JP5311843B2 - Hydrogen generator and fuel cell system including the same - Google Patents

Hydrogen generator and fuel cell system including the same Download PDF

Info

Publication number
JP5311843B2
JP5311843B2 JP2008038485A JP2008038485A JP5311843B2 JP 5311843 B2 JP5311843 B2 JP 5311843B2 JP 2008038485 A JP2008038485 A JP 2008038485A JP 2008038485 A JP2008038485 A JP 2008038485A JP 5311843 B2 JP5311843 B2 JP 5311843B2
Authority
JP
Japan
Prior art keywords
raw material
desulfurizer
hydrogen
hydrogen generator
sulfur compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008038485A
Other languages
Japanese (ja)
Other versions
JP2009196833A (en
Inventor
英延 脇田
幸宗 可児
誠二 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008038485A priority Critical patent/JP5311843B2/en
Publication of JP2009196833A publication Critical patent/JP2009196833A/en
Application granted granted Critical
Publication of JP5311843B2 publication Critical patent/JP5311843B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen generation apparatus preventing a reforming catalyst from being poisoned by sulfur compounds in raw material and stably generating hydrogen over a long period of time, and a fuel cell system equipped with the same. <P>SOLUTION: The hydrogen generation apparatus 100 in the fuel cell system includes a desulfurizer 10 containing a desulfurizing agent which removes sulfur compounds in raw material, a reformer 4 which generates hydrogen-containing gas by a reforming reaction using raw material from which sulfur compounds are removed by the desulfurizing agent in the desulfurizer, and a controller 9 which outputs a caution signal on the exchange of the desulfurizer when the accumulated amount of sulfur compounds supplied to the desulfurizer attains to a predetermined threshold value or above, and further includes an information collector 12 which collects information on the concentration of sulfur compounds in raw material, and a threshold value setter 11 which sets the predetermined threshold value based on the information on the concentration of sulfur compounds in raw material collected by the information collector. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、水素含有ガスを生成する水素生成装置及びそれを備える燃料電池システムに関し、特に、硫黄化合物を含む原料を脱硫しこれを用いて水素含有ガスを生成する水素生成装置及びそれを備える燃料電池システムに関する。   The present invention relates to a hydrogen generator that generates a hydrogen-containing gas and a fuel cell system including the same, and more particularly, a hydrogen generator that desulfurizes a raw material containing a sulfur compound and generates a hydrogen-containing gas using the raw material and a fuel including the hydrogen generator The present invention relates to a battery system.

従来から、エネルギーを有効に利用することが可能である分散型の発電装置として、発電効率及び総合効率が高い燃料電池コージェネレーションシステム(以下、単に「燃料電池システム」という)が注目されている。   2. Description of the Related Art Conventionally, a fuel cell cogeneration system (hereinafter simply referred to as “fuel cell system”) with high power generation efficiency and overall efficiency has attracted attention as a distributed power generation apparatus that can effectively use energy.

燃料電池システムは、その発電部の本体として、燃料電池を備えている。この燃料電池としては、例えば、リン酸形燃料電池、溶融炭酸塩形燃料電池、アルカリ水溶液形燃料電池、固体高分子形燃料電池(PEFC)、又は、固体電解質形燃料電池等の燃料電池が用いられる。これらの燃料電池の内で、リン酸形燃料電池や固体高分子形燃料電池は、発電運転時の動作温度が比較的低いため、燃料電池システムを構成する燃料電池として好適に用いられる。特に、固体高分子形燃料電池は、リン酸形燃料電池と比べて、電解質の逸散が発生せず、低温で動作可能なため、携帯用電子機器や電気自動車等の用途において特に好適に用いられる。   The fuel cell system includes a fuel cell as a main body of the power generation unit. As this fuel cell, for example, a phosphoric acid fuel cell, a molten carbonate fuel cell, an alkaline aqueous fuel cell, a polymer electrolyte fuel cell (PEFC), or a fuel cell such as a solid electrolyte fuel cell is used. It is done. Among these fuel cells, phosphoric acid fuel cells and polymer electrolyte fuel cells are suitably used as fuel cells constituting the fuel cell system because of their relatively low operating temperature during power generation operation. In particular, the polymer electrolyte fuel cell is particularly suitable for use in portable electronic devices, electric vehicles, and the like because it does not dissipate electrolyte and can operate at a low temperature compared to a phosphoric acid fuel cell. It is done.

燃料電池の多く、例えば、リン酸形燃料電池や固体高分子形燃料電池は、発電運転の際に水素を燃料として用いる。しかし、それらの燃料電池において、発電運転の際に必要となる水素の供給手段は、通常、インフラストラクチャーとして整備されてはいない。従って、リン酸形燃料電池や固体高分子形燃料電池を備える燃料電池システムにより電力を得るためには、その燃料電池システムの設置場所において水素を生成する必要がある。そのため、従来の燃料電池システムでは、燃料電池と共に、水素生成装置が併設されることが多い。この水素生成装置では、例えば、水素生成方法の1つである水蒸気改質法が用いられて水素が生成される。この水蒸気改質法では、都市ガス、プロパンガス、ナフサ、ガソリン、灯油等の炭化水素系の原料、又は、メタノール等のアルコール系の原料と、水とが混合される。そして、その原料と水との混合物が改質触媒を備える水素生成装置の改質器に供給される。すると、その水素生成装置の改質器では、水蒸気改質反応が進行することにより、水素含有ガスが生成される。この水素含有ガス中の水素が、燃料電池の発電運転のために用いられる。   Many fuel cells, such as phosphoric acid fuel cells and polymer electrolyte fuel cells, use hydrogen as a fuel during power generation operation. However, in those fuel cells, the means for supplying hydrogen necessary for the power generation operation is not usually provided as an infrastructure. Therefore, in order to obtain electric power from a fuel cell system including a phosphoric acid fuel cell or a polymer electrolyte fuel cell, it is necessary to generate hydrogen at the place where the fuel cell system is installed. Therefore, in a conventional fuel cell system, a hydrogen generator is often provided along with the fuel cell. In this hydrogen generator, for example, a steam reforming method, which is one of the hydrogen generation methods, is used to generate hydrogen. In this steam reforming method, water is mixed with a hydrocarbon-based raw material such as city gas, propane gas, naphtha, gasoline, kerosene, or an alcohol-based raw material such as methanol. And the mixture of the raw material and water is supplied to the reformer of the hydrogen generator equipped with the reforming catalyst. Then, in the reformer of the hydrogen generator, a hydrogen-containing gas is generated as the steam reforming reaction proceeds. Hydrogen in the hydrogen-containing gas is used for the power generation operation of the fuel cell.

ここで、水蒸気改質法により水素生成装置の改質器で生成された水素含有ガスは、副生成物として一酸化炭素(以下、「CO」という)を含有している。例えば、水素生成装置の改質器で生成された水素含有ガスは、約10〜15%の濃度でCOを含有している。このCOは、固体高分子形燃料電池の電極触媒を被毒し、固体高分子形燃料電池の発電性能を著しく低下させる。そのため、従来の水素生成装置では、改質器に加えて、CO濃度を低減するために、CO低減器が併設されることが多い。このCO低減器により、改質器で生成された水素含有ガス中のCOが、100ppm以下、好ましくは、10ppm以下にまで低減される。このCOが十分に除去された水素含有ガスが、発電運転の際、燃料電池システムの燃料電池に供給される。これにより、固体高分子形燃料電池において、電極触媒の被毒が防止される。   Here, the hydrogen-containing gas generated in the reformer of the hydrogen generator by the steam reforming method contains carbon monoxide (hereinafter referred to as “CO”) as a by-product. For example, the hydrogen-containing gas produced by the reformer of the hydrogen production apparatus contains CO at a concentration of about 10 to 15%. This CO poisons the electrode catalyst of the polymer electrolyte fuel cell and significantly reduces the power generation performance of the polymer electrolyte fuel cell. For this reason, in the conventional hydrogen generator, in addition to the reformer, a CO reducer is often provided in addition to reduce the CO concentration. With this CO reducer, CO in the hydrogen-containing gas produced by the reformer is reduced to 100 ppm or less, preferably 10 ppm or less. The hydrogen-containing gas from which CO is sufficiently removed is supplied to the fuel cell of the fuel cell system during the power generation operation. Thereby, poisoning of the electrode catalyst is prevented in the polymer electrolyte fuel cell.

尚、通常、水素生成装置を構成するCO低減器は、その内部に配設される変成触媒において水性ガスシフト反応を進行させることによりCOと水蒸気とから水素と二酸化炭素とを生成する変成器を備えている。又、このCO低減器は、その変成器の下流側に、供給される空気中の酸素とCOとの選択酸化反応を進行させる選択酸化触媒、又は、COのメタン化反応を進行させるメタン化触媒の少なくとも何れか一方を有する浄化器を更に備えている。これらの変成器及び浄化器により、CO低減器は、改質器で生成された水素含有ガス中のCO濃度を少なくとも100ppm以下にまで低減する。   Normally, the CO reducer constituting the hydrogen generator includes a converter that generates hydrogen and carbon dioxide from CO and water vapor by advancing the water gas shift reaction in the shift catalyst disposed therein. ing. Further, this CO reducer has a selective oxidation catalyst that advances a selective oxidation reaction between oxygen in the supplied air and CO, or a methanation catalyst that advances a methanation reaction of CO on the downstream side of the transformer. The purifier which has at least any one of these is further provided. With these transformers and purifiers, the CO reducer reduces the CO concentration in the hydrogen-containing gas produced in the reformer to at least 100 ppm or less.

ところで、水素生成装置の改質器に供給される原料としての都市ガスやLPGには、通常、付臭剤としてのppmオーダーの硫黄化合物が添加されている。ここで、LPGの場合には、原料に由来する硫黄化合物も混入している。この原料に由来する硫黄化合物の濃度は、その産地によっては数十ppmにも達する。これに対して、家庭用の燃料電池システムの改質触媒として最もよく用いられるRu触媒は、耐硫黄被毒性が低いため、微量の硫黄化合物により容易に劣化する。   By the way, a sulfur compound in the order of ppm as an odorant is usually added to city gas or LPG as a raw material supplied to a reformer of a hydrogen generator. Here, in the case of LPG, sulfur compounds derived from raw materials are also mixed. The concentration of the sulfur compound derived from this raw material reaches several tens of ppm depending on the production area. On the other hand, the Ru catalyst that is most often used as a reforming catalyst for household fuel cell systems has a low resistance to sulfur poisoning, and is therefore easily deteriorated by a small amount of sulfur compounds.

そのため、従来の家庭用の燃料電池システムは、通常、改質器の改質触媒に原料が導入される前にその脱硫処理が行われるように構成されている。例えば、従来のリン酸形燃料電池を備える燃料電池システムでは、250〜350℃という高温条件下において原料に水素を添加して、所定の反応触媒を用いて水素化反応を進行させ、この水素化反応により生成する硫化水素を350℃程度の温度条件下において酸化亜鉛等により除去するという水添脱硫処理が行われている。   For this reason, the conventional fuel cell system for home use is usually configured such that the desulfurization treatment is performed before the raw material is introduced into the reforming catalyst of the reformer. For example, in a fuel cell system including a conventional phosphoric acid fuel cell, hydrogen is added to a raw material under a high temperature condition of 250 to 350 ° C., and a hydrogenation reaction proceeds using a predetermined reaction catalyst. A hydrodesulfurization treatment is performed in which hydrogen sulfide produced by the reaction is removed with zinc oxide or the like under a temperature condition of about 350 ° C.

しかし、このような、従来のリン酸形燃料電池を備える燃料電池システムは、水添脱硫処理のための所定の反応触媒や酸化亜鉛等を適切に加熱する必要があり、その一方で、高温条件下において原料に水素を添加する必要があるため、その構成が比較的複雑になるという課題を有している。又、このリン酸形燃料電池を備える燃料電池システムを家庭用の用途に用いる場合には、その総合効率の向上のため、給湯の需要が低い夏場には毎日起動停止運転を行うことが望まれるが、所定の反応触媒や酸化亜鉛等を適切に加熱する必要がある水添脱硫処理を実行させるため、その迅速な起動運転を期待することはできない。   However, such a fuel cell system equipped with a conventional phosphoric acid fuel cell needs to appropriately heat a predetermined reaction catalyst, zinc oxide, etc. for hydrodesulfurization treatment, on the other hand, at high temperature conditions Since it is necessary to add hydrogen to a raw material below, the structure has the subject that it becomes comparatively complicated. In addition, when the fuel cell system including the phosphoric acid fuel cell is used for household use, it is desired to perform start / stop operation every day in summer when the demand for hot water is low in order to improve the overall efficiency. However, since a hydrodesulfurization process that requires appropriate heating of a predetermined reaction catalyst, zinc oxide, or the like is performed, it is not possible to expect a quick start-up operation.

そこで、かかる従来の第1の課題を解決するために、常温においてもある程度の脱硫性能を有する超高次脱硫方式が提案されている(例えば、非特許文献1参照)。   Therefore, in order to solve the first conventional problem, an ultrahigh-order desulfurization method having a certain degree of desulfurization performance even at room temperature has been proposed (for example, see Non-Patent Document 1).

この超高次脱硫方式は、従来の脱硫処理によっては除去不能な低濃度の硫黄化合物をも除去することが可能であるため、改質触媒の長寿命化を実現することができるという利点を備えている。しかし、この超高次脱硫方式では、通常の使用時では250℃という高温条件下において水添脱硫処理を実行させる必要があるため、燃料電池システムの構成が比較的複雑になるという従来の課題は完全には解決されない。   This ultra-high-order desulfurization method has the advantage that the life of the reforming catalyst can be extended because it is possible to remove low-concentration sulfur compounds that cannot be removed by conventional desulfurization treatment. ing. However, in this ultra-high-order desulfurization method, it is necessary to perform the hydrodesulfurization treatment under a high temperature condition of 250 ° C. during normal use, so the conventional problem that the configuration of the fuel cell system becomes relatively complicated is It is not completely resolved.

そこで、かかる従来の第2の課題を解決するために、吸着剤であるゼオライトを用い、常温において硫黄化合物を吸着する脱硫方式が提案されている(例えば、非特許文献2参照)。ここで、近年では、Ag−Y型ゼオライトやAg−β型ゼオライトが都市ガス中の付臭剤の吸着に対して有効であることを報告している(例えば、非特許文献3参照)。   Therefore, in order to solve the conventional second problem, a desulfurization method that adsorbs a sulfur compound at room temperature using zeolite as an adsorbent has been proposed (for example, see Non-Patent Document 2). Here, in recent years, it has been reported that Ag-Y type zeolite and Ag-β type zeolite are effective for adsorption of odorants in city gas (for example, see Non-Patent Document 3).

しかしながら、上記従来の提案では、吸着剤の吸着量が飽和吸着量近くになると、その吸着剤の脱硫能力が低下して、脱硫器の下流に位置する改質触媒に向けて硫黄化合物が排出されるため、家庭用の燃料電池システムにおいては、半年毎、或いは、一年毎に吸着剤を交換する必要がある。ここで、長時間に渡り大きな負荷の下で発電運転された場合や、メンテナンスの際に脱硫剤の交換を怠った場合には、脱硫器の脱硫能力が破過されることにより、改質器の改質触媒に硫黄化合物が供給される。この場合、改質触媒は容易に劣化する。尚、改質触媒の硫黄化合物による被毒は不可逆的な被毒であり、従って、一度改質触媒が劣化すると、最悪の場合には、水素生成装置その物を交換する必要が生じる場合がある。   However, in the above-mentioned conventional proposal, when the adsorption amount of the adsorbent becomes close to the saturated adsorption amount, the desulfurization capacity of the adsorbent decreases, and the sulfur compound is discharged toward the reforming catalyst located downstream of the desulfurizer. Therefore, in the fuel cell system for home use, it is necessary to replace the adsorbent every six months or every year. Here, when the power generation operation is performed under a large load for a long time or when the desulfurization agent is not replaced during maintenance, the desulfurization capacity of the desulfurizer is broken through, so that the reformer A sulfur compound is supplied to the reforming catalyst. In this case, the reforming catalyst easily deteriorates. Incidentally, the poisoning of the reforming catalyst by the sulfur compound is an irreversible poisoning. Therefore, once the reforming catalyst deteriorates, in the worst case, it may be necessary to replace the hydrogen generator itself. .

そこで、脱硫器の交換時期を原料の累積使用量等が所定の基準値以上になると、交換時期がきている旨を示すメッセージをメンテナンス端末に送信する燃料電池システムが提案されている(例えば、特許文献1参照)。
T. Horiuchi, O. Okada, Y. Hisazumi, in: Proceedings of 1st. Int. Cokemaking. Cognr., 2, (14), 1987, p. 1. H. Wakita, Y. Tachibana, M. Hosaka, Moicroporous and Mesoporous Materials, 46 (2001) 237. S. Satokawa, Y. Kobayashi, H. Fujiki, in: M. Anpo, M. Onaka, H. Yamashita (Eds.), Science and Technology in Catalysis 2002, Kodansha and Elsevier, 2003, p. 399. 特開2004−362856号公報
Therefore, a fuel cell system has been proposed that transmits a message indicating that the replacement time has come to the maintenance terminal when the cumulative use amount of the raw material exceeds a predetermined reference value for the replacement time of the desulfurizer (for example, a patent) Reference 1).
T. Horiuchi, O. Okada, Y. Hisazumi, in: Proceedings of 1st. Int. Cokemaking. Cognr., 2, (14), 1987, p. 1. H. Wakita, Y. Tachibana, M. Hosaka, Moicroporous and Mesoporous Materials, 46 (2001) 237. S. Satokawa, Y. Kobayashi, H. Fujiki, in: M. Anpo, M. Onaka, H. Yamashita (Eds.), Science and Technology in Catalysis 2002, Kodansha and Elsevier, 2003, p. 399. JP 2004-362856 A

しかしながら、例えば、原料として都市ガスを用いた場合、都市ガス中に含まれる硫黄化合物濃度は燃料電池システムが設置されるエリア(例:東京ガスエリア、大阪ガスエリア等)で異なるため、脱硫器の最適な交換時期は異なってくるにも拘わらず、上記交換時期(上記特許文献1であれば、所定の基準値)を全て同じ値に設定していると、交換時期の設定によっては、脱硫器が破過した後に交換され、改質触媒が劣化し、水素生成装置の耐久性が低下する設置エリアが生じてしまう可能性がある。更に、どのエリアに設置されるかを予測することは製造段階では困難であり、燃料電池システムのメーカが製造段階で最適な交換時期を設定することは困難である。   However, for example, when city gas is used as a raw material, the concentration of sulfur compounds contained in city gas differs depending on the area where the fuel cell system is installed (eg, Tokyo gas area, Osaka gas area, etc.). Despite the fact that the optimal replacement time differs, if all the replacement times (predetermined reference values in Patent Document 1) are set to the same value, depending on the replacement time setting, the desulfurizer May be replaced after breakthrough, and the reforming catalyst may deteriorate, resulting in an installation area where the durability of the hydrogen generator is reduced. Further, it is difficult to predict which area is installed in the manufacturing stage, and it is difficult for the manufacturer of the fuel cell system to set an optimal replacement time in the manufacturing stage.

又、原料としてLPGを用いる場合、現状では、燃料電池システムを設置するエリアが分かったとしても、LPG会社によっては複数の元売会社から卸している場合があり、設置した燃料電池システムに、どこの産出ガスのLPGが供給されるかは、LPG会社でないと分からず、燃料電池システムの製造メーカの方で予め最適な交換時期を設定することは不可能であるという問題がある。   In addition, when using LPG as a raw material, even if the area where the fuel cell system is installed is known at present, some LPG companies may wholesale from a plurality of former sales companies. Whether the output gas LPG is supplied is not known unless it is an LPG company, and it is impossible for the manufacturer of the fuel cell system to set an optimal replacement time in advance.

本発明は、上記従来の課題を解決するためになされたものであって、設置エリアに最適な脱硫器の交換時期を設定可能にすることで、脱硫器が破過して、原料中の硫黄化合物により改質触媒が被毒されることを抑制し、長期間に渡り安定して水素を生成可能な水素生成装置を提供することを目的としている。   The present invention has been made to solve the above-described conventional problems, and by making it possible to set an optimal desulfurizer replacement time in the installation area, the desulfurizer breaks through and sulfur in the raw material An object of the present invention is to provide a hydrogen generator that suppresses poisoning of a reforming catalyst by a compound and can stably generate hydrogen over a long period of time.

又、本発明は、この長期間に渡り安定して水素を生成可能な本発明に係る水素生成装置を備える好適な燃料電池システムを提供することを目的としている。   Another object of the present invention is to provide a suitable fuel cell system including the hydrogen generator according to the present invention that can stably generate hydrogen over a long period of time.

上記課題を解決するために、本発明に係る特徴的な水素生成装置は、原料中の硫黄化合物を除去する脱硫剤を備える脱硫器と、前記脱硫器の脱硫剤により硫黄化合物が除去された原料を用いて改質反応により水素含有ガスを生成する改質器と、前記脱硫器への累積硫黄化合物供給量が所定の閾値以上になると前記脱硫器の交換に関する警告信号を出力する制御器と、を備える水素生成装置であって、前記原料中の硫黄化合物の濃度に関連する情報を取得する情報取得器と、前記情報取得器により取得された前記硫黄化合物の濃度に関連する情報に基づき前記所定の閾値を設定する閾値設定器と、を更に備えている。   In order to solve the above problems, a characteristic hydrogen generator according to the present invention includes a desulfurizer including a desulfurizing agent that removes sulfur compounds in a raw material, and a raw material from which sulfur compounds are removed by the desulfurizing agent of the desulfurizer. A reformer that generates a hydrogen-containing gas by a reforming reaction using a controller, and a controller that outputs a warning signal regarding replacement of the desulfurizer when a cumulative sulfur compound supply amount to the desulfurizer exceeds a predetermined threshold value; An information acquisition unit that acquires information related to the concentration of the sulfur compound in the raw material, and the predetermined information based on the information related to the concentration of the sulfur compound acquired by the information acquisition unit And a threshold value setter for setting the threshold value.

かかる構成とすると、燃料電池システムが設置されたエリアに最適な交換時期が、設置者、使用者若しくはLPG会社等により設定され、最適な時期に脱硫器の交換に関する警告信号が出力され、脱硫器の交換が促される。これにより、脱硫器の破過により水素生成装置の改質触媒が硫黄化合物により被毒されることを抑制し、長期間に渡り安定して水素を提供することが可能になる。   With this configuration, the optimal replacement time for the area where the fuel cell system is installed is set by the installer, user, LPG company, etc., and a warning signal regarding replacement of the desulfurizer is output at the optimal time. Exchange is encouraged. Thereby, it is possible to suppress the reforming catalyst of the hydrogen generator from being poisoned by the sulfur compound due to breakthrough of the desulfurizer, and to provide hydrogen stably over a long period of time.

この場合、前記制御器は、前記脱硫器への累積硫黄化合物供給量が所定の閾値以上になると、前記脱硫器に供給される原料の流量を低減させるか、前記水素生成装置の運転時間を低減させるか、若しくは、前記水素生成装置の運転を停止させる。   In this case, the controller reduces the flow rate of the raw material supplied to the desulfurizer or reduces the operation time of the hydrogen generator when the cumulative amount of sulfur compound supplied to the desulfurizer exceeds a predetermined threshold. Or the operation of the hydrogen generator is stopped.

かかる構成とすると、水素生成装置の改質触媒が硫化合物による大きな被毒を受ける前に、脱硫器に供給される原料の流量が低減されるか、水素生成装置の運転時間が低減されるか、若しくは、水素生成装置の運転が停止されるため、脱硫器を交換しさえすれば、再び、長期間に渡り安定して水素を供給することが可能になる。   With this configuration, whether the flow rate of the raw material supplied to the desulfurizer is reduced or the operation time of the hydrogen generator is reduced before the reforming catalyst of the hydrogen generator is greatly poisoned by the sulfur compound. Alternatively, since the operation of the hydrogen generator is stopped, it is possible to supply hydrogen stably over a long period of time only by replacing the desulfurizer.

又、上記の場合、前記累積硫黄化合物供給量は、該累積硫黄化合物供給量を間接的に示す前記脱硫器への累積原料供給量、前記改質器への累積水供給量、前記水素生成装置の累積運転時間、若しくは、前記水素生成装置の起動回数又は停止回数の何れかを含む。   In the above case, the cumulative sulfur compound supply amount includes the cumulative raw material supply amount to the desulfurizer that indirectly indicates the cumulative sulfur compound supply amount, the cumulative water supply amount to the reformer, and the hydrogen generator. Or the number of times the hydrogen generator is started or stopped.

かかる構成とすると、累積硫黄化合物供給量として、これを間接的に示す脱硫器への累積原料供給量、改質器への累積水供給量、水素生成装置の累積運転時間、若しくは、水素生成装置の起動回数又は停止回数の何れかが含まれるので、累積硫黄化合物供給量を簡易な構成において容易に検知することが可能になる。   With such a configuration, as the cumulative sulfur compound supply amount, the cumulative raw material supply amount to the desulfurizer indirectly indicating this, the cumulative water supply amount to the reformer, the cumulative operation time of the hydrogen generator, or the hydrogen generator Therefore, it is possible to easily detect the accumulated supply amount of the sulfur compound with a simple configuration.

又、上記の場合、前記硫黄化合物の濃度に関連する情報は、前記硫黄化合物の濃度に係る情報、前記原料の種類に係る情報、前記水素生成装置の位置情報、若しくは、前記原料の供給主体に係る情報の何れかを含む。   Further, in the above case, the information related to the concentration of the sulfur compound is information related to the concentration of the sulfur compound, information related to the type of the raw material, positional information of the hydrogen generator, or supply source of the raw material. Including any such information.

かかる構成とすると、硫黄化合物の濃度に係る直接的な情報に加えて、原料の種類に係る情報、水素生成装置の位置情報、若しくは、原料の供給主体に係る情報等の間接的な情報の何れかが含まれるので、硫黄化合物の濃度を簡易な構成において容易に検知することが可能になる。   With this configuration, in addition to direct information related to the concentration of the sulfur compound, any of indirect information such as information related to the type of raw material, position information of the hydrogen generator, or information related to the supply source of the raw material Therefore, it is possible to easily detect the concentration of the sulfur compound with a simple configuration.

又、上記の場合、前記原料がボンベにより供給され、前記情報取得器は、前記ボンベに設けられた前記硫黄化合物の濃度に関連する情報を送信する送信器から該硫黄化合物の濃度に関連する情報を取得する。   In the above case, the raw material is supplied by a cylinder, and the information acquisition unit transmits information related to the concentration of the sulfur compound from a transmitter that transmits information related to the concentration of the sulfur compound provided in the cylinder. To get.

かかる構成とすると、情報取得器は、ボンベ毎に原料中の硫黄化合物の濃度が異なっている場合であっても、その原料中の硫黄化合物の濃度を簡易な構成により容易にかつ正確に取得することが可能になる。   With such a configuration, the information acquisition device easily and accurately acquires the concentration of the sulfur compound in the raw material with a simple configuration even when the concentration of the sulfur compound in the raw material is different for each cylinder. It becomes possible.

又、上記の場合、前記制御器は、前記脱硫器の交換に関する警告信号を該脱硫器のメンテナンス会社に向けて出力する。   In the above case, the controller outputs a warning signal regarding replacement of the desulfurizer to a maintenance company of the desulfurizer.

かかる構成とすると、制御器が、脱硫器への累積硫黄化合物供給量が所定の閾値以上になった場合に脱硫器の交換に関する警告信号をそのメンテナンス会社に向けて出力するので、そのメンテナンス会社に脱硫器の交換を最速することが可能になる。これにより、メンテナンス会社に対して脱硫器の交換を速やかに実施させることが可能になる。   With such a configuration, the controller outputs a warning signal regarding replacement of the desulfurizer to the maintenance company when the cumulative amount of sulfur compound supplied to the desulfurizer exceeds a predetermined threshold value. It is possible to exchange the desulfurizer fastest. This makes it possible to promptly perform replacement of the desulfurizer with the maintenance company.

一方、本発明に係る特徴的な燃料電池システムは、上記何れかに記載の本発明に係る特徴的な水素生成装置と、前記水素生成装置から供給される水素含有ガスと、酸素含有ガスと、を用いて発電する燃料電池と、を備えている。   On the other hand, a characteristic fuel cell system according to the present invention includes a characteristic hydrogen generator according to the present invention as described above, a hydrogen-containing gas supplied from the hydrogen generator, an oxygen-containing gas, And a fuel cell that generates electricity using

かかる構成とすると、長期間に渡り安定して水素を生成可能な本発明に係る特徴的な水素生成装置を備えているので、長期間に渡り安定して電力を供給可能な好適な燃料電池システムを提供することが可能になる。   With such a configuration, since the characteristic hydrogen generation apparatus according to the present invention capable of stably generating hydrogen over a long period of time is provided, a suitable fuel cell system capable of supplying power stably over a long period of time is provided. It becomes possible to provide.

本発明に係る水素生成装置によれば、各設置エリアに最適な交換時期が設定されることにより、脱硫器が破過して、硫黄化合物により改質触媒が急激に劣化することを抑制することが可能になるので、長期間に渡り安定して水素を供給することが可能になる。その結果、長期間に渡り安定して電力を供給可能な好適な燃料電池システムを提供することが可能になる。   According to the hydrogen generator according to the present invention, by setting an optimal replacement time for each installation area, it is possible to prevent the desulfurizer from breaking through and the reforming catalyst from rapidly deteriorating due to the sulfur compound. Therefore, hydrogen can be supplied stably over a long period of time. As a result, it is possible to provide a suitable fuel cell system capable of supplying power stably over a long period of time.

以下、本発明を実施するための最良の形態について、図面を参照しながら詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.

(実施の形態1)
先ず、本発明の実施の形態1に係る水素生成装置100の構成について、図面を参照しながら詳細に説明する。
(Embodiment 1)
First, the configuration of the hydrogen generator 100 according to Embodiment 1 of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施の形態1に係る水素生成装置の構成を模式的に示すブロック図である。尚、図1においては、本発明を説明するために必要となる構成要素のみを示しており、その他の構成要素については図示を省略している。又、図1では、本発明の実施の形態1に係る水素生成装置を備える燃料電池システムの構成を概略的に示している。   FIG. 1 is a block diagram schematically showing the configuration of the hydrogen generator according to Embodiment 1 of the present invention. In FIG. 1, only the components necessary for explaining the present invention are shown, and the other components are not shown. FIG. 1 schematically shows the configuration of a fuel cell system including the hydrogen generator according to Embodiment 1 of the present invention.

本実施の形態では、水素含有ガスを生成するための原料としてLPGが用いられる形態について例示する。   In this embodiment, an example in which LPG is used as a raw material for generating a hydrogen-containing gas is illustrated.

図1に示すように、本実施の形態に係る水素生成装置100は、LPGボンベ15が貯蔵するLPGを吸着脱硫剤が充填された脱硫器10を通過させた後、後述する改質器4に供給する原料供給装置1を備えている。ここで、この原料供給装置1は、流量調整弁1aを備えており、この流量調整弁1aの動作によりLPGボンベ15から改質器4へのLPGの供給量を適宜調整しながら、改質器4に向けて原料としてのLPGを供給する。   As shown in FIG. 1, the hydrogen generator 100 according to the present embodiment allows the LPG stored in the LPG cylinder 15 to pass through a desulfurizer 10 filled with an adsorbing desulfurizing agent, and then to the reformer 4 described later. A raw material supply device 1 is provided. Here, the raw material supply apparatus 1 includes a flow rate adjusting valve 1a, and the reformer while appropriately adjusting the supply amount of LPG from the LPG cylinder 15 to the reformer 4 by the operation of the flow rate adjusting valve 1a. LPG as a raw material is supplied to No.4.

又、この原料供給装置1は、流量検出部1bを備えている。ここで、この流量検出部1bは、原料供給装置1から改質器4に向けて供給されるLPGの流量を適宜検出する。そして、この流量検出部1bは、LPGの流量に応じた電気信号を出力する。この流量検出部1bの出力信号に基づいて、流量調整弁1aが制御される。これにより、原料供給装置1から改質器4へのLPGの供給量が適切に調整される。   Moreover, this raw material supply apparatus 1 is provided with the flow volume detection part 1b. Here, the flow rate detection unit 1b appropriately detects the flow rate of LPG supplied from the raw material supply device 1 toward the reformer 4. And this flow volume detection part 1b outputs the electrical signal according to the flow volume of LPG. Based on the output signal of the flow rate detector 1b, the flow rate adjustment valve 1a is controlled. Thereby, the supply amount of LPG from the raw material supply apparatus 1 to the reformer 4 is appropriately adjusted.

又、図1に示すように、この水素生成装置100は、水道等の水のインフラストラクチャーから水蒸気を発生させるための水を導入してこれを上述した改質器4に供給する水供給装置2を備えている。尚、本実施の形態において、改質器4に供給する水としては、イオン交換樹脂により浄水処理した後の水を用いる。   Moreover, as shown in FIG. 1, this hydrogen generator 100 introduces water for generating water vapor from water infrastructure such as tap water and supplies it to the reformer 4 described above. It has. In the present embodiment, water supplied to the reformer 4 is water that has been subjected to water purification treatment with an ion exchange resin.

本実施の形態において、この水供給装置2は、流量調整弁2aを備えており、この流量調整弁2aの動作により水道等の水のインフラストラクチャーから改質器4への水の供給量を適宜調整しながら、改質器4に向けて水を供給する。又、この水供給装置2は、流量検出部2bを備えている。この流量検出部2bは、水供給装置2から改質器4に向けて供給される水の流量を検出する。そして、この流量検出部2bは、水の流量に応じた電気信号を出力する。この流量検出部2bの出力信号に基づいて、流量調整弁2aが適宜制御される。これにより、水供給装置2から改質器4への水の供給量が適切に調整される。   In the present embodiment, the water supply device 2 includes a flow rate adjusting valve 2a, and the operation of the flow rate adjusting valve 2a appropriately controls the amount of water supplied from the water infrastructure such as tap water to the reformer 4. While adjusting, water is supplied to the reformer 4. The water supply device 2 includes a flow rate detection unit 2b. The flow rate detection unit 2 b detects the flow rate of water supplied from the water supply device 2 toward the reformer 4. And this flow volume detection part 2b outputs the electrical signal according to the flow volume of water. Based on the output signal of the flow rate detector 2b, the flow rate adjustment valve 2a is appropriately controlled. Thereby, the amount of water supplied from the water supply device 2 to the reformer 4 is adjusted appropriately.

又、図1に示すように、この水素生成装置100は、大気中から酸素の供給源としての空気を導入してこれを後述する浄化器6に供給する空気供給装置3を備えている。この空気供給装置3は、ブロア3aを備えている。このブロア3aは、その動作が後述する制御装置9により適宜制御されることにより、大気中から浄化器6への空気の供給量を適宜調整しながら、浄化器6に向けて酸素の供給源としての空気を供給する。   As shown in FIG. 1, the hydrogen generator 100 includes an air supply device 3 that introduces air as an oxygen supply source from the atmosphere and supplies the air to a purifier 6 to be described later. The air supply device 3 includes a blower 3a. The operation of the blower 3a is appropriately controlled by a control device 9 to be described later, so that the supply amount of air from the atmosphere to the purifier 6 is appropriately adjusted, and the blower 3a serves as an oxygen supply source toward the purifier 6. Supply the air.

一方、本実施の形態に係る水素生成装置100は、上述した原料供給装置1、水供給装置2、空気供給装置3に加えて、改質器4、変成器5、及び浄化器6を備えている。   On the other hand, the hydrogen generator 100 according to the present embodiment includes a reformer 4, a transformer 5, and a purifier 6 in addition to the raw material supply device 1, the water supply device 2, and the air supply device 3 described above. Yes.

改質器4は、原料供給装置1から原料としてのLPGが供給されると共に、水供給装置2から水蒸気を発生させるための水が供給されて、図1では図示しない改質触媒によって水蒸気改質反応が進行することにより、水素含有ガスを生成する。ここで、水素含有ガスが改質器4において生成される際、改質器4が有する改質触媒は、水蒸気改質反応の進行に適した温度に加熱及び保温される。この改質触媒の加熱及び保温は、例えば、水素含有ガスの燃焼により発生する熱エネルギーが用いられて行われる。そこで、本実施の形態では、図1に示すように、水素生成装置100の改質器4が加熱器4aを備えている。この加熱器4aは、原料として供給されるLPGの一部、水素生成装置100から排出されるCOが十分に除去されていない水素含有ガス、又は、後述する燃料電池8から排出される発電に用いられなかった余剰の水素含有ガス等を燃焼させることにより、熱エネルギーを発生させる。この加熱器4aが発生させる熱エネルギーにより、改質器4の改質触媒が水蒸気改質反応の進行に適した温度にまで加熱及び保温される。これにより、改質器4は、水素含有ガスを生成する。   The reformer 4 is supplied with LPG as a raw material from the raw material supply device 1, and is supplied with water for generating water vapor from the water supply device 2, and is subjected to steam reforming by a reforming catalyst not shown in FIG. As the reaction proceeds, a hydrogen-containing gas is generated. Here, when the hydrogen-containing gas is generated in the reformer 4, the reforming catalyst of the reformer 4 is heated and kept at a temperature suitable for the progress of the steam reforming reaction. The reforming catalyst is heated and kept warm using, for example, thermal energy generated by the combustion of the hydrogen-containing gas. Therefore, in the present embodiment, as shown in FIG. 1, the reformer 4 of the hydrogen generator 100 includes a heater 4a. This heater 4a is used for power generation discharged from a part of LPG supplied as a raw material, a hydrogen-containing gas from which CO discharged from the hydrogen generator 100 is not sufficiently removed, or a fuel cell 8 described later. Thermal energy is generated by burning surplus hydrogen-containing gas that has not been produced. The reforming catalyst of the reformer 4 is heated and kept at a temperature suitable for the progress of the steam reforming reaction by the heat energy generated by the heater 4a. Thereby, the reformer 4 produces | generates hydrogen containing gas.

本実施の形態では、改質器4の改質触媒として、Ru触媒を使用している。この場合、水素含有ガスを生成する際には、改質触媒は、加熱器4aによって600℃〜700℃程度の温度にまで加熱される。これにより、改質器4は、水素を主成分として含有する水素含有ガスを生成する。尚、本実施の形態では、改質器4の改質触媒としてRu触媒を使用する形態について例示しているが、この形態に限定されることはなく、例えば、Ni触媒を使用する形態としてもよい。かかる形態としても、本実施の形態の場合と同様の効果を得ることが可能である。尚、Ni触媒は、耐硫黄被毒性が高いが、炭素析出を起こし易いため、水供給停止等のトラブルによりその触媒特性が低下してしまう。そのため、Ni触媒は、頻繁に起動停止を行う家庭用の燃料電池システムにおける触媒として用いるにはリスクが高い。このため、一般には、耐硫黄被毒性は低いが、炭素析出のし難いRu触媒が好適に用いられる。   In the present embodiment, a Ru catalyst is used as the reforming catalyst of the reformer 4. In this case, when the hydrogen-containing gas is generated, the reforming catalyst is heated to a temperature of about 600 ° C. to 700 ° C. by the heater 4a. Thereby, the reformer 4 produces | generates the hydrogen containing gas which contains hydrogen as a main component. In the present embodiment, an example in which a Ru catalyst is used as the reforming catalyst of the reformer 4 is illustrated. However, the present invention is not limited to this mode. For example, a mode in which a Ni catalyst is used may be used. Good. Even in this form, it is possible to obtain the same effect as in the case of the present embodiment. In addition, although Ni catalyst has high sulfur poisoning resistance, since it is easy to raise | generate carbon deposition, the catalyst characteristic will fall by troubles, such as a water supply stop. Therefore, the Ni catalyst has a high risk when used as a catalyst in a domestic fuel cell system that frequently starts and stops. For this reason, in general, a Ru catalyst that has low sulfur poisoning resistance but is difficult to deposit carbon is preferably used.

又、図1に示すように、水素生成装置100は、改質器4で生成された水素含有ガスの供給方向を基準としてその下流側に、変成器5を備えている。この変成器5は、改質器4から水素含有ガスが供給されて、図1では図示しない変成触媒によって水性ガスシフト反応が進行することにより、その水素含有ガス中のCOを低減する。ここで、COが低減される際、変成器5が有する変成触媒は、水性ガスシフト反応の進行に適した温度に加熱及び保温される。この変成触媒の加熱及び保温は、例えば、改質器4から供給される高温状態の水素含有ガスにより変成触媒が加熱及び保温されることにより行われる。そのため、本実施の形態では、図1に示すように、水素生成装置100の変成器5は、改質器4が有する加熱器4aに相当する加熱器を有してはいない。   As shown in FIG. 1, the hydrogen generator 100 includes a transformer 5 on the downstream side with respect to the supply direction of the hydrogen-containing gas generated by the reformer 4. The shifter 5 is supplied with a hydrogen-containing gas from the reformer 4 and advances a water gas shift reaction by a shift catalyst (not shown in FIG. 1), thereby reducing CO in the hydrogen-containing gas. Here, when CO is reduced, the shift catalyst of the shift converter 5 is heated and kept at a temperature suitable for the progress of the water gas shift reaction. The shift catalyst is heated and kept warm, for example, by heating and keeping the shift catalyst with a high-temperature hydrogen-containing gas supplied from the reformer 4. Therefore, in this embodiment, as shown in FIG. 1, the transformer 5 of the hydrogen generator 100 does not have a heater corresponding to the heater 4 a included in the reformer 4.

本実施の形態では、変成器5の変成触媒として、Ptからなる遷移金属触媒を使用している。この場合、水素含有ガス中のCO濃度を低減する際には、変成器5が備える変成触媒は、改質器4から供給される高温状態の水素含有ガスによって200℃〜300℃程度の温度にまで加熱される。これにより、変成器5は、改質器4で生成された水素含有ガス中のCOを、COと水蒸気とを反応させる水性ガスシフト反応によって、10〜15%から約0.3%程度にまで低減する。尚、本実施の形態では、変成器5の変成触媒としてPtからなる遷移金属触媒を使用する形態について例示しているが、この形態に限定されることはなく、例えばCu−Znからなる触媒を使用する形態としてもよい。かかる形態としても、本実施の形態の場合と同様の効果を得ることが可能である。   In the present embodiment, a transition metal catalyst made of Pt is used as the shift catalyst of the shift converter 5. In this case, when reducing the CO concentration in the hydrogen-containing gas, the shift catalyst provided in the shift converter 5 is brought to a temperature of about 200 ° C. to 300 ° C. by the high-temperature hydrogen-containing gas supplied from the reformer 4. Until heated. As a result, the transformer 5 reduces CO in the hydrogen-containing gas produced by the reformer 4 from about 10-15% to about 0.3% by a water gas shift reaction in which CO and water vapor are reacted. To do. In the present embodiment, the transition metal catalyst made of Pt is used as the shift catalyst of the transformer 5, but the present invention is not limited to this mode. For example, a catalyst made of Cu—Zn is used. It is good also as a form to use. Even in this form, it is possible to obtain the same effect as in the case of the present embodiment.

又、図1に示すように、この水素生成装置100は、変成器5においてCO濃度が低減された水素含有ガスの供給方向を基準としてその下流側に、浄化器6を備えている。この浄化器6は、変成器5から水性ガスシフト反応によりCOが低減された水素含有ガスが供給されると共に、空気供給装置3から酸素(酸化剤)の供給源としての空気が供給され、図1では図示しない浄化触媒(本実施の形態では、選択酸化触媒)によって選択酸化反応が進行することにより、その水素含有ガス中のCOを更に低減する。この水素含有ガス中のCOが更に低減される際、浄化器6が有する選択酸化触媒は、選択酸化反応の進行に適した温度に加熱及び保温される。この選択酸化触媒の加熱及び保温は、例えば、変成器5から供給される高温状態の水素含有ガスや、選択酸化反応が進行する際に発生する反応熱により選択酸化触媒が加熱及び保温されることによって行われる。そのため、本実施の形態では、図1に示すように、浄化器6も、改質器4が有する加熱器4aに相当する加熱器を有してはいない。その一方で、図1に示すように、この浄化器6は、選択酸化触媒の温度、又は、浄化器6内の温度の少なくとも一方の温度を検出するための温度検出器6aを備えている。この温度検出器6aは、例えばサーミスター等の検温素子を備え、そのサーミスター等の検温素子が選択酸化触媒層の内部、又は、浄化器6の内部等の所定位置に設けられている。この温度検出器6aでは、選択酸化触媒の温度や浄化器6の内部を流通する水素含有ガスの温度等に応じて、例えばサーミスターの電気抵抗が変化する。この温度検出器6aが有するサーミスターの電気抵抗の変化に基づき、浄化器6が有する選択酸化触媒が、選択酸化反応の進行に適した温度にまで加熱及び保温される。これにより、浄化器6は、変成器5で生成された水素含有ガス中のCOを更に低減する。   Further, as shown in FIG. 1, the hydrogen generator 100 includes a purifier 6 on the downstream side with respect to the supply direction of the hydrogen-containing gas in which the CO concentration is reduced in the transformer 5. The purifier 6 is supplied with a hydrogen-containing gas in which CO is reduced by a water gas shift reaction from the transformer 5, and is supplied with air as a supply source of oxygen (oxidant) from the air supply device 3. FIG. Then, the selective oxidation reaction proceeds by a purification catalyst (not shown) (in this embodiment, a selective oxidation catalyst), thereby further reducing CO in the hydrogen-containing gas. When CO in the hydrogen-containing gas is further reduced, the selective oxidation catalyst of the purifier 6 is heated and kept at a temperature suitable for the progress of the selective oxidation reaction. The selective oxidation catalyst is heated and kept warm by, for example, the high-temperature hydrogen-containing gas supplied from the transformer 5 or the reaction heat generated when the selective oxidation reaction proceeds. Is done by. Therefore, in this embodiment, as shown in FIG. 1, the purifier 6 also does not have a heater corresponding to the heater 4 a included in the reformer 4. On the other hand, as shown in FIG. 1, the purifier 6 includes a temperature detector 6 a for detecting the temperature of the selective oxidation catalyst or at least one of the temperatures in the purifier 6. The temperature detector 6 a includes a temperature detection element such as a thermistor, for example, and the temperature detection element such as the thermistor is provided at a predetermined position such as the inside of the selective oxidation catalyst layer or the inside of the purifier 6. In this temperature detector 6a, for example, the electrical resistance of the thermistor changes according to the temperature of the selective oxidation catalyst, the temperature of the hydrogen-containing gas flowing through the purifier 6 or the like. Based on the change in electrical resistance of the thermistor included in the temperature detector 6a, the selective oxidation catalyst included in the purifier 6 is heated and kept at a temperature suitable for the progress of the selective oxidation reaction. Thereby, the purifier 6 further reduces CO in the hydrogen-containing gas produced by the transformer 5.

ここで、図1に示すように、本実施の形態に係る水素生成装置100を備える燃料電池システムは、浄化器6でCOが更に低減された水素含有ガスの供給方向を基準としてその下流側に、流路切替弁7を備えている。この流路切替弁7は、例えば三方弁により構成され、水素生成装置100において生成されたCOが十分に低減された水素含有ガスの供給先を、後述する燃料電池8と水素生成装置100の改質器4における加熱器4aとの間で適宜切り替える。   Here, as shown in FIG. 1, the fuel cell system including the hydrogen generator 100 according to the present embodiment is arranged downstream of the supply direction of the hydrogen-containing gas in which CO is further reduced by the purifier 6. The flow path switching valve 7 is provided. The flow path switching valve 7 is constituted by, for example, a three-way valve, and the supply destination of the hydrogen-containing gas in which CO generated in the hydrogen generator 100 is sufficiently reduced is changed to a fuel cell 8 and a hydrogen generator 100 described later. It switches suitably between the heaters 4a in the quality device 4.

又、図1に示すように、この水素生成装置100を備える燃料電池システムは、その発電部の本体としての燃料電池8を備えている。この燃料電池8としては、本実施の形態では、例えば、固体高分子形燃料電池が用いられている。この固体高分子形燃料電池は、水素生成装置100で生成されたCOが十分に低減された水素含有ガスがそのアノード側に供給されると共に、空気が大気中からそのカソード側に供給され、各々の電極触媒上で所定の電気化学反応が進行することにより、所定の電力を出力する。尚、この燃料電池8としては、固体高分子形燃料電池の他に、例えば、リン酸形燃料電池を用いることも可能である。このリン酸形燃料電池は、動作温度がその他の燃料電池の場合と比較して比較的低温であるため、固体高分子形燃料電池と共に、燃料電池システムを構成する燃料電池8として好適に用いられる。   As shown in FIG. 1, the fuel cell system including the hydrogen generator 100 includes a fuel cell 8 as a main body of the power generation unit. In the present embodiment, for example, a solid polymer fuel cell is used as the fuel cell 8. In this polymer electrolyte fuel cell, a hydrogen-containing gas with sufficiently reduced CO produced by the hydrogen generator 100 is supplied to the anode side, and air is supplied from the atmosphere to the cathode side, When a predetermined electrochemical reaction proceeds on the electrode catalyst, a predetermined power is output. As the fuel cell 8, in addition to the solid polymer fuel cell, for example, a phosphoric acid fuel cell can be used. Since the operating temperature of this phosphoric acid fuel cell is relatively low compared to other fuel cells, it is suitably used as a fuel cell 8 constituting a fuel cell system together with a solid polymer fuel cell. .

一方、図1に示すように、本実施の形態に係る水素生成装置100は、水素生成装置100及び燃料電池システムを構成する各構成要素の動作を適宜制御する制御装置9を備えている。   On the other hand, as shown in FIG. 1, the hydrogen generator 100 according to the present embodiment includes a control device 9 that appropriately controls the operation of each component constituting the hydrogen generator 100 and the fuel cell system.

この制御装置9は、例えば、図1では図示しないが、演算部の本体としての中央演算処理装置(CPU)や記憶部等を備えている。又、この制御装置9は、原料供給装置1及び水供給装置2が備える流量検出部1b及び流量検出部2bの出力信号に基づいて、原料供給装置1から改質器4に供給される原料の累積供給量(つまり、後述する脱硫器10に供給される原料の累積供給量)や、水供給装置2から改質器4に供給される水の累積供給量等を検出することが可能に構成されている。又、この制御装置9は、燃料電池システムが備えるインバータ等(図示せず)の出力信号に基づいて、燃料電池8の累積発電量や水素生成装置100の起動回数又は停止回数を検出することが可能に構成されている。又、この制御装置9は、計時部を備えている。この計時部は、燃料電池システムや水素生成装置100等の構成要素の連続運転時間及び累積運転時間や、予め記憶部に記憶されている処理命令が実行された場合の経過時間等を必要に応じて計測する。つまり、本実施の形態において、制御装置9は、燃料電池システムや水素生成装置100等の構成要素の連続運転時間及び累積運転時間を計測可能に構成されている。   The control device 9 includes, for example, a central processing unit (CPU) as a main body of a calculation unit, a storage unit, and the like (not shown in FIG. 1). Further, the control device 9 is configured to control the raw material supplied from the raw material supply device 1 to the reformer 4 based on output signals of the flow rate detection unit 1b and the flow rate detection unit 2b included in the raw material supply device 1 and the water supply device 2. It is possible to detect a cumulative supply amount (that is, a cumulative supply amount of raw material supplied to the desulfurizer 10 described later), a cumulative supply amount of water supplied from the water supply device 2 to the reformer 4, and the like. Has been. Further, the control device 9 can detect the accumulated power generation amount of the fuel cell 8 and the number of times of starting or stopping the hydrogen generator 100 based on an output signal of an inverter or the like (not shown) provided in the fuel cell system. It is configured to be possible. In addition, the control device 9 includes a timer unit. This timekeeping unit determines the continuous operation time and cumulative operation time of the components such as the fuel cell system and the hydrogen generator 100, the elapsed time when a processing instruction stored in advance in the storage unit is executed, as necessary. To measure. That is, in the present embodiment, the control device 9 is configured to be able to measure the continuous operation time and the cumulative operation time of components such as the fuel cell system and the hydrogen generation device 100.

ここで、本実施の形態では、制御装置9が後述する脱硫器10への累積硫黄化合物供給量を間接的に示す脱硫器10への累積原料供給量、改質器4への累積水供給量、水素生成装置100の累積運転時間、若しくは、水素生成装置100の起動回数又は停止回数を検知可能に構成されているが、このような形態に限定されることはない。例えば、制御装置9が脱硫器10への累積硫黄化合物供給量を直接検知する形態としてもよい。何れの形態によっても、本発明に係る所定の効果を得ることが可能である。   Here, in the present embodiment, the control device 9 is configured to indirectly supply a cumulative sulfur compound supply amount to the desulfurizer 10 described later, a cumulative raw material supply amount to the desulfurizer 10, and a cumulative water supply amount to the reformer 4. Although it is configured to be able to detect the cumulative operation time of the hydrogen generator 100 or the number of times the hydrogen generator 100 is started or stopped, the present invention is not limited to such a form. For example, the control device 9 may directly detect the cumulative amount of sulfur compound supplied to the desulfurizer 10. In any form, a predetermined effect according to the present invention can be obtained.

又、本実施の形態に係る制御装置9は、後述する脱硫器10への累積硫黄化合物供給量が所定の閾値以上になると、その脱硫器10への単位時間当たりの原料供給量を低減させるか、若しくは、脱硫器10の交換に関する警告信号(メンテナンス会社に脱硫器10の交換を催促する警報信号)を出力するように構成されている。この構成は、制御装置9の記憶部に所定のプログラムが格納されることにより実現される。   In addition, the control device 9 according to the present embodiment reduces the supply amount of raw material per unit time to the desulfurizer 10 when the cumulative sulfur compound supply amount to the desulfurizer 10 described later becomes a predetermined threshold value or more. Alternatively, it is configured to output a warning signal (warning signal for prompting the maintenance company to replace the desulfurizer 10) regarding the replacement of the desulfurizer 10. This configuration is realized by storing a predetermined program in the storage unit of the control device 9.

尚、本実施の形態に係る燃料電池システムの各構成要素の動作に係るプログラムは、予め制御装置9の記憶部に記憶されている。そして、この記憶部に記憶されているプログラムに基づいて、制御装置9が水素生成装置100及び燃料電池システムの動作を適宜適切に制御する。   Note that a program related to the operation of each component of the fuel cell system according to the present embodiment is stored in advance in the storage unit of the control device 9. And based on the program memorize | stored in this memory | storage part, the control apparatus 9 controls appropriately the operation | movement of the hydrogen production | generation apparatus 100 and a fuel cell system suitably.

又、図1に示すように、この水素生成装置100は、LPGボンベ15から供給される原料中の硫黄化合物を除去するための脱硫器10を備えている。そして、この脱硫器10は、硫黄化合物を例えば吸着により除去する脱硫剤を備えている。この脱硫剤により硫黄化合物が除去された原料が、脱硫器10から原料供給装置1に向けて供給される。   As shown in FIG. 1, the hydrogen generator 100 includes a desulfurizer 10 for removing sulfur compounds in the raw material supplied from the LPG cylinder 15. And this desulfurizer 10 is equipped with the desulfurization agent which removes a sulfur compound by adsorption | suction, for example. The raw material from which the sulfur compound is removed by the desulfurizing agent is supplied from the desulfurizer 10 toward the raw material supply apparatus 1.

そして、図1に示すように、本実施の形態に係る水素生成装置100は、LPGボンベ15が供給する原料中の硫黄化合物の濃度に関連する情報を取得する情報取得器としてのバーコードリーダー12と、このバーコードリーダー12により取得された硫黄化合物の濃度に関連する情報に基づき所定の閾値を設定する閾値設定器11と、を特徴的に備えている。   As shown in FIG. 1, the hydrogen generator 100 according to the present embodiment is a barcode reader 12 as an information acquisition unit that acquires information related to the concentration of sulfur compounds in the raw material supplied by the LPG cylinder 15. And a threshold setting unit 11 that sets a predetermined threshold based on information related to the concentration of the sulfur compound acquired by the barcode reader 12.

本実施の形態において、バーコードリーダー12は、LPGボンベ15が備えるバーコード15aの情報を読み取ることにより、LPGボンベ15が供給する原料中の硫黄化合物の濃度に関連する情報を取得する。この原料中の硫黄化合物の濃度に関連する情報としては、例えば、原料中の硫黄化合物の濃度に直接的に係る情報に加えて、原料の種類に係る情報や、原料の供給主体に係る情報の何れかを含む。そして、制御装置9は、バーコードリーダー12により読み込んだ所定の情報に基づき、原料中の硫黄化合物の濃度を認識する。具体的には、LPGボンベ15が備えるバーコード15aは、原料中の硫黄化合物の濃度情報を含み、この硫黄化合物の濃度情報をバーコードリーダー12が読み取る。これにより、制御装置9は、LPGボンベ15が供給する原料中の硫黄化合物の濃度を直接認識する。或いは、LPGボンベ15が備えるバーコード15aは、LPGボンベ15を製造又はその流通を仲介した会社に関連する情報を含み、この会社に関連する情報をバーコードリーダー12が読み取る。この場合、制御装置9は、バーコードリーダー12が読み取る情報と原料中の硫黄化合物の濃度との予め記憶する相関情報に基づき、原料中の硫黄化合物の濃度を間接的に認識する。尚、後述するが、都市ガスのインフラストラクチャーから原料としての都市ガスが水素生成装置100に供給される場合には、その水素生成装置100の設置場所に係る情報(水素生成装置100の位置情報)を情報取得器が取得する。そして、制御装置9は、情報取得器が取得した水素生成装置100の設置場所に係る情報に基づき、原料中の硫黄化合物の濃度を認識する。   In the present embodiment, the barcode reader 12 acquires information related to the concentration of the sulfur compound in the raw material supplied by the LPG cylinder 15 by reading the information of the barcode 15 a included in the LPG cylinder 15. As information related to the concentration of sulfur compounds in the raw material, for example, in addition to information directly related to the concentration of sulfur compounds in the raw material, information related to the type of raw material and information related to the supplier of the raw material Including either And the control apparatus 9 recognizes the density | concentration of the sulfur compound in a raw material based on the predetermined information read with the barcode reader 12. FIG. Specifically, the barcode 15a included in the LPG cylinder 15 includes the concentration information of the sulfur compound in the raw material, and the barcode reader 12 reads the concentration information of the sulfur compound. Thereby, the control device 9 directly recognizes the concentration of the sulfur compound in the raw material supplied by the LPG cylinder 15. Alternatively, the barcode 15a included in the LPG cylinder 15 includes information related to the company that manufactured or distributed the LPG cylinder 15, and the barcode reader 12 reads information related to the company. In this case, the control device 9 indirectly recognizes the concentration of the sulfur compound in the raw material based on the correlation information stored in advance between the information read by the barcode reader 12 and the concentration of the sulfur compound in the raw material. In addition, although mentioned later, when the city gas as a raw material is supplied to the hydrogen generator 100 from the city gas infrastructure, information relating to the installation location of the hydrogen generator 100 (position information of the hydrogen generator 100) Is acquired by the information acquirer. And the control apparatus 9 recognizes the density | concentration of the sulfur compound in a raw material based on the information which concerns on the installation place of the hydrogen production | generation apparatus 100 which the information acquisition device acquired.

又、本実施の形態において、閾値設定器11は、バーコードリーダー12により取得された硫黄化合物の濃度に関連する情報に基づき、脱硫器10への単位時間当たりの原料供給量を低減させるか、若しくは、脱硫器10の交換に関する警告信号を出力するか否かに係る所定の閾値を設定する。例えば、閾値設定器11は、バーコードリーダー12により取得された硫黄化合物の濃度に関連する情報に基づき、制御装置9が原料中の硫黄化合物の濃度が比較的高濃度であることを認識した場合、脱硫器10への単位時間当たりの原料供給量を比較的短期間後に低減させるべく、所定の閾値を比較的低い閾値に設定する。一方、閾値設定器11は、バーコードリーダー12により取得された硫黄化合物の濃度に関連する情報に基づき、制御装置9が原料中の硫黄化合物の濃度が比較的低濃度であることを認識した場合には、脱硫器10への単位時間当たりの原料供給量を比較的長期間後に低減させるべく、所定の閾値を比較的高い閾値に設定する。尚、このような、閾値設定器11の動作に係るプログラムも、制御装置9の記憶部に予め記憶されている。   In the present embodiment, the threshold setting device 11 reduces the raw material supply amount per unit time to the desulfurizer 10 based on the information related to the concentration of the sulfur compound acquired by the barcode reader 12. Or the predetermined threshold value which concerns on whether the warning signal regarding replacement | exchange of the desulfurizer 10 is output is set. For example, when the threshold value setter 11 recognizes that the concentration of the sulfur compound in the raw material is relatively high, based on the information related to the concentration of the sulfur compound acquired by the barcode reader 12 The predetermined threshold value is set to a relatively low threshold value in order to reduce the feed rate per unit time to the desulfurizer 10 after a relatively short period of time. On the other hand, when the threshold value setter 11 recognizes that the concentration of the sulfur compound in the raw material is relatively low based on the information related to the concentration of the sulfur compound acquired by the barcode reader 12 In order to reduce the feed rate per unit time to the desulfurizer 10 after a relatively long period of time, the predetermined threshold is set to a relatively high threshold. Note that such a program related to the operation of the threshold setting device 11 is also stored in the storage unit of the control device 9 in advance.

尚、図1に示すように、本実施の形態に係る燃料電池システムでは、各構成要素が所定の接続配管や配線材料等によって相互に接続されている。   As shown in FIG. 1, in the fuel cell system according to the present embodiment, each component is connected to each other by a predetermined connection pipe, wiring material, or the like.

次に、本発明の実施の形態1に係る水素生成装置の特徴的な動作について、図面を参照しながら詳細に説明する。尚、本実施の形態では、原料供給装置1から改質器4に向けてLPGを供給する形態を例示する。   Next, a characteristic operation of the hydrogen generator according to Embodiment 1 of the present invention will be described in detail with reference to the drawings. In the present embodiment, an example in which LPG is supplied from the raw material supply apparatus 1 toward the reformer 4 is illustrated.

本実施の形態では、燃料電池システムのオペレーターや制御装置9によってその燃料電池システムが起動されると、制御装置9は、燃料電池8の発電運転を開始するための所定の準備動作が行われるよう、燃料電池システムの動作を制御する。   In the present embodiment, when the fuel cell system is started by an operator of the fuel cell system or the control device 9, the control device 9 performs a predetermined preparation operation for starting the power generation operation of the fuel cell 8. Control the operation of the fuel cell system.

そして、燃料電池8の発電運転を開始するための所定の準備動作が行われ、改質器4が備える改質触媒の温度が所定の温度にまで到達したことを検出すると、制御装置9は、原料供給装置1から改質器4に向けて原料としてのLPGが所定の供給量で供給されるように制御する。又、制御装置9は、原料供給装置1から改質器4へのLPGの供給開始と共に、水供給装置2から水素生成装置100の改質器4に向けて水が所定の供給量で供給されるように制御する。   When the predetermined preparation operation for starting the power generation operation of the fuel cell 8 is performed and it is detected that the temperature of the reforming catalyst included in the reformer 4 has reached the predetermined temperature, the control device 9 Control is performed so that LPG as a raw material is supplied from the raw material supply apparatus 1 to the reformer 4 at a predetermined supply amount. In addition, the control device 9 starts supplying LPG from the raw material supply device 1 to the reformer 4, and supplies water from the water supply device 2 to the reformer 4 of the hydrogen generator 100 at a predetermined supply amount. To control.

ここで、水素生成装置100における変成器5及び浄化器6の変成触媒及び選択酸化触媒の温度が所定の温度に到達するまでは、水素生成装置100から排出される水素含有ガスには、高濃度のCOが含まれている。そこで、本実施の形態に係る燃料電池システムでは、制御装置9が流路切替弁7を適切に制御することにより、水素生成装置100で生成された水素含有ガスが、燃料電池8に供給されることなく、改質器4の加熱器4aに供給される。すると、改質器4の加熱器4aは、そのCO濃度が十分に低減されてはいない水素含有ガスを燃料として用いて、改質器4の改質触媒を加熱及び保温する。   Here, until the temperature of the shift catalyst and the selective oxidation catalyst of the shift converter 5 and the purifier 6 in the hydrogen generator 100 reaches a predetermined temperature, the hydrogen-containing gas discharged from the hydrogen generator 100 has a high concentration. Of CO. Therefore, in the fuel cell system according to the present embodiment, the control device 9 appropriately controls the flow path switching valve 7 so that the hydrogen-containing gas generated by the hydrogen generation device 100 is supplied to the fuel cell 8. Without being supplied to the heater 4a of the reformer 4. Then, the heater 4a of the reformer 4 heats and keeps the reforming catalyst of the reformer 4 using the hydrogen-containing gas whose CO concentration is not sufficiently reduced as fuel.

その後、改質器4、変成器5、及び、浄化器6の運転温度が各々所定の運転温度にまで到達すると、流路切替弁7を制御することにより、制御装置9は、水素生成装置100から燃料電池8への水素含有ガスの供給を開始させる。又、制御装置9は、水素生成装置100から燃料電池8への水素含有ガスの供給開始と共に、空気が大気中から燃料電池8に供給されるように制御する。これにより、燃料電池8は発電運転を開始する。尚、燃料電池8から排出されたアノードオフガスは、加熱器4aに供給される。そして、加熱器4aは、アノードオフガスを燃焼することにより、改質器4の改質触媒を加熱する。   Thereafter, when the operation temperatures of the reformer 4, the transformer 5, and the purifier 6 reach the predetermined operation temperatures, the control device 9 controls the flow switching valve 7 so that the control device 9 Then, the supply of the hydrogen-containing gas to the fuel cell 8 is started. In addition, the control device 9 controls the supply of the hydrogen-containing gas from the hydrogen generator 100 to the fuel cell 8 so that air is supplied to the fuel cell 8 from the atmosphere. Thereby, the fuel cell 8 starts a power generation operation. Note that the anode off gas discharged from the fuel cell 8 is supplied to the heater 4a. The heater 4a heats the reforming catalyst of the reformer 4 by burning the anode off gas.

そして、本実施の形態では、制御装置9が、脱硫器10への累積原料供給量、改質器4への累積水供給量、水素生成装置100の累積運転時間、若しくは、水素生成装置100の起動回数又は停止回数等の情報に基づき、脱硫器10への累積硫黄化合物供給量を認識して、その累積硫黄化合物供給量が所定の閾値以上に到達したことを検知すると、流量調整弁1aにより脱硫器10に供給される原料の流量を低減させるか、水素生成装置100の運転時間を低減させるか、若しくは、水素生成装置100の運転を停止させる。   And in this Embodiment, the control apparatus 9 is the cumulative raw material supply amount to the desulfurizer 10, the cumulative water supply amount to the reformer 4, the cumulative operation time of the hydrogen generator 100, or the hydrogen generator 100. When the cumulative sulfur compound supply amount to the desulfurizer 10 is recognized based on information such as the number of start times or the number of stop times, and when it is detected that the cumulative sulfur compound supply amount has reached a predetermined threshold value or more, the flow control valve 1a The flow rate of the raw material supplied to the desulfurizer 10 is reduced, the operation time of the hydrogen generator 100 is reduced, or the operation of the hydrogen generator 100 is stopped.

例えば、制御装置9は、脱硫器10への累積原料供給量に基づき、脱硫器10への累積硫黄化合物供給量を認識する。そして、制御装置9は、その累積硫黄化合物供給量が第1の閾値に到達したことを検知すると、流量調整弁1aにより脱硫器10に供給される原料の供給量上限値を低減させることで、水素生成装置100による水素含有ガスの生成に係る生成量上限値を低減させる。その結果、燃料電池8の最高出力は低下するが、脱硫器10の交換時期に達する前に脱硫剤が破過して、改質器4の改質触媒に硫黄化合物が供給される事態を避けることが可能になる。尚、この場合、水素生成装置100による水素含有ガスの生成に係る生成量上限値を低減させることに代えて、水素生成装置100の1日当たりの運転時間を制限することにより、脱硫器10が備える脱硫剤の破過を避ける形態としてもよい。このような形態としても、水素生成装置100による水素含有ガスの生成に係る生成量上限値を低減させる場合と同様の効果を得ることができる。   For example, the control device 9 recognizes the cumulative sulfur compound supply amount to the desulfurizer 10 based on the cumulative raw material supply amount to the desulfurizer 10. And if the control apparatus 9 detects that the accumulation sulfur compound supply amount reached | attained the 1st threshold value, it will reduce the supply amount upper limit of the raw material supplied to the desulfurizer 10 by the flow regulating valve 1a, The production amount upper limit value related to the production of the hydrogen-containing gas by the hydrogen production device 100 is reduced. As a result, the maximum output of the fuel cell 8 is reduced, but the situation where the desulfurization agent breaks through before the replacement time of the desulfurizer 10 is reached and the sulfur compound is supplied to the reforming catalyst of the reformer 4 is avoided. It becomes possible. In this case, the desulfurizer 10 is provided by limiting the operation time per day of the hydrogen generator 100 instead of reducing the upper limit of the generation amount related to the generation of the hydrogen-containing gas by the hydrogen generator 100. It is good also as a form which avoids breakthrough of a desulfurization agent. Even if it is such a form, the same effect as the case where the production amount upper limit concerning the production | generation of the hydrogen containing gas by the hydrogen production | generation apparatus 100 is reduced can be acquired.

又、例えば、制御装置9は、脱硫器10への累積硫黄化合物供給量が第1の閾値を越えて第2の閾値に到達したことを検知した場合、脱硫器10の脱硫剤が破過する危険性が更に増すため、水素生成装置100の運転を強制的に停止させる。そして、この場合、制御装置9は、燃料電池システムのリモコン装置が備える表示画面に「脱硫器を交換して下さい」と表示させる等の対策を施すことにより、脱硫器10の交換を促す。これにより、燃料電池システムの正常な発電運転を速やかに再開させることが可能になる。   Further, for example, when the control device 9 detects that the cumulative sulfur compound supply amount to the desulfurizer 10 has exceeded the first threshold value and has reached the second threshold value, the desulfurizing agent in the desulfurizer 10 breaks through. Since the danger further increases, the operation of the hydrogen generator 100 is forcibly stopped. In this case, the control device 9 prompts the replacement of the desulfurizer 10 by taking measures such as displaying “Please replace the desulfurizer” on the display screen of the remote control device of the fuel cell system. Thereby, it is possible to promptly resume normal power generation operation of the fuel cell system.

更には、制御装置9は、脱硫器10への累積硫黄化合物供給量が第1,2の閾値を越えて第3の閾値に到達したことを検知した場合、脱硫器10の脱硫剤が破過する危険性が著しく増すため、脱硫器10の交換に関する警告信号を、脱硫器10のメンテナンス会社に向けて送信する。ここで、制御装置9から脱硫器10のメンテナンス会社への警告信号の送信は、例えば、制御装置9とメンテナンス会社のサービスサーバとが有線電話回線又は無線電話回線により相互に接続され、その有線電話回線又は無線電話回線を介して行われる。これにより、メンテナンス会社に対して脱硫器10の交換を速やかに実施させることが可能になる。   Further, when the control device 9 detects that the cumulative sulfur compound supply amount to the desulfurizer 10 has exceeded the first and second threshold values and has reached the third threshold value, the desulfurizer in the desulfurizer 10 breaks through. Therefore, a warning signal regarding replacement of the desulfurizer 10 is transmitted to the maintenance company of the desulfurizer 10. Here, the warning signal is transmitted from the control device 9 to the maintenance company of the desulfurizer 10, for example, the control device 9 and the service server of the maintenance company are connected to each other by a wired telephone line or a wireless telephone line, and the wired telephone is connected. This is done via a line or a wireless telephone line. As a result, the maintenance company can be promptly replaced with the desulfurizer 10.

尚、本実施の形態において、水素生成装置100に原料を供給するためのLPGボンベ15は定期的に交換されるが、その交換の際にはバーコードリーダー12により新たなバーコード15aが読み取られる。これにより、新たなLPGボンベ15が供給する原料中の硫黄化合物の濃度に関連する情報が更新される。そして、燃料電池システムの次回運転時には、閾値設定器11により新たな閾値が設定され、この新たな閾値と累積硫黄化合物供給量とに基づき、制御装置9により水素生成装置100の運転が適切に制御される。   In the present embodiment, the LPG cylinder 15 for supplying the raw material to the hydrogen generator 100 is periodically replaced. When the replacement is performed, a new barcode 15a is read by the barcode reader 12. . Thereby, information related to the concentration of the sulfur compound in the raw material supplied by the new LPG cylinder 15 is updated. Then, at the next operation of the fuel cell system, a new threshold value is set by the threshold value setter 11, and the operation of the hydrogen generator 100 is appropriately controlled by the control device 9 based on the new threshold value and the accumulated sulfur compound supply amount. Is done.

又、通常、半年から一年に一回の割合で、脱硫器10は交換される。この場合、脱硫器10への累積硫黄化合物供給量の値はリセットされ、再び0から累積される。   Further, the desulfurizer 10 is usually replaced once every six months to once a year. In this case, the value of the cumulative sulfur compound supply amount to the desulfurizer 10 is reset and accumulated from 0 again.

又、本実施の形態では、水素生成装置100がバーコードリーダー12を備える形態を例示したが、このような形態に限定されることはない。例えば、LPGボンベ15の容器に貼り付けられたバーコード15aを水素生成装置100のバーコードリーダー12により読み取る形態に代えて、バーコードリーダー12をLPGボンベ15の設置場所の近傍に設置して、LPGボンベ15を所定の位置に設置することによりバーコード15aを自動的に取得する形態としてもよい。   In the present embodiment, the hydrogen generation apparatus 100 includes the barcode reader 12 as an example. However, the present invention is not limited to such a configuration. For example, instead of the barcode 15a attached to the container of the LPG cylinder 15 being read by the barcode reader 12 of the hydrogen generator 100, the barcode reader 12 is installed in the vicinity of the installation location of the LPG cylinder 15, The barcode 15a may be automatically acquired by installing the LPG cylinder 15 at a predetermined position.

以上、本実施の形態によれば、各設置エリアに最適な交換時期が設定されるため、脱硫器10が破過して、硫黄化合物により改質触媒が急激に劣化することを抑制することが可能になるので、長期間に渡り安定して水素含有ガスを供給することが可能になる。その結果、長期間に渡り安定して電力を供給可能な好適な燃料電池システムを提供することが可能になる。   As mentioned above, according to this Embodiment, since the optimal replacement time is set to each installation area, it can suppress that the desulfurizer 10 breaks through and a reforming catalyst deteriorates rapidly by a sulfur compound. Therefore, the hydrogen-containing gas can be stably supplied over a long period of time. As a result, it is possible to provide a suitable fuel cell system capable of supplying power stably over a long period of time.

(実施の形態2)
本発明の実施の形態2に係る水素生成装置及びそれを備える燃料電池システムの構成並びにその動作は、実施の形態1で示した水素生成装置100及びそれを備える燃料電池システムの構成並びにその動作と基本的に同様である。従って、以下の説明では、実施の形態1との相違点について説明する。
(Embodiment 2)
The configuration and operation of the hydrogen generator according to Embodiment 2 of the present invention and the fuel cell system including the same are the configuration and operation of the hydrogen generator 100 shown in Embodiment 1 and the fuel cell system including the same. Basically the same. Therefore, in the following description, differences from the first embodiment will be described.

図2は、本発明の実施の形態2に係る水素生成装置を備える燃料電池システムの構成を模式的に示すブロック図である。   FIG. 2 is a block diagram schematically showing a configuration of a fuel cell system including a hydrogen generator according to Embodiment 2 of the present invention.

図2に示すように、本実施の形態に係る水素生成装置200は、図1に示すバーコードリーダー12に代えてICタグリーダー13を備えている点で、実施の形態1に示す水素生成装置100の構成と異なっている。又、図2に示すように、LPGボンベ15は、バーコード15aに代えてICタグ15bを備えている。   As shown in FIG. 2, the hydrogen generator 200 according to the present embodiment includes an IC tag reader 13 instead of the barcode reader 12 shown in FIG. Different from 100 configurations. As shown in FIG. 2, the LPG cylinder 15 includes an IC tag 15b instead of the barcode 15a.

ICタグ15bは、小型の情報チップであって、RFIDの一種である。そして、このICタグ15bは、水素生成装置200のICタグリーダー13から発射される電波によって微量な電力が回路内に発生し、その電力を利用して情報を処理して、その情報をICタグリーダー13に送信する。ここで、通常、ICタグリーダー13とICタグ15bとの間で送受信される電波の出力電力の関係等により、LPGボンベ15が供給する原料中の硫黄化合物の濃度に関連する情報を取得する際には、ICタグ15bとICタグリーダー13とを相互に近づける必要がある。   The IC tag 15b is a small information chip and is a kind of RFID. The IC tag 15b generates a very small amount of power in the circuit by radio waves emitted from the IC tag reader 13 of the hydrogen generator 200, processes information using the power, and converts the information into the IC tag. Send to reader 13. Here, when acquiring information related to the concentration of the sulfur compound in the raw material supplied by the LPG cylinder 15 based on the relationship of the output power of radio waves transmitted and received between the IC tag reader 13 and the IC tag 15b. It is necessary to bring the IC tag 15b and the IC tag reader 13 close to each other.

さて、本実施の形態では、ICタグリーダー13は、LPGボンベ15が備えるICタグ15bからの電波を受信することにより、LPGボンベ15が供給する原料中の硫黄化合物の濃度に関連する情報を取得する。そして、制御装置9は、ICタグリーダー13により受信した所定の情報に基づき、原料中の硫黄化合物の濃度を認識する。この場合、制御装置9は、ICタグリーダー13が受信する情報と原料中の硫黄化合物の濃度との予め記憶する相関情報に基づき、原料中の硫黄化合物の濃度を認識する。一方、水素生成装置200の閾値設定器11は、ICタグリーダー13により取得された硫黄化合物の濃度に関連する情報に基づき、所定の閾値を設定する。そして、本実施の形態では、実施の形態1の場合と同様、制御装置9が、脱硫器10への累積原料供給量、改質器4への累積水供給量、水素生成装置200の累積運転時間、若しくは、水素生成装置200の起動回数又は停止回数等の情報に基づき、脱硫器10への累積硫黄化合物供給量を認識して、その累積硫黄化合物供給量が所定の閾値以上に到達したことを検知すると、流量調整弁1aにより脱硫器10に供給される原料の流量を低減させるか、水素生成装置200の運転時間を低減させるか、若しくは、水素生成装置200の運転を停止させる。   In the present embodiment, the IC tag reader 13 acquires information related to the concentration of the sulfur compound in the raw material supplied by the LPG cylinder 15 by receiving radio waves from the IC tag 15b included in the LPG cylinder 15. To do. And the control apparatus 9 recognizes the density | concentration of the sulfur compound in a raw material based on the predetermined information received by the IC tag reader 13. FIG. In this case, the control device 9 recognizes the concentration of the sulfur compound in the raw material based on the correlation information stored in advance between the information received by the IC tag reader 13 and the concentration of the sulfur compound in the raw material. On the other hand, the threshold setting device 11 of the hydrogen generator 200 sets a predetermined threshold based on information related to the concentration of the sulfur compound acquired by the IC tag reader 13. In the present embodiment, as in the case of the first embodiment, the control device 9 causes the cumulative raw material supply amount to the desulfurizer 10, the cumulative water supply amount to the reformer 4, and the cumulative operation of the hydrogen generator 200. Recognizing the cumulative amount of sulfur compound supplied to the desulfurizer 10 based on time or the number of times the hydrogen generator 200 has been started or stopped, the cumulative amount of sulfur compound supplied has reached a predetermined threshold or more. Is detected, the flow rate of the raw material supplied to the desulfurizer 10 is reduced by the flow rate adjusting valve 1a, the operation time of the hydrogen generator 200 is reduced, or the operation of the hydrogen generator 200 is stopped.

又、実施の形態1の場合と同様、制御装置9は、必要に応じて、脱硫器10の交換に関する警告信号を、電話回線等を介して、メンテナンス会社に向けて送信する。   Further, as in the case of the first embodiment, the control device 9 transmits a warning signal regarding replacement of the desulfurizer 10 to a maintenance company via a telephone line or the like as necessary.

尚、本実施の形態においても、水素生成装置200に原料を供給するためのLPGボンベ15は定期的に交換されるが、その交換の際にはICタグリーダー13はICタグ15bから新たな情報を受信する。これにより、実施の形態1の場合と同様、新たなLPGボンベ15が供給する原料中の硫黄化合物の濃度に関連する情報が更新される。そして、閾値設定器11により新たな閾値が設定され、この新たな閾値と累積硫黄化合物供給量とに基づき、制御装置9により水素生成装置200の運転が適切に制御される。   Also in this embodiment, the LPG cylinder 15 for supplying the raw material to the hydrogen generator 200 is periodically replaced. However, when the replacement is performed, the IC tag reader 13 receives new information from the IC tag 15b. Receive. Thereby, as in the case of the first embodiment, the information related to the concentration of the sulfur compound in the raw material supplied by the new LPG cylinder 15 is updated. Then, a new threshold value is set by the threshold value setter 11, and the operation of the hydrogen generator 200 is appropriately controlled by the control device 9 based on the new threshold value and the accumulated sulfur compound supply amount.

又、本実施の形態では、水素生成装置200がICタグリーダー13を備える形態を例示したが、このような形態に限定されることはない。例えば、ICタグリーダー13をLPGボンベ15の設置場所の近傍に設置して、LPGボンベ15を所定の位置に設置することによりICタグ15bから硫黄化合物の濃度に関連する情報を自動的に取得する形態としてもよい。   In the present embodiment, the hydrogen generation apparatus 200 includes the IC tag reader 13 as an example. However, the present invention is not limited to such a form. For example, the IC tag reader 13 is installed in the vicinity of the installation location of the LPG cylinder 15 and the LPG cylinder 15 is installed at a predetermined position to automatically acquire information related to the concentration of sulfur compounds from the IC tag 15b. It is good also as a form.

(実施の形態3)
本発明の実施の形態3に係る水素生成装置及びそれを備える燃料電池システムの構成並びにその動作は、実施の形態1で示した水素生成装置100及びそれを備える燃料電池システムの構成並びにその動作と基本的に同様である。従って、以下の説明では、実施の形態1との相違点について説明する。
(Embodiment 3)
The configuration and the operation of the hydrogen generator according to Embodiment 3 of the present invention and the fuel cell system including the same are the configuration and the operation of the hydrogen generator 100 and the fuel cell system including the same described in Embodiment 1. Basically the same. Therefore, in the following description, differences from the first embodiment will be described.

図3は、本発明の実施の形態3に係る水素生成装置を備える燃料電池システムの構成を模式的に示すブロック図である。   FIG. 3 is a block diagram schematically showing a configuration of a fuel cell system including a hydrogen generator according to Embodiment 3 of the present invention.

図3に示すように、本実施の形態では、メタンを主成分として有する都市ガスがそのインフラストラクチャーから水素生成装置300の脱硫器10に供給される。そして、本実施の形態に係る水素生成装置300は、図1に示すバーコードリーダー12や、図2に示すICタグリーダー13に代えて、無線装置14を備えている点で、実施の形態1,2に示す水素生成装置100,200の構成と異なっている。   As shown in FIG. 3, in the present embodiment, city gas having methane as a main component is supplied from the infrastructure to the desulfurizer 10 of the hydrogen generator 300. The hydrogen generator 300 according to the present embodiment is different from the barcode reader 12 shown in FIG. 1 and the IC tag reader 13 shown in FIG. , 2 is different from the configuration of the hydrogen generators 100, 200.

無線装置14は、GPS衛星16からの電波を受信することにより、水素生成装置300の設置場所に係る情報(水素生成装置300の位置情報)を取得する。そして、水素生成装置300の制御装置9は、無線装置14により取得した水素生成装置300の設置場所に係る情報に基づき、都市ガス中の硫黄化合物の濃度を認識する。この場合、制御装置9は、無線装置14により取得する位置情報と都市ガス中の硫黄化合物の濃度との予め記憶する相関情報に基づき、都市ガス中の硫黄化合物の濃度を間接的に認識する。   The wireless device 14 receives the radio wave from the GPS satellite 16 to acquire information related to the installation location of the hydrogen generator 300 (position information of the hydrogen generator 300). Then, the control device 9 of the hydrogen generator 300 recognizes the concentration of the sulfur compound in the city gas based on the information related to the installation location of the hydrogen generator 300 acquired by the wireless device 14. In this case, the control device 9 indirectly recognizes the concentration of the sulfur compound in the city gas based on the correlation information stored in advance between the position information acquired by the wireless device 14 and the concentration of the sulfur compound in the city gas.

或いは、無線装置14は、携帯電話等のための無線局17と通信を行うことにより、実施の形態1,2の場合と同様にして、都市ガス中の硫黄化合物の濃度に関連する情報(例えば、都市ガスを供給する会社名等の情報)、又は、都市ガス中の硫黄化合物の濃度情報を取得する。そして、水素生成装置300の制御装置9は、無線装置14により取得した都市ガス中の硫黄化合物の濃度に関連する情報又は濃度情報に基づき、都市ガス中の硫黄化合物の濃度を認識する。   Alternatively, the wireless device 14 communicates with the wireless station 17 for a mobile phone or the like, thereby performing information related to the concentration of sulfur compounds in the city gas (for example, as in the first and second embodiments) (for example, , Information on the name of a company that supplies city gas, or the concentration information of sulfur compounds in city gas. Then, the control device 9 of the hydrogen generator 300 recognizes the concentration of the sulfur compound in the city gas based on the information or concentration information related to the concentration of the sulfur compound in the city gas acquired by the wireless device 14.

以下、無線装置14がGPS衛星16からの電波を受信する形態について説明する。   Hereinafter, a mode in which the wireless device 14 receives radio waves from the GPS satellite 16 will be described.

都市ガスは、その都市ガスを供給する地域(原料の供給地域)や、都市ガスを供給する供給会社(原料の供給主体)によっても異なるが、通常、付臭剤として数ppm程度の硫黄化合物を含有している。ここで、付臭剤としては、ジメチルスルフィド(DMS)やターシャリーブチルメルカプタン(TBM)やテトラヒドロチオフェン(THT)等が用いられ、嗅覚障害のある消費者をも考慮して、二種類以上の硫黄化合物が添加されている。   City gas varies depending on the area where the city gas is supplied (raw material supply area) and the city gas supply company (raw material supplier), but usually a sulfur compound of several ppm is used as an odorant. Contains. Here, as the odorant, dimethyl sulfide (DMS), tertiary butyl mercaptan (TBM), tetrahydrothiophene (THT) and the like are used, and two or more kinds of sulfur are also taken into consideration for consumers with olfactory disturbance. A compound has been added.

図4(a)は、硫黄化合物の濃度に関連する情報を特定するためのマップを概念的に示す模式図である。尚、図4(a)において、符号A1〜A4は都市ガスの供給エリア(原料の供給地域)を示し、符号X1〜X4は都市ガス中の硫黄化合物の添加内容(付臭剤の種類と添加量)を示している。   FIG. 4A is a schematic diagram conceptually showing a map for specifying information related to the concentration of the sulfur compound. In addition, in Fig.4 (a), code | symbol A1-A4 shows the supply area (supply area of a raw material) of city gas, and code | symbol X1-X4 shows the addition content (type and addition of odorant in city gas) Amount).

又、図4(b)は、都市ガス中の硫黄化合物の組成に基づき所定の閾値を特定するための特定図である。   FIG. 4B is a specific diagram for specifying a predetermined threshold based on the composition of sulfur compounds in the city gas.

図4(a)に示すように、都市ガス中の硫黄化合物の添加内容は、一部重複する地域もあるが、基本的には、緯度及び経度が異なる供給エリアA1〜A4のそれぞれにおいて、X1〜X4とされている。例えば、供給エリアA1では、ジメチルスルフィドとターシャリーブチルメルカプタンとが1:1の割合で混合され、付臭剤の含有濃度が4ppmである都市ガスが供給される。又、供給エリアA1から離れた供給エリアA3では、ターシャリーブチルメルカプタンとテトラヒドロチオフェンとが1:1の割合で混合され、付臭剤の含有濃度が4ppmである都市ガスが供給される。   As shown to Fig.4 (a), although the addition content of the sulfur compound in city gas has an area which overlaps partially, in each of supply area A1-A4 from which latitude and longitude differ fundamentally, X1 ~ X4. For example, in the supply area A1, dimethyl sulfide and tertiary butyl mercaptan are mixed at a ratio of 1: 1, and city gas having an odorant concentration of 4 ppm is supplied. Further, in the supply area A3 that is away from the supply area A1, tertiary butyl mercaptan and tetrahydrothiophene are mixed at a ratio of 1: 1, and city gas having an odorant concentration of 4 ppm is supplied.

そこで、本実施の形態では、無線装置14が、GPS衛星16からの電波を受信することにより、緯度及び経度により示される水素生成装置300の位置情報を取得する。これにより、水素生成装置300の制御装置9は、その水素生成装置300が都市ガスの供給を受ける供給エリアを特定する。そして、制御装置9は、その特定した都市ガスの供給エリアの情報に基づき、都市ガス中の硫黄化合物の添加内容を認識する。これにより、水素生成装置300の制御装置9は、都市ガス中の硫黄化合物の濃度を認識する。   Therefore, in the present embodiment, the wireless device 14 receives radio waves from the GPS satellite 16 to acquire position information of the hydrogen generator 300 indicated by latitude and longitude. Thereby, the control apparatus 9 of the hydrogen generator 300 identifies the supply area where the hydrogen generator 300 receives the supply of city gas. And the control apparatus 9 recognizes the addition content of the sulfur compound in city gas based on the information of the supply area of the specified city gas. Thereby, the control apparatus 9 of the hydrogen production | generation apparatus 300 recognizes the density | concentration of the sulfur compound in city gas.

都市ガス中の硫黄化合物の濃度が認識されると、水素生成装置300の制御装置9は、その認識された都市ガス中の硫黄化合物の濃度に基づき、実施の形態1,2の場合と同様にして、所定の閾値を設定する。そして、制御装置9は、実施の形態1,2の場合と同様にして、脱硫器10への累積原料供給量、改質器4への累積水供給量、水素生成装置300の累積運転時間、若しくは、水素生成装置300の起動回数又は停止回数等の情報に基づき、脱硫器10への累積硫黄化合物供給量を認識して、その累積硫黄化合物供給量が所定の閾値以上に到達したことを検知すると、流量調整弁1aにより脱硫器10に供給される原料の流量を低減させるか、水素生成装置300の運転時間を低減させるか、水素生成装置300の運転を停止させる。   When the concentration of the sulfur compound in the city gas is recognized, the control device 9 of the hydrogen generator 300 performs the same as in the first and second embodiments based on the recognized concentration of the sulfur compound in the city gas. To set a predetermined threshold. And the control apparatus 9 is the same as the case of Embodiment 1, 2, the cumulative raw material supply amount to the desulfurizer 10, the cumulative water supply amount to the reformer 4, the cumulative operation time of the hydrogen generator 300, Alternatively, based on information such as the number of startups or the number of shutdowns of the hydrogen generator 300, the cumulative sulfur compound supply amount to the desulfurizer 10 is recognized, and it is detected that the cumulative sulfur compound supply amount has reached a predetermined threshold or more. Then, the flow rate of the raw material supplied to the desulfurizer 10 by the flow rate adjusting valve 1a is reduced, the operation time of the hydrogen generator 300 is reduced, or the operation of the hydrogen generator 300 is stopped.

又、実施の形態1,2の場合と同様、制御装置9は、必要に応じて、脱硫器10の交換に関する警告信号を、電話回線等を介して、メンテナンス会社に向けて送信する。   Further, as in the case of the first and second embodiments, the control device 9 transmits a warning signal regarding replacement of the desulfurizer 10 to a maintenance company via a telephone line or the like as necessary.

図4(b)を参照しながら説明すると、制御装置9は、水素生成装置300が都市ガスの供給を受ける供給エリアA1,A2,A3を特定すると、その特定した都市ガスの供給エリアの情報に基づき、都市ガス中のジメチルスルフィドとターシャリーブチルメルカプタンとテトラヒドロチオフェンとの含有濃度を特定することで、供給エリアA1,A2,A3に応じた第1の閾値及び第2の閾値を設定する。そして、制御装置9は、都市ガスの供給エリアがA1である場合には、累積硫黄化合物供給量に関連する累積原料供給量が第1の閾値(1,000,000リットル)に到達すると水素生成量の上限値を低下させ、累積硫黄化合物供給量に関連する累積原料供給量が第2の閾値(1,100,000リットル)に到達すると水素生成装置300の運転を禁じる。又、燃料電池システムが異なる地域に設置され、都市ガスの供給エリアがA2となった場合には、制御装置9により、供給エリアがA1である場合とは異なる第1の閾値(670,000リットル)と第2の閾値(750,000リットル)とが設定される。これは、都市ガスに含まれる硫黄化合物の濃度が異なるためである。   If it demonstrates referring FIG.4 (b), if the control apparatus 9 will identify supply area A1, A2, A3 where the hydrogen generator 300 receives supply of city gas, it will be included in the information of the specified city gas supply area. Based on this, the first threshold value and the second threshold value corresponding to the supply areas A1, A2, and A3 are set by specifying the concentration of dimethyl sulfide, tertiary butyl mercaptan, and tetrahydrothiophene in the city gas. When the city gas supply area is A1, the control device 9 generates hydrogen when the accumulated raw material supply amount related to the accumulated sulfur compound supply amount reaches the first threshold (1,000,000 liters). When the upper limit value of the amount is reduced and the cumulative raw material supply amount related to the cumulative sulfur compound supply amount reaches the second threshold (1,100,000 liters), the operation of the hydrogen generator 300 is prohibited. When the fuel cell system is installed in a different area and the city gas supply area is A2, the controller 9 controls the first threshold value (670,000 liters) different from the case where the supply area is A1. ) And a second threshold value (750,000 liters). This is because the concentration of sulfur compounds contained in city gas is different.

ここで、本実施の形態では、制御装置9が、図4(a)及び図4(b)に示す所定の情報をその記憶部に予め記憶している。   Here, in the present embodiment, the control device 9 stores in advance the predetermined information shown in FIGS. 4A and 4B in the storage unit.

本実施の形態によれば、都市ガス中の硫黄化合物の組成が異なる他の地域へ燃料電池システムの設置場所を移動させた場合であっても、無線装置14により都市ガス中の硫黄化合物の濃度に関連する情報を自動的に取得することができるので、水素生成装置300の運転に係る所定の閾値を自動的に変更することが可能になる。これにより、バーコードリーダーやICタグリーダー等の情報取得器を用いる形態と比べて、より一層利便性に優れた水素生成装置及びそれを備える燃料電池システムを提供することが可能になる。   According to the present embodiment, even when the installation location of the fuel cell system is moved to another area where the composition of the sulfur compound in the city gas is different, the concentration of the sulfur compound in the city gas by the wireless device 14 Therefore, it is possible to automatically acquire the information related to the above, so that it is possible to automatically change the predetermined threshold value related to the operation of the hydrogen generator 300. This makes it possible to provide a hydrogen generator that is more convenient and a fuel cell system including the hydrogen generator, as compared with a mode that uses an information acquisition device such as a barcode reader or an IC tag reader.

尚、本実施の形態では、無線装置14がGPS衛星16又は無線局17の何れか一方から都市ガス中の硫黄化合物の濃度に関連する情報を取得する形態を例示したが、このような形態に限定されることはない。例えば、無線装置14がGPS衛星16及び無線局17の双方から都市ガス中の硫黄化合物の濃度に関連する情報を取得する形態としてもよい。   In the present embodiment, the wireless device 14 exemplifies a mode in which information related to the concentration of sulfur compounds in city gas is acquired from either the GPS satellite 16 or the wireless station 17. There is no limit. For example, the wireless device 14 may acquire information related to the concentration of sulfur compounds in the city gas from both the GPS satellite 16 and the wireless station 17.

本発明に係る水素生成装置は、原料中の硫黄化合物により改質触媒が被毒されることを防止可能な、長期間に渡り安定して水素を生成可能な水素生成装置として、産業上の利用可能性を十分に備えている。   INDUSTRIAL APPLICABILITY The hydrogen generator according to the present invention is industrially used as a hydrogen generator that can prevent the reforming catalyst from being poisoned by sulfur compounds in the raw material and can stably generate hydrogen over a long period of time. Full of possibilities.

又、本発明に係る燃料電池システムは、長期間に渡り安定して電力を供給可能な好適な燃料電池システムとして、産業上の利用可能性を十分に備えている。   In addition, the fuel cell system according to the present invention has sufficient industrial applicability as a suitable fuel cell system capable of supplying power stably over a long period of time.

図1は、本発明の実施の形態1に係る水素生成装置を備える燃料電池システムの構成を模式的に示すブロック図である。FIG. 1 is a block diagram schematically showing a configuration of a fuel cell system provided with a hydrogen generator according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態2に係る水素生成装置を備える燃料電池システムの構成を模式的に示すブロック図である。FIG. 2 is a block diagram schematically showing a configuration of a fuel cell system including a hydrogen generator according to Embodiment 2 of the present invention. 図3は、本発明の実施の形態3に係る水素生成装置を備える燃料電池システムの構成を模式的に示すブロック図である。FIG. 3 is a block diagram schematically showing a configuration of a fuel cell system including a hydrogen generator according to Embodiment 3 of the present invention. 図4(a)は硫黄化合物の濃度に関連する情報を特定するためのマップを概念的に示す模式図であり、図4(b)は都市ガス中の硫黄化合物の組成に基づき所定の閾値を特定するための特定図である。FIG. 4A is a schematic diagram conceptually showing a map for specifying information related to the concentration of sulfur compounds, and FIG. 4B shows a predetermined threshold based on the composition of sulfur compounds in city gas. It is a specific figure for specifying.

符号の説明Explanation of symbols

1 原料供給装置
1a 流量調整弁
1b 流量検出部
2 水供給装置
2a 流量調整弁
2b 流量検出部
3 空気供給装置
3a ブロア
4 改質器
4a 加熱器
5 変成器
6 浄化器
6a 温度検出器
7 流路切替弁
8 燃料電池
9 制御装置
10 脱硫器
11 閾値設定器
12 バーコードリーダー
13 ICタグリーダー
14 無線装置
15 ボンベ
15a バーコード
15b ICタグ
16 GPS衛星
17 無線局
100〜300 水素生成装置
A1〜A4 供給エリア
X1〜X4 硫黄化合物の添加内容
DESCRIPTION OF SYMBOLS 1 Raw material supply apparatus 1a Flow adjustment valve 1b Flow detection part 2 Water supply apparatus 2a Flow adjustment valve 2b Flow detection part 3 Air supply apparatus 3a Blower 4 Reformer 4a Heater 5 Transformer 6 Purifier 6a Temperature detector 7 Flow path Switch valve 8 Fuel cell 9 Control device 10 Desulfurizer 11 Threshold setting device 12 Bar code reader 13 IC tag reader 14 Wireless device 15 Cylinder 15a Bar code 15b IC tag 16 GPS satellite 17 Radio station 100-300 Hydrogen generator A1-A4 Supply Area X1-X4 Content of sulfur compounds added

Claims (6)

原料中の硫黄化合物を除去する脱硫剤を備える脱硫器と、
前記脱硫器の脱硫剤により硫黄化合物が除去された原料を用いて改質反応により水素含有ガスを生成する改質器と、
前記脱硫器への累積硫黄化合物供給量が所定の閾値以上になると前記脱硫器の交換に関する警告信号を出力する制御器と、
を備える水素生成装置であって、
前記原料中の硫黄化合物の濃度に関連する情報を取得する情報取得器と、
前記情報取得器により取得された前記硫黄化合物の濃度に関連する情報に基づき前記所定の閾値を設定する閾値設定器と、
を更に備え
前記制御器は、前記脱硫器への累積硫黄化合物供給量が所定の閾値以上になると、前記脱硫器に供給される原料の流量を低減させるか、前記水素生成装置の運転時間を低減させる、水素生成装置。
A desulfurizer equipped with a desulfurizing agent for removing sulfur compounds in the raw material;
A reformer that generates a hydrogen-containing gas by a reforming reaction using a raw material from which a sulfur compound has been removed by a desulfurizing agent of the desulfurizer;
A controller that outputs a warning signal related to replacement of the desulfurizer when the cumulative amount of sulfur compound supplied to the desulfurizer exceeds a predetermined threshold;
A hydrogen generator comprising:
An information acquisition unit for acquiring information related to the concentration of the sulfur compound in the raw material;
A threshold setter for setting the predetermined threshold based on information related to the concentration of the sulfur compound acquired by the information acquirer;
Further comprising a,
The controller reduces the flow rate of the raw material supplied to the desulfurizer or reduces the operation time of the hydrogen generator when the cumulative amount of sulfur compound supplied to the desulfurizer exceeds a predetermined threshold. Generator.
前記累積硫黄化合物供給量は、該累積硫黄化合物供給量を間接的に示す前記脱硫器への累積原料供給量、前記改質器への累積水供給量、前記水素生成装置の累積運転時間、若しくは、前記水素生成装置の起動回数又は停止回数の何れかを含む、請求項1記載の水素生成装置。   The cumulative sulfur compound supply amount is a cumulative raw material supply amount to the desulfurizer that indirectly indicates the cumulative sulfur compound supply amount, a cumulative water supply amount to the reformer, a cumulative operation time of the hydrogen generator, or The hydrogen generation apparatus according to claim 1, wherein the hydrogen generation apparatus includes any one of a start count and a stop count of the hydrogen generation apparatus. 前記硫黄化合物の濃度に関連する情報は、前記硫黄化合物の濃度に係る情報、前記原料の種類に係る情報、前記水素生成装置の位置情報、若しくは、前記原料の供給主体に係る情報の何れかを含む、請求項1記載の水素生成装置。   The information related to the concentration of the sulfur compound is any one of the information related to the concentration of the sulfur compound, the information related to the type of the raw material, the positional information of the hydrogen generator, or the information related to the supply source of the raw material. The hydrogen generator according to claim 1, comprising: 前記原料がボンベにより供給され、
前記情報取得器は、前記ボンベに設けられた前記硫黄化合物の濃度に関連する情報を送信する送信器から該硫黄化合物の濃度に関連する情報を取得する、請求項1記載の水素生成装置。
The raw material is supplied by a cylinder,
The hydrogen generator according to claim 1, wherein the information acquisition unit acquires information related to the concentration of the sulfur compound from a transmitter that transmits information related to the concentration of the sulfur compound provided in the cylinder.
前記制御器は、前記脱硫器の交換に関する警告信号を該脱硫器のメンテナンス会社に向けて出力する、請求項1記載の水素生成装置。   The hydrogen generator according to claim 1, wherein the controller outputs a warning signal regarding replacement of the desulfurizer to a maintenance company of the desulfurizer. 請求項1乃至の何れかに記載の水素生成装置と、
前記水素生成装置から供給される水素含有ガスと、酸素含有ガスと、を用いて発電する燃料電池と、
を備えている、燃料電池システム。
A hydrogen generator according to any one of claims 1 to 5 ,
A fuel cell that generates power using a hydrogen-containing gas supplied from the hydrogen generator and an oxygen-containing gas;
A fuel cell system.
JP2008038485A 2008-02-20 2008-02-20 Hydrogen generator and fuel cell system including the same Expired - Fee Related JP5311843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008038485A JP5311843B2 (en) 2008-02-20 2008-02-20 Hydrogen generator and fuel cell system including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008038485A JP5311843B2 (en) 2008-02-20 2008-02-20 Hydrogen generator and fuel cell system including the same

Publications (2)

Publication Number Publication Date
JP2009196833A JP2009196833A (en) 2009-09-03
JP5311843B2 true JP5311843B2 (en) 2013-10-09

Family

ID=41140781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008038485A Expired - Fee Related JP5311843B2 (en) 2008-02-20 2008-02-20 Hydrogen generator and fuel cell system including the same

Country Status (1)

Country Link
JP (1) JP5311843B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214336A (en) * 2011-03-31 2012-11-08 Osaka Gas Co Ltd Reforming system
JP2014211942A (en) * 2011-08-25 2014-11-13 パナソニック株式会社 Fuel cell system and operation method therefor
WO2015075909A1 (en) * 2013-11-20 2015-05-28 パナソニックIpマネジメント株式会社 Hydrogen generation device, fuel battery system and hydrogen generation device operation method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157660A (en) * 1995-12-07 1997-06-17 Yokogawa Electric Corp Automatic threshold value modifier
JPH10124134A (en) * 1996-10-21 1998-05-15 Osaka Gas Co Ltd Diagnostic system
JP4922565B2 (en) * 2005-03-29 2012-04-25 株式会社Eneosセルテック Preparation method for starting fuel cell power generation system
JP2007194143A (en) * 2006-01-20 2007-08-02 Idemitsu Kosan Co Ltd Fuel cell
JP2007193694A (en) * 2006-01-20 2007-08-02 Idemitsu Kosan Co Ltd Desulfurizer delivery/recovery system, desulfurizer delivery/recovery method and desulfurizer delivery/recovery program
JP4598751B2 (en) * 2006-12-28 2010-12-15 アイシン精機株式会社 Fuel cell system

Also Published As

Publication number Publication date
JP2009196833A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
KR101357431B1 (en) Hydrogen production apparatus, fuel cell system, and method for operating the fuel cell system
JP4105758B2 (en) Fuel cell system
US9005829B2 (en) Hydrogen generation apparatus, fuel cell system including the same, and method of operating hydrogen generation apparatus
WO2001048851A1 (en) Power generation device and operation method therefor
JP5121533B2 (en) Hydrogen production apparatus and fuel cell system using the same
JP5406664B2 (en) Fuel cell power generation system
WO2007081016A1 (en) Hydrogen production apparatus, fuel battery system and method of driving the same
JP5214076B1 (en) Hydrogen generator and fuel cell system
JP5311843B2 (en) Hydrogen generator and fuel cell system including the same
JP5576151B2 (en) Desulfurization method, desulfurization apparatus and fuel cell power generation system
JPWO2009072289A1 (en) Hydrogen generator and fuel cell system
JP4986432B2 (en) Operation method of fuel cell system
US7527884B2 (en) Fuel processing system and its shutdown procedure
JP2016207578A (en) Fuel cell power generation device
JP5636079B2 (en) Fuel cell power generation system
JP2005317489A (en) Solid oxide fuel cell system
JP2014101264A (en) Operation method of hydrogen generator, and operation method of fuel cell system
JP2002020103A (en) Method for starting and method for stopping hydrogen producing device
JP2013224242A (en) Hydrogen generator and fuel cell system
WO2015075909A1 (en) Hydrogen generation device, fuel battery system and hydrogen generation device operation method
JP2011210637A (en) Fuel cell system
JP2012214336A (en) Reforming system
JP5592760B2 (en) Fuel cell power generation system
JP2012134056A (en) Fuel battery system and method for operating fuel battery system
JP4863195B2 (en) Fuel cell power generation system and method for stopping the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5311843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees