JP5309042B2 - 電位差計測装置及び電位差計測方法 - Google Patents

電位差計測装置及び電位差計測方法 Download PDF

Info

Publication number
JP5309042B2
JP5309042B2 JP2010012518A JP2010012518A JP5309042B2 JP 5309042 B2 JP5309042 B2 JP 5309042B2 JP 2010012518 A JP2010012518 A JP 2010012518A JP 2010012518 A JP2010012518 A JP 2010012518A JP 5309042 B2 JP5309042 B2 JP 5309042B2
Authority
JP
Japan
Prior art keywords
electrode
measurement
ions
ion selective
selective electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010012518A
Other languages
English (en)
Other versions
JP2011149878A (ja
Inventor
悠 石毛
佑介 後藤
政男 釜堀
智憲 三村
宏明 石澤
浩太郎 山下
雅文 三宅
太久夫 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2010012518A priority Critical patent/JP5309042B2/ja
Publication of JP2011149878A publication Critical patent/JP2011149878A/ja
Application granted granted Critical
Publication of JP5309042B2 publication Critical patent/JP5309042B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Description

本発明は,電気的な計測を行い,生体物質を高精度に測定することのできる測定装置,及び測定方法に関する。
血液検査は,健康状態の把握と病気の早期発見を目的として広く普及している。血液検査では,要求精度,迅速性,コストなどに応じて,大型の生化学自動分析装置を用いる場合や,小型のポイント・オブ・ケア・テスティング(POCT)向け装置を用いる場合がある。大型の生化学自動分析装置は総合病院や検査センターに導入されていて,単位時間当たりの検体処理能力が高く測定精度も比較的高く,ランニングコストも比較的低いため,健康診断などの定期的な検査に適している。しかし,検体をパイプライン処理するため検体を装置にセットしてから結果が出るまでにはそれなりの時間がかかり,また,検体の運搬や検査待機の時間や,検査結果集計・送付に要する時間を考慮すると,検体の採取から結果が出るまでには通常数日を要する。一方,POCT向け装置は,現状では測定精度は大型の生化学自動分析装置には及ばないものの,検体を採取したその場ですぐに検査結果が得られる迅速性を有しているため,術中検査などの緊急検査,外来患者に対する検査,救急車内での検査,診療所での検査,自己血糖測定などの在宅での自己検査に適している。
検査にいずれの装置を用いた場合でも,より少ない液量で測定できると様々な利点が生じる。検体の微量化により検査をより低侵襲にでき,試薬の微量化により検査コストを低減でき,廃液量の低減により環境負荷を低減できる。どれほどの測定液量の微量化が可能であるかは,測定方式に依存する面が大きい。現在検査装置に用いられている測定方式には,大きく分けて,吸光光度法(呈色反応を含む),電流計測法,電位差計測法がある。吸光光度法は,試薬と試料(検体)の反応により生じる吸光度の変化から検体中の測定対象物濃度を求める方法である。得られる信号の大きさは光路長と光照射面積に依るため,一般に測定液量の微量化により感度が低下する。電流計測法は,試薬と試料の反応の生成物を電極で反応させて電流値として測定し,測定対象物濃度を求める電気化学的測定法である。電流値は電極の面積に依存するため,単純なスケールダウンでは測定液量の微量化により感度が低下する。例えば,血糖値を測定するグルコースセンサでは,必要とされる測定感度はそれほど高くないため,数滴の血液量で測定可能である(例えば特許文献1)が,一般的な測定項目を有するPOCT向け検査装置では,測定感度を維持するためにより多くの血液量が必要である。POCT向け検査装置として開発されたi-Stat(非特許文献1)は,65μl程度の血液量を必要としていた。
電位差計測法はこれらの測定方法とは異なり,信号が電極面積に依存しない電気化学的測定法である。電位差計測法は,金や白金などでできた測定電極(作用電極)と参照電極で構成され,測定溶液中に酵素と酸化還元物質が存在する(特許文献2)。また,測定電極と参照電極は,電圧計などの電圧を測定する装置に接続されている。測定溶液中に測定対象物質が添加されると,酵素反応により測定対象物質が酸化され,同時に酸化状態の酸化還元物質が還元される。その際に生じる測定電極の表面電位は,次のネルンストの式に従う。
上式には電極の面積が含まれず,表面電位は電極面積に依存しない。そのため,信号強度を減少させずに電極面積を小さくし,必要な検体の量を低減することができる。
電流計測法と電位差計測法の違いは,信号の電極面積への依存性だけでなく,信号が酵素反応の反応速度依存か反応量依存かの違いもある。すなわち,電流計測法では酵素反応の反応速度に比例した信号が得られるのに対し,電位差計測法では酵素反応により生成した還元物質(もしくは酸化物質)の量に依存した信号が得られる。そのため,電流計測法では酵素反応の反応速度を測定するレート法しか用いることができないが,電位差計測法ではレート法に加えて反応産物総量を測定するエンドポイント法を用いることができる。酵素はその特性として基質が低濃度の領域では反応速度は基質濃度に比例するが,基質が高濃度になると反応速度が基質濃度に比例しなくなり,更に高濃度になると一定となる。この境界の濃度をミカエリス定数と言うが,血中の測定対象物質濃度がミカエリス定数以上の場合,レート法による測定では試料を希釈して測定しなくてはならず,測定に必要な操作が複雑となる。一方,エンドポイント法では反応産物総量を測定するためこのような制約はなく,無希釈での測定が可能である。このような酵素の一つにコレステロール脱水素酵素があり,電位差計測法は原理的にコレステロールを無希釈で測定できる方法と言える。
電気化学の原理を用いた計測には,一般的に参照電極という溶液中での電位の基準となる電極を用いる。酸化還元電流法においても電位差計測法においても参照電極は必要であるが,酸化還元電流法が電流を測定するのに対して電位差計測法では電位を測定する方法であるため,特に参照電極に高い精度が求められる。参照電極として良く用いられるものの一つに内部液型銀塩化銀参照電極があり,ガラスなどの容器に一定濃度(飽和や3Mのものが良く用いられる)の塩化カリウムや塩化ナトリウム溶液と銀塩化銀電極が入っていて,多孔質ガラスやセラミックスの液絡部を介して測定したい溶液と電気的に結合されているものが一般的である。特定の条件下では,銀塩化銀電極単体を疑似参照電極として用いること(特許文献2)や,塩素イオン選択電極を参照電極として用いること(特許文献3)もあった。
特開平2−245650号公報 特表平9−500727号公報 特開2006−90785号公報
Clin. Chem. 39/2 (1993) 283-287
上記のような優位性を持つ電位差計測法を用いて,微量溶液で高精度に測定可能な酵素センサの研究開発を行ったところ,従来の参照電極を用いた場合,十分な精度が得られない場合があることが明らかとなった。
内部液型銀塩化銀参照電極を用いた場合,内部液の漏出が主原因となり,測定電極の電位が変動してしまう。これを防ぐには,測定溶液の微量化とともに参照電極,特に液絡部を測定溶液の微小化と同じスケールで微小化することが考えられる。しかしながら,単純に液絡部を微小化すると液絡部のつまりが生じやすくなり,やはり測定の精度が低下してしまう。また,内部液の漏出は液絡部と参照電極容器の接合部からも生じているため,液絡部の単純な微小化では防ぐことができない。
内部液を有さない銀塩化銀電極などの疑似参照電極を用いることで,内部液の漏出による測定電位変動を防ぐことができる。しかし,その場合,参照電極電位の精度が低下し,測定の精度が低下する新たな問題が生じる。さらに,参照電極と測定溶液が直接接触するため,試料中に含まれる妨害物質の影響を受け,参照電極電位の精度が低下する。妨害物質としては,臭素,チオシアン酸が代表的である。
参照電極として,特許文献3のように単純に塩素イオン選択電極を用いたとしても,疑似参照電極で生じた課題を解決することは難しい。というのも,特許文献3では,塩素イオン選択電極は内部液に接触しているため,試料を含む測定溶液と接触する際にどのようにして一定の電位を生じさせるか不明である。また,妨害物質に対する考慮がされておらず,妨害物質の影響を取り除き,どれだけの精度が得られるようになるかも不明である。
本発明では,測定溶液を微量化しても十分な精度で血中成分を測定することができる参照電極,電位測定系及び電位測定方法を提供する。
本発明では,参照電極として,イオン選択電極を用いた。その際,イオン選択電極の選択係数を考慮し,陽イオンに対するイオン選択電極を参照電極として用いた。所望の精度を得るために,測定溶液中のイオン濃度を規定した。その際,試料中に含まれる量が少ないイオンに対するイオン選択電極を参照電極として用いた。一例では,グルコース,コレステロールなどの有機物に対するセンサを測定電極とし,無機イオンに対するセンサを参照電極とした。他の例では,酸化還元物質に対するセンサを測定電極とし,無機イオンに対するセンサを参照電極とした。
参照電極に用いるイオン選択電極の選択係数を考慮することで,妨害物質に対する応答を抑制でき,十分な測定精度が得られるようになる。その際,妨害物質の多くが陰イオンであることから,参照電極に用いるイオン選択電極を陽イオンに対するイオン選択電極とすることで,妨害物質に対する応答を抑制できる。測定溶液中のイオン濃度を規定することで,試料中の妨害物質やイオン濃度の変動に対する測定電位の変動を抑制できる。試料中に含まれる量が少ないイオンに対するイオン選択電極を参照電極として用いることで,試薬中のイオン濃度が支配的になるようにでき,試料中のイオン濃度の変動に対する測定電位の変動を抑制できる。グルコース,コレステロールなどの有機物に対するセンサを測定電極とし,無機イオンに対するセンサを参照電極とすることで,測定溶液中の無機物濃度をある程度任意に設定することができ,測定電極電位の精度を維持したまま参照電極電位を安定化し,十分な測定精度が得られるようになる。酸化還元物質に対するセンサを測定電極とし,無機イオンに対するセンサを参照電極とすることで,測定溶液中の無機物濃度をある程度任意に設定することができ,測定電極電位の精度を維持したまま参照電極電位を安定化し,十分な測定精度が得られるようになる。
本発明によると,参照電極としてイオン選択電極を用いることで,従来の内部液型参照電極で問題となった内部液の漏出が抑制でき,測定溶液を微量化しても十分な測定精度が得られるようになる。従来の内部液型参照電極では,液絡部を通じた内部液と測定溶液間のイオンの移動により,内部液と測定溶液間の電位を一定に保っていた。そのため,内部液の漏出を無くすとイオンの移動ができなくなるため,原理的に内部液の漏出を無くすことはできなかった。これに対し,イオン選択電極では,溶液とイオン選択膜の界面でのイオンの平衡により溶液とイオン選択膜の間の電位が定まるため,原理的にイオン選択膜内部をイオンが通り抜ける必要はない。そのため,精度を維持したまま内部液の漏出を抑制することができる。
本発明による電位差測定装置の一例を示す図。 本発明による電位差測定装置の一例を示す図。 本発明による血中成分測定装置の一例を示す図。 本発明による血中成分測定装置の一例を示す側面模式図。 本発明による血中成分測定装置の一例を示す平面模式図。 本発明による電位差測定装置の一例を示す図。 電位差測定装置の回路の一例を示す図。 従来の内部液型銀塩化銀参照電極と本発明のイオン選択電極の安定性の比較結果を示す図。 従来の内部液型銀塩化銀参照電極と本発明のイオン選択電極の安定性の溶液量依存性を示す図。 イオン選択電極の構成例を示す図。
以下,図面を参照して本発明の実施の形態を説明する。
図1は,本発明による電位差測定装置の一例を示す図である。本装置は,イオン選択電極101,測定電極102,電圧計103,容器104,測定溶液105を有し,イオン選択電極101と測定電極102の端子は電圧計103に接続されていて,両端子間の電位差が測定できるようになっている。イオン選択電極101のイオン感応部と測定電極102の電極部は容器104内の測定溶液105に接触している。イオン選択電極101には,ナトリウム選択電極,カリウム選択電極,リチウム選択電極,マグネシウム選択電極,カルシウム選択電極,ルビジウム選択電極,セシウム選択電極,ストロンチウム選択電極,バリウム選択電極,塩素選択電極などを用いる。内部液を有していても有していなくても構わない。例えば,Pure Appl. Chem., 72, 1851-2082 Umezawa et. al., Pure Appl. Chem., 74, 923-994 Umezawa et. al.,に記載のリチウム,カリウム,ナトリウム,マグネシウム,カルシウムもしくはアンモニウムに対するイオン選択膜を用いたイオン選択電極を用いる。
イオン選択電極は,例えば,図9のように,容器901,イオン選択膜902,内部溶液903,銀塩化銀電極904,端子905からなる構成をしている。内部溶液903は,銀塩化銀電極904の電位を安定化させるための塩素イオンと,イオン選択膜902の電位を安定化させるためのイオン選択膜902の測定対象のイオンが含まれている。
測定電極102には,金,銀,白金といった貴金属を用いた電極や,カーボン電極,もしくは,それらの電極に酵素の修飾を施した電極を用いる。測定溶液105の組成は,イオン選択電極101に接触する部位と測定電極102に接触する部位で概ね同一とみなせる。
図2は,本発明による電位差測定装置の一例を示す図である。本装置は,基板201,イオン選択電極202,測定電極203,電圧計204と,測定溶液205の保持部を有している。イオン選択電極202と測定電極203は基板201の同一平面上に有り,それぞれの電極からの配線は電圧計204に接続されていて,両電極間の電位差が測定できるようになっている。イオン選択電極202のイオン感応部と測定電極203の電極部は基板201上に配置された測定溶液205に接触している。イオン選択電極202には,ナトリウム選択電極,カリウム選択電極,リチウム選択電極,マグネシウム選択電極,カルシウム選択電極,ルビジウム選択電極,セシウム選択電極,ストロンチウム選択電極,バリウム選択電極,塩素選択電極などを用いる。イオン選択電極202の構造は,金属の電極とイオン選択膜で内部液に相当するゲル化した溶液を挟み込むような形状であっても,いわゆるコーテットワイヤーと言われる金属の電極にイオン選択膜を張り付けたものであっても良い。例えば,Pure Appl. Chem., 72, 1851-2082 Umezawa et. al., Pure Appl. Chem., 74, 923-994 Umezawa et. al.,記載のイオン選択電極を用いる。測定電極102には,金,銀,白金といった貴金属を用いた電極や,カーボン電極,もしくは,それらの電極に酵素の修飾を施した電極を用いる。測定溶液205の組成は,イオン選択電極202に接触する部位と測定電極203に接触する部位で概ね同一とみなせる。
図3は,本発明による血中成分測定装置の一例を示す図である。本装置は,測定部301,制御部302から成り,測定部301はイオン選択電極311,測定電極312,電圧計313,測定溶液用容器314,測定溶液315,試料用分注器316,試料用容器317,試料液318,試薬用分注器319,試薬用容器320,試薬液321から成る。イオン選択電極311,測定電極312には図1で示したものを用いる。試料液318はヒトやその他生物の全血,血清,血漿,尿,体液を用いる。試薬液321は試料液318に適合しグルコース,コレステロールなどの測定項目に応じたものを用いる。測定前は測定溶液用容器314は空であり,試料用分注器316,試薬用分注器319によってそれぞれ試料液318,試薬液321を測定溶液用容器314中に分注し,良く混ぜ合わせて測定溶液315とした後に,イオン選択電極311,測定電極312を測定溶液315に接触させる。イオン選択電極311と測定電極312の間の電位を電圧計313で測定し,測定値とする。
図4A及び図4Bは,本発明による血中成分測定装置の一例を示す図であり,図4Aは側面模式図,図4Bは平面模式図である。本装置は,基板401,イオン選択電極402,測定電極403,電圧計404,測定溶液保持部としての濾紙405を有している。イオン選択電極402と測定電極403は基板401の同一平面上に有り,それぞれの電極からの配線は電圧計404に接続されていて,両電極間の電位差が測定できるようになっている。イオン選択電極402,測定電極403には図2で示したものを用いる。濾紙405は試薬を含んでいて,乾燥していても湿潤していてもよい。規定量の試料液が濾紙405に添加されると,試料液は濾紙405中の試薬を溶解もしくは混合し,反応,測定溶液となる。試料液はヒトやその他生物の全血,血清,血漿,尿,体液を用いる。濾紙405中の試薬にはグルコース,コレステロールなどの測定項目に応じたものを用いる。測定溶液はイオン選択電極402,測定電極403に接触し,イオン選択電極402と測定電極403の間の電位を電圧計404で測定し,測定値とする。
図5は,本発明による電位差測定装置の一例を示す図である。本装置は,基板501,イオン選択電極502,測定電極503,FET(Field-effect Transistor;電界効果トランジスタ)504,ソース電極505,ドレイン電極506,導電性配線507,508,端子509,測定溶液保持部に保持された測定溶液510を有している。イオン選択電極502と測定電極503は基板501の同一平面上に有る。導電性配線507,508は測定溶液510に直接触れないよう表面が絶縁処理されている。FET504により測定電極503の電位をソース電極505,ドレイン電極506間の電圧−電流特性として測定することができ,これによりイオン選択電極502と測定電極503間の電位差を測定することができる。イオン選択電極502のイオン感応部と測定電極503の電極部は基板501上に保持された測定溶液510に接触している。
イオン選択電極502には,ナトリウム選択電極,カリウム選択電極,リチウム選択電極,マグネシウム選択電極,カルシウム選択電極,ルビジウム選択電極,セシウム選択電極,ストロンチウム選択電極,バリウム選択電極,塩素選択電極などを用いる。イオン選択電極502の構造は,金属の電極とイオン選択膜で内部液に相当するゲル化した溶液を挟み込むような形状であっても,いわゆるコーテットワイヤーと言われる金属の電極にイオン選択膜を張り付けたものであっても良い。例えば,Pure Appl. Chem., 72, 1851-2082 Umezawa et. al., Pure Appl. Chem., 74, 923-994 Umezawa et. al.,に記載のイオン選択電極を用いる。測定電極503には,金,銀,白金といった貴金属を用いた電極や,カーボン電極,もしくは,それらの電極に酵素の修飾を施した電極を用いる。測定溶液510の組成は,イオン選択電極502に接触する部位と測定電極503に接触する部位で概ね同一とみなせる。
図6は,図5に示す電位差測定装置を用いた際の回路の一例を示す図である。基板601には,イオン選択電極に接続された端子602,FETのソースに接続された端子603,FETのドレインに接続された端子604がある。端子602と端子603はアースに接続され,端子603と端子604の間には一定の電圧が印加されている。その際の端子604の電流値を測定する。別途測定したFETの電圧−電流特性から,測定電極とイオン選択電極間の電位差を求めることができる。
図1から図6に記載の装置を用いて測定する際の測定溶液中のイオン濃度を次のように規定することで,測定精度を向上させることができる。イオン選択電極の電位Eは,次のニコルスキー−アイゼンマン式から,求まる。
測定溶液は試薬と試料の混合物であり,試薬中のイオン濃度が一定であっても,試料中のイオン濃度が変動すると,測定溶液中のイオン濃度は変動する。その結果,イオン選択電極の電位は変動し,測定精度の低下を招く。試料中のイオン濃度が全くの未知であれば,この変動を取り除くことは困難である。しかし,試料が全血もしくは血清,血漿,尿であることに着目すると,生命を維持するのに必要なイオン濃度範囲は限られてくるので,試料中のイオン濃度はある程度予測が可能である。すなわち,上式を用いてイオン選択電極の電位変動幅を見積もり,その変動幅が求める精度以下になるように試薬の組成や試薬と試料の混合比を工夫すればよい。
試薬由来の測定溶液中のイオン濃度をcr及びcr,j,試料中のイオン濃度の最小値をcs,min及びcs,j,min,試料中のイオン濃度の最大値をcs,max及びcs,j,max,試料の希釈率をd(例えば,9μlの試薬と1μlの試料を混合する時の希釈率は10,乾燥状態の試薬と10μlの試料を混合する時の希釈率は1とする)とし,簡単のため活量係数を1とすると,イオン選択電極の取り得る電位の最小値(Emin)と最大値(Emax)は,ニコルスキー−アイゼンマン式から,
である。すなわち,イオン選択電極の電位変動幅(Eは,
から求まる。(Eが必要な精度以下に収まるように,試薬由来の測定溶液中のイオン濃度cr及びcr,jを設定する。また,上式から分かるように,試薬由来の測定溶液中のイオン濃度を高くすれば試料由来のイオン濃度変動が相対的に小さくなり,(Eも小さくなる。そのため,試薬由来の測定溶液中のイオン濃度をなるべく大きくしたいが,溶解度や酵素に至適なイオン濃度範囲があるため,これらの濃度を超えないようにする。
試料中のイオン濃度の変動幅の一例を以下に示す。
イオン選択電極の電位を安定させる観点からは,試料中のイオン濃度の低いイオンに対するイオン選択電極を用いることが望ましい。なぜならば,(1)試料中のイオン濃度が低いイオンは変動幅が小さく,試薬中に一定量のイオンを含ませることでイオンの変動率を小さくできる(イオン選択電極の電位はイオン濃度の対数に比例)ため,(2)試薬中に含ませることのできるイオンには上限があるため,である。
Pure Appl. Chem., 72, 1851-2082 Umezawa et. al., Pure Appl. Chem., 74, 923-994 Umezawa et. al.にあるように,陽イオンのイオン選択電極は陰イオンのイオン選択電極に比べて選択性が良く,例えば塩素イオン電極の臭素やチオシアンに対する応答のように選択性を著しく低くするようなイオン種が少ない。そのため,参照電極として用いるイオン選択電極は陽イオンのイオン選択電極であることが望ましい。
一例として,血清中グルコースを測定したときの条件を以下に記す。
イオン選択電極:ナトリウム選択電極(選択係数(log):K+,−2.4;Li+,−3.0;NH4 +,−4.2;Ca2+,−3.8;Mg2+,−4.0)
測定電極:11−フェロセニル−1−ウンデカンチオール修飾金電極
電圧計:入力インピーダンス10GΩ以上
試薬1
フェリシアン化カリウム(9.9mM)
フェロシアン化カリウム(0.1mM)
塩化ナトリウム(137mM)
塩化カリウム(3mM)
塩化マグネシウム(10mM)
リン酸水素二ナトリウム(10mM)
リン酸二水素カリウム(1.8mM)
アデノシン3リン酸(4mM)
ヘキソキナーゼ(10U/ml)
グルコース6リン酸脱水素酵素(40U/ml)
ジアホラーゼ(3.75U/ml)
ニコチンアミドアデニンジヌクレオチド(0.5mg/ml)
試薬2
フェリシアン化カリウム(9.9mM)
フェロシアン化カリウム(0.1mM)
塩化カリウム(140mM)
塩化マグネシウム(10mM)
リン酸水素二カリウム(10mM)
リン酸二水素カリウム(1.8mM)
アデノシン3リン酸(4mM)
ヘキソキナーゼ(10U/ml)
グルコース6リン酸脱水素酵素(40U/ml)
ジアホラーゼ(3.75U/ml)
ニコチンアミドアデニンジヌクレオチド(0.5mg/ml)
試料:ヒト血清
試薬1,試薬2のどちらを用いた場合も,以下の反応式に従い,ヒト血清中のグルコース濃度に応じたフェロシアン化カリウムが生成する。
グルコース+アデノシン3リン酸→グルコース6リン酸+アデノシン2リン酸(ヘキソキナーゼにより触媒)
グルコース6リン酸+ニコチンアミドアデニンジヌクレオチド(酸化型)→グルコース1,5ラクトン6リン酸+ニコチンアミドアデニンジヌクレオチド(還元型)(グルコース6リン酸脱水素酵素により触媒)
2フェリシアン化カリウム+ニコチンアミドアデニンジヌクレオチド(還元型)→2フェロシアン化カリウム+ニコチンアミドアデニンジヌクレオチド(酸化型)(ジアホラーゼにより触媒)
フェリシアン化カリウムとフェロシアン化カリウムの量比は,ネルンストの式に従う測定電極とイオン選択電極の電位差として計測できる。試薬1ではナトリウムイオンが支配的になるように,試薬2ではカリウムイオンが支配的になるように電解質を調節した。酵素反応はこの電解質の違いにほとんど影響を受けず,特に電位差計測で用いることのできるエンドポイント計測においてはその影響はほとんどない。
ヒト血清中の各イオンの変動幅は,前記の表のように見積もった。試薬1と試料を9:1で混合した場合,式によるとイオン選択電極の電位変動幅は0.23mVである。ここで,簡便のため,活量係数は全て1として計算した。一方,試薬2と試料を9:1で混合した場合,ニコルスキー−アイゼンマン式によるとイオン選択電極の電位変動幅は2.45mVである。ネルンストの式によると,0.23mVの電位変動は0.9%の濃度変動に,2.45mVの電位変動は10%の濃度変動に相当するため,試薬中のイオン濃度を最適化する前(試薬2)と最適化した後(試薬1)とでは測定精度が10倍以上も変わることが分かる。また,通常血中成分の測定では1〜3%程度の精度,すなわち0.25〜0.75mV程度の精度が要求されるため,最適化前の精度では実用に耐えられないことが分かる。
このような試薬の最適化は,イオンを測定対象としていないために用いることができる。イオンの測定において試薬に測定対象のイオンが含まれていたとしたら,イオン選択電極の原理からして,測定精度を低下させてしまう。一方,グルコースやコレステロールなどの有機物を測定する場合,参照電極として用いるイオン選択電極の電位を安定化させる目的で試薬中にイオンが含まれていたとしても,測定に直接的な影響を及ぼさない。
同様の測定系でコレステロール,中性脂肪を測定した際の最適化した試薬の組成の例を以下に記す。
イオン選択電極:カリウム選択電極(選択係数(log):Na+,−4.0;Li+,−4.0;NH4 +,−1.5;Ca2+,−4.2;Mg2+,−6.0)
測定電極:11−フェロセニル−1−ウンデカンチオール修飾金電極
電圧計:入力インピーダンス10GΩ以上
コレステロール測定試薬
フェリシアン化カリウム(9.9mM)
フェロシアン化カリウム(0.1mM)
塩化カリウム(100mM)
トリス塩酸(0.2M)
コレステロール脱水素酵素(40U/ml)
ジアホラーゼ(3.75U/ml)
ニコチンアミドアデニンジヌクレオチド(0.5mg/ml)
中性脂肪測定試薬
フェリシアン化カリウム(9.9mM)
フェロシアン化カリウム(0.1mM)
塩化カリウム(140mM)
塩化マグネシウム(10mM)
リン酸水素二ナトリウム(10mM)
リン酸二水素カリウム(1.8mM)
アデノシン3リン酸(4mM)
リパーゼ(10U/ml)
グリセロールキナーゼ(10U/ml)
グリセロール3リン酸酸化酵素(40U/ml)
これらの試薬においては,カリウム選択電極を参照電極として用いる際の精度向上のため,カリウムイオンが支配的な電解質となるようにした。また,それぞれの反応式を以下に記す。
コレステロール:
コレステロール+ニコチンアミドアデニンジヌクレオチド(酸化型)→コレステノン+ニコチンアミドアデニンジヌクレオチド(還元型)(コレステロール脱水素酵素により触媒)
2フェリシアン化カリウム+ニコチンアミドアデニンジヌクレオチド(還元型)→2フェロシアン化カリウム+ニコチンアミドアデニンジヌクレオチド(酸化型)(ジアホラーゼにより触媒)
中性脂肪:
トリグリセライド+3H2O→グリセロール+3RCOOH(リパーゼにより触媒)
グリセロール+アデノシン3リン酸→グリセロール3リン酸+アデノシン2リン酸(グリセロールキナーゼにより触媒)
グリセロール3リン酸+2フェリシアン化カリウム→ジヒドロキシアセトンリン酸+2フェロシアン化カリウム(グリセロール3リン酸酸化酵素により触媒)
それぞれの反応式に示すようにして生成したフェロシアン化カリウムを,測定電極とイオン選択電極の電位差の変化として計測する。
図7は,図1の測定系を用いて,従来の内部液型銀塩化銀参照電極と本発明のイオン選択電極の安定性の比較を行った結果を示している。図中に銀塩化銀で示した線が内部液型銀塩化銀参照電極のもの,ISEで示したのがイオン選択電極を用いた結果である。測定は,次の条件で行った。
参照電極:内部液型銀塩化銀参照電極(内部液:飽和塩化カリウム,液絡部:多孔質ガラス)もしくはナトリウムイオン選択電極
測定電極:11−フェロセニル−1−ウンデカンチオール修飾金電極
測定溶液:10μl
硫酸ナトリウム(0.1M)
フェリシアン化カリウム(5mM)
フェロシアン化カリウム(5mM)
50秒間の測定中に,内部液型銀塩化銀参照電極を用いた場合は0.5mV程度の電位ドリフトが観測されたが,イオン選択電極を用いた場合は0.1mV程度の電位ドリフトであった。
図8は,図1の測定系を用いて,従来の内部液型銀塩化銀参照電極と本発明のイオン選択電極(ISE)の安定性(電位ドリフト)の溶液量依存性を測定した結果を示している。測定条件は,
銀塩化銀:内部液型銀塩化銀参照電極(内部液:飽和塩化カリウム,液絡部:多孔質ガラス)
ISE:ナトリウム選択電極
測定電極:11−フェロセニル−1−ウンデカンチオール修飾金電極
測定溶液
硫酸ナトリウム(0.1M)
フェリシアン化カリウム(5mM)
フェロシアン化カリウム(5mM)
とした。内部液型銀塩化銀参照電極では溶液量に反比例して電位ドリフト量が増大しているのに対し,イオン選択電極では電位ドリフト量が溶液量に依存しないのが分かる。
図7と図8に示すように,従来の内部液型銀塩化銀参照電極を用いた場合,測定溶液量の減少に伴い電位ドリフト量が増加した。その原因として,内部液の漏出が考えられる。イオン選択電極を参照電極に用いることで,少なくとも10μl程度の測定液量では顕著な電位ドリフトは観測されなかった。従来の内部液型参照電極では,液絡部を通じた内部液と測定溶液間のイオンの移動により,内部液と測定溶液間の電位を一定に保っていた。従って,内部液の漏出を無くすとイオンの移動ができなくなるため,原理的に内部液の漏出を無くすことはできなかった。これに対し,イオン選択電極では,溶液とイオン選択膜の界面でのイオンの平衡により溶液とイオン選択膜の間の電位が定まるため,原理的にイオン選択膜内部をイオンが通り抜ける必要はない。そのため,精度を維持したまま内部液の漏出を抑制することができたと考えられる。
101 イオン選択電極
102 測定電極
103 電圧計
104 容器
105 測定溶液
201 基板
202 イオン選択電極
203 測定電極
204 電圧計
205 測定溶液
301 測定部
302 制御装置
311 イオン選択電極
312 測定電極
313 電圧計
314 容器
315 測定溶液
316 分注装置
317 容器
318 試薬液
319 分注装置
320 容器
321 試薬液
401 基板
402 イオン選択電極
403 測定電極
404 電圧計
405 測定溶液
501 基板
502 イオン選択電極
503 測定電極
504 電界効果トランジスタ
505 ソース
506 ドレイン
507 導電性配線
508 導電性配線
509 端子
510 測定溶液
601 基板
602 イオン選択電極に接続された端子
603 FETのソースに接続された端子
604 FETのドレインに接続された端子

Claims (13)

  1. 試料と試薬の混合物である測定対象物を含む測定溶液が導入される容器又は部位と,
    前記測定溶液に接触し、酸化還元物質を測定する測定電極と,
    前記測定溶液に接触する参照電極と,
    前記測定電極と前記参照電極との間の電位差を測定する電位差計とを備え,
    前記参照電極は陽イオンに対するイオン選択電極であり、
    前記測定溶液中のイオンのうち,
    前記イオン選択電極の測定対象のイオンの中で前記試薬由来のイオンの濃度c r 及び前記イオン選択電極の妨害イオンjの中で前記試薬由来のイオンの濃度c r,j が,
    想定される前記試料中のイオンの最小濃度を,前記イオン選択電極の測定対象のイオンはc s,min ,前記イオン選択電極の妨害イオンjはc s,j,min とし,
    想定される前記試料中のイオンの最大濃度を,前記イオン選択電極の測定対象のイオンはc r,max ,前記イオン選択電極の妨害イオンjはc r,j,max とし
    前記試料の希釈率をdとし,
    気体定数をR,前記測定溶液の絶対温度をT,前記イオン選択電極の測定対象のイオンの価数をz,ファラデー定数をF,前記イオン選択電極の妨害イオンjの選択係数をK j ,前記イオン選択電極の妨害イオンjの価数をz j としたときに,

    を満たし,かつ,c r 及びc r,j が水への溶解度を上まらない
    ことを特徴とする電位差計測装置。
  2. 前記イオン選択電極はリチウム,カリウム,ナトリウム,マグネシウム,カルシウムもしくはアンモニアに対するイオン選択電極であることを特徴とする請求項1に記載の電位差計測装置。
  3. 前記試薬は有機物と反応する化学物質もしくは酵素を含むことを特徴とする請求項に記載の電位差計測装置。
  4. 前記試料は生体物質であることを特徴とする請求項に記載の電位差計測装置。
  5. 前記試料は全血,血清,血漿,尿,もしくは体液であることを特徴とする請求項に記載の電位差計測装置。
  6. 前記測定電極により有機物質を測定することを特徴とする請求項1に記載の電位差計測
    装置。
  7. 試料と試薬の混合物である測定対象物を含む測定溶液を容器又は部位に導入し,
    前記測定溶液に、酸化還元物質を測定する測定電極と参照電極を接触させ,
    前記測定電極と前記参照電極との間の電位差を電位差計を用いて測定する電位差計測方法において,
    前記参照電極は陽イオンに対するイオン選択電極であり、
    前記測定溶液中のイオンのうち,
    前記イオン選択電極の測定対象のイオンの中で前記試薬由来のイオンの濃度c r 及び前記イオン選択電極の妨害イオンjの中で前記試薬由来のイオンの濃度c r,j が,
    想定される前記試料中のイオンの最小濃度を,前記イオン選択電極の測定対象のイオンはc s,min ,前記イオン選択電極の妨害イオンjはc s,j,min とし,
    想定される前記試料中のイオンの最大濃度を,前記イオン選択電極の測定対象のイオンはc r,max ,前記イオン選択電極の妨害イオンjはc r,j,max とし
    前記試料の希釈率をdとし,
    気体定数をR,前記測定溶液の絶対温度をT,前記イオン選択電極の測定対象のイオンの価数をz,ファラデー定数をF,前記イオン選択電極の妨害イオンjの選択係数をK j ,前記イオン選択電極の妨害イオンjの価数をz j としたときに,

    を満たし,かつ,c r 及びc r,j が水への溶解度を上まらない
    ことを特徴とする電位差計測方法。
  8. 前記イオン選択電極はリチウム,カリウム,ナトリウム,マグネシウム,カルシウムもしくはアンモニアに対するイオン選択電極であることを特徴とする請求項に記載の電位差計測方法。
  9. 前記試薬は有機物と反応する化学物質もしくは酵素を含むことを特徴とする請求項に記載の電位差計測方法。
  10. 前記試料は生体物質であることを特徴とする請求項に記載の電位差計測方法。
  11. 前記試料は全血,血清,血漿,尿,もしくは体液であることを特徴とする請求項に記載の電位差計測方法。
  12. 前記測定電極により有機物質を測定することを特徴とする請求項に記載の電位差計測方法。
  13. 前記測定溶液は前記測定電極と接触する部位と前記参照電極と接触する部位で概ね同一の組成であることを特徴とする請求項に記載の電位差計測方法。
JP2010012518A 2010-01-22 2010-01-22 電位差計測装置及び電位差計測方法 Active JP5309042B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010012518A JP5309042B2 (ja) 2010-01-22 2010-01-22 電位差計測装置及び電位差計測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010012518A JP5309042B2 (ja) 2010-01-22 2010-01-22 電位差計測装置及び電位差計測方法

Publications (2)

Publication Number Publication Date
JP2011149878A JP2011149878A (ja) 2011-08-04
JP5309042B2 true JP5309042B2 (ja) 2013-10-09

Family

ID=44536986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010012518A Active JP5309042B2 (ja) 2010-01-22 2010-01-22 電位差計測装置及び電位差計測方法

Country Status (1)

Country Link
JP (1) JP5309042B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6036558B2 (ja) * 2013-06-07 2016-11-30 住友金属鉱山株式会社 酸化還元電位測定の校正方法
JP6881018B2 (ja) * 2017-05-18 2021-06-02 横河電機株式会社 pHセンサ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068796B2 (ja) * 1985-02-01 1994-02-02 株式会社東芝 イオン濃度測定方法
JPS6435260A (en) * 1987-07-30 1989-02-06 Shimadzu Corp Chlorine ion concentration measuring apparatus
JPS6466558A (en) * 1987-09-07 1989-03-13 Toa Electronics Oxidizing/reducing potential difference
JPH0820400B2 (ja) * 1989-03-17 1996-03-04 松下電器産業株式会社 バイオセンサ
US5413690A (en) * 1993-07-23 1995-05-09 Boehringer Mannheim Corporation Potentiometric biosensor and the method of its use

Also Published As

Publication number Publication date
JP2011149878A (ja) 2011-08-04

Similar Documents

Publication Publication Date Title
US8512546B2 (en) Method and apparatus for assay of electrochemical properties
US8128796B2 (en) Analyzer
EP0255291B1 (en) Method and apparatus for electrochemical measurements
RU2491549C2 (ru) Амперометрия со стробированием и быстрым считыванием
JP5203620B2 (ja) 干渉物質の存在下でサンプルを分析する方法及び装置
TWI449905B (zh) 用於生物感測器之未足量偵測系統
JP4751302B2 (ja) 電位差式センサ及び分析用素子
JP5139538B2 (ja) 電位差式センサチップ、電位差測定方法、及び測定キット
JP6539369B2 (ja) 分析物濃度決定の正規化された較正
CN105784814A (zh) 一种基于浓差电池原理的传感器
JP5309042B2 (ja) 電位差計測装置及び電位差計測方法
WO2006026120A1 (en) Potentiometric measurement of chloride concentration in an acidic solution
Abdullin et al. Determination of uric acid by voltammetry and coulometric titration
JP2010002401A (ja) ヘモグロビン測定方法および測定装置
Lewenstam Clinical analysis of blood gases and electrolytes by ion-selective sensors
Kao et al. Serum cholinesterase assay using a reagent-free micro pH-stat
JPS62184345A (ja) イオン濃度の測定方法
Yoon et al. Electrochemical Sensors
JP2010117183A (ja) 電位差計測装置
JP2024504830A (ja) 追加の参照測定を有する電気化学測定
AU2012204094B2 (en) Method and apparatus for assay of electrochemical properties
Buck et al. Experience with Direct-Dip Potentiometry of Blood Serum Electrolytes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5309042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350