JP5309696B2 - Assembled battery - Google Patents

Assembled battery Download PDF

Info

Publication number
JP5309696B2
JP5309696B2 JP2008141300A JP2008141300A JP5309696B2 JP 5309696 B2 JP5309696 B2 JP 5309696B2 JP 2008141300 A JP2008141300 A JP 2008141300A JP 2008141300 A JP2008141300 A JP 2008141300A JP 5309696 B2 JP5309696 B2 JP 5309696B2
Authority
JP
Japan
Prior art keywords
battery
assembled battery
connection
electrode terminal
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008141300A
Other languages
Japanese (ja)
Other versions
JP2009289613A (en
Inventor
智匡 望月
鈴木  勲
瞬 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2008141300A priority Critical patent/JP5309696B2/en
Publication of JP2009289613A publication Critical patent/JP2009289613A/en
Application granted granted Critical
Publication of JP5309696B2 publication Critical patent/JP5309696B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、多数の単電池からなる組電池に関するものである。   The present invention relates to an assembled battery comprising a large number of single cells.

近年、二酸化炭素その他有害物質による地球温暖化が大きな問題となり、ガソリン車の代替品として、電気自動車(EV)やハイブリッド電気自動車(HEV)の開発が急速に進んでいる。EVやHEVの電源としては、二次電池や固体高分子形燃料電池等の使用が検討され、その中では二次電池が有望視されている。   In recent years, global warming due to carbon dioxide and other harmful substances has become a major problem, and electric vehicles (EV) and hybrid electric vehicles (HEV) have been rapidly developed as alternatives to gasoline vehicles. As power sources for EVs and HEVs, the use of secondary batteries, polymer electrolyte fuel cells, and the like has been studied, and secondary batteries are considered promising among them.

市販されている二次電池の放電電圧は、単電池の場合、ニッケル−水素蓄電池で約1.1V、ニッケル−カドミウム蓄電池で約1.2V、鉛蓄電池で約2.0V、リチウムイオン電池やポリマー電解質電池等の非水電解質電池では約2.0〜4.0Vである。   In the case of a single battery, the discharge voltage of a commercially available secondary battery is about 1.1 V for a nickel-hydrogen storage battery, about 1.2 V for a nickel-cadmium storage battery, about 2.0 V for a lead storage battery, a lithium ion battery or a polymer In a nonaqueous electrolyte battery such as an electrolyte battery, the voltage is about 2.0 to 4.0 V.

一方、EVやHEVのモータ駆動の電源には、100V以上の高い電圧が必要である。そこで、EVやHEVの電源として二次電池を用いる場合、単電池を多数直列に接続した組電池とし、電圧を高くしなければならない。なお、単電池の容量によっては、単電池を複数個並列に接続し、それを直列に接続するという、直列と並列とを混合した状態で用いることもありうる。   On the other hand, a high voltage of 100 V or higher is necessary for a power source for driving an EV or HEV motor. Therefore, when a secondary battery is used as a power source for EVs or HEVs, it is necessary to increase the voltage by using an assembled battery in which a large number of single cells are connected in series. Depending on the capacity of the unit cells, a plurality of unit cells may be connected in parallel and connected in series, which may be used in a mixed state of series and parallel.

このような組電池は、EVやHEVだけではなく、高電圧が必要とされるあらゆる電源に利用することができ、単電池を直列に接続する数を変えることによって、目的の電圧に設定することができる。   Such an assembled battery can be used not only for EVs and HEVs, but also for any power source that requires a high voltage, and can be set to a desired voltage by changing the number of cells connected in series. Can do.

特許文献1には、非水電解質二次電池を用いた組電池において、各電池の端子のボルト部に接続部材が取り付けられ、ナットなどで締め付けられて、各電池の接続が行われることが開示されている。   Patent Document 1 discloses that, in an assembled battery using a nonaqueous electrolyte secondary battery, a connection member is attached to a bolt portion of a terminal of each battery and is tightened with a nut or the like to connect each battery. Has been.

また、特許文献2には、リチウム二次電池を用いた組電池において、単電池間の接続に接続体を用い、この接続体の一方の電極端子挿通孔に一方の単電池の正極端子を挿通し、他方の電極端子挿通孔に他方の単電池の負極端子を挿通した状態で、接続体取り付けナットで固定する技術が開示されている。   Further, in Patent Document 2, in a battery pack using a lithium secondary battery, a connection body is used for connection between single cells, and the positive terminal of one single battery is inserted into one electrode terminal insertion hole of the connection body. And the technique of fixing with a connection body attachment nut in the state which inserted the negative electrode terminal of the other unit cell in the other electrode terminal insertion hole is disclosed.

さらに、特許文献3には、リチウム二次電池を用いた組電池において、複数の単電池をネジ式のような単電池に設けられた外部端子どうしの接続でおこなってユニットとし、この複数のユニットを、ユニット接続治具とナットとを用いて直列に接続する技術が開示されている。
特開2004−200024号公報 特開2000−138045号公報 特開2000−090967号公報
Further, in Patent Document 3, in an assembled battery using a lithium secondary battery, a plurality of unit cells are connected by connecting external terminals provided on a unit cell such as a screw type to form a unit. Is disclosed in which a unit connection jig and a nut are connected in series.
JP 2004-200024 A JP 2000-138045 A JP 2000-090967 A

従来の組電池は、特許文献1〜3に記載されているように、各単電池間の接続は、接続体とナットなどが用いられ、組電池が組み立てられた後には、各単電池間は接続された状態で保持され、各単電池間の接続は簡単にはずすことができなかった。   As for the conventional assembled battery, as described in Patent Documents 1 to 3, a connection body and a nut or the like are used for the connection between the individual batteries, and after the assembled battery is assembled, It was held in a connected state, and the connection between each cell could not be easily removed.

ところが、一般に、組電池には保護回路や各種制御回路などが接続されている。特に、単電池に非水電解質二次電池を用いた場合、非水電解質二次電池は電圧が高く、しかも電解液に可燃性の有機溶媒が使用されているため、安全性確保のため、各種保護回路が必須である。これらの保護回路は、単電池の容量が3Ah以上となった場合に、特に重要である。   However, generally, a protection circuit and various control circuits are connected to the assembled battery. In particular, when a non-aqueous electrolyte secondary battery is used as a unit cell, the non-aqueous electrolyte secondary battery has a high voltage and a flammable organic solvent is used in the electrolyte. A protection circuit is essential. These protection circuits are particularly important when the capacity of the unit cell is 3 Ah or more.

各単電池間が接続された状態で組電池を保管した場合、組電池の外部端子間には常時高い電圧がかかっており、何らかの原因で外部短絡が起こると、大きな電流が流れ、危険なだけではなく、組電池が損傷を受け、使用できなくなるという問題があった。   If the battery is stored with each cell connected, a high voltage is always applied between the external terminals of the battery, and if an external short circuit occurs for some reason, a large current flows, which is dangerous. However, there was a problem that the assembled battery was damaged and could not be used.

また、各単電池間が接続された状態の組電池において、保護回路等が接続されていると、電池を使用していない場合でも、暗電流が流れ、電池が少しずつ放電し、容量が減少し、電圧も低下するという問題があった。   In addition, in a battery pack in which each unit cell is connected, if a protection circuit or the like is connected, even when the battery is not used, dark current flows, the battery is discharged little by little, and the capacity decreases. However, there was a problem that the voltage also decreased.

そこで、本発明の目的は、組電池を保存中に、端子間の短絡を防止し、暗電流が流れなくすることにより、保存中の電池容量の減少や電池電圧の低下を抑制することが可能な組電池を提供することにある。   Therefore, an object of the present invention is to prevent a short circuit between terminals and prevent dark current from flowing during storage of an assembled battery, thereby suppressing a decrease in battery capacity and a decrease in battery voltage during storage. Is to provide a simple assembled battery.

請求項1の発明は、端子に第1接続部を備えた多数の単電池と、前記第1接続部と接続可能な第2接続部と、前記第2接続部と接続する接続部材とからなる組電池において、前記第2接続部は、回転軸と、一端前記接続部材に接続されるとともに前記一端と異なる2つの他端がそれぞれ異なる前記単電池の前記第1接続部に接続される、前記回転軸を中心として回転する可動接続部を備え、組電池使用時には、すべての単電池が直列、並列または直列と並列が混合した状態で接続されるように前記接続部材で接続し、組電池不使用時には前記接続部材の移動により前記可動接続部を回転させて前記可動接続部の他端を前記第1接続部から切り離すことですべての単電池と前記接続部材とが切り離されていることを特徴とする。
The invention of claim 1 comprises a large number of single cells each having a first connection portion at a terminal, a second connection portion connectable to the first connection portion, and a connection member connected to the second connection portion. in the assembled battery, the second connecting portion includes a rotary shaft, one end of the two other end different from the end which is connected to the connecting member is connected to the first connecting portion of different said unit cells each, A movable connecting portion that rotates about the rotation axis is provided, and when the assembled battery is used, all the single cells are connected in series, in parallel, or in a mixed state of the series and parallel, and are connected by the connection member. When not in use, all the cells are disconnected from the connecting member by rotating the movable connecting portion by moving the connecting member and disconnecting the other end of the movable connecting portion from the first connecting portion. Features.

また、請求項2の発明は、上記組電池において、接続部材が、少なくとも3個以上の単
電池を同時に接続することが可能であることを特徴とする。
また、請求項3の発明は、上記組電池において、可動接続部の一端が、ばねを介して接続部材に接続されることを特徴とする。
The invention of claim 2 is characterized in that, in the assembled battery, the connecting member is capable of simultaneously connecting at least three unit cells.
According to a third aspect of the present invention, in the assembled battery, one end of the movable connection portion is connected to the connection member via a spring.

本発明の請求項1の組電池は、使用時にはすべての単電池が直列、並列または直列と並列が混合した状態で接続されるが、不使用時にはすべての単電池と接続部材とが切り離されて、各単電池の端子はどこにも接続されない。そのため、組電池不使用時に、端子の短絡の危険がなく、また、暗電流も流れないため、電池の容量減少や電圧低下の原因は電池特有の自己放電によるものに限られるため、従来の組電池に見られた電池の容量減少や電圧低下を抑制することができるものである。   In the assembled battery according to claim 1 of the present invention, all the single cells are connected in series, parallel, or a mixture of series and parallel when in use, but all the single cells are disconnected from the connecting member when not in use. The terminals of each cell are not connected anywhere. For this reason, there is no danger of short-circuiting terminals when no assembled battery is used, and no dark current flows.Therefore, the causes of battery capacity reduction and voltage drop are limited to those caused by battery self-discharge. It is possible to suppress the battery capacity decrease and voltage decrease observed in the battery.

また、請求項2の組電池では、少なくとも3個以上の単電池を同時に接続することが可能な接続部材を用いることにより、多数の単電池を、短時間に、同時に、接続または分離が可能となり、作業時間を大幅に短縮することができる。   Further, in the assembled battery of claim 2, by using a connecting member capable of simultaneously connecting at least three or more unit cells, a large number of unit cells can be connected or separated simultaneously in a short time. The working time can be greatly shortened.

本発明は、端子に第1接続部を備えた多数の単電池と、前記第1接続部と接続可能な第2接続部を備えた接続部材とからなる組電池において、組電池使用時には、すべての単電池が直列、並列または直列と並列が混合した状態で接続されるように前記接続部材で接続し、組電池不使用時にはすべての単電池と前記接続部材とが切り離されていることを特徴とするものである。   The present invention provides an assembled battery comprising a large number of single cells each having a first connection portion at a terminal and a connection member having a second connection portion connectable to the first connection portion. The single cells are connected in series, in parallel or in a state in which series and parallel are mixed, and are connected by the connecting member, and all the single cells and the connecting member are disconnected when the assembled battery is not used. It is what.

また、本発明は、上記組電池において、接続部材が、少なくとも3個以上の単電池を同時に接続することが可能であることを特徴とするものである。   Moreover, the present invention is characterized in that, in the above assembled battery, the connection member can connect at least three unit cells at the same time.

本発明の第一実施形態は、組電池の各単電池間を差し込み方式で接続するものである。本発明の第一実施形態を、図1〜図4に基づいて説明する。図1は単電池の外観斜視図であり、図1において、1は非水電解質二次電池、2は電池容器、3は電池ケース、4は電池蓋、5は正極端子、6は負極端子、7は絶縁体、8は電解液注液口、9は安全弁である。   1st embodiment of this invention connects between each cell of an assembled battery by an insertion system. 1st Embodiment of this invention is described based on FIGS. FIG. 1 is an external perspective view of a unit cell. In FIG. 1, 1 is a non-aqueous electrolyte secondary battery, 2 is a battery container, 3 is a battery case, 4 is a battery lid, 5 is a positive terminal, 6 is a negative terminal, 7 is an insulator, 8 is an electrolyte injection port, and 9 is a safety valve.

図1に示した単電池としては非水電解質二次電池を用いた。この非水電解質二次電池1は、例えば金属により長円筒状に形成された電池容器2の内部に、巻回型の発電要素(図示せず)が収容されている。   A non-aqueous electrolyte secondary battery was used as the unit cell shown in FIG. In the nonaqueous electrolyte secondary battery 1, a wound type power generation element (not shown) is accommodated in a battery container 2 formed in a long cylindrical shape by, for example, metal.

電池容器2は、有底の長円筒容器状に形成された金属製の電池ケース3と、略長円盤状に形成されてこの電池ケース3の開放口を封止する金属製の電池蓋4とで構成されている。電池ケース3の内部には、発電要素が収容されている。そして、電池ケース3の開放口は、電池蓋4が溶接されることにより密閉されている。   The battery container 2 includes a metal battery case 3 formed in a bottomed long cylindrical container shape, and a metal battery cover 4 formed in a substantially long disk shape and sealing the opening of the battery case 3. It consists of A power generation element is accommodated in the battery case 3. The opening of the battery case 3 is sealed by welding the battery lid 4.

電池蓋4には、導電性材料からなる正極端子5および負極端子6が貫通して固定されている。これらの端子5、6は、電池蓋4に設けられた二つの貫通孔に挿通されており、セラミックス製の絶縁体7により電池蓋4に対して絶縁状態で支持されている。なお、電池蓋4には、電解液注液口8および安全弁9が設けられている。電解液注液口8は、電池を組み立て、電解液を注液した後、封口される。また、安全弁は、電池蓋4に設けられた貫通孔を金属製の薄膜で覆うことにより形成されている。   A positive electrode terminal 5 and a negative electrode terminal 6 made of a conductive material are passed through and fixed to the battery lid 4. These terminals 5 and 6 are inserted into two through holes provided in the battery lid 4, and are supported in an insulated state by the ceramic insulator 7 with respect to the battery lid 4. The battery lid 4 is provided with an electrolyte injection port 8 and a safety valve 9. The electrolyte solution injection port 8 is sealed after the battery is assembled and the electrolyte solution is injected. The safety valve is formed by covering a through-hole provided in the battery lid 4 with a metal thin film.

図2は、単電池の正極端子5および負極端子6の拡大図であり、端子の形状は、電池内部から電池外部につながる円筒状部分11と、その上部に設けられた接続部12とから構成されている。接続部12は、上端部分が開いた一対の金属板からなる。接続部12の材質としては、導電性の金属を用いる。なお、接続部12の材質は、円筒状部分11の材質と同じであってもよいし、異なっていてもよい。   FIG. 2 is an enlarged view of the positive electrode terminal 5 and the negative electrode terminal 6 of the unit cell, and the shape of the terminal is composed of a cylindrical part 11 connected from the inside of the battery to the outside of the battery, and a connection part 12 provided on the upper part. Has been. The connection part 12 consists of a pair of metal plate with the upper end part opened. As a material of the connection part 12, a conductive metal is used. In addition, the material of the connection part 12 may be the same as the material of the cylindrical part 11, and may differ.

図3は接続部材を示す。接続部材は、絶縁材料からなる支持板13に、必要な個数のU字状突起14を、例えばネジ15で取りつけられたものである。ここでは、U字状突起14を3個取りつけた例を示す。   FIG. 3 shows the connecting member. The connecting member is obtained by attaching a necessary number of U-shaped protrusions 14 to a support plate 13 made of an insulating material with, for example, screws 15. Here, an example in which three U-shaped protrusions 14 are attached is shown.

図4は、単電池に接続部材を接続して組電池にした状態を示す図である。図4において、10は単電池、13は支持板、14は字状突起、16は接続部材、17は組電池正極端子、18は組電池負極端子である。図4では、単電池4個を直列に接続して組電池とする例を示す。図4に示した組電池において、各単電池10は、図の左側に正極端子、右側に負極端子がくるように配列されており、左端の単電池No.1の正極端子は、組電池正極端子17を介して機器と接続され、右端の単電池No.4の負極端子は、組電池負極端子18を介して機器と接続されている。なお、単電池No.1の正極端子と組電池正極端子17、および単電池No.4の負極端子と組電池負極端子18とは、使用時も不使用時も、常に接続されているものとする。   FIG. 4 is a diagram showing a state where a connecting member is connected to a single cell to form an assembled battery. In FIG. 4, 10 is a cell, 13 is a support plate, 14 is a letter-shaped protrusion, 16 is a connection member, 17 is a battery pack positive terminal, and 18 is a battery pack negative terminal. FIG. 4 shows an example in which four unit cells are connected in series to form an assembled battery. In the assembled battery shown in FIG. 4, each unit cell 10 is arranged so that the positive electrode terminal is on the left side and the negative electrode terminal is on the right side. 1 is connected to the device via the assembled battery positive terminal 17, and the rightmost unit cell No. 1 is connected. The negative electrode terminal 4 is connected to the device via the assembled battery negative electrode terminal 18. The unit cell No. 1 positive electrode terminal and assembled battery positive electrode terminal 17, and unit cell No. 1 It is assumed that the negative electrode terminal 4 and the assembled battery negative electrode terminal 18 are always connected both when used and when not used.

そして、組電池の使用時には、図4に示すように、単電池10に接続部材16を接続して、4個の単電池間を直列に接続し、組電池不使用時には、各単電池10から接続部材16を切り離し、単電池間の電気的接続を切断する。このように、接続部材を用いることにより、多数(ここでは4個)の単電池間の接続および切断を、簡単な操作で、短時間におこなうことができるものである。   When the assembled battery is used, as shown in FIG. 4, the connecting member 16 is connected to the unit cell 10 to connect the four unit cells in series, and when the assembled battery is not used, The connection member 16 is disconnected, and the electrical connection between the single cells is disconnected. In this way, by using the connection member, connection and disconnection between a large number (here, four) of single cells can be performed in a short time with a simple operation.

本発明の第二実施形態は、組電池の各単電池間をスイッチ方式で接続するものである。本発明の第二実施形態を、図5、図6および図7に基づいて説明する。第二実施形態においても、単電池は図1に示した第一実施形態で用いたものと同じ非水電解質二次電池を用いた。図5は、第二実施形態の単電池の正極端子5および負極端子6の拡大図を示し、端子の形状は、電池内部から電池外部につながる円筒状部分21と、その上部に設けられた板状の接続部22とから構成されている。接続部22の材質としては、導電性の金属を用いる。なお、接続部22の材質は、円筒状部分21の材質と同じであってもよいし、異なっていてもよい。   2nd embodiment of this invention connects between each cell of an assembled battery by a switch system. A second embodiment of the present invention will be described based on FIG. 5, FIG. 6, and FIG. Also in the second embodiment, the same nonaqueous electrolyte secondary battery as that used in the first embodiment shown in FIG. FIG. 5 shows an enlarged view of the positive electrode terminal 5 and the negative electrode terminal 6 of the unit cell of the second embodiment, and the shape of the terminal is a cylindrical portion 21 connected from the inside of the battery to the outside of the battery, and a plate provided on the upper portion thereof. The connection part 22 of a shape is comprised. A conductive metal is used as the material of the connecting portion 22. In addition, the material of the connection part 22 may be the same as the material of the cylindrical part 21, and may differ.

図6は、単電池に接続部材をスイッチ方式で接続して組電池にした状態を示す図であり、図7は単電池間の接続を切断した状態を示す図である。図6および図7において、10は単電池、5は単電池の正極端子、6は単電池の負極端子、17は組電池正極端子、18は組電池負極端子、23はスイッチ方式の接続部材、24は可動接続部、25は可動接続部の回転軸、26はばねである。   FIG. 6 is a diagram showing a state in which a connection member is connected to a single cell by a switch method to form an assembled battery, and FIG. 7 is a diagram showing a state in which the connection between the single cells is disconnected. 6 and 7, 10 is a single cell, 5 is a positive electrode terminal of the single cell, 6 is a negative electrode terminal of the single cell, 17 is an assembled battery positive electrode terminal, 18 is an assembled battery negative electrode terminal, and 23 is a switch-type connection member. Reference numeral 24 denotes a movable connecting portion, 25 denotes a rotating shaft of the movable connecting portion, and 26 denotes a spring.

図6では、単電池4個を直列に接続して組電池とする例を示す。図6に示した組電池において、各単電池10は、図の左側に正極端子、右側に負極端子がくるように配列されており、左端の単電池No.1の正極端子は、組電池正極端子17を介して機器と接続され、右端の単電池No.4の負極端子は、組電池負極端子18を介して機器と接続されている。なお、単電池No.1の正極端子と組電池正極端子17、および単電池No.4の負極端子と組電池負極端子18とは、使用時も不使用時も、常に接続されているものとする。   FIG. 6 shows an example in which four unit cells are connected in series to form an assembled battery. In the assembled battery shown in FIG. 6, each cell 10 is arranged so that the positive electrode terminal is on the left side and the negative electrode terminal is on the right side. 1 is connected to the device via the assembled battery positive terminal 17, and the rightmost unit cell No. 1 is connected. The negative electrode terminal 4 is connected to the device via the assembled battery negative electrode terminal 18. The unit cell No. 1 positive electrode terminal and assembled battery positive electrode terminal 17, and unit cell No. 1 It is assumed that the negative electrode terminal 4 and the assembled battery negative electrode terminal 18 are always connected both when used and when not used.

そして、組電池の使用時には、図6に示すように、隣接する単電池の正極端子5と負極端子6とが、可動接続部24によって接続されるように、接続部材23の位置を調節して、4個の単電池間を直列に接続する。一方、組電池不使用時には、図7に示すように、接続部材23を図6の位置から左方向に移動して図7の位置に移動させ、各単電池10から可動接続部24を切り離し、単電池間の電気的接続を切断する。   Then, when using the assembled battery, as shown in FIG. 6, the position of the connecting member 23 is adjusted so that the positive electrode terminal 5 and the negative electrode terminal 6 of the adjacent unit cell are connected by the movable connecting portion 24. Four unit cells are connected in series. On the other hand, when the assembled battery is not used, as shown in FIG. 7, the connection member 23 is moved leftward from the position of FIG. 6 to the position of FIG. 7, and the movable connection portion 24 is disconnected from each unit cell 10. Disconnect the electrical connection between the cells.

このように、第二実施形態においても、スイッチ方式の接続部材を用いることにより、多数(ここでは4個)の単電池間の接続および切断を、簡単な操作で、短時間におこなうことができるものである。   As described above, also in the second embodiment, by using a switch-type connection member, connection (and disconnection) between a large number (in this case, four cells) of single cells can be performed in a short time with a simple operation. Is.

なお、単電池の電極端子と接続部材の形状は、第一実施形態や第二実施形態に例示した形状に限定されるものではなく、単電池間の電気的な接続と切り離しが容易にできる形状であれば、どのような形状のものを用いてもよい。   In addition, the shape of the electrode terminal and connection member of a cell is not limited to the shape illustrated to 1st embodiment or 2nd embodiment, The shape which can perform the electrical connection and disconnection between cells easily. Any shape can be used.

また、本発明の組電池に用いる単電池は非水電解質二次電池に限定されるものではなく、鉛蓄電池やニッケル−水素電池などの、あらゆる電池を用いることが可能である。さらに、単電池の形状も長円筒型に限らず、円筒型や角型電池など、あらゆる形状の電池を用いた組電池に利用することができる。   Moreover, the unit cell used for the assembled battery of this invention is not limited to a nonaqueous electrolyte secondary battery, It is possible to use all batteries, such as a lead storage battery and a nickel-hydrogen battery. Furthermore, the shape of the unit cell is not limited to the long cylindrical type, and can be used for an assembled battery using batteries of any shape such as a cylindrical type or a rectangular type.

[実施例1、2および比較例1]
[実施例1]
(1)正極板の作製
正極活物質にはスピネル型リチウムマンガン複合酸化物(LiMn)とコバルト酸リチウム(LiCoO)とを、重量比1:1で混合したものを用いた。この正極活物質と、結着剤としてのポリフッ化ビニリデン(PVdF)と、導電剤としてのアセチレンブラック(AB)とを、重量比94:4:2で混合し、N−メチル−2−ピロリドン(NMP)を加えて、正極合剤ペーストを調製した。このペーストを、厚さ20μmのアルミニウム箔からなる集電体の両面に均一に塗布し、乾燥、プレスした後に裁断して、帯状の正極板を作製した。
[Examples 1 and 2 and Comparative Example 1]
[Example 1]
(1) Production of Positive Electrode Plate As a positive electrode active material, a mixture of spinel type lithium manganese oxide (LiMn 2 O 4 ) and lithium cobaltate (LiCoO 2 ) at a weight ratio of 1: 1 was used. This positive electrode active material, polyvinylidene fluoride (PVdF) as a binder, and acetylene black (AB) as a conductive agent are mixed at a weight ratio of 94: 4: 2, and N-methyl-2-pyrrolidone ( NMP) was added to prepare a positive electrode mixture paste. This paste was uniformly applied on both sides of a current collector made of an aluminum foil having a thickness of 20 μm, dried, pressed and then cut to prepare a strip-like positive electrode plate.

(2)負極板の作製
活物質としてのカーボンと、結着剤としてのPVdFとを90:10の配合比で混合し、NMPを加えて、負極合剤ペーストを調製した。このペーストを、厚さ16μmの銅箔からなる集電体の両面に均一に塗布し、上記正極板と同様の方法により、帯状の負極板を作製した。
(2) Production of negative electrode plate Carbon as an active material and PVdF as a binder were mixed at a blending ratio of 90:10, and NMP was added to prepare a negative electrode mixture paste. This paste was uniformly applied to both surfaces of a current collector made of a copper foil having a thickness of 16 μm, and a strip-shaped negative electrode plate was produced by the same method as that for the positive electrode plate.

(3)電解液の調製
エチレンカーボネート(EC)とジメチルカーボネート(DMC)とメチルエチルカーボネート(MEC)を2:1:2の割合に混合した混合溶媒に、1mol/Lの六フッ化リン酸リチウム(LiPF)を溶解した非水電解液を調製した。
(3) Preparation of electrolyte solution 1 mol / L lithium hexafluorophosphate in a mixed solvent in which ethylene carbonate (EC), dimethyl carbonate (DMC) and methyl ethyl carbonate (MEC) were mixed at a ratio of 2: 1: 2 A non-aqueous electrolyte solution in which (LiPF 6 ) was dissolved was prepared.

(4)単電池の作製
正極板、セパレータ、負極板、セパレータの順に積層したものを巻回して、長円筒型発電要素を作製した。なお、セパレータとしては、厚み15μmの微多孔性ポリエチレンと厚み10μmの微多孔性ポリプロピレンとを積層したものを用いた。
(4) Manufacture of unit cell A laminate of the positive electrode plate, the separator, the negative electrode plate, and the separator in that order was wound to prepare a long cylindrical power generation element. The separator used was a laminate of microporous polyethylene having a thickness of 15 μm and microporous polypropylene having a thickness of 10 μm.

この長円筒型発電要素を、アルミニウム製の電池ケース内に収納した。次いで、電池蓋に取りつけられた正極端子および負極端子に、正極リードおよび負極リードを介して、発電要素の正極および負極を接続した。その後、レーザー溶接によって電池蓋を電池ケースに取りつけた。最後に、電解液を、封口板に開けた注液口から注液した後、この注液口をレーザー溶接封口によって塞いだ。   This long cylindrical power generation element was housed in an aluminum battery case. Next, the positive electrode and the negative electrode of the power generation element were connected to the positive electrode terminal and the negative electrode terminal attached to the battery lid via the positive electrode lead and the negative electrode lead. Thereafter, the battery lid was attached to the battery case by laser welding. Finally, the electrolyte solution was injected from the injection port opened in the sealing plate, and then this injection port was closed with a laser welding sealant.

この実施例1の電池では、正極端子および負極端子の形状は、図2に示した第一実施形態と同じとした。   In the battery of Example 1, the shapes of the positive electrode terminal and the negative electrode terminal were the same as those in the first embodiment shown in FIG.

なお、得られた電池の外観は、図1に示したのと同じであり、この電池の設計容量は、4.0Ahであり、電池の大きさは、幅65mm、厚さ11.3mm、高さ115mmとした。
(5)組電池の作製
得られた単電池4個を、互いの正極端子と負極端子とが隣接するように並べ、電池の底部で固定して、実施例1の組電池Aとした。なお、冷却用の空気が電池間を流れるように、隣接する電池間に5mmの間隔を設けた。
The appearance of the obtained battery is the same as that shown in FIG. 1, the design capacity of this battery is 4.0 Ah, and the size of the battery is 65 mm wide, 11.3 mm thick, and high. The thickness was 115 mm.
(5) Production of assembled battery Four obtained unit cells were arranged so that the positive electrode terminal and the negative electrode terminal were adjacent to each other, and fixed at the bottom of the battery to obtain assembled battery A of Example 1. In addition, the space | interval of 5 mm was provided between adjacent batteries so that the air for cooling might flow between batteries.

そして、図3に示したのと同じ形状の、差し込み方式の接続部材を用意し、組電池を使用する直前に、図4に示したように、組電池の端子に差し込み方式の接続部材を差し込み、4個の単電池を直列に接続した。また、組電池を使用しない時には、差し込み方式の接続部材を外し、各単電池が開路状態となるようにした。   Then, prepare an insertion-type connection member having the same shape as shown in FIG. 3, and immediately before using the assembled battery, insert the insertion-type connection member into the terminal of the assembled battery as shown in FIG. Four unit cells were connected in series. In addition, when the assembled battery is not used, the plug-in connection member is removed so that each single cell is in an open state.

[実施例2]
単電池の正極端子および負極端子の形状を、図5に示した第二実施形態と同じとしたこと以外は実施例1と同様にして、実施例2の組電池Bとした。そして、図6および図7に示したのと同じ形状の、スイッチ方式の接続部材を用いて、実施例1の場合と同様に、単電池間の接続および切断をおこなった。
[Example 2]
A battery pack B of Example 2 was obtained in the same manner as in Example 1 except that the shape of the positive electrode terminal and the negative electrode terminal of the unit cell was the same as in the second embodiment shown in FIG. Then, the cells were connected and disconnected in the same manner as in Example 1 using a switch-type connection member having the same shape as shown in FIGS.

[比較例1]
実施例1で用いたのと同じ単電池4個を、隣接する正極端子と負極端子間を、導体で接続し、接続部をナットで締め付けて固定し、簡単には切断できないようにしたこと以外は実施例1と同様にして、比較例1の組電池Cとした。
[Comparative Example 1]
Except that the same four cells used in Example 1 were connected between the adjacent positive and negative terminals with a conductor, and the connection was fastened with a nut and fixed so that it could not be easily cut. Is the assembled battery C of Comparative Example 1 in the same manner as in Example 1.

[短絡試験]
実施例1、実施例2および比較例1の組電池A、BおよびCについて、組電池の正極端子と負極端子を、直径6mmの銅線でつないで故意に短絡させた場合の、組電池の状態を観察した。その結果を表1にまとめた。
[Short-circuit test]
Regarding the assembled batteries A, B and C of Example 1, Example 2 and Comparative Example 1, the positive and negative terminals of the assembled battery were intentionally short-circuited by connecting them with a copper wire having a diameter of 6 mm. The condition was observed. The results are summarized in Table 1.

表1の結果から、比較例1の電池Cでは、組電池を構成する各単電池が直列につながっているため、短絡により、端子部が溶ける現象が見られた。また、実施例1の電池Aおよび実施例2の電池Bでも、接続部材で各単電池を直列につないだ状態の場合は、比較例1と同様に、短絡により、端子部が溶ける現象が見られた。   From the result of Table 1, in the battery C of the comparative example 1, since each single battery which comprises an assembled battery was connected in series, the phenomenon in which a terminal part melt | dissolved by the short circuit was seen. In addition, even in the battery A of Example 1 and the battery B of Example 2, when the single cells are connected in series with the connecting member, the phenomenon that the terminal portion melts due to a short circuit is observed as in Comparative Example 1. It was.

一方、実施例1の電池Aおよび実施例2の電池Bで、接続部材をはずして、各単電池を開路状態にした場合には、電池の短絡は起こらないため、組電池に変化はみられなかった。このように、電池を使用しない場合に、接続部材を外すことで、端子間の短絡が起こった場合の組電池の損傷を防止することができることがわかった。   On the other hand, in the case of the battery A of Example 1 and the battery B of Example 2, when the connecting member is removed and each unit cell is opened, the short circuit of the battery does not occur. There wasn't. As described above, it was found that the assembled battery can be prevented from being damaged when a short circuit occurs between the terminals by removing the connecting member when the battery is not used.

[保存試験]
実施例1、実施例2および比較例1の組電池A、BおよびCについて、4A定電流で4.2Vまで、さらに4.2V定電圧で、合計3時間充電した電池を、25℃の恒温槽中で30日間保存し、保存前後の組電池の電圧を測定し、電圧低下を求めた。その結果を表2にまとめた。
[Preservation test]
For the assembled batteries A, B and C of Example 1, Example 2 and Comparative Example 1, a battery charged at a constant current of 4A up to 4.2V and further at a constant voltage of 4.2V for a total of 3 hours was maintained at a constant temperature of 25 ° C. It stored for 30 days in the tank, measured the voltage of the assembled battery before and after storage, and calculated | required voltage drop. The results are summarized in Table 2.

表2の結果から、組電池を構成する各単電池が直列につながっている場合の電圧低下は10mV以上になったのに対し、実施例1の電池Aおよび実施例2の電池Bで、接続部材をはずして保存した場合の電圧低下は2mV程度で、非常に小さいことがわかった。   From the results in Table 2, the voltage drop when the single cells constituting the assembled battery are connected in series is 10 mV or more, whereas the battery A of Example 1 and the battery B of Example 2 are connected. When the member was removed and stored, the voltage drop was about 2 mV, which was found to be very small.

このように、各単電池間が接続された状態の組電池では、接続されている保護回路等に暗電流が流れ、電池の容量が減少し、電圧も低下するが、本発明のように、電池を使用しない場合に接続部材を外すことで、電池の容量低下や電圧低下を抑制できることがわかった。   In this way, in the assembled battery in a state where each unit cell is connected, dark current flows through the connected protection circuit and the like, the capacity of the battery is reduced, and the voltage is also reduced. It was found that by removing the connecting member when the battery is not used, the battery capacity and voltage can be suppressed.

なお、上記実施例では、4個の単電池を直列に接続する場合について説明したが、単電池の個数は、用途に応じて選択することができ、また、単電池間の接続は、直列に限らず、並列や直列と並列の併用など、用途に応じた接続を選択することができる。   In the above embodiment, the case where four unit cells are connected in series has been described. However, the number of unit cells can be selected according to the application, and the connection between the unit cells is connected in series. The connection according to the application can be selected, such as parallel or a combination of series and parallel.

また、接続部材は、組電池にひとつとは限らず、接続と切断が簡単におこなうことができるように、接続部材の数を増やしても良い。例えば、単電池100個で構成される組電池の場合、接続部材を2個にして、単電池50個ずつ接続・切断してもよいし、あるいは、接続部材を4個にして、単電池25個ずつ接続・切断することも可能である。   Further, the number of connection members is not limited to one for the assembled battery, and the number of connection members may be increased so that connection and disconnection can be easily performed. For example, in the case of an assembled battery composed of 100 single cells, two connecting members may be connected and disconnected by 50 single cells, or four connecting members may be connected to each single cell 25. It is also possible to connect and disconnect one by one.

単電池の外観斜視図。The external appearance perspective view of a cell. 差し込み方式の単電池の端子部分の拡大図。The enlarged view of the terminal part of the insertion-type cell. 差し込み方式の接続部材を示す図。The figure which shows the connection member of an insertion system. 組電池に接続部材を接続した状態を示す図。The figure which shows the state which connected the connection member to the assembled battery. スイッチ方式の単電池の端子部分の拡大図。The enlarged view of the terminal part of a switch type cell. 単電池に接続部材をスイッチ方式で接続して組電池にした状態を示す図。The figure which shows the state which connected the connection member to the cell by the switch system, and was made into the assembled battery. 単電池間の接続を切断した状態を示す図。The figure which shows the state which cut | disconnected the connection between single cells.

符号の説明Explanation of symbols

1 非水電解質二次電池
2 電池容器
5 正極端子
6 負極端子
10 単電池
11 電池端子の円筒状部分
12 電池端子の上部に設けられた接続部
13 支持板
14 U字状突起
16、23 接続部材
17 組電池正極端子
18 組電池負極端子
24 可動接続部
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte secondary battery 2 Battery container 5 Positive electrode terminal 6 Negative electrode terminal 10 Single cell 11 Cylindrical part of a battery terminal 12 Connection part provided in the upper part of a battery terminal 13 Support plate 14 U-shaped protrusion 16, 23 Connection member 17 assembled battery positive terminal 18 assembled battery negative terminal 24 movable connection part

Claims (3)

端子に第1接続部を備えた多数の単電池と、前記第1接続部と接続可能な第2接続部と、前記第2接続部と接続する接続部材とからなる組電池において、
前記第2接続部は、回転軸と、一端前記接続部材に接続されるとともに前記一端と異なる2つの他端がそれぞれ異なる前記単電池の前記第1接続部に接続される、前記回転軸を中心として回転する可動接続部を備え、
組電池使用時には、すべての単電池が直列、並列または直列と並列が混合した状態で接続されるように前記接続部材で接続し、組電池不使用時には前記接続部材の移動により前記可動接続部を回転させて前記可動接続部の他端を前記第1接続部から切り離すことですべての単電池と前記接続部材とが切り離されていることを特徴とする組電池。
In an assembled battery comprising a large number of single cells each having a first connection portion at a terminal, a second connection portion connectable to the first connection portion, and a connection member connected to the second connection portion
The second connecting portion includes a rotating shaft and the rotating shaft, one end of which is connected to the connecting member and two other ends different from the one end are connected to the first connecting portion of the unit cell. With a movable connection that rotates around the center,
When using an assembled battery, all the cells are connected in series, in parallel, or connected in a state in which series and parallel are mixed, and when the assembled battery is not used, the movable connecting portion is moved by moving the connecting member. All the unit cells and the connection member are separated by rotating and separating the other end of the movable connection part from the first connection part.
前記接続部材が、少なくとも3個以上の単電池を同時に接続することが可能であることを特徴とする請求項1に記載の組電池。   The assembled battery according to claim 1, wherein the connecting member can connect at least three unit cells at the same time. 前記可動接続部の一端が、ばねを介して前記接続部材に接続されることを特徴とする請求項1または2に記載の組電池。   The assembled battery according to claim 1, wherein one end of the movable connection portion is connected to the connection member via a spring.
JP2008141300A 2008-05-29 2008-05-29 Assembled battery Expired - Fee Related JP5309696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008141300A JP5309696B2 (en) 2008-05-29 2008-05-29 Assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008141300A JP5309696B2 (en) 2008-05-29 2008-05-29 Assembled battery

Publications (2)

Publication Number Publication Date
JP2009289613A JP2009289613A (en) 2009-12-10
JP5309696B2 true JP5309696B2 (en) 2013-10-09

Family

ID=41458628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008141300A Expired - Fee Related JP5309696B2 (en) 2008-05-29 2008-05-29 Assembled battery

Country Status (1)

Country Link
JP (1) JP5309696B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009011377A1 (en) * 2009-03-05 2010-09-16 Amphenol-Tuchel Electronics Gmbh High current connection device for energy storage
JP5929937B2 (en) 2014-01-30 2016-06-08 トヨタ自動車株式会社 Battery pack and battery connection switching method
KR102259969B1 (en) 2017-09-29 2021-06-02 주식회사 엘지에너지솔루션 Battery module
CN113451696B (en) * 2021-05-28 2023-03-24 武汉华源汉兴科技有限公司 Cylindrical low-temperature lithium ion battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6074473U (en) * 1983-10-28 1985-05-25 新神戸電機株式会社 storage battery
JPH0722459U (en) * 1993-09-27 1995-04-21 日野自動車工業株式会社 Group

Also Published As

Publication number Publication date
JP2009289613A (en) 2009-12-10

Similar Documents

Publication Publication Date Title
JP4762411B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same
KR101294587B1 (en) Non-Aqueous Secondary Battery
US10559843B2 (en) Non-aqueous electrolyte battery, non-aqueous electrolyte battery pack, and vehicle
JP5010250B2 (en) Battery stack and battery pack
US10305146B2 (en) Non-aqueous electrolyte battery and battery pack
JP6151431B1 (en) Nonaqueous electrolyte battery and battery pack
KR101903913B1 (en) Non-aqueous secondary battery
CN102742059B (en) Rectangular cell
KR101946732B1 (en) Nonaqueous electrolyte battery and battery system
EP2975668A1 (en) Battery system
US20160036038A1 (en) Nonaqueous electrolyte battery and battery pack
CN114982027B (en) Battery pack, battery pack, electric device, and method and apparatus for manufacturing battery pack
KR100587436B1 (en) Lithium Ion Secondary Battery and Battery Device Comprising Same
JP4382557B2 (en) Non-aqueous secondary battery
CN114982035A (en) Battery pack, battery pack, electrical device, and method and apparatus for manufacturing battery pack
JP2002216755A (en) Nonaqueous electrolyte secondary battery
JP5309696B2 (en) Assembled battery
JP2000315489A (en) Rectangular nonaquous electrolyte secondary battery
JP5462304B2 (en) Battery pack using lithium-ion battery
JP2004171954A (en) Laminated secondary battery, battery pack module comprising multiple laminated secondary batteries, battery pack comprising multiple set battery modules, and electric automobile with either battery mounted
JP6585365B2 (en) Nonaqueous electrolyte secondary battery
JP7045395B2 (en) Electrolyte for lithium-ion secondary battery
JP6038560B2 (en) Non-aqueous electrolyte battery storage or transport method, battery pack storage or transport method, and non-aqueous electrolyte battery charge state maintaining method
US11404715B2 (en) Assembled battery
JP2016085884A (en) battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5309696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees