JP5312089B2 - Ladle with excellent residual steel reduction - Google Patents

Ladle with excellent residual steel reduction Download PDF

Info

Publication number
JP5312089B2
JP5312089B2 JP2009037845A JP2009037845A JP5312089B2 JP 5312089 B2 JP5312089 B2 JP 5312089B2 JP 2009037845 A JP2009037845 A JP 2009037845A JP 2009037845 A JP2009037845 A JP 2009037845A JP 5312089 B2 JP5312089 B2 JP 5312089B2
Authority
JP
Japan
Prior art keywords
ladle
hot water
molten steel
refractory
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009037845A
Other languages
Japanese (ja)
Other versions
JP2010188404A (en
Inventor
高 小林
努 吉本
典央 坂口
国夫 野坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009037845A priority Critical patent/JP5312089B2/en
Publication of JP2010188404A publication Critical patent/JP2010188404A/en
Application granted granted Critical
Publication of JP5312089B2 publication Critical patent/JP5312089B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

本発明は、残鋼低減に優れた取鍋に関する。   The present invention relates to a ladle that is excellent in reducing remaining steel.

従来より、製鋼工程にて使用される取鍋は、転炉からの溶鋼を受鋼して二次精錬工程へ搬送したり、二次精錬工程を終了した溶鋼を連続鋳造工程に搬送するのに用いられている。 このように、取鍋は、一次精錬〜二次精錬〜連続鋳造にわたって広く用いられるため、内部に施工される耐火物には様々な工夫がなされているのが実情である。例えば、転炉からの溶鋼を受鋼する際は、上方から落下する溶鋼を受けるため、取鍋の底部の耐火物は、他の部分に比べて消耗し易い状態にある。
そこで、この点に着目して、取鍋の底部の耐火物を予め盛り上げるという技術が開示されている(例えば、特許文献1、特許文献2)。
Conventionally, ladle used in the steelmaking process receives molten steel from the converter and transports it to the secondary refining process, or transports molten steel that has finished the secondary refining process to the continuous casting process. It is used. Thus, since the ladle is widely used over primary refining-secondary refining-continuous casting, it is the actual situation that various devices are made to the refractory constructed inside. For example, when receiving the molten steel from the converter, the refractory at the bottom of the ladle is more easily consumed than the other parts because it receives the molten steel falling from above.
Then, paying attention to this point, the technique of raising beforehand the refractory of the bottom part of a ladle is disclosed (for example, patent document 1, patent document 2).

特許文献1では、取鍋の底部の湯落ち部を、なめらかに湾曲した凸状とし、湯落ち部の寿命が長くなるようにしている。
特許文献2では、取鍋敷部のうち溶鋼による損傷が激しい部位、特に、製鋼炉からの出鋼流が衝突する所謂、湯当たり部には、煉瓦の目地無し構造とするために耐火性のプレキャストブロックを配置して高くしている。
特許文献1及び特許文献2に示すように、転炉からの溶鋼が衝突する湯落ち部や湯当たり部を凸状にしたものではないが、取鍋の底部を高くしたものとして特許文献3に示すものがある。この特許文献3には、不定形耐火物層の層厚230mmに対して敷部の湯当たり部を150mm嵩上げし380mmとすることが開示されている。
In patent document 1, the hot water dropping part of the bottom part of a ladle is made into the convex shape curved smoothly, so that the lifetime of a hot water dropping part may become long.
In Patent Document 2, a part of the ladle laying part, which is severely damaged by molten steel, in particular, a so-called hot water hitting part where a steel flow from a steelmaking furnace collides has a refractory structure in order to have a brick jointless structure. Precast blocks are placed and raised.
As shown in Patent Document 1 and Patent Document 2, although the hot water falling part and the hot water hitting part where the molten steel from the converter collides are not convex, Patent Document 3 assumes that the bottom of the ladle is raised. There is something to show. Patent Document 3 discloses that the hot water contact portion of the floor portion is raised by 150 mm to 380 mm with respect to the layer thickness of 230 mm of the irregular refractory layer.

実開昭59−85667号公報Japanese Utility Model Publication No.59-85667 特開平9−174230号公報JP 9-174230 A 特開平9−141419号公報JP-A-9-141419

特許文献1や特許文献2は、湯落ち部や湯当たり部を凸状にすることで、溶鋼が衝突する耐火物の部位における寿命を長くするということが開示されているものの、湯落ち部や湯当たり部の大きさなどの詳細な説明はなされておらず、実際の操業にこれらの技術を用いることができないのが実情である。
一方で、特許文献3では、取鍋の底部に設けた凸部の大きさを開示しているものの、その大きさは溶鋼が衝突するという観点から規定されていないため、この技術を用いることもできないのが実情である。
Patent Document 1 and Patent Document 2 disclose that the hot water drop portion and the hot water contact portion are convex, thereby prolonging the life in the part of the refractory that the molten steel collides with. There is no detailed description of the size of the hot water contact area, and the fact is that these techniques cannot be used in actual operations.
On the other hand, although Patent Document 3 discloses the size of the convex portion provided at the bottom of the ladle, the size is not defined from the viewpoint that the molten steel collides, so this technique may be used. The reality is that you can't.

そこで、本発明は、上記問題点に鑑み、溶鋼が衝突する湯当たり部についての大きさを規定することによって残鋼低減に優れた取鍋を提供することを目的とする。   Then, in view of the said problem, this invention aims at providing the ladle excellent in the remaining steel reduction by prescribing | regulating the magnitude | size about the hot water contact part which a molten steel collides.

前記目的を達成するために、本発明は、次の手段を講じた。
即ち、本発明における課題解決のための技術的手段は、残鋼低減に優れると共に、耐火物の剥離を防止し、且つ溶鋼を注入するノズルの開口不良を防止する取鍋であって、前記取鍋の底部の内面に関して、上側から装入された溶鋼が衝突する湯当たり部を、耐火物の施工を終了した時点において、他の底部よりも高くした円形部とし、前記円形部の高さを105mm以上120mm以下とすると共に、円形部の半径を800mm以上900mm以下とし、円形部の端部から注入孔の端部までの距離を1000mm以上1200mm以下とする点にある。
発明者は、製鋼工程における底部の状況を検討したところ、転炉から出鋼した時などに上側から装入された溶鋼が底部に衝突することが繰り返されると、次第に底部が凹み、その凹部の大きさも次第に大きくなることが分かった。ここで、発明者は、従来のような耐火物の寿命を長くするという観点だけでなく、凹部が形成されたことによるその他の影響についてさらに検証を進めた。
In order to achieve the above object, the present invention has taken the following measures.
That is, the technical means for solving the problems in the present invention is a ladle that is excellent in reducing the remaining steel, prevents the refractory from being peeled off, and prevents the defective opening of the nozzle for injecting molten steel. Regarding the inner surface of the bottom of the pan, the hot water impingement portion where the molten steel charged from the upper side collides is a circular portion that is higher than the other bottom when the construction of the refractory is completed, and the height of the circular portion is In addition to being 105 mm to 120 mm, the radius of the circular portion is 800 mm to 900 mm, and the distance from the end of the circular portion to the end of the injection hole is 1000 mm to 1200 mm.
The inventor examined the situation of the bottom in the steel making process, and when the molten steel charged from the upper side repeatedly hits the bottom, such as when the steel was discharged from the converter, the bottom gradually became concave, It was found that the size gradually increased. Here, the inventor has further investigated not only the conventional viewpoint of extending the life of the refractory but also other influences due to the formation of the recess.

その結果、凹部が次第に大きくなると、取鍋から溶鋼を流出した際に、凹部に溜まった溶鋼が流出できなくなり、取鍋に残る溶鋼の残鋼量が多くなることが分かった。
そこで、発明者は、溶鋼の残鋼量を少なくするという観点から、湯当たり部の大きさを検証したところ、当該湯当たり部を他の底部よりも高くした円形部とし、円形部の高さを105mm以上120mm以下とすると共に、円形部の半径を800mm以上900mm以下とし、円形部の端部から注入孔の端部までの距離を1000mm以上1200mm以下にすることによって、残鋼量を出来る限り少なくできることを見出した。
As a result, it was found that when the concave portion gradually increased, when the molten steel flowed out from the ladle, the molten steel accumulated in the concave portion could not flow out, and the amount of molten steel remaining in the ladle increased.
Therefore, the inventor examined the size of the hot water contact portion from the viewpoint of reducing the amount of remaining steel in the molten steel, and determined that the hot water contact portion was a circular portion higher than the other bottom portion, and the height of the circular portion. Is set to 105 mm or more and 120 mm or less, the radius of the circular part is set to 800 mm or more and 900 mm or less, and the distance from the end of the circular part to the end of the injection hole is set to 1000 mm or more and 1200 mm or less, so that the remaining steel amount is as much as possible. I found that I can do less.

しかも、湯当たり部の大きさの検証の中では、残鋼の残鋼量を少なくするだけでなく、湯当たり部(底部)の剥離や溶鋼を流出させる場合の開口不良などが発生しないものとした。
なお、上述したような問題は、容量(溶鋼の貯留する量)が200ton以上300ton以下となる取鍋で発生することから、このクラスの取鍋を対象としている。
Moreover, in the verification of the size of the hot water contact part, not only the amount of remaining steel in the remaining steel is reduced, but also there is no occurrence of defective opening when the hot metal contact part (bottom part) is peeled off or the molten steel flows out. did.
In addition, since the problem as described above occurs in a ladle having a capacity (amount of molten steel stored) of 200 ton or more and 300 ton or less, this type of ladle is targeted.

本発明によれば、湯当たり部の剥離や溶鋼を流出させる場合の開口不良が発生することなく、残鋼を低減することができる。   According to the present invention, it is possible to reduce the remaining steel without causing peeling of the hot water contact part or defective opening when the molten steel flows out.

製鋼工程を示したものである。The steel making process is shown. 取鍋の断面側面図を示した図である。It is the figure which showed the cross-sectional side view of a ladle. 取鍋の平面図である。It is a top view of a ladle. 取鍋の使用後の状態を示す図である。It is a figure which shows the state after use of a ladle.

以下、本発明の実施の形態を、図面に基づき説明する。
図1は、本発明の取鍋が用いられる製鋼工程を示したものである。
図1に示すように、この製鋼工程は、溶湯の脱炭処理を行う一次精錬工程と、一次精錬工程での処理が終了した溶湯(溶鋼)に対して介在物の分離浮上や成分調整等を行う二次精錬工程と、二次精錬工程での処理が終了した溶湯を鋳造する連続鋳造工程とからなる。本発明の取鍋1は、一次精錬工程、二次精錬工程、連続鋳造工程にて使用され、連続鋳造工程後に溶鋼が空になった取鍋1は、一次精錬工程に戻されて再び使用されることになる。一次精錬工程〜連続鋳造工程までを1サイクルとすると、取鍋1の使用回数は、80サイクル〜90サイクルである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a steel making process in which the ladle according to the present invention is used.
As shown in FIG. 1, the steelmaking process includes a primary refining process for decarburizing the molten metal, and separation and flotation of inclusions and component adjustment with respect to the molten metal (molten steel) that has been processed in the primary refining process. It consists of a secondary refining process to be performed and a continuous casting process for casting the molten metal that has been processed in the secondary refining process. The ladle 1 of the present invention is used in the primary refining process, the secondary refining process, and the continuous casting process. The ladle 1 in which the molten steel is emptied after the continuous casting process is returned to the primary refining process and used again. Will be. If the cycle from the primary refining process to the continuous casting process is one cycle, the number of uses of the ladle 1 is 80 cycles to 90 cycles.

一次精錬工程では、転炉2にて溶湯の脱炭処理が完了後、脱炭処理が終了した溶鋼を出鋼する。このとき、本発明の取鍋1にて溶鋼を受鋼し、当該取鍋1にて二次精錬工程に搬送する。二次精錬工程では、RH装置、LF装置、CAS装置等の二次精錬装置3にて、取鍋1内の溶鋼に対して成分の微調整や介在物の浮上分離を行う。二次精錬工程が終了すると溶鋼が入った取鍋1を連続鋳造工程に搬送する。
連続鋳造工程では、二次精錬工程から搬送された取鍋1を、連続鋳造装置4のタンディッシュ5の上方側に配置して、当該取鍋1内の溶鋼をタンディッシュ5に装入してタンディッシュ5内の溶鋼を鋳型6に注入することにより、溶鋼の鋳造を行う。連続鋳造工程にて取鍋1内の溶鋼が空になると、当該取鍋1は、一次精錬工程、即ち、転炉1まで搬送され、一次精錬工程にて転炉1から出鋼した溶鋼を受鋼する。
In the primary refining process, after the decarburization process of the molten metal is completed in the converter 2, the molten steel after the decarburization process is completed. At this time, molten steel is received by the ladle 1 of the present invention, and conveyed to the secondary refining process by the ladle 1. In the secondary refining process, fine adjustment of components and floating separation of inclusions are performed on the molten steel in the ladle 1 in the secondary refining apparatus 3 such as an RH apparatus, an LF apparatus, and a CAS apparatus. When the secondary refining process is completed, the ladle 1 containing molten steel is conveyed to the continuous casting process.
In the continuous casting process, the ladle 1 conveyed from the secondary refining process is arranged on the upper side of the tundish 5 of the continuous casting apparatus 4, and the molten steel in the ladle 1 is charged into the tundish 5. The molten steel in the tundish 5 is poured into the mold 6 to cast the molten steel. When the molten steel in the ladle 1 is emptied in the continuous casting process, the ladle 1 is transported to the primary refining process, that is, the converter 1 and receives the molten steel discharged from the converter 1 in the primary refining process. Steel.

以下、本発明の取鍋1について詳しく説明する。
図2、図3に示すように、容量(溶鋼の貯留する量)が200ton以上300ton以下となる取鍋1を対象としている。取鍋1は、主に、取鍋1の本体を構成する有底状の鉄皮10と、この鉄皮10に施工された耐火物11により構成されている。図2の矢印Aは、転炉1から溶鋼を取鍋1内に出鋼した際に溶鋼の軌道を示したものである。
鉄皮10は、大別して、円形状となっている底壁部12と、この底壁部12から一方向(例えば、上方)に立ち上がる胴壁部13とを備えている。底壁部12には、定形の定形耐火物(耐火レンガ)14が設けられ、当該定形耐火物14の内面側に不定形耐火物15が設けられている。鉄皮10の底壁部12と、この底壁部12に設けた定形耐火物14と、この定形耐火物14の内面側に設けられた不定形耐火物15により、取鍋1の底部16が構成されている。なお、胴壁部13にも、定形耐火物が設けられ、この定形耐火物の内面側に不定形耐火物が設けられたものとなっている。また、胴壁部13及び底壁部12に設けられる耐火物は、定形耐火物14であっても不定形耐火物15であってもよく、その順番や種類等は限定されない。
Hereinafter, the ladle 1 of the present invention will be described in detail.
As shown in FIGS. 2 and 3, the ladle 1 whose capacity (amount of molten steel is stored) is 200 ton or more and 300 ton or less. The ladle 1 is mainly composed of a bottomed iron skin 10 constituting the main body of the ladle 1 and a refractory 11 constructed on the iron skin 10. An arrow A in FIG. 2 shows the trajectory of the molten steel when the molten steel is taken out from the converter 1 into the ladle 1.
The iron skin 10 is roughly divided and includes a bottom wall portion 12 having a circular shape and a body wall portion 13 rising from the bottom wall portion 12 in one direction (for example, upward). A fixed refractory (refractory brick) 14 is provided on the bottom wall portion 12, and an irregular refractory 15 is provided on the inner surface side of the fixed refractory 14. The bottom 16 of the ladle 1 is formed by the bottom wall 12 of the iron shell 10, the regular refractory 14 provided on the bottom wall 12, and the irregular refractory 15 provided on the inner surface side of the regular refractory 14. It is configured. The body wall portion 13 is also provided with a regular refractory, and an irregular refractory is provided on the inner surface side of the regular refractory. Moreover, the refractory provided in the trunk wall part 13 and the bottom wall part 12 may be the regular refractory 14 or the irregular refractory 15, and the order and type thereof are not limited.

取鍋1の底部16において、当該底部16を貫通することにより構成された注入孔17が設けられている。例えば、この注入孔17は、溶鋼をタンディッシュ等に注入する際に用いられるもので、底壁部12と、この底壁部12に設けた定形耐火物14及び不定形耐火物15を貫通状して構成されている。
取鍋1における底部16の内面側に関して、上側から装入された溶鋼が衝突する部分20(以降、湯当たり部20という)を、他の底部16よりも高くした円形(以降、円形部ということがある)としている。
In the bottom portion 16 of the ladle 1, an injection hole 17 configured by penetrating the bottom portion 16 is provided. For example, the injection hole 17 is used when pouring molten steel into a tundish or the like, and penetrates the bottom wall portion 12 and the regular refractory 14 and the irregular refractory 15 provided on the bottom wall portion 12. Configured.
Regarding the inner surface side of the bottom portion 16 in the ladle 1, a circular shape (hereinafter referred to as a circular portion) in which a portion 20 (hereinafter referred to as a hot water hitting portion 20) where molten steel charged from above collides is higher than the other bottom portion 16. There is).

この湯当たり部20とは、図2に示すように、転炉1から溶鋼を出鋼したときに、上方から落下する溶鋼が直接衝突する部分である。この実施形態では、底部16の中央部分に落下してきた溶鋼が衝突することから、その中央部分を湯当たり部20としている。そして、この円形状の湯当たり部20(前記円形部)は、鉄皮10の底壁部12上に設けた不定形耐火物15において、その中央部付近を円形状に盛り上げることによって構成されている。なお、この実施形態では、盛り上げ後の上面は、一定の高さにて平坦にしている。
また、この実施形態では、湯当たり部20を平面視したときに、湯当たり部20の中心は取鍋1の中心と一致しているが、これに限らず、湯当たり部20の中心は取鍋1の中心から径方向にずれた位置であってもよく、湯当たり部20の位置は、図2及び図3に示した位置に限定されない。
As shown in FIG. 2, the hot water contact portion 20 is a portion where the molten steel falling from above directly collides when the molten steel is discharged from the converter 1. In this embodiment, since the molten steel that has fallen on the central portion of the bottom portion 16 collides, the central portion is used as the hot water contact portion 20. The circular hot water contact portion 20 (the circular portion) is formed by raising the vicinity of the center of the amorphous refractory 15 provided on the bottom wall portion 12 of the iron shell 10 into a circular shape. Yes. In this embodiment, the upper surface after raising is flat at a certain height.
Further, in this embodiment, when the hot water contact portion 20 is viewed in plan, the center of the hot water contact portion 20 coincides with the center of the ladle 1. The position shifted in the radial direction from the center of the pan 1 may be used, and the position of the hot water contact portion 20 is not limited to the position shown in FIGS.

耐火物の施工を終了した時点(湯当たり部20の施工終了直後)において、円形部(湯当たり部20)の高さhは、105mm以上120mm以下となっている。円形部の高さhとは、不定形耐火物15を盛り上げている部分の高さである(湯当たり部20と、当該湯当たり部が形成されていない非湯当たり部21との段差)。
湯当たり部20の高さhが105mm未満であると、取鍋1の使用回数が増えてくると、湯当たり部20にも凹み(溶鋼が溜まる凹み)が形成されて、湯当たり部20の効果が少なくなり残鋼量が増加するという傾向にある。
At the time when the construction of the refractory is finished (immediately after the construction of the hot water contact portion 20), the height h of the circular portion (the hot water contact portion 20) is 105 mm or more and 120 mm or less. The height h of the circular portion is the height of the portion where the irregular refractory 15 is raised (step difference between the hot water contact portion 20 and the non-hot water contact portion 21 where the hot water contact portion is not formed).
If the height h of the hot water contact portion 20 is less than 105 mm, when the number of uses of the ladle 1 increases, a dent (a dent in which molten steel accumulates) is also formed in the hot water contact portion 20, and The effect tends to decrease and the amount of remaining steel tends to increase.

一方で、円形部(湯当たり部20)の高さhが120mmを超えてしまうと、取鍋1の使用回数が少ない初期段階において、転炉1からの溶鋼を受鋼した際に、不定形耐火物15が剥離し易くなる。
耐火物の施工を終了した時点において、円形部(湯当たり部20)の半径Rは800mm以上900mm以下となっている。湯当たり部20の800mm未満であると、湯当たり部20が小さ過ぎるため、溶鋼を受鋼した際に湯当たり部20以外の部分(非湯当たり部21)にも溶鋼が衝突してしまい、湯当たり部20以外の部分(非湯当たり部21)に凹みが生じて、残鋼量が増加する傾向にある。
On the other hand, when the height h of the circular portion (hot water contact portion 20) exceeds 120 mm, when the molten steel from the converter 1 is received in the initial stage where the number of times of use of the ladle 1 is small, the irregular shape is obtained. The refractory 15 is easily peeled off.
At the time when the construction of the refractory is finished, the radius R of the circular portion (hot water contact portion 20) is 800 mm or more and 900 mm or less. If the hot water hitting portion 20 is less than 800 mm, the hot water hitting portion 20 is too small, so when the molten steel is received, the molten steel collides with a portion other than the hot water hitting portion 20 (non-hot water hitting portion 21), A dent is generated in a portion other than the hot water contact portion 20 (non-hot water contact portion 21), and the amount of remaining steel tends to increase.

一方で、円形部(湯当たり部20)の半径Rが900mmよりも大きいと、湯当たり部20が大きすぎるため、図2の矢印Bに示すように、湯当たり部20の中心付近にある溶鋼が、当該湯当たり部20の全体に広がる時間と非湯当たり部21の全体に広がる時間とに若干の時間差が生じる。即ち、円形部の半径Rが900mmよりも大きいと、溶鋼の受鋼の際に、底部16を全体の温度分布を見ると湯当たり部20と非湯当たり部21との温度不均一や湯当たり部20内での温度不均一が生じやすくなり、温度分布のバラツキにより耐火物(不定形耐火物15)の剥離が生じやすくなる。   On the other hand, when the radius R of the circular portion (hot water contact portion 20) is larger than 900 mm, the hot water contact portion 20 is too large. Therefore, as shown by the arrow B in FIG. However, there is a slight time difference between the time spreading over the entire hot water hitting portion 20 and the time spreading across the entire hot water hitting portion 21. That is, when the radius R of the circular portion is larger than 900 mm, when receiving the molten steel, the temperature of the bottom portion 16 is not uniform between the hot water contact portion 20 and the non-hot water contact portion 21 or hot water contact when the entire temperature distribution is viewed. Temperature non-uniformity is likely to occur in the portion 20, and the refractory (unshaped refractory 15) is likely to be peeled off due to variations in temperature distribution.

耐火物の施工を終了した時点において、円形部(湯当たり部20)の端部(外縁部)21aから注入孔17の端部(外縁部)17aまでの直線距離(注入孔間距離ということがある)Lは1000mm以上1200mm以下となっている。言い換えれば、注入孔間距離Lは、湯当たり部20と非湯当たり部21の境界部から注入孔17の上端部17aまでの水平最短距離である。
注入孔間距離Lが1000mm未満であると、円形部(湯当たり部20)と注入孔17との距離が短すぎるために、円形部から注入孔17に向けて流れる溶鋼が勢い良く注入孔17に達するため、注入孔17を塞いでいる詰め砂を流し出してしまうことがある。その結果、取鍋1を連続鋳造装置4に設置してタンディッシュ5に溶鋼を注入する際、取鍋1の注入孔17に設けたノズル22を開いても注入孔17から溶鋼が流出しないという開口不良が発生する場合がある。
When the construction of the refractory is finished, the linear distance (distance between the injection holes) from the end portion (outer edge portion) 21a of the circular portion (hot water contact portion 20) to the end portion (outer edge portion) 17a of the injection hole 17 is called. L) is not less than 1000 mm and not more than 1200 mm. In other words, the inter-injection hole distance L is the shortest horizontal distance from the boundary between the hot water contact portion 20 and the non-hot water contact portion 21 to the upper end portion 17a of the injection hole 17.
If the distance L between the injection holes is less than 1000 mm, the distance between the circular portion (hot water contact portion 20) and the injection hole 17 is too short, so that the molten steel flowing from the circular portion toward the injection hole 17 is vigorously injected. Therefore, the filling sand blocking the injection hole 17 may be washed out. As a result, when the ladle 1 is installed in the continuous casting apparatus 4 and molten steel is injected into the tundish 5, the molten steel does not flow out of the injection hole 17 even if the nozzle 22 provided in the injection hole 17 of the ladle 1 is opened. Opening defects may occur.

一方で、注入孔間距離Lが1200mmよりも大きくなると、円形部(湯当たり部20)と注入孔17との距離が長すぎるため、湯当たり部20の中心付近にある溶鋼が、当該湯当たり部20を通って注入孔17に向けて流れるまでに多少時間がかかる。即ち、注入孔間距離Lが1200mmよりも大きくなると、溶鋼の受鋼の際に、底部16を全体の温度分布を見ると、湯当たり部20の温度よりも注入孔17の温度が低いという温度不均一が生じやすくなり、その結果、注入孔17の付近の溶鋼が固まりやすく、開口不良が発生する場合がある。   On the other hand, if the distance L between the injection holes is greater than 1200 mm, the distance between the circular portion (hot water contact portion 20) and the injection hole 17 is too long, so the molten steel near the center of the hot water contact portion 20 It takes some time to flow through the portion 20 toward the injection hole 17. That is, when the distance L between the injection holes is larger than 1200 mm, the temperature of the injection hole 17 is lower than the temperature of the hot water contact part 20 when the entire temperature distribution of the bottom part 16 is seen when receiving the molten steel. Inhomogeneity is likely to occur, and as a result, the molten steel in the vicinity of the injection hole 17 tends to harden and an opening defect may occur.

表1〜表2は、本発明の取鍋1を使用した場合の実施例と、本発明の取鍋1を使用しなかった場合の比較例とをまとめたものである。   Tables 1 and 2 summarize examples when the ladle 1 of the present invention is used and comparative examples when the ladle 1 of the present invention is not used.

実施例及び比較例では、湯当たり部20を含む底部16における不定形耐火物15は、アルミナ(Al23)の重量比が88〜92%、シリカ(SiO2)の重量比が1〜3%、マグネシア(MgO)の重量比が5〜7%の当業者常用のもの(キャスタブル)を使用した(表中、キャスタブル中MgO、キャスタブル中SiO2、キャスタブル中Al23、キャスタブル中その他)。
なお、表中のキャスタブル厚みは、湯あたり部を除く部分の不定形耐火物15の厚みを示している(底部16において湯あたり部を除く部分)。
In the examples and comparative examples, the amorphous refractory 15 in the bottom portion 16 including the hot water contact portion 20 has an alumina (Al 2 O 3 ) weight ratio of 88 to 92% and a silica (SiO 2 ) weight ratio of 1 to 1. 3%, magnesia (in the table using a weight ratio of 5-7% of those skilled in the art regular use (castable) of (MgO), castable in MgO, castable in SiO 2, castable in Al 2 O 3, other in castable ).
The castable thickness in the table indicates the thickness of the amorphous refractory 15 in the portion excluding the hot water perimeter (the portion excluding the hot water perimeter in the bottom 16).

実施例及び比較例では、使用後の取鍋1を反転することで内部に残留したスラグと地金を外部に排出し、これを冷却後にスラグと地金に分別し、地金のみを秤量することで残鋼量を求めた。そして、実施例及び比較例では、残鋼量が取鍋1の使用回数の増加に伴い増加した場合を取鍋1内残鋼量増が有りとし、変化しなかったもの(増加経過しなかったもの)を取鍋内残鋼量増が無しとした(表中、取鍋1内残鋼量増、有り「×」、無し「○」)。
実施例及び比較例では、取鍋1のノズル22を開いても注入孔17から溶鋼が流出しない場合を開口不良発生が有りとし、ノズル22を開いて溶鋼が流出した場合を開口不良発生が無しとした(表中、開口不良発生、有り「×」、無し「○」)。開口不良発生の場合は、操業者(オペレータ)が、鉄パイプ等を用いてノズル22の内部に酸素を流入させることで、ノズル22の内部で溶鋼流の障害となっている地金などを溶解するという強制的な方法を用いて流出させた。
In Examples and Comparative Examples, the slag and bullion remaining inside are discharged to the outside by inverting the ladle 1 after use, and after cooling, this is separated into slag and bullion, and only the bullion is weighed. The amount of remaining steel was calculated. And in an Example and a comparative example, when the amount of remaining steel increased with the increase in the use frequency of the ladle 1, there was an increase in the amount of remaining steel in the ladle 1 and it did not change (the increase did not progress). No.) No increase in remaining steel in ladle (In the table, there is an increase in remaining steel in ladle 1, “×”, “O”).
In Examples and Comparative Examples, when the molten steel does not flow out from the injection hole 17 even when the nozzle 22 of the ladle 1 is opened, there is an occurrence of defective opening, and when the molten steel flows out when the nozzle 22 is opened, no defective opening occurs. (In the table, the occurrence of defective opening, presence “×”, absence “◯”). In the case of a defective opening, the operator (operator) uses oxygen pipes or the like to cause oxygen to flow into the nozzle 22 to dissolve the bullion that has obstructed the molten steel flow inside the nozzle 22. It was leaked using a compulsory method.

図4に示すように、取鍋1は毎回の使用後、耐火物の状態を確認し、敷き部(底部16)の耐火物に剥離がないかを目視にて確認した。敷き部(底部16)の耐火物(不定形耐火物15)に剥離が生じたものを、敷き部の剥離が有りとし、剥離が生じなかったものを無しとした(表中、敷き部の剥離、有り「×」、無し「○」)。
なお、連続鋳造工程では、取鍋1を、当業者常法通りに連続鋳造装置4のタンディッシュ5の上方側(設置台25上)に配置して、当該取鍋1から溶鋼を注入した。また、設置台25上では、取鍋1内の溶鋼が注入孔17に集まって、当該注入孔17から流出し易いようにノズル22(注入孔17)側に当該取鍋1を傾けた。取鍋1の傾斜角度は最大でも2度である。
As shown in FIG. 4, the ladle 1 checked the state of the refractory after each use, and visually confirmed whether the refractory on the laying portion (bottom 16) had peeled off. The refractory material (unshaped refractory 15) in the laying part (bottom part 16) was peeled off, and the laying part was peeled off, and the refractory was not peeled off (the peeling of the laying part in the table). , Yes “×”, No “○”).
In addition, in the continuous casting process, the ladle 1 was arrange | positioned on the upper side (on the installation stand 25) of the tundish 5 of the continuous casting apparatus 4 like a person skilled in the art, and molten steel was poured from the ladle 1 concerned. In addition, on the installation table 25, the ladle 1 is tilted toward the nozzle 22 (injection hole 17) so that the molten steel in the ladle 1 gathers in the injection hole 17 and easily flows out of the injection hole 17. The inclination angle of the ladle 1 is at most 2 degrees.

実施例1〜実施例18に示すように、湯当たり部20を円形部とし、円形部の高さhを105mm以上120mm以下とすると共に、円形部の半径Rを800mm以上900mm以下とし、円形部の端部から注入孔17の端部までの距離を1000mm以上1200mm以下とすれば、取鍋1の使用回数が増加しても、取鍋1の残鋼が増加するという傾向はなく、開口不良や底部16における耐火物の剥離も全く発生しなかった(表中、取鍋内残鋼増、評価「○」、開口不良発生、評価「○」、敷き部の剥離、評価「○」)。
一方で、比較例19及び比較例21に示すように、円形部の高さhが105mm未満であると、取鍋1の使用回数が増加するにつれて、取鍋1の残鋼が増加するという傾向があった(表中、取鍋内残鋼増、評価「×」)。また、比較例20、比較例22及び比較例23に示すように、円形部の高さhが120mmを超えると、底部16において耐火物の剥離が発生した(表中、敷き部の剥離、評価「×」)。
As shown in Examples 1 to 18, the hot water contact portion 20 is a circular portion, the height h of the circular portion is 105 mm or more and 120 mm or less, the radius R of the circular portion is 800 mm or more and 900 mm or less, and the circular portion If the distance from the end of the ladle to the end of the injection hole 17 is 1000 mm or more and 1200 mm or less, even if the number of uses of the ladle 1 is increased, there is no tendency for the remaining steel of the ladle 1 to increase, and the opening failure Also, no refractory peeling occurred at the bottom 16 (in the table, the remaining steel in the ladle increased, evaluation “◯”, defective opening, evaluation “◯”, laying peeling, evaluation “◯”).
On the other hand, as shown in Comparative Example 19 and Comparative Example 21, when the height h of the circular portion is less than 105 mm, the remaining steel of the ladle 1 tends to increase as the number of uses of the ladle 1 increases. (In the table, the remaining steel in the ladle increased, evaluation “×”). Moreover, as shown in Comparative Example 20, Comparative Example 22 and Comparative Example 23, when the height h of the circular portion exceeded 120 mm, refractory peeling occurred at the bottom 16 (in the table, peeling of the laying portion, evaluation) "X").

比較例24、比較例26及び比較例28に示すように、円形部の半径Rが800mm未満であると、取鍋1の使用回数が増加するにつれて、取鍋1の残鋼が増加するという傾向があった(表中、取鍋内残鋼増、評価「×」)。また、比較例25及び比較例27に示すように、円形部の半径Rが900mmを超えると、底部16において耐火物の剥離が発生した(表中、敷き部の剥離、評価「×」)。
比較例29及び比較例32に示すように、円形部の端部から注入孔17の端部までの距離が1200mmを超えると、開口不良が生じた(表中、開口不良発生、評価「×」)。比較例30、比較例31及び比較例33に示すように、円形部の端部から注入孔17の端部までの距離が1000mm未満であると、開口不良が生じた(表中、開口不良発生、評価「×」)。
As shown in Comparative Example 24, Comparative Example 26, and Comparative Example 28, when the radius R of the circular portion is less than 800 mm, the remaining steel of the ladle 1 tends to increase as the number of uses of the ladle 1 increases. (In the table, the remaining steel in the ladle increased, evaluation “×”). Further, as shown in Comparative Example 25 and Comparative Example 27, when the radius R of the circular portion exceeded 900 mm, the refractory was peeled off at the bottom 16 (in the table, peeling of the laying portion, evaluation “×”).
As shown in Comparative Example 29 and Comparative Example 32, when the distance from the end of the circular portion to the end of the injection hole 17 exceeded 1200 mm, an opening failure occurred (in the table, the occurrence of an opening failure, evaluation “x”). ). As shown in Comparative Example 30, Comparative Example 31, and Comparative Example 33, an opening failure occurred when the distance from the end of the circular portion to the end of the injection hole 17 was less than 1000 mm (the occurrence of an opening failure in the table). , Rating "x").

なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 取鍋
2 転炉
3 二次精錬装置
4 連続鋳造装置
5 タンディッシュ
6 鋳型
10 鉄皮
11 底壁部
12 胴壁部
13 定形耐火物
14 不定形耐火物
15 底部
16 注入孔
20 湯当たり部
21 非湯当たり部
22 ノズル
DESCRIPTION OF SYMBOLS 1 Ladle 2 Converter 3 Secondary refining apparatus 4 Continuous casting apparatus 5 Tundish 6 Mold 10 Iron skin 11 Bottom wall part 12 Body wall part 13 Shaped refractory 14 Amorphous refractory 15 Bottom 16 Injection hole 20 Hot water contact part 21 Non-bath area 22 nozzle

Claims (1)

容量が200ton以上300ton以下であり、製鋼工程にて使用される取鍋において、
前記取鍋の底部の内面に関して、上側から装入された溶鋼が衝突する湯当たり部を、耐火物の施工を終了した時点において、他の底部よりも高くした円形部とし、
前記円形部の高さを105mm以上120mm以下とすると共に、円形部の半径を800mm以上900mm以下とし、円形部の端部から注入孔の端部までの距離を1000mm以上1200mm以下とすることを特徴とする残鋼低減に優れると共に、耐火物の剥離を防止し、且つ溶鋼を注入するノズルの開口不良を防止する取鍋。
In the ladle whose capacity is 200 ton or more and 300 ton or less and used in the steel making process,
Regarding the inner surface of the bottom portion of the ladle, the hot water impingement portion where the molten steel charged from above collides with the circular portion made higher than the other bottom portion when the construction of the refractory is finished ,
The height of the circular part is 105 mm or more and 120 mm or less, the radius of the circular part is 800 mm or more and 900 mm or less, and the distance from the end of the circular part to the end of the injection hole is 1000 mm or more and 1200 mm or less. A ladle that is excellent in reducing the remaining steel and prevents the refractory from peeling off and prevents the nozzle from injecting molten steel from being defectively opened .
JP2009037845A 2009-02-20 2009-02-20 Ladle with excellent residual steel reduction Active JP5312089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009037845A JP5312089B2 (en) 2009-02-20 2009-02-20 Ladle with excellent residual steel reduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009037845A JP5312089B2 (en) 2009-02-20 2009-02-20 Ladle with excellent residual steel reduction

Publications (2)

Publication Number Publication Date
JP2010188404A JP2010188404A (en) 2010-09-02
JP5312089B2 true JP5312089B2 (en) 2013-10-09

Family

ID=42815031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009037845A Active JP5312089B2 (en) 2009-02-20 2009-02-20 Ladle with excellent residual steel reduction

Country Status (1)

Country Link
JP (1) JP5312089B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2600774Y2 (en) * 1993-07-06 1999-10-25 住友金属工業株式会社 Precast blocks for containers for molten metal
JPH09174230A (en) * 1995-12-27 1997-07-08 Nkk Corp Method for lining bed part of ladle
JPH1128561A (en) * 1997-07-04 1999-02-02 Toshiba Ceramics Co Ltd Molten metal impact block and reusing method for, slide gate plate
JP2004106000A (en) * 2002-09-17 2004-04-08 Tokyo Yogyo Co Ltd Bottom block in ladle
JP2006225195A (en) * 2005-02-17 2006-08-31 Nisshin Steel Co Ltd Monolithic refractory

Also Published As

Publication number Publication date
JP2010188404A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
US8110142B2 (en) High yield ladle bottoms
JP6465854B2 (en) Metal flow impact pad and tundish diffuser
US6533992B1 (en) Tundish
JP5312090B2 (en) Reducing the amount of steel remaining in the ladle
JP2562276B2 (en) Dam
JP5082700B2 (en) Steel continuous casting method
JP6188632B2 (en) Bottom pouring method
JP5312089B2 (en) Ladle with excellent residual steel reduction
JP2016182612A (en) Continuous casting method blowing inert gas from upper porous refractory and lower porous refractory
JP4725244B2 (en) Ladle for continuous casting and method for producing slab
US9005518B2 (en) High yield ladle bottoms
JP5556465B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
KR101909513B1 (en) Method for treatment of molten steel
JP5361212B2 (en) Method of pouring molten steel into tundish
JP4765770B2 (en) Swirl suppression method, converter, and hot metal or steel manufacturing method
CN202639314U (en) Long-life seating brick of steel ladle ventilation brick
KR100779687B1 (en) A tundish having an impact pad used for a continuous casting plant
JP7215361B2 (en) Continuous casting method
CN217223572U (en) Ladle bottom pouring structure capable of improving molten steel yield and construction mold thereof
JP7269480B2 (en) Continuous casting method
JP7406095B2 (en) Molten steel pot
KR101356928B1 (en) Method of manufacturing high purity molten steel and the refining device thereof
JP2004277831A (en) Slag dart for slag cutting
JP2008221240A (en) Ladle for molten steel
JP2010169313A (en) Block refractory body and method of executing ladle bed using the block refractory body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5312089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150