which is a grinding product generated in the grinding process, is sent to the stirring and mixing device 9, where a solidifying agent and a solidification aid are added and mixed to insolubilize the radioactive substance (fine powder insolubilization process). Here, a solidification aid is added in addition to the solidifying agent, but only the solidifying agent may be added and mixed to insolubilize the radioactive substance. The fine powder insolubilization treatment can be performed in the same manner as the insolubilization step of the third embodiment of the present invention described above. As the stirring and mixing device 9, a known device capable of stirring and mixing powders can be used.

一方、研削工程で表面が研削された放射性物質汚染土壌(研削土壌)は、撹拌混合装置11へ送り、ここにナノ分散体と固化助剤とを薬剤として添加、混合し、放射性物質を不溶化すると共に濃縮分離可能にする。微粉の不溶化工程と研削土壌の不溶化・濃縮分離可能化工程で使用する固化助剤は、先に示した固化助剤と同じものを使用することができる。なお固化助剤は、省略することができる。   On the other hand, the radioactive material contaminated soil (ground soil) whose surface has been ground in the grinding process is sent to the stirring and mixing device 11, where the nano-dispersion and the solidification aid are added and mixed as agents to insolubilize the radioactive material. And can be concentrated and separated. As the solidification aid used in the fine powder insolubilization step and the grinding soil insolubilization / concentration separation possible step, the same solidification aid as described above can be used. The solidification aid can be omitted.

ナノ分散体は、固化剤中に強磁性粉末と、強磁性粉末と固化剤とに親和な少なくとも一部がナノサイズの金属粒子とが分散したものである。ここで固化剤には、先に示した固化剤と同じものを使用することができる。   The nano-dispersion is obtained by dispersing ferromagnetic powder and at least partly nano-sized metal particles having affinity for the ferromagnetic powder and the solidifying agent in the solidifying agent. Here, the same solidifying agent as that shown above can be used as the solidifying agent.

強磁性粉末は、次工程で磁力選別を行うために添加する。強磁性粉末は、特定の強磁性粉末に限定されず公知の強磁性粉末、例えば鉄粉を使用することができる。強磁性粉末は、安価なものが好ましく、この点において鉄粉は好ましい。   The ferromagnetic powder is added for magnetic selection in the next step. The ferromagnetic powder is not limited to a specific ferromagnetic powder, and a known ferromagnetic powder such as iron powder can be used. The ferromagnetic powder is preferably inexpensive, and iron powder is preferred in this respect.

金属粒子は、強磁性粉末と固化剤とに親和性を有する金属粒子であり、強磁性粉末と固化剤との結び付きを高める。金属粒子を添加することなく、強磁性粉末と固化剤、又は強磁性粉末と固化剤と固化助剤とを使用し不溶化・濃縮分離可能化処理することも可能であるが、強磁性粉末と固化剤との結び付きを高め、さらに化学的作用により放射性物質の不溶化率を高める点から金属粒子を添加することが好ましい。一方で、金属粒子を使用しない場合、薬剤のコストを下げることができるので、研削土壌に含まれる放射性物質の濃度、目的などに応じて適宜、上記処理方法を選択すればよい。   The metal particles are metal particles having an affinity for the ferromagnetic powder and the solidifying agent, and enhance the bond between the ferromagnetic powder and the solidifying agent. Without adding metal particles, it is possible to insolubilize and concentrate / separate using ferromagnetic powder and solidifying agent, or ferromagnetic powder, solidifying agent and solidification aid, but solidify with ferromagnetic powder. It is preferable to add metal particles from the viewpoint of increasing the bond with the agent and further increasing the insolubilization rate of the radioactive substance by chemical action. On the other hand, when the metal particles are not used, the cost of the medicine can be reduced. Therefore, the treatment method may be appropriately selected according to the concentration and purpose of the radioactive substance contained in the grinding soil.

強磁性粉末と固化剤との結び付きを高めると共に、放射性物質に対して化学的に作用する金属粒子としては、アルカリ金属、金属カルシウムなどのアルカリ土類金属、アルミニウムなどの第3族元素、鉄及びこれら元素を含む合金が例示される。これらは単独で使用してもよく、混合して使用してもよく、中でも金属カルシウム、アルミニウムを好適に使用することができる。   The metal particles that enhance the bond between the ferromagnetic powder and the solidifying agent and chemically act on the radioactive substance include alkali metals, alkaline earth metals such as metallic calcium, group 3 elements such as aluminum, iron and Examples include alloys containing these elements. These may be used alone or in combination, and among them, calcium metal and aluminum can be preferably used.

ナノ分散体は、固化剤、強磁性粉末及び金属粒子の混合物を、金属粒子の少なくとも一部がナノサイズとなるように粉砕することで得ることができる。金属粒子は、全部がナノサイズであってもよい。ここでナノサイズとは、粒径が数nm〜サブミクロンの大きさをいう。   The nano-dispersion can be obtained by pulverizing a mixture of a solidifying agent, a ferromagnetic powder, and metal particles so that at least a part of the metal particles is nano-sized. The metal particles may all be nano-sized. Here, the nano size means a particle size of several nm to submicron.

ナノ分散体は、ナノサイズの金属粒子を含む金属粒子が、固化剤に分散した分散体であり、ナノサイズの金属粒子の表面は固化剤でコーティングされている。一般的に金属をナノサイズまで微細化すると、環境中では酸化し失活するが、このナノ分散体においては、ナノサイズの金属粒子の表面を覆う固化剤が、該金属粒子の大部分が酸素、二酸化炭素又は水と直接接触することを阻止するので、ナノサイズの金属粒子は、大気中においても高い活性を維持することができる。このようなナノ分散体、又はナノ分散体と固化助剤との混合物は、研削土壌の不溶化・濃縮分離可能化剤として好適に使用することができる。   The nano-dispersion is a dispersion in which metal particles including nano-sized metal particles are dispersed in a solidifying agent, and the surface of the nano-sized metal particles is coated with the solidifying agent. In general, when a metal is refined to a nano size, it is oxidized and deactivated in the environment. However, in this nano dispersion, a solidifying agent that covers the surface of the nano size metal particles is mostly composed of oxygen particles. Since it prevents direct contact with carbon dioxide or water, nano-sized metal particles can maintain high activity even in the atmosphere. Such a nanodispersion or a mixture of the nanodispersion and a solidification aid can be suitably used as an insolubilizing / concentrating / separating agent for grinding soil.

研削土壌に対するナノ分散体の添加量は、土壌中の放射性物質濃度によって異なるが、後述の実施例で示すように放射性物質汚染土壌の2〜10重量%程度とすることができる。ナノ分散体中の各薬剤の比率は、強磁性粉末/金属粒子/固化剤を重量比で2/2/5とすることができる。固化助剤の添加量は、放射性物質汚染土壌に対して5重量%程度とすることができる。   Although the addition amount of the nano-dispersion with respect to grinding soil changes with radioactive substance concentration in soil, as shown in the below-mentioned Example, it can be set as about 2 to 10 weight% of radioactive substance contaminated soil. The ratio of each drug in the nanodispersion can be 2/2/5 by weight ratio of ferromagnetic powder / metal particles / solidifying agent. The amount of solidification aid added can be about 5% by weight with respect to radioactive material contaminated soil.

撹拌混合装置11は、特定の装置に限定されるものではない。ナノ分散体と固化助剤と研削土壌とを均一に撹拌混合できればよい。撹拌混合装置11としては、ボールミル様の横型円筒回転式混合器、コンクリートミキサー様の撹拌混合装置が例示される。撹拌混合装置11は、ナノ分散体と固化助剤と研削土壌とを均一に撹拌混合するとき、研削土壌が粉砕、破砕されないタイプのものが好ましい。土壌粒子が破砕されると、破砕小粒子が発生する。破砕小粒子が、破砕していない土壌粒子に混じると減量率の低下につながるので好ましくない。   The stirring and mixing device 11 is not limited to a specific device. What is necessary is just to be able to stir and mix the nanodispersion, the solidification aid and the grinding soil uniformly. Examples of the stirring and mixing device 11 include a ball mill-like horizontal cylindrical rotary mixer and a concrete mixer-like stirring and mixing device. The stirring and mixing device 11 is preferably of a type in which the grinding soil is not pulverized or crushed when the nanodispersion, the solidification aid and the grinding soil are uniformly stirred and mixed. When soil particles are crushed, small crushed particles are generated. If the crushed small particles are mixed with soil particles that are not crushed, it leads to a decrease in the weight loss rate.

撹拌混合時間は、撹拌混合装置11及び被処理物である放射性物質汚染土壌の量により異なるが、後述の実施例に示すように0.5〜4時間程度とすることができる。また撹拌混合操作は、常温、大気圧下で行えばよい。上記操作により、放射性物質は不溶化及び濃縮分離可能にされる。   The agitation and mixing time varies depending on the agitation and mixing device 11 and the amount of radioactive material-contaminated soil that is the object to be treated, but can be set to about 0.5 to 4 hours as shown in Examples described later. The stirring and mixing operation may be performed at normal temperature and atmospheric pressure. By the above operation, the radioactive substance can be insolubilized and concentrated and separated.

不溶化及び濃縮分離可能にされた研削土壌は、磁力選別装置13に送られ、ここで磁力選別により高濃度汚染土壌と低濃度汚染土壌とに分離される。不溶化及び濃縮分離可能にされた研削土壌のうち、強磁性粉末が多く含まれる土壌は、磁石に吸着するので磁石を用いて吸着分離することができる。磁力選別装置13は、特定の装置に限定されるものではなく、処理量等に応じて適宜選択し使用することができる。磁力選別装置13としては、マグネットドラムセパレータが例示される。   The ground soil made insolubilized and concentrated and separated is sent to the magnetic separator 13 where it is separated into high-concentration contaminated soil and low-concentration contaminated soil by magnetic separation. Of the ground soil made insolubilized and concentrated and separable, soil containing a large amount of ferromagnetic powder is adsorbed to a magnet and can be adsorbed and separated using a magnet. The magnetic separation device 13 is not limited to a specific device, and can be appropriately selected and used according to the processing amount. As the magnetic separator 13, a magnet drum separator is exemplified.

後述の実施例に示すように、市販の磁石を用いて吸着させると、約50〜60重量%の土壌が磁石に吸着された。また実験の結果、不溶化及び濃縮分離可能化された土壌に含まれる放射性物質の約80〜90%は、磁石に吸着された方の土壌(磁着土壌)に含まれていた。これは、土壌に含まれる放射性物質の多くが、比表面積の大きいシルト、粘土に付着しており、さらに粒径の小さいシルト、粘土は、比表面積が大きいため強磁性粉末を含む薬剤が付着し易いためと考えられる。このため磁力選別工程は、放射性物質を濃縮分離する濃縮分離工程でもある。   As shown in the below-mentioned Example, when it was made to adsorb | suck using a commercially available magnet, about 50-60 weight% of soil was adsorb | sucked to the magnet. As a result of the experiment, about 80 to 90% of the radioactive material contained in the insolubilized and concentrated and separable soil was contained in the soil adsorbed by the magnet (magnetically attached soil). This is because most of the radioactive substances contained in the soil adhere to silt and clay with a large specific surface area, and the silt and clay with a small particle size adhere to drugs containing ferromagnetic powder because of the large specific surface area. It is thought that it is easy. For this reason, the magnetic separation process is also a concentration separation process for concentrating and separating radioactive substances.

本法における放射性物質の濃縮・不溶化・分離プロセスは次のように考えられる。以下、放射性物質をセシウムCs、強磁性粉末を鉄Fe、金属粒子を金属カルシウムCa、固化剤を酸化カルシウムCaO、固化助剤をリン酸二水素ナトリウムとし説明する。図9は、化学的作用により放射性物質が不溶化・濃縮分離可能化されるメカニズム(想定)を説明するための模式図であり、図10は、不溶化・濃縮分離可能化処理された土壌に含まれる放射性物質を物理的に濃縮分離するメカニズム(想定)を説明するための模式図である。   The concentration / insolubilization / separation process of radioactive material in this method is considered as follows. In the following description, the radioactive substance is cesium Cs, the ferromagnetic powder is iron Fe, the metal particles are metallic calcium Ca, the solidifying agent is calcium oxide CaO, and the solidification aid is sodium dihydrogen phosphate. FIG. 9 is a schematic diagram for explaining a mechanism (assuming) that a radioactive substance can be insolubilized / concentrated and separated by a chemical action, and FIG. 10 is included in the soil that has been insolubilized / concentrated / separated. It is a schematic diagram for demonstrating the mechanism (presumption) which physically concentrates and isolates a radioactive substance.

先ずCa2+が未処理土壌(研削土壌)表面に存在するCsと置換し(Ca2+は、極少量であるが放射性元素量に比べれば過剰量)、次いで2次粒子中へCsが水と共に吸収され,さらに水に不溶な水酸化カルシウム被膜が形成し2次粒子全体も固化される。 First, Ca 2+ replaces Cs + present on the surface of untreated soil (grinding soil) (Ca 2+ is an extremely small amount but an excessive amount compared to the amount of radioactive elements), and then Cs + is water in the secondary particles. In addition, a calcium hydroxide film insoluble in water is formed, and the entire secondary particles are solidified.

固化された2次粒子に磁石を近づけると、2次粒子に内包された鉄粒子により磁石に吸着される。粒径の小さいシルト、粘土は、比表面積が大きく鉄粒子を多く含み、さらに自重も軽いため磁石に吸着される。一方、礫、砂は、比表面積が小さく鉄粒子の含有量も相対的に少なく、さらに自重も重いため磁石に吸着されない。土壌に含まれる放射性物質の多くが、比表面積の大きいシルト、粘土に付着しているため磁力選別より汚染土壌(=
Csを濃縮・吸着した2次粒子が主成分)を濃縮・分離可能とすることができる。
When the magnet is brought close to the solidified secondary particles, it is attracted to the magnets by the iron particles encapsulated in the secondary particles. Silt and clay having a small particle size have a large specific surface area, a large amount of iron particles, and light weight, so that they are adsorbed by a magnet. On the other hand, gravel and sand have a small specific surface area, a relatively small content of iron particles, and a heavy weight, so that they are not adsorbed by the magnet. Since most of the radioactive materials contained in the soil adhere to silt and clay with a large specific surface area, contaminated soil (=
It is possible to concentrate / separate secondary particles (concentrated and adsorbed by Cs).

本発明の第5実施形態の放射性物質汚染土壌の処理方法は、本発明の第1〜第4実施形態の放射性物質汚染土壌の処理方法に比較して、工程数は多いが、除染率及び減量率とも高めることができる。また第3実施形態の放射性物質汚染土壌の処理方法と同様に、余分な廃棄物を発生させることなく土壌に含まれる放射性物質を不溶化させることができる。   The method for treating radioactive material-contaminated soil according to the fifth embodiment of the present invention has a larger number of steps than the method for treating radioactive material-contaminated soil according to the first to fourth embodiments of the present invention. The weight loss rate can be increased. Moreover, the radioactive substance contained in soil can be insolubilized, without generating an excessive waste like the processing method of radioactive substance contaminated soil of 3rd Embodiment.

上記不溶化・濃縮分離可能化工程では、固化助剤をナノ分散体と一緒に撹拌混合し、放射性物質を不溶化・濃縮分離可能化させているが、固化助剤は、不溶化・濃縮分離可能化工程の最初から添加せず、不溶化・濃縮分離可能化工程の途中、あるいは不溶化・濃縮分離可能化工程終了後でかつ磁力選別工程の前に添加、撹拌混合し、研削土壌を不溶化及び濃縮分離可能にさせてもよい。   In the insolubilization / concentration separation enabling process, the solidification aid is agitated and mixed with the nano-dispersion to insolubilize and concentrate the radioactive substance, but the solidification aid is insolubilization / concentration separation enabling process. Addition, stirring and mixing in the middle of the insolubilization / concentration separation enabling process or after the insolubilization / concentration separation enabling process and before the magnetic separation process, so that the ground soil can be insolubilized and concentrated and separated. You may let them.

また不溶化・濃縮分離可能化工程の段階では、固化助剤を添加せず、磁着土壌に固化助剤を添加、混合し固化させてもよい。ここで磁着土壌のみに固化助剤を添加し固化するのは、磁着土壌に放射性物質が濃縮されているからである。固化助剤を添加することで、放射性物質の溶出を完全に防止することができる。また磁着土壌は、粒径が小さいので固化助剤により固化させることで取扱いが容易となる。   Further, at the stage of the insolubilization / concentration / separation enabling step, the solidification aid may be added to the magnetized soil, mixed, and solidified without adding the solidification aid. The reason why the solidification aid is added and solidified only in the magnetized soil is that the radioactive material is concentrated in the magnetized soil. By adding a solidification aid, elution of radioactive substances can be completely prevented. In addition, since the magnetically-attached soil has a small particle size, it can be easily handled by solidifying with a solidification aid.

磁石に吸着されなかった方の研削土壌(残渣)も同様に、固化助剤を添加、混合し固化させてもよいことはもちろんであるが、(1)不溶化・濃縮分離可能化工程後の放射性物質汚染土壌に含まれる放射性物質の約80〜90%は、磁着土壌に含まれている、(2)残渣は、粒径が比較的大きく取扱いも容易である、(3)残渣も表面が固化剤でコーティングされるため放射性物質は溶出し難い、ので残渣は、溶出試験結果などに基づき、必要に応じて固化助剤を使用した固化を行えばよい。これにより固化助剤の使用量を抑制することができる。   Similarly, the grinding soil (residue) that is not adsorbed by the magnet may be solidified by adding, mixing, and solidifying, but (1) the radioactivity after the insolubilization / concentration separation enabling process About 80-90% of the radioactive material contained in the material-contaminated soil is contained in the magnetized soil. (2) The residue has a relatively large particle size and is easy to handle. (3) The residue also has a surface. Since the radioactive substance is difficult to elute because it is coated with a solidifying agent, the residue may be solidified using a solidification aid, if necessary, based on the results of the dissolution test. Thereby, the usage-amount of a solidification adjuvant can be suppressed.

以上、第1から第5実施形態に示すように本発明の放射性物質汚染土壌の処理方法は、操作が簡単であり、余分な廃棄物を発生させることなく効率的に除染、減量化(減容化)することができる。また処理土壌を不溶化させ放射性物質の溶出を防止するので、放射性物質汚染土壌の処理方法として好ましい。さらに本発明の放射性物質汚染土壌の処理方法は、全ての操作を乾式で行うので、湿式の処理方法と異なり、排水、廃液も処理が不要である。   As described above, as shown in the first to fifth embodiments, the radioactive material-contaminated soil treatment method of the present invention is simple in operation and can be efficiently decontaminated and reduced (reduced) without generating extra waste. Can be). In addition, since the treated soil is insolubilized and elution of radioactive substances is prevented, it is preferable as a method for treating radioactive substance-contaminated soil. Furthermore, since the method for treating radioactive material-contaminated soil of the present invention performs all operations in a dry manner, unlike the wet treatment method, wastewater and waste liquid do not need to be treated.

本発明の放射性物質汚染土壌の処理方法は、上記実施形態以外にも種々の形態が考えられ、要旨を変更しない範囲で変更して使用することができる。   Various forms can be considered for the method for treating radioactive material-contaminated soil of the present invention in addition to the above-described embodiment, and the method can be changed and used without changing the gist.

第3実施形態に示す放射性物質汚染土壌の処理方法では、分級工程後の放射性物質汚染土壌に固化剤を添加、混合し、放射性物質を不溶化させているが、分級工程と不溶化工程の順番を逆にし、まず、被処理物である放射性物質汚染土壌に固化剤を添加、混合し、放射性物質を不溶化させ、その後、不溶化された前記放射性物質汚染土壌の中から予め定める粒度未満の放射性物質汚染土壌を乾式分級により分離し、放射性物質汚染土壌を除染するようにしてもよい。さらに不溶化工程と分級工程とを同時並行的に行ってもよい。   In the method for treating radioactive material-contaminated soil shown in the third embodiment, the solidifying agent is added to and mixed with the radioactive material-contaminated soil after the classification step to insolubilize the radioactive material, but the order of the classification step and the insolubilization step is reversed. First, a solidifying agent is added to and mixed with radioactive material-contaminated soil that is to be treated to insolubilize the radioactive material, and then insolubilized radioactive material-contaminated soil having a particle size less than a predetermined particle size from among the insolubilized radioactive material-contaminated soil May be separated by dry classification to decontaminate radioactive material contaminated soil. Furthermore, the insolubilization step and the classification step may be performed in parallel.

第5実施形態に示す放射性物質汚染土壌の処理方法では、研削工程後の研削土壌に薬剤を添加し不溶化・濃縮分離可能化させ、その後に、磁力選別により放射性物質を濃縮分離しているが、研削工程後の研削土壌を乾式分級し、予め定める粒度の研削土壌を得て、これを再度、研削した後に不溶化・濃縮分離可能化するというような、2段の研削工程を備える放射性物質汚染土壌の処理方法とすることもできる。この場合、後段の研削工程もこれまで説明した研削工程と同様に考えればよく、後段の研削工程後の不溶化・濃縮分離可能化工程、磁力選別工程もこれまで説明した不溶化・濃縮分離可能化工程、磁力選別工程と同様に考えることができる。   In the method for treating radioactive material contaminated soil shown in the fifth embodiment, a chemical is added to the ground soil after the grinding step so as to be insolubilized and concentrated, and then the radioactive material is concentrated and separated by magnetic separation. Radioactive material-contaminated soil with a two-stage grinding process in which the ground soil after the grinding process is dry-classified to obtain a ground soil with a predetermined particle size, which is then ground again and then insolubilized and concentrated and separated. It can also be set as the processing method. In this case, the subsequent grinding process can be considered in the same manner as the grinding process described so far, and the insolubilization / concentration separation enabling process after the subsequent grinding process and the magnetic separation process are also described so far. It can be considered in the same manner as the magnetic separation process.

また第5実施形態に示す放射性物質汚染土壌の処理方法では、乾式分級工程後に研削工程を実施しているが、第5実施形態に示す放射性物質汚染土壌の処理方法において、乾式分級工程と研削工程との順番を入れ替え、乾燥した放射性物質汚染土壌の表面を削り取った後に乾式分級し、その後に不溶化・濃縮分離可能化工程、濃縮分離工程を実施してもよい。この方法は、特に、土壌が放射性物質に高濃度に汚染され、粗粒土壌に含まれる放射性物質の濃度が高い場合に好適に使用することができる。   Further, in the radioactive material contaminated soil treatment method shown in the fifth embodiment, the grinding step is performed after the dry classification step. In the radioactive substance contaminated soil treatment method shown in the fifth embodiment, the dry classification step and the grinding step are performed. The order may be changed, and the dry radioactive material contaminated soil may be scraped off and then subjected to dry classification, followed by insolubilization / concentration separation enabling step and concentration separation step. This method can be suitably used particularly when the soil is highly contaminated with radioactive substances and the concentration of radioactive substances contained in the coarse-grained soil is high.

<実施例1>
放射性物質汚染土壌の処理を、(1)乾燥工程、(2)土壌研削工程、(3)乾式分級工程、(4)不溶化・濃縮分離可能化工程、(5)磁力選別工程の順に行うことで実施した。以下、代表例としてRun−Aの手順を記載する。
<Example 1>
By processing radioactive material contaminated soil in the order of (1) drying step, (2) soil grinding step, (3) dry classification step, (4) insolubilization / concentration separation enabling step, and (5) magnetic force sorting step. Carried out. Hereinafter, the procedure of Run-A is described as a representative example.

(1)乾燥工程
放射性物質汚染土壌約15kgを乾燥器を用い、105℃の温度で45分間乾燥させ、水分量1.6重量%の放射性物質汚染土壌を得た。乾燥前の放射性物質汚染土壌の水分量は15.6重量%であった。乾燥後の放射性物質汚染土壌に含まれるCs137は、3681Bq/kg、Cs134は、2521Bq/kgであった。
(1) Drying process About 15 kg of radioactive material contaminated soil was dried at a temperature of 105 ° C. for 45 minutes using a dryer to obtain radioactive material contaminated soil having a moisture content of 1.6% by weight. The moisture content of the radioactive material contaminated soil before drying was 15.6% by weight. Cs137 contained in the radioactive material contaminated soil after drying was 3681 Bq / kg, and Cs134 was 2521 Bq / kg.

(2)研削工程
内容積110Lのコンクリートミキサー(撹拌室傾斜70°)に乾燥した放射性物質汚染土壌12.29kgを充填し、2時間撹拌し放射性物質汚染土壌の表面を削り取った。このとき発生する微粉(粉塵)は、吸引器で吸引し、HEPAフィルタで捕捉し回収した。表面が削り取られた放射性物質汚染土壌は、11.83kg、HEPAフィルタで捕捉された微粉は、0.46kgであった。微粉に含まれるCs137は、7364Bq/kg、Cs134は、4991Bq/kgであった。この結果からも放射性物質が、土壌表面に付着、吸着していることが分かる。
(2) Grinding Step A concrete mixer (inclination chamber tilt 70 °) with an internal volume of 110 L was filled with 12.29 kg of dried radioactive material-contaminated soil, stirred for 2 hours, and the surface of the radioactive material-contaminated soil was scraped off. The fine powder (dust) generated at this time was sucked with a suction device, captured with a HEPA filter, and collected. The radioactive material contaminated soil whose surface was shaved was 11.83 kg, and the fine powder captured by the HEPA filter was 0.46 kg. Cs137 contained in the fine powder was 7364 Bq / kg, and Cs134 was 4991 Bq / kg. From this result, it can be seen that radioactive substances are attached and adsorbed on the soil surface.

(3)乾式分級工程
篩を用いて、表面が削り取られた放射性物質汚染土壌の中から7mm以上の粗粒土壌を分離した。
(3) Dry classification process Using a sieve, coarse soil of 7 mm or more was separated from radioactive material-contaminated soil whose surface was scraped.

(4)不溶化・濃縮分離可能化工程
撹拌混合装置は、横型円筒回転式混合器を使用した。7mm以上の粗粒土壌を分離した放射性物質汚染土壌500gと不溶化・濃縮分離可能化薬剤であるナノ分散体(PCA151)50gとを、1.5Lの円筒容器に充填した。該円筒容器を密閉し、回転台にセットし、200rpmで1時間撹拌した。横型円筒回転式混合器は、転動ボールミル様の装置であるが、ボールミルと異なりボールは充填されていない。
(4) Insolubilization / concentration / separation process The stirring and mixing apparatus used a horizontal cylindrical rotary mixer. A 1.5-liter cylindrical container was filled with 500 g of radioactive material-contaminated soil from which coarse soil of 7 mm or more was separated and 50 g of nanodispersion (PCA151) which is an insolubilized / concentrated separable agent. The cylindrical container was sealed, set on a turntable, and stirred at 200 rpm for 1 hour. A horizontal cylindrical rotary mixer is a rolling ball mill-like device, but unlike a ball mill, it is not filled with balls.

不溶化・濃縮分離可能化薬剤であるナノ分散体(PCA151)は、以下の要領で調製した。強磁性粉末として、粒径0.15mmの鉄粉(キシダ化学株式会社)を、金属粒子として、純度99%、粒径2〜2.5mm、表面積0.43〜0.48m/gの金属カルシウム(キシダ化学株式会社)を使用した。825℃で2時間焼成した酸化カルシウムCaOと金属カルシウムCaと鉄粉FeとをFe/Ca/CaO=2/2/5の重量割合とし、これを遊星ボールミルで、アルゴンガス雰囲気下、600rpmで60分間、常温粉砕処理を行った。得られたナノ分散体(PCA151)の粒径分布を図11に示した。ナノ分散体の粒径は、ナノ粒子解析装置NANO SIGHT LM−20(ブラウン運動を測定し粒子径を測定)を用いて測定した。粒径は、概ね20〜500nmの範囲内であり、約60〜300nmのものが多く、中でも約120〜210nmのものが多かった。 A nano-dispersion (PCA151), which is an insolubilized / concentrated separable drug, was prepared as follows. Iron powder (Kishida Chemical Co., Ltd.) having a particle size of 0.15 mm as the ferromagnetic powder, and metal having a purity of 99%, a particle size of 2 to 2.5 mm, and a surface area of 0.43 to 0.48 m 2 / g as the metal particles. Calcium (Kishida Chemical Co., Ltd.) was used. Calcium oxide CaO, metallic calcium Ca, and iron powder Fe calcined at 825 ° C. for 2 hours were made to have a weight ratio of Fe / Ca / CaO = 2/2/5, and this was 60% at 600 rpm in an argon gas atmosphere in a planetary ball mill. A normal temperature pulverization treatment was performed for a minute. The particle size distribution of the obtained nanodispersion (PCA151) is shown in FIG. The particle size of the nano-dispersion was measured using a nano-particle analyzer NANO SIGN LM-20 (measuring Brownian motion and measuring particle size). The particle size was generally in the range of 20 to 500 nm, many were about 60 to 300 nm, and most were about 120 to 210 nm.

(5)磁力選別工程
不溶化・濃縮分離可能化処理された研削土壌に対して、格子型磁力選別装置を用いて磁力選別した。磁石に吸着した土壌(磁着土壌)は284.28g、磁石に吸着しなかった土壌(残渣)は240.95gであり、磁着土壌の重量割合は、約54.1%であった。また磁着土壌に含まれるCs137は、3195Bq/kg、Cs134は、2224Bq/kgであった。一方残渣に含まれるCs137は、845Bq/kg、Cs134は、592Bq/kgであった。磁着土壌中のCs濃度は、残渣中のCs濃度の約3.8倍であり、磁力選別することで、放射性物質を濃縮分離することができることが分かる。
(5) Magnetic force selection process The ground soil subjected to the insolubilization / concentration / separation process was subjected to magnetic force selection using a lattice type magnetic separation device. The soil adsorbed on the magnet (magnetically adsorbed soil) was 284.28 g, the soil not adsorbed on the magnet (residue) was 240.95 g, and the weight ratio of the magnetically adsorbed soil was about 54.1%. Cs137 contained in the magnetized soil was 3195 Bq / kg, and Cs134 was 2224 Bq / kg. On the other hand, Cs137 contained in the residue was 845 Bq / kg, and Cs134 was 592 Bq / kg. The Cs concentration in the magnetized soil is about 3.8 times the Cs concentration in the residue, and it can be seen that radioactive substances can be concentrated and separated by magnetic separation.

不溶化・濃縮分離可能化処理の条件を変更し、同様の実験を行った。Run−Eでは、AL含有のナノ分散体を使用した。表2に不溶化・濃縮分離可能化処理条件と除染率及び減量率を示した。また表3に代表例として、Run−Bの各操作における重量割合、該土壌に含まれるCs137及びCs134の割合を示した。ここで除染率、減量率は各々式(1)、式(2)により算出した。   The same experiment was conducted by changing the conditions of the insolubilization / concentration separation enabling treatment. In Run-E, an AL-containing nanodispersion was used. Table 2 shows the insolubilization / concentration / separation processing conditions, decontamination rate, and weight loss rate. Table 3 shows the weight ratio in each operation of Run-B and the ratio of Cs137 and Cs134 contained in the soil as representative examples. Here, the decontamination rate and the weight loss rate were calculated by the equations (1) and (2), respectively.

実験の結果、除染率は、77.4〜88.1%、減量率は50.6〜61.4%であり、除染率の最高値は、88.1%であり、このときの減量率は50.6%であった。除染率が高いほど、減量率が小さい結果となった。不溶化・濃縮分離可能化処理の撹拌混合時間と除染率との関係では、撹拌混合時間が長いほど除染率が上昇する傾向が見られた。また不溶化・濃縮分離可能化薬剤の添加量を少なくすると除染率が低下し、減量率が上昇する傾向が見られた。   As a result of the experiment, the decontamination rate was 77.4-88.1%, the weight loss rate was 50.6-61.4%, and the maximum decontamination rate was 88.1%. The weight loss rate was 50.6%. The higher the decontamination rate, the smaller the weight loss rate. Regarding the relationship between the stirring and mixing time and the decontamination rate in the insolubilization / concentration separation enabling treatment, the longer the stirring and mixing time, the higher the decontamination rate. In addition, when the amount of the insolubilized / concentrated / separable agent was decreased, the decontamination rate decreased and the weight loss rate tended to increase.

<実施例2>
放射性物質汚染土壌の処理を、(1)乾燥工程、(2)乾式分級工程、(3)研削工程、(4)不溶化・濃縮分離可能化工程、(5)磁力選別工程、(6)残渣不溶化・濃縮分離可能化工程、(7)磁力選別工程の順に行うことで実施した。実施例2は、不溶化・濃縮分離可能化された研削土壌を磁力選別し、得られた残渣を再度、不溶化・濃縮分離可能化処理し、これを磁力選別する点に特徴がある。各工程の要領は、実施例1と基本的に同じである。
<Example 2>
Treatment of radioactive material contaminated soil: (1) drying step, (2) dry classification step, (3) grinding step, (4) insolubilization / concentration separation enabling step, (5) magnetic force sorting step, (6) residue insolubilization -It carried out by performing in order of concentration separation possible process and (7) magnetic force selection process. Example 2 is characterized in that the ground soil that has been insolubilized / concentrated / separated is magnetically selected, and the resulting residue is again insolubilized / concentrated / separated, and this is magnetically selected. The procedure of each process is basically the same as that of the first embodiment.

表4に不溶化・濃縮分離可能化処理条件と除染率及び減量率を示した。除染率は82.9%、減量率は53.5%であった。実施例2の不溶化・濃縮分離可能化処理の撹拌混合時間が2時間であることを考えると、除染率及び減量率とも実施例1と同等であり、不溶化・濃縮分離可能化処理及び磁力選別を2回行うことの効果は見られなかった。   Table 4 shows the treatment conditions, decontamination rate, and weight loss rate that enable insolubilization and concentration separation. The decontamination rate was 82.9%, and the weight loss rate was 53.5%. Considering that the stirring and mixing time of the insolubilization / concentration separation enabling process in Example 2 is 2 hours, both the decontamination rate and the weight reduction rate are the same as in Example 1, and the insolubilization / concentration separation enabling process and magnetic separation are performed. The effect of performing 2 times was not seen.

<実施例3>
放射性物質汚染土壌の処理を、(1)乾燥工程、(2)乾式分級工程、(3)研削工程、(4)不溶化・濃縮分離可能化工程、(5)磁力選別工程の順に行うことで実施した。実施例1と実施例3とでは、乾式分級工程と研削工程との順番が逆になっているが、各工程の要領は実施例1と基本的に同じである。
<Example 3>
The radioactive material contaminated soil is treated by (1) drying process, (2) dry classification process, (3) grinding process, (4) insolubilization / concentration separation enabling process, and (5) magnetic separation process. did. In Example 1 and Example 3, the order of the dry classification process and the grinding process is reversed, but the procedure for each process is basically the same as in Example 1.

実験条件及び除染率、減量率を表5に示した。Run−Jは、乾式分級において篩を用いて3mm以上の粗粒土壌を分離し、研削工程では、3mm以上の粗粒土壌が除去された乾燥放射性物質汚染土壌を使用した。さらに不溶化・濃縮分離可能化工程では、研削工程と同じコンクリートミキサーを使用し、約13kgの研削土壌を不溶化・濃縮分離可能化処理した。   Table 5 shows the experimental conditions, the decontamination rate, and the weight loss rate. Run-J used dry radioactive material contaminated soil from which coarse soil of 3 mm or more was separated using a sieve in dry classification, and the coarse soil of 3 mm or more was removed in the grinding process. Further, in the insolubilization / concentration separation enabling process, about 13 kg of ground soil was insolubilized / concentrated / separated using the same concrete mixer as in the grinding process.

Run−Jでは、除染率が60.9%と小さく、逆に減量率が72.1%と高くなった。一方で、不溶化・濃縮分離可能化処理に実施例1と同じ撹拌混合装置を使用したRun―Kでは、実施例1の除染率及び減量率とほぼ同じ値であった。この結果から乾式分級工程と研削工程との順番は、除染率及び減量率に大きな影響を与えないといえる。   In Run-J, the decontamination rate was as small as 60.9%, and conversely the weight loss rate was as high as 72.1%. On the other hand, in Run-K using the same stirring and mixing apparatus as in Example 1 for the insolubilization / concentration separation enabling process, the values were almost the same as the decontamination rate and the reduction rate in Example 1. From this result, it can be said that the order of the dry classification process and the grinding process does not greatly affect the decontamination rate and the weight reduction rate.

<実施例4>
放射性物質汚染土壌の処理を、(1)乾燥工程、(2)乾式分級工程、(3)研削工程、(4)研削土壌乾式分級工程、(5)研削土壌研削工程、(6)不溶化・濃縮分離可能化工程、(7)磁力選別工程の順に行うことで実施した。実施例3のRun−Kと比較すると(4)研削土壌乾式分級工程及び(5)研削土壌研削工程が追加されている。(4)の研削土壌乾式分級工程では、篩を用いて、表面が削り取られた放射性物質汚染土壌の中から3mm以上の研削土壌を分離し、(5)の研削土壌研削工程では、3mm未満の研削土壌の表面を削り取った。他の条件は、Run−Kと同じである。
<Example 4>
Treatment of radioactive material contaminated soil: (1) Drying process, (2) Dry classification process, (3) Grinding process, (4) Grinding soil dry classification process, (5) Grinding soil grinding process, (6) Insolubilization / concentration It was carried out by performing the separation enabling step and (7) the magnetic force selection step in this order. Compared with Run-K of Example 3, (4) grinding soil dry classification step and (5) grinding soil grinding step are added. In the ground soil dry classification process of (4), using a sieve, the ground soil of 3 mm or more is separated from the radioactive material-contaminated soil whose surface has been scraped off, and in the grinding soil grinding process of (5), the ground soil grinding process is less than 3 mm. The surface of the grinding soil was shaved off. Other conditions are the same as those of Run-K.

実験の結果、除染率は75.3%、減量率は、62.5%であった。この結果から研削工程を2段階で行うことの効果は見られなかった。   As a result of the experiment, the decontamination rate was 75.3%, and the weight loss rate was 62.5%. From this result, the effect of performing the grinding process in two stages was not seen.

1 処理装置
3 乾燥器
5 振動篩
7 研削装置
9 撹拌混合装置
11 撹拌混合装置
13 磁力選別装置
DESCRIPTION OF SYMBOLS 1 Processing apparatus 3 Dryer 5 Vibrating sieve 7 Grinding apparatus 9 Stirring mixing apparatus 11 Stirring mixing apparatus 13 Magnetic sorting apparatus

Claims (10)

被処理物である放射性物質汚染物を乾式分級により、被処理物に比べ放射性物質の濃度が低い予め定める大きさ以上の低濃度汚染物と、被処理物に比べ放射性物質の濃度が高い予め定める大きさ未満の高濃度汚染物とに分離し、該高濃度汚染物を除去することで被処理物である放射性物質汚染物を除染する放射性物質汚染物の処理方法において、
前記乾式分級に先立ち、被処理物である放射性物質汚染物に、放射性物質汚染物の凝集固化を抑え、かつ小さい放射性物質汚染物を優先的に吸着可能な吸着剤を添加、混合し、該吸着剤に小さい放射性物質汚染物を吸着させ、前記乾式分級において前記高濃度汚染物として、予め定める大きさ未満の放射性物質汚染物及び放射性物質汚染物を吸着した前記吸着剤を分離することを特徴とする放射性物質汚染物の処理方法。
Radioactive contaminants that are to be treated are determined by dry classification, and low-concentration contaminants that have a radioactive concentration lower than a predetermined size that is lower than the concentration to be treated and a high concentration of radioactive material that is greater than the amount to be treated. In the method for treating radioactive material contaminants, which are separated into high-concentration contaminants less than the size, and decontaminating the radioactive material contaminants to be treated by removing the high-concentration contaminants,
Prior to the dry classification, an adsorbent capable of suppressing the aggregation and solidification of radioactive material contaminants and preferentially adsorbing small radioactive material contaminants is added to and mixed with the radioactive material contaminants to be treated. A small radioactive substance contaminant is adsorbed on an adsorbent, and the adsorbent adsorbing the radioactive substance contaminant of less than a predetermined size and the radioactive substance contaminant is separated as the high-concentration contaminant in the dry classification. processing method to that radioactive materials contaminants.
前記吸着剤が、可燃性の吸着剤であることを特徴とする請求項に記載の放射性物質汚染物の処理方法。 The method for treating radioactive material contaminants according to claim 1 , wherein the adsorbent is a combustible adsorbent. さらに前記乾式分級により分離された前記高濃度汚染物を焼却し、前記高濃度汚染物の焼却灰を得る焼却工程を含むことを特徴とする請求項1又は2に記載の放射性物質汚染物の処理方法。 The radioactive material contaminant treatment according to claim 1 or 2 , further comprising an incineration step of incinerating the high-concentration contaminants separated by the dry classification to obtain incineration ash of the high-concentration contaminants. Method. さらに前記乾式分級により分離された前記高濃度汚染物及び/又は前記低濃度汚染物に固化剤を添加、混合し、放射性物質を不溶化する不溶化工程を含むことを特徴とする請求項1又は2に記載の放射性物質汚染物の処理方法。 Further adding a solidifying agent to the said high density contaminants separated by dry classification and / or the low density contaminants, mixed in claim 1 or 2, characterized in that it comprises an insolubilization step of insolubilizing the radioactive material The radioactive material contamination treatment method of description. さらに前記高濃度汚染物の焼却灰に、固化剤を添加、混合し、放射性物質を不溶化する不溶化工程を含むことを特徴とする請求項に記載の放射性物質汚染物の処理方法。 The method for treating radioactive material contaminants according to claim 3 , further comprising an insolubilization step of adding and mixing a solidifying agent to the incinerated ash of the high-concentration contaminants to insolubilize the radioactive material. さらに前記固化剤とともに固化助剤を添加、混合し、放射性物質を不溶化することを特徴とする請求項4又は5に記載の放射性物質汚染物の処理方法。 The method for treating radioactive material contaminants according to claim 4 or 5 , further comprising adding and mixing a solidification aid together with the solidifying agent to insolubilize the radioactive material. 前記固化剤が酸化カルシウムであることを特徴とする請求項4から6のいずれか1項に記載の放射性物質汚染物の処理方法。 The method for treating radioactive material contaminants according to claim 4, wherein the solidifying agent is calcium oxide. 前記固化助剤がリン酸塩であることを特徴とする請求項に記載の放射性物質汚染物の処理方法。 The method for treating radioactive material contaminants according to claim 6 , wherein the solidification aid is a phosphate. 前記放射性物質汚染物が、放射性物質汚染土壌、放射性物質汚染産業廃棄物、又は放射性物質汚染土壌と放射性物質汚染産業廃棄物との混合物、さらにこれらと放射性物質を含有する焼却灰との混合物であることを特徴とする請求項1からのいずれか1項に記載の放射性物質汚染物の処理方法。 The radioactive material pollutant is radioactive material-contaminated soil, radioactive material-contaminated industrial waste, a mixture of radioactive material-contaminated soil and radioactive material-contaminated industrial waste, and a mixture of these and incinerated ash containing the radioactive material. The method for treating radioactive material contaminants according to any one of claims 1 to 8 , wherein: 前記放射性物質汚染産業廃棄物が、少なくとも瓦礫、廃プラスチック、木くず、紙くず、又はこれらの破砕物のうちいずれか1種以上を含むことを特徴とする請求項に記載の放射性物質汚染物の処理方法。 The radioactive material-contaminated industrial waste according to claim 9 , wherein the radioactive material-contaminated industrial waste contains at least one of rubble, waste plastic, wood waste, paper waste, and crushed materials thereof. Method.
JP2012115085A 2012-05-18 2012-05-18 Methods for treating radioactive material contaminants Active JP5313387B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012115085A JP5313387B1 (en) 2012-05-18 2012-05-18 Methods for treating radioactive material contaminants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012115085A JP5313387B1 (en) 2012-05-18 2012-05-18 Methods for treating radioactive material contaminants

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013084802A Division JP5683633B2 (en) 2013-04-15 2013-04-15 Method and apparatus for treating radioactive material contaminants

Publications (2)

Publication Number Publication Date
JP5313387B1 true JP5313387B1 (en) 2013-10-09
JP2013242210A JP2013242210A (en) 2013-12-05

Family

ID=49529584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012115085A Active JP5313387B1 (en) 2012-05-18 2012-05-18 Methods for treating radioactive material contaminants

Country Status (1)

Country Link
JP (1) JP5313387B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6916421B2 (en) * 2015-12-17 2021-08-11 広島県公立大学法人 How to use the pollutant dry treatment system and the pollutant dry treatment system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104437B2 (en) * 1987-03-19 1995-11-13 中部電力株式会社 Decontamination method for radioactive granular waste
JP4471110B2 (en) * 2005-02-25 2010-06-02 清水建設株式会社 Method for recycling activated concrete

Also Published As

Publication number Publication date
JP2013242210A (en) 2013-12-05

Similar Documents

Publication Publication Date Title
JP5925016B2 (en) Decontamination method for removing radioactive cesium from combustible materials with radioactive cesium attached
JP6009847B2 (en) Decontamination apparatus and decontamination method for solid matter contaminated with radioactive material
JP5683633B2 (en) Method and apparatus for treating radioactive material contaminants
Mallampati et al. Preferential removal and immobilization of stable and radioactive cesium in contaminated fly ash with nanometallic Ca/CaO methanol suspension
KR102128279B1 (en) Method for separating fine particles in soil using cationic magnetic nanoparticles
JP2013036944A (en) Method for collecting contaminant such as radioactive substance, and collection device thereof
JP2017039123A (en) Treatment method of contaminant
JP2015166080A (en) Method for removing harmful substance in aqueous solution
Park et al. Active and selective removal of Cs from contaminated water by self-propelled magnetic illite microspheres
JP2013160666A (en) Method for safely disposing burned ash containing radioactive cesium
JP5755377B2 (en) Method for producing radioactive cesium decontaminant and method for removing radioactive cesium
JP5313387B1 (en) Methods for treating radioactive material contaminants
JP2014226588A (en) Contaminant-containing solid treatment method and treatment agent for contaminant-containing solid
JP2014073474A (en) Treatment method of metal ion containing water
JP5246818B2 (en) Radioactive material contaminated soil treatment method and radioactive material insolubilizer
JP6105363B2 (en) Pollutant removal method and magnetic decontamination method
KR101579795B1 (en) Method of Removing Cesium from Wastewater by the Solidified Sericite
JP2014074694A (en) Method for removing radioactive cesium
JP2018103133A (en) Soil treatment material and purification method of heavy metal contaminated soil
JP6137887B2 (en) Method for decontamination of soil containing radioactive material
JP6629095B2 (en) Treatment of solids containing pollutants
JP2014142311A (en) Method for decontaminating contaminated soil or incineration ash
JP5934021B2 (en) Method for producing cesium adsorbent
JP6196770B2 (en) Processing method of radioactive material-containing granular material
JP2016185500A (en) Cleaning method using cleaning agent and heavy metal adsorbent

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130703

R150 Certificate of patent or registration of utility model

Ref document number: 5313387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250