JP5308405B2 - Support ground detection device and excavator using the same - Google Patents

Support ground detection device and excavator using the same Download PDF

Info

Publication number
JP5308405B2
JP5308405B2 JP2010139399A JP2010139399A JP5308405B2 JP 5308405 B2 JP5308405 B2 JP 5308405B2 JP 2010139399 A JP2010139399 A JP 2010139399A JP 2010139399 A JP2010139399 A JP 2010139399A JP 5308405 B2 JP5308405 B2 JP 5308405B2
Authority
JP
Japan
Prior art keywords
phase
general
ground
value
purpose motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010139399A
Other languages
Japanese (ja)
Other versions
JP2012002007A (en
Inventor
恭男 田川
隆浩 林
Original Assignee
株式会社トーメック
丸門建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トーメック, 丸門建設株式会社 filed Critical 株式会社トーメック
Priority to JP2010139399A priority Critical patent/JP5308405B2/en
Publication of JP2012002007A publication Critical patent/JP2012002007A/en
Application granted granted Critical
Publication of JP5308405B2 publication Critical patent/JP5308405B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide means to detect effective electric energy for accurately detecting bearing ground in the ground and means to discriminate whether or not a drilling rod reaches the bearing ground. <P>SOLUTION: Effective electricity energy detection means detects effective electric energy applied to a general purpose motor for drilling a unit volume of the ground. Bearing ground discrimination means discriminates that a drilling rod reaches a bearing ground when the effective electric energy detected by the effective electricity energy detection means reaches a prescribed value. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、支持地盤検出装置およびそれを用いた掘削機に関する。詳しくは、三相交流電源から汎用モータに電力が供給され、該汎用モータにより回転軸を介し回転駆動される掘削ロッドで地盤を掘削して、地盤内の支持地盤を検出する支持地盤検出装置およびそれを用いた掘削機に関する。   The present invention relates to a supporting ground detection device and an excavator using the same. Specifically, a supporting ground detection device for detecting power supporting ground in the ground by excavating the ground with a drilling rod that is powered from a three-phase AC power source to a general-purpose motor and rotated by the general-purpose motor via a rotating shaft; The present invention relates to an excavator using the same.

従来より、地盤内の強い支持層である支持地盤を検知する工法が知られている。たとえば、この工法として、先端に掘削ヘッドを有する掘削ロッドで、地盤を掘削して杭穴を形成する方法であって、下記の(式1)により求められるEpの値が予め設定した値又は掘削作業中に設定した値となった場合に、当該地盤を支持地盤と推定して、杭穴の根固め部を構築する杭穴掘削方法が知られていた(たとえば、特許文献1)。ここで、Aave1はある区間で深さL1を掘削速度vで掘削する場合の平均積算電流値であり、Vは掘削機のオーガー電圧である。また、Dは杭穴径である。
(式1)Ep=Aave1×V/(v・D・π/4) [J/m3]
Conventionally, a method for detecting a supporting ground, which is a strong supporting layer in the ground, is known. For example, this method is a method of excavating the ground with a drill rod having a drill head at the tip to form a pile hole, and the value of Ep obtained by the following (Equation 1) is a preset value or drilling A pile hole excavation method has been known in which, when the value is set during work, the ground is estimated as a support ground and a solidified portion of the pile hole is constructed (for example, Patent Document 1). Here, Aave1 is the mean integrated current value when drilling a depth L1 drilling speed v 1 in a certain section, V is a auger voltage of the excavator. D is a pile hole diameter.
(Equation 1) Ep = Aave1 × V / (v 1 · D 2 · π / 4) [J / m3]

特開2006−348515号公報JP 2006-348515 A

しかしながら、従来の杭穴掘削方法では、Epを求めるために掘削負荷電流(積算電流値)を検出しているが、この検出される積算電流は皮相電流であって、積算電流の中には本来掘削に使用されない無効電流も含まれている(皮相電流検出方式)。この皮相電流検出方式では、力率が低く(無効電流が大きく)なってしまうと積算電流値をエネルギー換算して用いても、正確に地盤内の支持地盤を検出することができなかった。   However, in the conventional pile hole excavation method, the excavation load current (integrated current value) is detected in order to obtain Ep, but this detected accumulated current is an apparent current, Reactive current not used for excavation is also included (apparent current detection method). In this apparent current detection method, if the power factor is low (the reactive current is large), the supporting ground in the ground cannot be accurately detected even if the integrated current value is converted into energy.

また、従来の杭穴掘削方法では、掘削機のオーガー電圧Vを一定として用いているが、インバータと用いた掘削機では、周波数fが低周波数の領域では電圧Vが一定にならず、(式1)を用いて正確に地盤内の支持地盤を検出することができなかった。さらに、2個のモータがそれぞれ単独のインバータにより制御され、その2個のモータにより回転駆動される掘削機では、それぞれのモータを流れる電流や電圧に位相差が生じ、単純に上記(式1)を用いても地盤内の支持地盤を検出することができなかった。   In the conventional pile hole excavation method, the auger voltage V of the excavator is used as constant. However, in the excavator using the inverter, the voltage V is not constant in the region where the frequency f is low, It was not possible to accurately detect the supporting ground in the ground using 1). Furthermore, in an excavator in which two motors are controlled by independent inverters and are driven to rotate by the two motors, a phase difference occurs in the current and voltage flowing through each motor, and the above (Equation 1) It was not possible to detect the supporting ground in the ground even if was used.

本発明は上記問題点に鑑みてなされたもので、正確に地盤内の支持地盤を検出することができる支持地盤検出装置およびそれを用いた掘削機を提供することを目的とする。   This invention is made | formed in view of the said problem, and it aims at providing the support ground detection apparatus which can detect the support ground in a ground correctly, and an excavator using the same.

上記課題を解決し上記目的を達成するために、本発明のうち第1の態様に係るものは、三相交流電源から汎用モータに電力が供給され、該汎用モータにより回転軸を介し回転駆動される掘削ロッドで地盤を掘削して、地盤内の支持地盤を検出する支持地盤検出装置であって、PQ法に基づいて、単位掘削体積あたりの汎用モータに印加される有効電力量を検出する有効電力量検出手段と、該有効電力量検出手段により検出された有効電力量があらかじめ定められた値になったときに、掘削ロッドが支持地盤に到達したと判定する支持地盤判定手段とを備え、有効電力量検出手段は、数式1と数式2を用いて、汎用モータに入力される三相交流のU相を流れる皮相電流IuとV相を流れる皮相電流IvとW相を流れる皮相電流Iw、およびU相のU相電圧EuとV相のV相電圧EvとW相のW相電圧Ewから電流値(Iα、Iβ)と電圧値(Eα、Eβ)を求め、

Figure 0005308405
Figure 0005308405
次に、数式3を用いて、電流値(Iα、Iβ)と電圧値(Eα、Eβ)から単位掘削体積あたりの汎用モータに印加される瞬時有効電力Pを求め、
Figure 0005308405
Figure 0005308405
そして、数式4を用いて、有効電力量を検出するものである。
In order to solve the above problems and achieve the above object, the first aspect of the present invention is such that electric power is supplied from a three-phase AC power source to a general-purpose motor, and is rotated by the general-purpose motor via a rotating shaft. This is a support ground detection device that excavates the ground with an excavating rod and detects the support ground in the ground, and is effective in detecting the effective electric energy applied to the general-purpose motor per unit excavation volume based on the PQ method. Power amount detection means, and support ground determination means for determining that the excavation rod has reached the support ground when the active power amount detected by the effective power amount detection means reaches a predetermined value, The active energy detection means uses Equation 1 and Equation 2 to obtain an apparent current Iu that flows through the three-phase AC U phase, an apparent current Iv that flows through the V phase, and an apparent current Iw that flows through the W phase that are input to the general-purpose motor. And U phase Current value (Iα, Iβ) and voltage value (Eα, Eβ) are obtained from U-phase voltage Eu, V-phase voltage Ev of V-phase, and W-phase voltage Ew of W-phase,
Figure 0005308405
Figure 0005308405
Next, using Equation 3, the instantaneous active power P applied to the general-purpose motor per unit excavation volume is obtained from the current values (Iα, Iβ) and voltage values (Eα, Eβ),
Figure 0005308405
Figure 0005308405
Then, the amount of active power is detected using Equation 4 .

本発明によれば、PQ法に基づいて、有効電力量検出手段により検出された単位掘削体積あたりの有効電力量があらかじめ定められた値になったときに掘削ロッドが支持地盤に到達したと判定されるので、正確に地盤内の支持地盤を検出することができる。すなわち、汎用モータで実際に使用される電力の変化を検出し、その実際に汎用モータで使用される電力である有効電力量があらかじめ定められた値になったときに掘削ロッドが支持地盤に到達したと判定されるので、正確に地盤内の支持地盤を検出することができる。
According to the present invention, based on the PQ method, it is determined that the excavation rod has reached the support ground when the effective electric energy per unit excavation volume detected by the active electric energy detection means becomes a predetermined value. Therefore, it is possible to accurately detect the supporting ground in the ground. That is, a change in the power actually used in the general-purpose motor is detected, and the excavation rod reaches the support ground when the effective power amount, which is the power actually used in the general-purpose motor, reaches a predetermined value. Therefore, it is possible to accurately detect the supporting ground in the ground.

本発明のうち第2の態様に係るものは、第1の態様に係る支持地盤検出装置であって、汎用モータは、インバータにより駆動制御されるものである。   According to the second aspect of the present invention, there is provided a support ground detecting apparatus according to the first aspect, wherein the general-purpose motor is driven and controlled by an inverter.

汎用モータがインバータにより駆動制御されるものであっても、有効電力量検出手段により検出された単位掘削体積あたりの有効電力量があらかじめ定められた値になったときに掘削ロッドが支持地盤に到達したと判定されるので、正確に地盤内の支持地盤を検出することができる。すなわち、汎用モータがインバータに駆動制御される場合は、周波数fが低周波数の領域では電圧Vも周波数fに沿って低くなるが、本発明によれば、その低くなった電圧も考慮して、有効電力量検出手段により有効電力量が検出されるので、正確に地盤内の支持地盤を検出することができる。   Even if a general-purpose motor is driven and controlled by an inverter, the excavation rod reaches the support ground when the effective electric energy per unit excavation volume detected by the active electric energy detection means reaches a predetermined value. Therefore, it is possible to accurately detect the supporting ground in the ground. That is, when the general-purpose motor is driven and controlled by the inverter, the voltage V also decreases along the frequency f in the region where the frequency f is low, but according to the present invention, the reduced voltage is also taken into consideration. Since the effective power amount is detected by the effective power amount detecting means, it is possible to accurately detect the supporting ground in the ground.

本発明のうち第3の態様に係るものは、第1の態様に係る支持地盤検出装置であって、2個の汎用モータにより回転軸を介し回転駆動される掘削ロッドで地盤を掘削して、地盤内の支持地盤を検出する支持地盤検出装置であって、各汎用モータは、各汎用モータに対応してそれぞれ設けられたインバータにより駆動制御され、有効電力量検出手段は、各汎用モータに印加される有効電力量を検出し、支持地盤判定手段は、該有効電力量検出手段に検出された各汎用モータの有効電力量の合計値があらかじめ定められた値になったときに、掘削ロッドが支持地盤に到達したと判定することを特徴とするものである。   Of the present invention, the third aspect is a support ground detection device according to the first aspect, excavating the ground with a drill rod that is driven to rotate by two general-purpose motors through a rotating shaft, A supporting ground detecting device for detecting a supporting ground in the ground, wherein each general-purpose motor is driven and controlled by an inverter provided corresponding to each general-purpose motor, and an active energy detection means is applied to each general-purpose motor. When the total value of the effective power amounts of the general-purpose motors detected by the effective power amount detecting means reaches a predetermined value, the support ground determining means detects the effective power amount. It is characterized by determining that the support ground has been reached.

本発明によれば、インバータにより駆動制御される2個の汎用モータで掘削ロッドを回転駆動する場合でも、2個の汎用モータで実際に使用される電力である有効電力量の合計があらかじめ定められた値になったときに掘削ロッドが支持地盤に到達したと判定されるので、正確に地盤内の支持地盤を検出することができる。   According to the present invention, even when the excavation rod is rotationally driven by two general-purpose motors that are driven and controlled by an inverter, the total amount of active power that is the electric power actually used by the two general-purpose motors is determined in advance. Since it is determined that the excavation rod has reached the support ground when the value reaches the value, the support ground in the ground can be accurately detected.

上記課題を解決し上記目的を達成するために、本発明のうち第4の態様に係るものは、三相交流電源から汎用モータに電力が供給され、該汎用モータにより回転軸を介し回転駆動される掘削ロッドで地盤を掘削して、地盤内の支持地盤を検出する支持地盤検出装置であって、PQ法に基づいて、単位掘削体積あたりの汎用モータに印加される有効電力量を検出する有効電力量検出手段と、該有効電力量検出手段により検出された有効電力量を標準貫入試験のN値に換算するN値換算手段と、該N値換算手段により換算されたN値があらかじめ定められた値になったときに、掘削ロッドが支持地盤に到達したと判定する支持地盤判定手段とを備え、有効電力量検出手段は、数式1と数式2を用いて、汎用モータに入力される三相交流のU相を流れる皮相電流IuとV相を流れる皮相電流IvとW相を流れる皮相電流Iw、およびU相のU相電圧EuとV相のV相電圧EvとW相のW相電圧Ewから電流値(Iα、Iβ)と電圧値(Eα、Eβ)を求め、

Figure 0005308405
Figure 0005308405
次に、数式3を用いて、電流値(Iα、Iβ)と電圧値(Eα、Eβ)から単位掘削体積あたりの汎用モータに印加される瞬時有効電力Pを求め、
Figure 0005308405
Figure 0005308405
そして、数式4を用いて、有効電力量を検出するものである。
In order to solve the above problems and achieve the above object, according to a fourth aspect of the present invention, electric power is supplied from a three-phase AC power source to a general-purpose motor, and is rotated by the general-purpose motor via a rotating shaft. This is a support ground detection device that excavates the ground with an excavating rod and detects the support ground in the ground, and is effective in detecting the effective electric energy applied to the general-purpose motor per unit excavation volume based on the PQ method. The power amount detecting means, the N value converting means for converting the active power amount detected by the active power amount detecting means into the N value of the standard penetration test, and the N value converted by the N value converting means are determined in advance. Support ground determination means for determining that the excavation rod has reached the support ground when the value reaches the value, and the active power amount detection means uses Equation 1 and Equation 2 to input the three Flow through phase U phase Current value (Iα) from the apparent current Iu, the apparent current Iv flowing through the V phase, the apparent current Iw flowing through the W phase, the U phase voltage Eu of the U phase, the V phase voltage Ev of the V phase, and the W phase voltage Ew of the W phase. , Iβ) and voltage values (Eα, Eβ),
Figure 0005308405
Figure 0005308405
Next, using Equation 3, the instantaneous active power P applied to the general-purpose motor per unit excavation volume is obtained from the current values (Iα, Iβ) and voltage values (Eα, Eβ),
Figure 0005308405
Figure 0005308405
Then, the amount of active power is detected using Equation 4 .

本発明によれば、PQ法に基づいて有効電力量検出手段により検出された単位掘削体積あたりの有効電力量を標準貫入試験のN値に換算するN値換算手段が設けられ、該N値換算手段により換算されたN値があらかじめ定められた値になったときに掘削ロッドが支持地盤に到達したと判定されるので、たとえば、国の運用基準などで支持地盤の硬さの単位がN値(試験時の打ち込み回数)で規定されている場合は、その運用基準に合致した表示で正確に地盤内の支持地盤を検出することができる。これにより、たとえば、支持地盤が検出された後にN値の値を基礎の設計などに使用することもできる。 According to the present invention, there is provided N value conversion means for converting the active power amount per unit excavation volume detected by the active power amount detection means based on the PQ method into the N value of the standard penetration test, and the N value conversion Since it is determined that the excavation rod has reached the supporting ground when the N value converted by the means reaches a predetermined value, for example, the unit of hardness of the supporting ground is N value in accordance with national operational standards, etc. When defined by (number of times of driving at the time of testing), it is possible to accurately detect the supporting ground in the ground with a display that matches the operation standard. Thereby, for example, after the supporting ground is detected, the value of the N value can be used for the design of the foundation.

本発明のうち第5の態様に係るものは、第4の態様に係る支持地盤検出装置であって、2個の汎用モータにより回転軸を介し回転駆動される掘削ロッドで地盤を掘削して、地盤内の支持地盤を検出する支持地盤検出装置であって、各汎用モータは、各汎用モータに対応してそれぞれ設けられたインバータにより駆動制御され、有効電力量検出手段は、各汎用モータに印加される有効電力量を検出し、支持地盤判定手段は、N値換算手段により換算された各汎用モータのN値の合計値があらかじめ定められた値になったときに、掘削ロッドが支持地盤に到達したと判定することを特徴とするものである。   A fifth aspect of the present invention relates to a support ground detection device according to the fourth aspect, wherein the ground is excavated with a drill rod that is driven to rotate by two general-purpose motors via a rotating shaft, A supporting ground detecting device for detecting a supporting ground in the ground, wherein each general-purpose motor is driven and controlled by an inverter provided corresponding to each general-purpose motor, and an active energy detection means is applied to each general-purpose motor. The active ground energy is detected, and the support ground determination means is configured such that when the total value of the N values of the general-purpose motors converted by the N value conversion means reaches a predetermined value, the excavation rod is placed on the support ground. It is characterized by determining that it has arrived.

本発明によれば、インバータにより駆動制御される2個の汎用モータで掘削ロッドを回転駆動する場合でも、N値換算手段により換算された各汎用モータのN値の合計値があらかじめ定められた値になったときに掘削ロッドが支持地盤に到達したと判定されるので、国の運用基準などに合致した表示で正確に地盤内の支持地盤を検出することができる。   According to the present invention, even when the excavation rod is rotationally driven by two general-purpose motors that are driven and controlled by the inverter, the total value of the N values of the general-purpose motors converted by the N-value conversion means is a predetermined value. Therefore, it is determined that the excavation rod has reached the support ground, so that it is possible to accurately detect the support ground in the ground with a display that conforms to national operational standards.

本発明のうち第6の態様に係るものは、第1〜5のいずれかの態様に係る支持地盤検出装置であって、汎用モータにより回転される回転軸と一体に回動する太陽歯車と、太陽歯車の外周を覆うように、該太陽歯車に空隙を介して同軸状に配設されている内歯車と、空隙に配設され太陽歯車及び内歯車に噛合する遊星歯車と、回転軸に取り付けられた掘削ロッドと、内歯車に取り付けられた掘削刃とを、有し、掘削ロッドおよび掘削刃により掘削することを特徴とするものである。   According to a sixth aspect of the present invention, there is provided a support ground detection device according to any one of the first to fifth aspects, a sun gear that rotates integrally with a rotating shaft that is rotated by a general-purpose motor, An internal gear that is coaxially disposed on the sun gear via a gap so as to cover the outer periphery of the sun gear, a planetary gear that is disposed in the gap and meshes with the sun gear and the internal gear, and is attached to the rotating shaft The excavating rod and the excavating blade attached to the internal gear are provided and excavated by the excavating rod and the excavating blade.

本発明によれば、回転軸と一体に回動する太陽歯車と、太陽歯車の外周を覆うように、該太陽歯車に空隙を介して同軸状に配設されている内歯車と、空隙に配設され太陽歯車及び内歯車に噛合する遊星歯車と、回転軸に取り付けられた掘削ロッドと、内歯車に取り付けられた掘削刃とを有しているので、少ない歯車数で大きな減速比を得ながら掘削することができ、掘削機の小型化も図ることができる。   According to the present invention, the sun gear that rotates integrally with the rotating shaft, the internal gear that is coaxially disposed in the sun gear via the gap so as to cover the outer periphery of the sun gear, and the gap that is disposed in the gap. Because it has a planetary gear that is installed and meshes with the sun gear and the internal gear, a drilling rod attached to the rotating shaft, and a drilling blade attached to the internal gear, while obtaining a large reduction ratio with a small number of gears The excavator can be excavated and the excavator can be downsized.

本発明によれば、単位掘削体積あたりの有効電力量(またはN値)を用いて掘削ロッドが支持地盤に到達したかを判定しているので、正確に地盤内の支持地盤を検出することができる。   According to the present invention, since it is determined whether the excavation rod has reached the support ground using the active power amount (or N value) per unit excavation volume, it is possible to accurately detect the support ground in the ground. it can.

(a)本発明の一実施形態における支持地盤検出装置が用いられた掘削機の上面図X軸方向の側面図である。 (b)同掘削機の上面図Y軸方向の側面図である。 (c)同掘削機の上面図である。(A) It is a top view of the excavator in which the support ground detection apparatus in one Embodiment of this invention was used. It is a side view of a X-axis direction. (B) Top view of the excavator. Side view in the Y-axis direction. (C) It is a top view of the excavator. 図1(b)および図1(c)のA−A断面図である。It is AA sectional drawing of FIG.1 (b) and FIG.1 (c). 図1(a)のB−B断面図である。It is BB sectional drawing of Fig.1 (a). 本発明の一実施形態における支持地盤検出装置の回路図を示す図である。It is a figure which shows the circuit diagram of the support ground detection apparatus in one Embodiment of this invention. 同支持地盤検出装置が用いられた掘削機の支持地盤検出工程を示すフローチャートである。It is a flowchart which shows the support ground detection process of the excavator using the support ground detection apparatus. N値換算手段により求められた標準貫入試験のN値(合計値)をグラフ化した図である。It is the figure which graphed N value (total value) of the standard penetration test calculated | required by the N value conversion means. 本発明の第一実施形態の変形例1における支持地盤検出装置の回路図を示す図である。It is a figure which shows the circuit diagram of the support ground detection apparatus in the modification 1 of 1st embodiment of this invention. 本発明の第一実施形態の変形例2における支持地盤検出装置の回路図を示す図である。It is a figure which shows the circuit diagram of the support ground detection apparatus in the modification 2 of 1st embodiment of this invention. 本発明の第一実施形態の変形例3における支持地盤検出装置の回路図を示す図である。It is a figure which shows the circuit diagram of the support ground detection apparatus in the modification 3 of 1st embodiment of this invention. 本発明の第二実施形態における支持地盤検出装置の回路図を示す図である。It is a figure which shows the circuit diagram of the support ground detection apparatus in 2nd embodiment of this invention. 本発明の第二実施形態の変形例1における支持地盤検出装置の回路図を示す図である。It is a figure which shows the circuit diagram of the support ground detection apparatus in the modification 1 of 2nd embodiment of this invention. 本発明の第二実施形態の変形例2における支持地盤検出装置の回路図を示す図である。It is a figure which shows the circuit diagram of the support ground detection apparatus in the modification 2 of 2nd embodiment of this invention. 本発明の第二実施形態の変形例3における支持地盤検出装置の回路図である。It is a circuit diagram of the support ground detection apparatus in the modification 3 of 2nd embodiment of this invention. (a)本発明の第三実施形態における支持地盤検出装置が用いられた掘削機の上面図X軸方向の側面図である。 (b)同掘削機の上面図Y軸方向の側面図である。 (c)同掘削機の上面図である。(A) It is a top view of the excavator in which the support ground detection apparatus in 3rd embodiment of this invention was used. It is a side view of a X-axis direction. (B) Top view of the excavator. Side view in the Y-axis direction. (C) It is a top view of the excavator. 図14(a)のC−C断面図である。It is CC sectional drawing of Fig.14 (a). 図15のD−D断面図である。It is DD sectional drawing of FIG. 本発明の第三実施形態における支持地盤検出装置が用いられた掘削機の掘削刃を示す図である。It is a figure which shows the excavation blade of the excavator in which the support ground detection apparatus in 3rd embodiment of this invention was used.

(第一実施形態)
以下、本発明の支持地盤検出装置の一実施形態について図面を参照しながら説明する。図1(a)は本発明の一実施形態における支持地盤検出装置が用いられた掘削機の上面図X軸方向の側面図であり、図1(b)は同掘削機の上面図Y軸方向の側面図であり、図1(c)は同掘削機の上面図である。
(First embodiment)
Hereinafter, an embodiment of a support ground detection device of the present invention will be described with reference to the drawings. 1A is a side view in the X-axis direction of a top view of the excavator in which the support ground detection device according to one embodiment of the present invention is used, and FIG. 1B is a top view of the excavator in the Y-axis direction. FIG. 1C is a top view of the excavator.

図1(a)に示すように、掘削機1は、内部に汎用モータ5a、5bを含み断面がU字形(御椀状)の上部ケース2と、上部ケース2にボルトやピンなどの固着手段(図示略)により固着された中空状の中部ケース3と、中部ケース3にボルトやピンなどの固着手段(図示略)により固着された中空状の下部ケース4により覆われている。この下部ケース4には中空状の下部部材7が取り付けられている。   As shown in FIG. 1 (a), an excavator 1 includes an upper case 2 having general-purpose motors 5a and 5b and a U-shaped (government-shaped) cross section, and fixing means such as bolts and pins to the upper case 2. A hollow middle case 3 fixed by (not shown) and a hollow lower case 4 fixed to the middle case 3 by fixing means (not shown) such as bolts and pins. A hollow lower member 7 is attached to the lower case 4.

出力軸(回転軸)11は、後述するように汎用モータ5a、5bにより回転するもので中空状の下部部材7の下部から突出させている。この出力軸11には、ボルトやピンなどの固着手段(図示略)により掘削ロッド(ドリル)12が取り付けられている。なお、本実施形態でいう固着手段がボルトの場合には、固着される側にボルトに対応する螺子穴が設けられ、反対側にボルトと螺合するナットを設けるようにしてもよい。掘削ロッド12は、中空状で円形断面を有し地上から掘削ロッド12の内側の中空部(図示略)にセメントミルクなどを供給することにより、掘削ロッド12の先端部からそのセメントミルクなどを噴射させることができる。このようにして、掘削ロッド12を順次接続しながら掘削し、掘削ロッド12が地中に挿入される。なお、本実施形態では、掘削ロッド12を順次接続するとしたが、これに限らず、先端の掘削ロッド(ドリル)12に継ぎ手(図示略)を順次接続しながら掘削するようにしてもよい。   As will be described later, the output shaft (rotating shaft) 11 is rotated by general-purpose motors 5 a and 5 b and protrudes from the lower portion of the hollow lower member 7. A drilling rod (drill) 12 is attached to the output shaft 11 by fixing means (not shown) such as bolts and pins. When the fixing means referred to in the present embodiment is a bolt, a screw hole corresponding to the bolt may be provided on the fixed side, and a nut to be screwed with the bolt may be provided on the opposite side. The excavation rod 12 is hollow and has a circular cross section. By supplying cement milk or the like from the ground to a hollow portion (not shown) inside the excavation rod 12, the cement milk or the like is jetted from the tip of the excavation rod 12. Can be made. In this way, excavation rod 12 is excavated while being sequentially connected, and excavation rod 12 is inserted into the ground. In this embodiment, the excavation rods 12 are sequentially connected. However, the present invention is not limited to this, and excavation may be performed while connecting joints (not shown) to the excavation rod (drill) 12 at the tip.

次に、掘削機1の内部構造について図2を用いて説明する。図2は図1(b)および図1(c)のA-A断面図であり、図3は図1(a)のB-B断面図である。   Next, the internal structure of the excavator 1 will be described with reference to FIG. 2 is a cross-sectional view taken along the line AA in FIGS. 1B and 1C, and FIG. 3 is a cross-sectional view taken along the line BB in FIG.

三相誘導電動機(誘導電動機)からなる汎用モータ5a、5bは、モータ回転軸6a、6bを回転させるもので、上部ケース3の内部にそれぞれ備えられている(図1(a)および図2参照)。また、汎用モータ5a、5bは、上部に冷却ファン(図示略)が設けられ、冷却ファン(図示略)は汎用モータ5a、5bのファン駆動軸(図示略)より回転するように構成されている。この冷却ファン(図示略)は上部ケース2の上部に備えられている。このように、汎用モータ5a、5bに冷却ファン(図示略)が設けられているので、回転により温度が上がった汎用モータ5a、5bを冷却することができる。   General-purpose motors 5a and 5b composed of three-phase induction motors (induction motors) rotate motor rotating shafts 6a and 6b, and are respectively provided in the upper case 3 (see FIGS. 1A and 2). ). The general-purpose motors 5a and 5b are provided with a cooling fan (not shown) at the top, and the cooling fan (not shown) is configured to rotate from a fan drive shaft (not shown) of the general-purpose motors 5a and 5b. . This cooling fan (not shown) is provided on the upper part of the upper case 2. Thus, since the general-purpose motors 5a and 5b are provided with the cooling fans (not shown), the general-purpose motors 5a and 5b whose temperature has been increased by the rotation can be cooled.

なお、本実施形態では、説明の便宜上、モータ回転軸6(6a、6b)とファン駆動軸(図示略)を別部材のように説明しているが、もともとモータ回転軸6(6a、6b)とファン駆動軸(図示略)は一体的に構成された汎用モータ5(5a、5b)の回転軸であり、この回転軸は汎用モータ5a、5bの駆動力により駆動される。   In this embodiment, for convenience of explanation, the motor rotation shaft 6 (6a, 6b) and the fan drive shaft (not shown) are described as separate members, but originally the motor rotation shaft 6 (6a, 6b). The fan drive shaft (not shown) is a rotating shaft of a general-purpose motor 5 (5a, 5b) integrally formed, and this rotating shaft is driven by the driving force of the general-purpose motors 5a, 5b.

2つの汎用モータ5a、5bのモータ回転軸6a、6bには、それぞれにモータ回転軸取付ボス(モータ回転軸取付手段(図示略))を用いて圧入された電動機歯車9a、9bが固着されている。このように、電動機歯車9a、9bはモータ回転軸6a、6bと固着されているので、モータ回転軸6a、6bと同心で回転することができる。   Electric motor gears 9a and 9b that are press-fitted using motor rotation shaft mounting bosses (motor rotation shaft mounting means (not shown)) are fixed to the motor rotation shafts 6a and 6b of the two general-purpose motors 5a and 5b, respectively. Yes. Thus, since the electric gears 9a and 9b are fixed to the motor rotation shafts 6a and 6b, they can rotate concentrically with the motor rotation shafts 6a and 6b.

入力歯車10は、2つの電動機歯車9a、9bと外接するように配され、電動機歯車9a、9bが回転することにより回転することができる(図2および図3参照)。入力歯車10には、入力軸取付ボス(入力軸取付手段(図示略))を用いて圧入された出力軸11が固着されている。   The input gear 10 is arranged so as to circumscribe the two motor gears 9a and 9b, and can be rotated by the rotation of the motor gears 9a and 9b (see FIGS. 2 and 3). An output shaft 11 press-fitted using an input shaft mounting boss (input shaft mounting means (not shown)) is fixed to the input gear 10.

次に、本実施形態における支持地盤検出装置の回路図について図4を参照にして説明する。ここで、図4は、本発明の一実施形態における支持地盤検出装置の回路図である。上述したように、2個の汎用モータ5a、5bのそれぞれに対応して設けられたインバータ8a、8bは、それぞれの汎用モータ5a、5bを駆動制御するものである。   Next, a circuit diagram of the supporting ground detection device in the present embodiment will be described with reference to FIG. Here, FIG. 4 is a circuit diagram of the supporting ground detection device in one embodiment of the present invention. As described above, the inverters 8a and 8b provided corresponding to the two general-purpose motors 5a and 5b drive and control the general-purpose motors 5a and 5b, respectively.

掘削機1に備えられた支持地盤検出装置13は、交流電源(三相交流電源)からの交流電圧を直流電圧に変換するコンバータ部14a、14bと、該コンバータ部14a、14bからの出力電圧を平滑するコンデンサ部15a、15bと、該コンデンサ部15a、15bにより平滑された直流電圧を三相交流に変換し、汎用モータ(誘導電動機)5a、5bに出力する出力ブリッジ部16a、16bと、該出力ブリッジ部16a、16bを駆動制御する制御装置(図示略)と、コンバータ部14a、14bとコンデンサ部15a、15bの間に接続された突入電流抑制抵抗部18a、18bと、該突入電流抑制抵抗部18a、18bに並列接続された第一スイッチ19a、19bと、該汎用モータ5a、5bのうちの一方の汎用モータ5(5a、5b)のコンデンサ部15(15aまたは15b)と他方の汎用モータのコンデンサ部15(15aまたは15b)を並列接続させ、該並列回路内に接続された第二スイッチ20と、該第二スイッチ20が設けられた並列回路に放電抵抗21を並列接続させ、該放電抵抗21が設けられた並列回路に接続された第三スイッチ22を有している。そして、図4に示すように、インバータ8a、8bが構成されている。   The support ground detection device 13 provided in the excavator 1 includes converter units 14a and 14b that convert an AC voltage from an AC power source (three-phase AC power source) into a DC voltage, and an output voltage from the converter units 14a and 14b. Capacitor parts 15a and 15b for smoothing, output bridge parts 16a and 16b for converting the DC voltage smoothed by the capacitor parts 15a and 15b into three-phase alternating current and outputting them to general-purpose motors (induction motors) 5a and 5b, A control device (not shown) for driving and controlling the output bridge portions 16a and 16b, inrush current suppression resistor portions 18a and 18b connected between the converter portions 14a and 14b and the capacitor portions 15a and 15b, and the inrush current suppression resistor The first switches 19a and 19b connected in parallel to the sections 18a and 18b, and one of the general-purpose motors 5a and 5b. 5b) and the capacitor unit 15 (15a or 15b) of the other general-purpose motor are connected in parallel, the second switch 20 connected in the parallel circuit, and the second switch 20 The discharge resistor 21 is connected in parallel to the parallel circuit provided with a third switch 22 connected to the parallel circuit provided with the discharge resistor 21. As shown in FIG. 4, inverters 8a and 8b are configured.

支持地盤検出装置13は、U相電流計測器35a、35bと、W相電流計測器36a、36bと、V相電流計算器23(図示略)、U相−V相間電圧計測器37a、37bと、V相−W相間電圧計測器38a、38bと、相間−相電圧変換器39a、39bと、有効電力量検出手段40(図示略)と、N値換算手段41(図示略)と有している。   The supporting ground detection device 13 includes U-phase current measuring devices 35a and 35b, W-phase current measuring devices 36a and 36b, a V-phase current calculator 23 (not shown), and U-phase to V-phase voltage measuring devices 37a and 37b. , V-phase to W-phase voltage measuring devices 38a and 38b, inter-phase to phase voltage converters 39a and 39b, active energy detection means 40 (not shown), and N value conversion means 41 (not shown). Yes.

まず電流の計測について説明すると、U相電流計測器35a、35bは、U相を流れる皮相電流Iuを計測するものであり、W相電流計測器36a、36bは、W相を流れる皮相電流Iwを計測するものである。また、V相電流計算器23(図示略)は、U相電流計測器35a、35bにより計測されたU相を流れる皮相電流値IuとW相電流計測器36a、36bにより計測されたW相を流れる皮相電流値Iwを用いて、V相を流れる皮相電流値Ivを計算するものである。具体的には、U相を流れる皮相電流IuとW相を流れる皮相電流IwとV相を流れる皮相電流Ivの和が「0」(Iu+Iv+Iw=0)になることから、この関係式を用いて、V相を流れる皮相電流値Ivが求められる。なお、本実施形態では、V相電流計算器23(図示略)を設けて、V相を流れる皮相電流値Ivを求めるようにしたが、これに限らず、V相電流計算器23(図示略)の換わりに、V相電流計測器(図示略)を設けて、V相を流れる皮相電流値Ivを計測してもよい。なお、言うまでもないが、上記の皮相電流値Iu、皮相電流値I、皮相電流値Iは、それぞれの汎用モータ5a、5bに対応して求められる。 First, the current measurement will be described. The U-phase current measuring devices 35a and 35b measure the apparent current Iu flowing through the U-phase, and the W-phase current measuring devices 36a and 36b measure the apparent current Iw flowing through the W-phase. It is to be measured. The V-phase current calculator 23 (not shown) calculates the apparent current value Iu flowing through the U-phase measured by the U-phase current measuring devices 35a and 35b and the W-phase measured by the W-phase current measuring devices 36a and 36b. The apparent current value Iv flowing through the V phase is calculated using the flowing apparent current value Iw. Specifically, since the sum of the apparent current Iu flowing through the U phase, the apparent current Iw flowing through the W phase, and the apparent current Iv flowing through the V phase becomes “0” (Iu + Iv + Iw = 0), this relational expression is used. The apparent current value Iv flowing through the V phase is obtained. In this embodiment, the V-phase current calculator 23 (not shown) is provided to obtain the apparent current value Iv flowing through the V-phase. ), A V-phase current measuring device (not shown) may be provided to measure the apparent current value Iv flowing through the V-phase. Needless to say, the apparent current value Iu, the apparent current value I W , and the apparent current value IV are determined in correspondence with the general-purpose motors 5a and 5b.

次に電圧の計測について説明すると、U相−V相間電圧計測器37a、37bは、U相−V相間の電圧を計測するものであり、V相−W相間電圧計測器38a、38bは、V相−W相間の電圧を計測するものである。また、相間−相電圧変換器39a、39bは、U相−V相間電圧計測器37a、37bにより計測されたU相−V相間電圧値とV相−W相間電圧計測器38a、38bにより計測されたV相−W相間電圧値を用いて、U相電圧EuとV相電圧EvとW相電圧Ewをそれぞれ求めるものである。U相電圧EuとV相電圧EvとW相電圧Ewの求め方として、たとえば、U相電圧EuとV相電圧EvとW相電圧Ewのいずれかの電圧を測定し、その電圧とU相−V相間電圧値とV相−W相間電圧値を用いて、U相電圧EuとV相電圧EvとW相電圧Ewを求めている。なお、上記電流同様、U相電圧Eu、V相電圧Ev、W相電圧Ewも、それぞれの汎用モータ5a、5bに対応して求められる。   Next, voltage measurement will be described. The U-phase to V-phase voltage measuring devices 37a and 37b measure the voltage between the U-phase and the V-phase, and the V-phase to W-phase voltage measuring devices 38a and 38b are The voltage between the phase and the W phase is measured. The phase-to-phase voltage converters 39a and 39b are measured by the U-phase to V-phase voltage measuring devices 37a and 37b and the V-phase to W-phase voltage measuring devices 38a and 38b. The U-phase voltage Eu, the V-phase voltage Ev, and the W-phase voltage Ew are obtained using the V-phase to W-phase voltage values. As a method for obtaining the U-phase voltage Eu, the V-phase voltage Ev, and the W-phase voltage Ew, for example, any one of the U-phase voltage Eu, the V-phase voltage Ev, and the W-phase voltage Ew is measured. The U-phase voltage Eu, the V-phase voltage Ev, and the W-phase voltage Ew are obtained using the V-phase voltage value and the V-phase to W-phase voltage value. Similar to the current, the U-phase voltage Eu, the V-phase voltage Ev, and the W-phase voltage Ew are also obtained corresponding to the general-purpose motors 5a and 5b.

有効電力量検出手段40は、単位掘削体積あたりのモータ回転軸6a、6bに印加される有効電力量を検出するものである。この有効電力量検出手段40は、U相電流計測器35a、35bにより検出されたU相を流れる皮相電流値Iuと、W相電流計測器36a、36bにより検出されたW相を流れる皮相電流値Iと、V相電流計算器23(図示略)により計算されたV相を流れる皮相電流値Iと、相間−相電圧変換器39a、39bにより変換されたU相電圧EuとV相電圧EvとW相電圧Ewを用いて、単位掘削体積あたりの汎用モータ5a、5bに印加される有効電力量を求めている。具体的には、まず第一に、下記の(数1)と(数2)を用いて、この(数1)と(数2)にU相を流れる皮相電流IuとV相を流れる皮相電流IvとW相を流れる皮相電流Iw、およびU相のU相電圧EuとV相のV相電圧EvとW相のW相電圧Ewを代入して三相二相変換を行い、三相二相変換して求められた電流値(Iα、Iβ)と電圧値(Eα、Eβ)を(数3)に代入することにより瞬時有効電力Pと瞬時無効電力Qを求める(PQ理論)。 The effective electric energy detection means 40 detects the effective electric energy applied to the motor rotation shafts 6a and 6b per unit excavation volume. The active energy detection means 40 includes an apparent current value Iu flowing through the U phase detected by the U phase current measuring devices 35a and 35b, and an apparent current value flowing through the W phase detected by the W phase current measuring devices 36a and 36b. I W , apparent current value I V flowing through V phase calculated by V phase current calculator 23 (not shown), U phase voltage Eu and V phase voltage converted by interphase-phase voltage converters 39a and 39b Using Ev and the W-phase voltage Ew, the effective electric energy applied to the general-purpose motors 5a and 5b per unit excavation volume is obtained. Specifically, first of all, using the following (Equation 1) and (Equation 2), the apparent current Iu flowing in the U phase and the apparent current flowing in the V phase in (Equation 1) and (Equation 2). Substituting the apparent current Iw flowing through Iv and W phase, U phase U phase voltage Eu, V phase V phase voltage Ev and W phase W phase voltage Ew, three-phase to two-phase conversion is performed. The instantaneous active power P and the instantaneous reactive power Q are obtained by substituting the current values (Iα, Iβ) and voltage values (Eα, Eβ) obtained by the conversion into (Equation 3) (PQ theory).

なお、本実施形態では、有効電力量検出手段40を、説明の都合上、U相電流計測器35a、35bとW相電流計測器36a、36bとV相電流計算器23(図示略)とU相−V相間電圧計測器37a、37bとV相−W相間電圧計測器38a、38bとU相間−相電圧変換器39a、39bとを別構成として説明しているが、これに限らず、U相電流計測器35a、35bとW相電流計測器36a、36bとV相電流計算器23(図示略)とU相−V相間電圧計測器37a、37bとV相−W相間電圧計測器38a、38bと相間−相電圧変換器39a、39bを有効電力量検出手段40と別構成にする必要はなく、これらを有効電力量検出手段40の一部として、有効電力量検出手段40により、U相の電流値およぶ電圧値、W相の電流値およぶ電圧値、V相の電流値およぶ電圧値を求めるようにしてもよい(汎用モータ1つの場合も含め他の実施形態および変形例でも同様)。   In the present embodiment, for the convenience of explanation, the active power amount detection means 40 includes U-phase current measuring devices 35a and 35b, W-phase current measuring devices 36a and 36b, a V-phase current calculator 23 (not shown), and U The phase-V phase voltage measuring devices 37a, 37b, the V-phase-W phase voltage measuring devices 38a, 38b, and the U-phase-phase voltage converters 39a, 39b are described as separate configurations. Phase current measuring devices 35a, 35b, W phase current measuring devices 36a, 36b, V phase current calculator 23 (not shown), U phase-V phase voltage measuring devices 37a, 37b, V phase-W phase voltage measuring devices 38a, 38b and the phase-to-phase voltage converters 39a and 39b do not need to be configured separately from the active power amount detection means 40. Current value and voltage value, W-phase current Voltage ranging may be calculated a voltage value ranging current value of the V phase (same applies to other embodiments and variations, including the case of one general-purpose motor).

Figure 0005308405
Figure 0005308405

Figure 0005308405
Figure 0005308405

Figure 0005308405
Figure 0005308405

次に、有効電力P(n)を求める。この有効電力P(n)は、深度D(たとえば、1cm)掘削する間の瞬時有効電力Pを積算することにより求めることができる。具体的には、本支持地盤検出装置13には、深度計測器(図示略)が設けられている。この深度計測器(図示略)は、掘削機1の掘削ロッド12により深度D(たとえば、1cm)の深さが掘削されるごとに深度計測パルスを発する。そして、この発せられた深度計測パスルと一つ前に発せられた深度計測パスルの間に供給された瞬時有効電力Pが積算されることにより有効電力P(n)が求められる。   Next, the active power P (n) is obtained. The effective power P (n) can be obtained by integrating the instantaneous active power P during excavation at a depth D (for example, 1 cm). Specifically, the support ground detection device 13 is provided with a depth measuring device (not shown). This depth measuring device (not shown) emits a depth measurement pulse every time the depth D (for example, 1 cm) is excavated by the excavating rod 12 of the excavator 1. Then, the effective power P (n) is obtained by integrating the instantaneous active power P supplied between the emitted depth measurement pulse and the previous depth measurement pulse.

なお、一つの有効電力P(n)が計測された後は、その値がリセットされ、新たに次の深度計測パスルとそれより一つ前の深度計測パスルの間に供給された瞬時有効電力Pが積算されることにより有効電力P(n+1)が求められる。また、本実施形態では、深度D(たとえば、1cm)掘削の間に供給された瞬時有効電力Pから直接有効電力P(n)を求めたが、これに限らず、PQ理論により瞬時有効電力Pを求めた後、デジタルLPFを用いて高周波を抑制し、その高周波が抑制された瞬時有効電力Pを用いて有効電力P(n)を求めるようにしてもよい。   Note that after one active power P (n) is measured, the value is reset, and the instantaneous effective power P newly supplied between the next depth measurement pulse and the previous depth measurement pulse P. Is accumulated to obtain the active power P (n + 1). In the present embodiment, the active power P (n) is obtained directly from the instantaneous active power P supplied during the excavation at the depth D (for example, 1 cm). However, the present invention is not limited to this. Then, the high frequency may be suppressed using the digital LPF, and the active power P (n) may be calculated using the instantaneous active power P in which the high frequency is suppressed.

次に、単位掘削体積あたりの有効電力量Pval(n)が求められる。具体的には、単位掘削体積あたりの有効電力量Pval(n)は、(数4)を用いて求められる。このように、有効電力量検出手段40により単位掘削体積あたりの各汎用モータ5a、5bに印加される有効電力量Pval(n)が検出される。なお、この単位掘削体積あたりの有効電力Pval(n)は、有効電力量検出手段40が内蔵される制御装置で検出される。ここで、Dは抗穴径である。   Next, an effective power amount Pval (n) per unit excavation volume is obtained. Specifically, the effective power amount Pval (n) per unit excavation volume is obtained using (Equation 4). In this way, the effective power amount detecting means 40 detects the effective power amount Pval (n) applied to each general-purpose motor 5a, 5b per unit excavation volume. The effective power Pval (n) per unit excavation volume is detected by a control device in which the effective power amount detection means 40 is built. Here, D is an anti-hole diameter.

Figure 0005308405
Figure 0005308405

なお、本実施形態では、Pval(n)を用いて単位掘削体積あたりの汎用モータ5a、5bに印加される有効電力量としているが、本発明にいう単位掘削体積あたりの汎用モータ5a、5bに印加される有効電力量は、これに限らず、たとえば、Pval(n)をn倍(整数倍)した値や、瞬時有効電力Pを他の方法で加工した有効電力量などであってもよい(汎用モータ1つの場合も含め他の実施形態および変形例でも同様)。   In this embodiment, Pval (n) is used as the amount of active power applied to the general-purpose motors 5a and 5b per unit excavation volume, but the general-purpose motors 5a and 5b per unit excavation volume referred to in the present invention are used. The applied amount of active power is not limited to this, and may be, for example, a value obtained by multiplying Pval (n) by n times (integer multiple), an effective power amount obtained by processing the instantaneous active power P by another method, or the like. (The same applies to other embodiments and modifications including the case of one general-purpose motor).

N値換算手段41は、有効電力量検出手段40により検出された有効電力量Pval(n)を標準貫入試験のN値に換算するものである。ここでは、各汎用モータ5a、5bに印加される有効電力量val(n)の和がN値に換算される。ここで、標準貫入試験とは、JIS A 1219に規定される地盤の工学的性質(N値)及び試料を求めるために行われる試験ことをいい、この標準貫入試験のN値は、土の硬軟あるいは締まり具合の相対値を示す指標であり、質量63.5kgのハンマーを75cmから自由落下させ、標準貫入試験用サンプラを30cm打込むのに要する打撃回数のことである。具体的には、N値は(数5)により求められる。なお、このN値はN値換算手段41が内蔵される制御装置で検出される。ここで、mは標準貫入試験のハンマーの質量、hはハンマーの落下高さ、Sはコーンの断面積、gは重力加速度であり、NはN値である。なお、本実施形態では、(数5)で求められたNをN値として用いているが、これに限らず、たとえば、(数5)で求められたNをn倍(整数倍)した値をN値として用いてもよい(汎用モータ1つの場合も含め他の実施形態および変形例でも同様)。   The N value conversion means 41 converts the active power amount Pval (n) detected by the active power amount detection means 40 into the N value of the standard penetration test. Here, the sum of the active electric energy val (n) applied to each of the general-purpose motors 5a and 5b is converted into an N value. Here, the standard penetration test refers to a test conducted to obtain the engineering properties (N value) and the sample of the ground defined in JIS A 1219. The N value of this standard penetration test is the hardness of soil Alternatively, it is an index indicating the relative value of the tightening degree, and is the number of hits required to drop a hammer of 63.5 kg from 75 cm freely and drive a standard penetration test sampler 30 cm. Specifically, the N value is obtained by (Equation 5). The N value is detected by a control device in which the N value conversion means 41 is built. Here, m is the mass of the hammer in the standard penetration test, h is the drop height of the hammer, S is the cross-sectional area of the cone, g is the acceleration of gravity, and N is the N value. In this embodiment, N obtained by (Equation 5) is used as an N value. However, the present invention is not limited to this. For example, a value obtained by multiplying N obtained by (Equation 5) by n (integer multiple). May be used as the N value (the same applies to other embodiments and modifications including one general-purpose motor).

Figure 0005308405
Figure 0005308405

次に、本実施形態における支持地盤検出装置が用いられた掘削機の動作について図5および図6を用いて説明する。ここで、図5は、本発明の一実施形態における支持地盤検出装置が用いられた掘削機の支持地盤検出工程を示すフローチャートである。   Next, operation | movement of the excavator using the support ground detection apparatus in this embodiment is demonstrated using FIG. 5 and FIG. Here, FIG. 5 is a flowchart showing a support ground detection step of the excavator in which the support ground detection device according to one embodiment of the present invention is used.

図5に示すように、支持地盤検出工程は、まずS1により、掘削機1の電源スイッチ(図示略)がONかが判断される。この電源スイッチ(図示略)は掘削機1の主電源であり、電源スイッチ(図示略)をONすることにより、後述するスタートスイッチ(図示略)をONにすることができる。ここで、電源スイッチ(図示略)がOFFの場合はS1でNOと判断され、電源スイッチ(図示略)がONになるまでS1の処理が行われる。そして、電源スイッチ(図示略)がONになればS1でYESと判断され、S2に進む。   As shown in FIG. 5, in the supporting ground detection step, first, it is determined in S1 whether the power switch (not shown) of the excavator 1 is ON. This power switch (not shown) is a main power source of the excavator 1, and a start switch (not shown) described later can be turned on by turning on the power switch (not shown). Here, if the power switch (not shown) is OFF, NO is determined in S1, and the process of S1 is performed until the power switch (not shown) is turned ON. If a power switch (not shown) is turned ON, YES is determined in S1, and the process proceeds to S2.

S2において、スタートスイッチ(図示略)がONかが判断される。このスタートスイッチ(図示略)は、掘削機1による掘削を開始させるためのスイッチである。すなわち、このスタートスイッチ(図示略)がONになることにより、交流電流が供給され汎用モータ5a、5bにより掘削ロッド12が回転されて掘削が開始される。ここで、スタートスイッチ(図示略)がOFFの場合はS2でNOと判断され、スタートスイッチ(図示略)がONになるまでS2の処理が行われる。そして、スタートスイッチ(図示略)がONになればS2でYESと判断され、S3に進む。このようにして、汎用モータ5a、5bの駆動力により掘削ロッド12が地中内に挿入され、掘削が開始される(S3参照)。そして、S4に進む。   In S2, it is determined whether a start switch (not shown) is ON. This start switch (not shown) is a switch for starting excavation by the excavator 1. That is, when this start switch (not shown) is turned ON, an alternating current is supplied, and the excavation rod 12 is rotated by the general-purpose motors 5a and 5b to start excavation. Here, if the start switch (not shown) is OFF, NO is determined in S2, and the process of S2 is performed until the start switch (not shown) is turned ON. If the start switch (not shown) is turned on, YES is determined in S2, and the process proceeds to S3. In this way, the excavation rod 12 is inserted into the ground by the driving force of the general-purpose motors 5a and 5b, and excavation is started (see S3). Then, the process proceeds to S4.

S4において、単位掘削体積あたりの汎用モータ5a、5bに印加される有効電力量Pval(n)が検出される(有効電力量検出工程(有効電力量検出手段))。すなわち、S4において、U相電流計測器35a、35bにより検出されたU相を流れる皮相電流値Iuと、W相電流計測器36a、36bにより検出されたW相を流れる皮相電流値Iと、V相電流計算器23(図示略)により計算されたV相を流れる皮相電流値Iと、U相−V相間電圧計測器37a、37bにより計測されたU相−V相間の電圧とV相−W相間電圧計測器38a、38bにより計測されたV相−W相間の電圧を用いて、相間−相電圧変換器39a、39bにより求められたU相電圧EuとV相電圧EvとW相電圧Ewをそれぞれ用いて、単位掘削体積あたりの各汎用モータ5a、5bに印加される有効電力量val(n)が検出される(数1〜数4参照)。ここで、本実施形態では、2個の汎用モータ5a、5bを用いているので、それぞれの汎用モータ5a、5bに対応して、単位掘削体積あたりの汎用モータ5a、5bに印加される有効電力量Pval(n)が求められる。そして、S5に進む。 In S4, the effective power amount Pval (n) applied to the general-purpose motors 5a and 5b per unit excavation volume is detected (effective power amount detection step (active power amount detection means)). That is, in S4, the apparent current value Iu flowing through the U phase detected by the U phase current measuring devices 35a and 35b, and the apparent current value I W flowing through the W phase detected by the W phase current measuring devices 36a and 36b, The apparent current value IV flowing through the V phase calculated by the V phase current calculator 23 (not shown), the voltage between the U phase and the V phase measured by the U phase-V phase voltage measuring devices 37a and 37b, and the V phase. -U-phase voltage Eu, V-phase voltage Ev, and W-phase voltage obtained by inter-phase-to-phase voltage converters 39a, 39b using the voltage between V-phase and W-phase measured by W-phase voltage measuring instruments 38a, 38b Using each Ew, the effective electric energy val (n) applied to each general-purpose motor 5a, 5b per unit excavation volume is detected (see Equations 1 to 4). Here, in this embodiment, since the two general-purpose motors 5a and 5b are used, the effective power applied to the general-purpose motors 5a and 5b per unit excavation volume corresponding to the respective general-purpose motors 5a and 5b. The quantity Pval (n) is determined. Then, the process proceeds to S5.

S5において、S4により求められた単位掘削体積あたりの有効電力量Pval(n)の合計値を標準貫入試験のN値に換算される(N値換算工程(N値換算手段))。ここで、N値は上述した(数5)を用いて求められる。なお、本実施形態では、2個の汎用モータ5a、5bを用いているので、それぞれの汎用モータ5a、5bに対応したN値の合計値が求められる。図6は、N値換算手段により求められた標準貫入試験のN値(合計値)をグラフ化した図である。そしてS6に進む。   In S5, the total value of the effective electric energy Pval (n) per unit excavation volume obtained in S4 is converted into the N value of the standard penetration test (N value conversion process (N value conversion means)). Here, the N value is obtained using the above-described (Equation 5). In this embodiment, since two general-purpose motors 5a and 5b are used, the total value of N values corresponding to the respective general-purpose motors 5a and 5b is obtained. FIG. 6 is a graph showing the N value (total value) of the standard penetration test obtained by the N value conversion means. Then, the process proceeds to S6.

S6において、掘削ロッド12が支持地盤に到達したかが判定される(支持地盤判定工程(支持地盤判定手段))。このN値は、土の硬軟あるいは締まり具合の相対値を示す指標であり、硬い地盤の方がN値が高くなるので、S6ではN値が支持地盤検出値Kになった場合に支持地盤に到達したと判断している。そして、S5により求められたN値(合計値)が支持基盤検出値K以下の場合はS6でNOと判断され、N値が支持基盤検出値KになるまでS6→S3→S4→S5→S6の処理が繰り返し行われる。そして、S6により、N値が支持基盤検出値Kになったと判断されるとS6でYESと判断され、S7に進み、S7により、掘削ロッド12が支持地盤に到達したことを知らせるための報知が行われる。この報知は、音声により掘削ロッド12が支持地盤に到達したことを報知してもよいし、またディスプレ(表示手段(図示略))に表示させることにより報知してもよい。そして、S8に進む。   In S6, it is determined whether the excavation rod 12 has reached the support ground (support ground determination step (support ground determination means)). This N value is an index indicating the relative value of soil hardness or firmness, and the hard ground has a higher N value. Therefore, in S6, when the N value becomes the support ground detection value K, the N value becomes the support ground. Judging that it has reached. When the N value (total value) obtained in S5 is equal to or smaller than the support base detection value K, NO is determined in S6, and S6 → S3 → S4 → S5 → S6 until the N value becomes the support base detection value K. This process is repeated. If it is determined in S6 that the N value has reached the support base detection value K, it is determined YES in S6, the process proceeds to S7, and a notification for notifying that the excavation rod 12 has reached the support ground is issued in S7. Done. This notification may be made by notifying that the excavation rod 12 has reached the support ground by voice, or may be notified by displaying it on a display (display means (not shown)). Then, the process proceeds to S8.

S8において、掘削ロッド12により掘削された削孔から掘削ロッド12が引き上げられる。そして掘削ロッド12が引き上げられると、S9に進み、スタートスイッチ(図示略)がOFFにされ、掘削を終了する場合は、S10により電源スイッチ(図示略)がOFFにされる。なお、上述したように、本実施形態では、Pval(n)を用いて単位掘削体積あたりの汎用モータ5a、5bに印加される有効電力量としているが、本発明にいう単位掘削体積あたりの汎用モータ5a、5bに印加される有効電力量は、これに限らず、たとえば、Pval(n)をn倍(整数倍)した値や、瞬時有効電力Pを他の方法で加工した有効電力量などであってもよい(汎用モータ1つの場合も含め他の実施形態および変形例でも同様)また、本実施形態では、(数5)で求められたNをN値として用いているが、これに限らず、たとえば、(数5)で求められたNをn倍(整数倍)した値をN値として用いてもよい(汎用モータ1つの場合も含め他の実施形態および変形例でも同様)。この場合は、当然ながら、それぞれに応じて支持基盤検出値Kの値も変更することになる。   In S <b> 8, the excavation rod 12 is lifted from the drilled hole excavated by the excavation rod 12. When the excavation rod 12 is pulled up, the process proceeds to S9, where the start switch (not shown) is turned off, and when the excavation is finished, the power switch (not shown) is turned off at S10. As described above, in this embodiment, Pval (n) is used as the amount of effective power applied to the general-purpose motors 5a and 5b per unit excavation volume, but the general-purpose per unit excavation volume referred to in the present invention. The amount of active power applied to the motors 5a and 5b is not limited to this, and is, for example, a value obtained by multiplying Pval (n) by n (integer multiple), an effective power amount obtained by processing the instantaneous active power P by another method, or the like. (The same applies to other embodiments and modifications including the case of one general-purpose motor.) In the present embodiment, N obtained in (Equation 5) is used as the N value. For example, a value obtained by multiplying N obtained by (Equation 5) by n (integer multiple) may be used as the N value (same in other embodiments and modifications including one general-purpose motor). In this case, of course, the value of the support base detection value K is changed according to each.

以上説明したように、有効電力量検出手段40により検出された単位掘削体積あたりの有効電力量Pval(n)を換算した標準貫入試験のN値があらかじめ定められた支持基盤検出値Kになったときに掘削ロッド12が支持地盤に到達したと判定されるので、正確に地盤内の支持地盤を検出することができる。すなわち、汎用モータ5a、5bで実際に使用される電力の変化を検出し、その実際に汎用モータ5a、5bで使用される電力である有効電力量Pval(n)を換算したN値があらかじめ定められた支持基盤検出値Kになったときに掘削ロッド12が支持地盤に到達したと判定されるので、正確に地盤内の支持地盤を検出することができる。また、N値を用いているので、国の運用基準などで支持地盤の硬さの単位がN値(試験時の打ち込み回数)で規定されている場合は、その運用基準に合致した表示で正確に地盤内の支持地盤を検出することができる。これにより、たとえば、支持地盤が検出された後にN値の値を基礎の設計などに使用することもできる。   As described above, the N value of the standard penetration test in which the active power amount Pval (n) per unit excavation volume detected by the active power amount detection means 40 is converted to the predetermined support base detection value K. Since it is sometimes determined that the excavation rod 12 has reached the support ground, it is possible to accurately detect the support ground in the ground. That is, a change in power actually used by the general-purpose motors 5a and 5b is detected, and an N value obtained by converting the effective power amount Pval (n) that is the power actually used by the general-purpose motors 5a and 5b is determined in advance. Since it is determined that the excavation rod 12 has reached the support ground when the detected support base detection value K is reached, the support ground in the ground can be accurately detected. In addition, since the N value is used, when the unit of hardness of the supporting ground is specified by the N value (number of times of driving during the test) according to the national operation standard, the display conforming to the operation standard is accurate. It is possible to detect the supporting ground in the ground. Thereby, for example, after the supporting ground is detected, the value of the N value can be used for the design of the foundation.

また、汎用モータ5a、5bがインバータ8a、8bにより駆動制御されるものであっても、有効電力量検出手段40により検出された単位掘削体積あたりの有効電力量Pval(n)を換算した標準貫入試験のN値があらかじめ定められた支持基盤検出値Kになったときに掘削ロッド12が支持地盤に到達したと判定されるので、正確に地盤内の支持地盤を検出することができる。すなわち、汎用モータ5a、5bがインバータ8a、8bに駆動制御される場合は、周波数fが低周波数の領域では電圧Vも周波数fに沿って低くなるが、本発明によれば、その低くなった電圧も考慮して、有効電力量検出手段により有効電力量Pval(n)が検出されるので、正確に地盤内の支持地盤を検出することができる。   Further, even if the general-purpose motors 5a and 5b are driven and controlled by the inverters 8a and 8b, the standard penetration converted from the effective power amount Pval (n) per unit excavation volume detected by the active power amount detection means 40. Since it is determined that the excavation rod 12 has reached the support ground when the N value of the test reaches a predetermined support base detection value K, the support ground in the ground can be accurately detected. That is, when the general-purpose motors 5a and 5b are driven and controlled by the inverters 8a and 8b, the voltage V also decreases along the frequency f in the region where the frequency f is low, but according to the present invention, the voltage V decreases. Considering the voltage, the effective power amount Pval (n) is detected by the effective power amount detecting means, so that the supporting ground in the ground can be detected accurately.

また、インバータ8a、8bにより駆動制御される2個の汎用モータ5a、5bで掘削ロッド12を回転駆動する場合でも、2個の汎用モータ5a、5bで実際に使用される電力である有効電力量Pval(n)を換算した標準貫入試験のN値の合計値があらかじめ定められた値になったときに掘削ロッド12が支持地盤に到達したと判定されるので、正確に地盤内の支持地盤を検出することができる。   Further, even when the excavation rod 12 is rotationally driven by the two general-purpose motors 5a and 5b that are driven and controlled by the inverters 8a and 8b, the effective power amount that is the electric power actually used by the two general-purpose motors 5a and 5b. Since it is determined that the excavation rod 12 has reached the support ground when the total value of the N values in the standard penetration test converted to Pval (n) reaches a predetermined value, the support ground in the ground is accurately determined. Can be detected.

(変形例1)
次に、本発明の第一実施形態の変形例1について図面を参照しながら説明する。第一実施形態の変形例1と第一実施形態とでは、第一実施形態ではインバータ(インバータ装置)8a、8bを用いているのに対し、変形例1ではインバータを用いず三相交流電源から直接汎用モータ5a、5bに電力を供給するところが異なる。図7は、本発明の第一実施形態の変形例1における支持地盤検出装置の回路図である。このように、インバータを用いない場合は、三相交流電源から汎用モータ5a、5bに供給される電圧が2個の汎用モータ5a、5bで同じになるので、U相−V相間電圧計測器37aと、V相−W相間電圧計測器38aと、相間−相電圧変換器39aを用いることにより、2個の汎用モータ5a、5bに供給される電圧が計測できる。これにより、U相−V相間電圧計測器37a、37bと、V相−W相間電圧計測器38a、38bと、相間−相電圧変換器39a、39bのいずれか一方の電圧計測器および電圧変換機を省略(aかbのいずれかを省略)することができる。その他は第一実施形態と同様であるので、説明は省略する。
(Modification 1)
Next, Modification 1 of the first embodiment of the present invention will be described with reference to the drawings. In the first modification and the first embodiment, the inverters (inverter devices) 8a and 8b are used in the first embodiment, whereas in the first modification, the inverter is not used and a three-phase AC power source is used. The difference is that power is directly supplied to the general-purpose motors 5a and 5b. FIG. 7 is a circuit diagram of the support ground detection device in Modification 1 of the first embodiment of the present invention. Thus, when the inverter is not used, the voltage supplied from the three-phase AC power source to the general-purpose motors 5a and 5b is the same between the two general-purpose motors 5a and 5b. The voltage supplied to the two general-purpose motors 5a and 5b can be measured by using the V-phase / W-phase voltage measuring device 38a and the inter-phase-phase voltage converter 39a. Accordingly, the voltage measuring instrument 37a and 37b between the U phase and the V phase, the voltage measuring instruments 38a and 38b between the V phase and the W phase, and the voltage measuring instrument and the voltage converter of any one of the phase-phase voltage converters 39a and 39b. Can be omitted (either a or b can be omitted). Since others are the same as that of 1st embodiment, description is abbreviate | omitted.

(変形例2)
次に、本発明の第一実施形態の変形例2について図面を参照しながら説明する。第一実施形態の変形例2は、第一実施形態では2個の汎用モータ5a、5bにより掘削ロッド12を回転駆動させたところを、1個の汎用モータ5aにより掘削ロッド12を回転駆動させるようにしたものである。図8は、本発明の第一実施形態の変形例2における支持地盤検出装置の回路図である。なお、第一実施形態の変形例2では、汎用モータ5aを1個にして、出力軸(回転軸)11を1個の汎用モータ5aにより回転させる点以外は第一実施形態と同様である。
(Modification 2)
Next, Modification 2 of the first embodiment of the present invention will be described with reference to the drawings. In the second modification of the first embodiment, in the first embodiment, the excavation rod 12 is rotationally driven by the two general-purpose motors 5a and 5b, and the excavation rod 12 is rotationally driven by the single general-purpose motor 5a. It is a thing. FIG. 8 is a circuit diagram of a support ground detection device in Modification 2 of the first embodiment of the present invention. The modification 2 of the first embodiment is the same as the first embodiment except that the number of general-purpose motors 5a is one and the output shaft (rotary shaft) 11 is rotated by one general-purpose motor 5a.

第一実施形態の変形例2の支持地盤検出装置13は、交流電源(三相交流電源)からの交流電圧を直流電圧に変換するコンバータ部14aと、該コンバータ部14aからの出力電圧を平滑するコンデンサ部15aと、該コンデンサ部15aにより平滑された直流電圧を三相交流に変換し、汎用モータ(誘導電動機)5aに出力する出力ブリッジ部16aと、該出力ブリッジ部16aを駆動制御する制御装置(図示略)と、コンバータ部14aとコンデンサ部15aの間に接続された突入電流抑制抵抗部18aと、該突入電流抑制抵抗部18aに並列接続された第一スイッチ19aと、汎用モータ5aのコンデンサ部15aと並列接続させた第二スイッチ20と、該第二スイッチ20が設けられた並列回路に放電抵抗21を接続させ、該放電抵抗21が設けられた並列回路に接続された第三スイッチ22を有している。また、第一実施形態の変形例2の支持地盤検出装置13は、U相電流計測器35aと、W相電流計測器36aと、V相電流計算器23(図示略)、U相−V相間電圧計測器37aと、V相−W相間電圧計測器38aと、相間−相電圧変換器39aと、有効電力量検出手段40(図示略)と、N値換算手段41(図示略)と有している。   The support ground detection device 13 of Modification 2 of the first embodiment smoothes the output voltage from the converter unit 14a that converts an AC voltage from an AC power source (three-phase AC power source) into a DC voltage, and the converter unit 14a. Capacitor unit 15a, output bridge unit 16a that converts the DC voltage smoothed by capacitor unit 15a into three-phase AC and outputs the same to general-purpose motor (induction motor) 5a, and a control device that controls driving of output bridge unit 16a (Not shown), an inrush current suppression resistor portion 18a connected between the converter portion 14a and the capacitor portion 15a, a first switch 19a connected in parallel to the inrush current suppression resistor portion 18a, and a capacitor of the general-purpose motor 5a The discharge resistor 21 is connected to the second switch 20 connected in parallel with the section 15a and the parallel circuit provided with the second switch 20, and the discharge resistor 21 has a third switch 22 connected in parallel circuit provided. Moreover, the supporting ground detection apparatus 13 of the modification 2 of 1st embodiment is the U-phase current measuring device 35a, the W-phase current measuring device 36a, the V-phase current calculator 23 (not shown), and between the U-phase and V-phase. It has a voltage measuring instrument 37a, a V-phase / W-phase voltage measuring instrument 38a, an inter-phase-to-phase voltage converter 39a, an active energy detection means 40 (not shown), and an N value conversion means 41 (not shown). ing.

有効電力量検出手段40は、単位掘削体積あたりの汎用モータ5aに印加される有効電力量Pval(n)を検出するものである。ここで、汎用モータ5aに印加される有効電力量Pval(n)を検出する方法は、第一実施形態と同様、(数1)〜(数4)を用いて求められ、(数5)を用いて有効電力量検出手段40により検出された有効電力量Pval(n)を標準貫入試験のN値に換算される。   The effective power amount detection means 40 detects the effective power amount Pval (n) applied to the general-purpose motor 5a per unit excavation volume. Here, the method for detecting the active power amount Pval (n) applied to the general-purpose motor 5a is obtained using (Equation 1) to (Equation 4), as in the first embodiment, and (Equation 5) is obtained. The active power amount Pval (n) detected by the active power amount detection means 40 is converted into the N value of the standard penetration test.

N値換算手段41によりN値が求められた後は、汎用モータ5aのN値と支持地盤検出値Kを比較して掘削ロッド12が支持地盤に到着したかが判断される(S4)。このように、第一実施形態の変形例2でも、第一実施形態と同様の効果を有する。   After the N value is obtained by the N value conversion means 41, the N value of the general-purpose motor 5a and the support ground detection value K are compared to determine whether the excavation rod 12 has arrived on the support ground (S4). Thus, Modification 2 of the first embodiment has the same effect as the first embodiment.

(変形例3)
次に、本発明の第一実施形態の変形例3について図面を参照しながら説明する。第一実施形態の変形例3と変形例2とでは、第一実施形態の変形例2ではインバータ8aを用いているのに対し、変形例3ではインバータを用いず三相交流電源から直接汎用モータに電力を供給するところが異なる。図9は、本発明の第一実施形態の変形例3における支持地盤検出装置の回路図である。図9に示すように、インバータを用いない場合も、第一実施形態の変形例2と同様、U相電流計測器35aと、W相電流計測器36aと、V相電流計算器23(図示略)、U相−V相間電圧計測器37aと、V相−W相間電圧計測器38aと、相間−相電圧変換器39aと、有効電力量検出手段40と、N値換算手段41が用いられ、単位掘削体積あたりの汎用モータ5aに印加される有効電力量Pval(n)、N値が求められる。その他の支持地盤の検出方法は、第一実施形態の変形例2と同様であるので、説明は省略する。
(Modification 3)
Next, Modification 3 of the first embodiment of the present invention will be described with reference to the drawings. In the modification 3 and the modification 2 of the first embodiment, the inverter 8a is used in the modification 2 of the first embodiment, whereas the general-purpose motor is directly used from the three-phase AC power source without using the inverter in the modification 3. The place where power is supplied to is different. FIG. 9 is a circuit diagram of a support ground detection device in Modification 3 of the first embodiment of the present invention. As shown in FIG. 9, even when the inverter is not used, the U-phase current measuring device 35a, the W-phase current measuring device 36a, and the V-phase current calculator 23 (not shown) are the same as in the second modification of the first embodiment. ), A U-phase-V phase voltage measuring device 37a, a V-phase-W phase voltage measuring device 38a, an inter-phase-phase voltage converter 39a, an active energy detection means 40, and an N value conversion means 41 are used. The effective power amount Pval (n) and N value applied to the general-purpose motor 5a per unit excavation volume are obtained. The other detection methods of the supporting ground are the same as in Modification 2 of the first embodiment, and thus the description thereof is omitted.

(第二実施形態)
次に、本発明の第二実施形態について図面を参照しながら説明する。第一実施形態と第二実施形態では、瞬時有効電力Pの求め方が異なる点であり、その他は第一実施形態と同じである。以下、第一実施形態と異なるところを中心に説明し、第一実施形態と同様のところは説明を省略する。図10は、本発明の第二実施形態における支持地盤検出装置の回路図である。
(Second embodiment)
Next, a second embodiment of the present invention will be described with reference to the drawings. The first embodiment is different from the second embodiment in the way of obtaining the instantaneous effective power P, and the rest is the same as the first embodiment. The following description will focus on the differences from the first embodiment, and the description of the same parts as in the first embodiment will be omitted. FIG. 10 is a circuit diagram of the supporting ground detection device in the second embodiment of the present invention.

第2実施形態では、U相−V相間電圧を計測する電圧計測器37a、37bと、W相を流れる電流を計測する電流計測器36a、36bと、U相−V相間電圧値とW相を流れる電流値を用いて有効電力を計算する計算機(図示略)を用いて、三相誘導電動機からなる汎用モータ5a、5bのU相−V相間電圧とW相を流れる電流を計測して、各汎用モータ5a、5bに流れる有効電力量Pval(n)を求めている。このようにすることにより、電流計測器および電圧計測器を少なくすることができる。   In the second embodiment, voltage measuring devices 37a and 37b for measuring the voltage between the U phase and the V phase, current measuring devices 36a and 36b for measuring the current flowing through the W phase, the voltage value between the U phase and the V phase, and the W phase are obtained. Using a computer (not shown) that calculates the active power using the flowing current value, the U-phase to V-phase voltages of the general-purpose motors 5a and 5b made of a three-phase induction motor and the current flowing through the W phase are measured. The active power amount Pval (n) flowing through the general-purpose motors 5a and 5b is obtained. By doing in this way, a current measuring device and a voltage measuring device can be decreased.

次に、有効電力量Pval(n)の検出方法について説明する。上記のように計測された汎用モータ5a、5bのU相−V相間電圧とW相を流れる電流の位相差はπ/2であることから、これらの波形のπ/2〜3π/2の範囲を積分することにより、第一実施形態体の瞬時有効電力Pに相当する有効電力Pが求められる。ここで、本実施形態では、π/2〜3π/2の範囲を積分したが、これに限らず、π/2+2nπ〜3π/2+2nπ(nは整数)の範囲で積分して有効電力Pを求めてもよい。なお、本実施形態では、電流計測器36a、36bとして、5Hz〜150Hz程度までの周波数帯域において平坦な特性を有するホール素子型の電流計測器が用いられている。そして、第一実施形態と同様、深度D(たとえば、1cm)掘削の間に供給される有効電力Pを積算することにより有効電力P(n)が求められ、(数4)を用いて有効電力量Pval(n)が求められ、(数5)を用いて有効電力量検出手段40により検出された有効電力量Pval(n)が標準貫入試験のN値に換算される。なお、本実施形態では、深度Dを、たとえば、1cmとしたが、これに限らず、10cmとしてもよく、他の深度を用いてもよい。特に、本実施形態では、上記波形のπ(π/2〜3π/2)の範囲を積分して有効電力Pを求めているため、深度D掘削される時間がこの波形の周期より十分長い時間であることが望ましい。その他は、第一実施形態と同様であるので、説明は省略する。   Next, a method for detecting the active power amount Pval (n) will be described. Since the phase difference between the U-phase and V-phase voltages of the general-purpose motors 5a and 5b and the current flowing through the W-phase measured as described above is π / 2, the range of π / 2 to 3π / 2 of these waveforms Is integrated to obtain the effective power P corresponding to the instantaneous effective power P of the first embodiment. Here, in the present embodiment, the range of π / 2 to 3π / 2 is integrated. However, the present invention is not limited to this, and the active power P is obtained by integrating in the range of π / 2 + 2nπ to 3π / 2 + 2nπ (n is an integer). May be. In the present embodiment, Hall element type current measuring devices having flat characteristics in a frequency band of about 5 Hz to 150 Hz are used as the current measuring devices 36a and 36b. Then, as in the first embodiment, the effective power P (n) is obtained by integrating the effective power P supplied during excavation at the depth D (for example, 1 cm), and the effective power is calculated using (Equation 4). The amount Pval (n) is obtained, and the active power amount Pval (n) detected by the active power amount detecting means 40 is converted into the N value of the standard penetration test using (Equation 5). In the present embodiment, the depth D is 1 cm, for example. However, the depth D is not limited to this, and may be 10 cm, or other depths may be used. In particular, in this embodiment, since the active power P is obtained by integrating the range of π (π / 2 to 3π / 2) of the above waveform, the time for which the depth D excavation is sufficiently longer than the period of this waveform It is desirable that Since others are the same as that of 1st embodiment, description is abbreviate | omitted.

(変形例1)
次に、本発明の第2実施形態の変形例1について図面を参照しながら説明する。第2実施形態の変形例1と第二実施形態とでは、第二実施形態ではインバータ(インバータ装置)8a、8bを用いているのに対し、第2実施形態の変形例1ではインバータを用いず三相交流電源から直接汎用モータに電力を供給するところが異なる。図11は、本発明の第二実施形態の変形例1における支持地盤検出装置の回路図である。このように、インバータを用いない場合は、三相交流電源から汎用モータ5a、5bに供給される電圧が2個の汎用モータ5a、5bで同じになるので、U相−V相間電圧計測器37aを用いることにより2個の汎用モータに供給されるU相−V相間の電圧を計測することができる。これにより、U相−V相間電圧計測器37a、37bのいずれか一方の電圧計測器を省略(aかbのいずれかを省略)することができる。その他は第二実施形態と同様であるので、説明は省略する。
(Modification 1)
Next, Modification 1 of the second embodiment of the present invention will be described with reference to the drawings. In the first modification of the second embodiment and the second embodiment, the inverters (inverter devices) 8a and 8b are used in the second embodiment, whereas in the first modification of the second embodiment, no inverter is used. The difference is that power is supplied directly from a three-phase AC power supply to a general-purpose motor. FIG. 11 is a circuit diagram of a support ground detection device in Modification 1 of the second embodiment of the present invention. Thus, when the inverter is not used, the voltage supplied from the three-phase AC power source to the general-purpose motors 5a and 5b is the same between the two general-purpose motors 5a and 5b. Can be used to measure the voltage between the U-phase and V-phase supplied to the two general-purpose motors. Thereby, any one of the U-phase-V phase voltage measuring devices 37a and 37b can be omitted (either a or b is omitted). Since others are the same as that of 2nd embodiment, description is abbreviate | omitted.

(変形例2)
次に、本発明の第二実施形態の変形例2について図面を参照しながら説明する。第二実施形態の変形例2は、第二実施形態では2個の汎用モータ5a、5bにより掘削ロッド12を回転駆動させたところを、1個の汎用モータ5aにより掘削ロッド12を回転駆動させるようにしたものである。図12は、本発明の第二実施形態の変形例2における支持地盤検出装置の回路図である。なお、第二実施形態の変形例2では、汎用モータ5aを1個にして、出力軸(回転軸)11を1個の汎用モータ5aにより回転させる点以外は第二実施形態と同様であるので、説明は省略する。
(Modification 2)
Next, Modification 2 of the second embodiment of the present invention will be described with reference to the drawings. In the second modification of the second embodiment, in the second embodiment, the excavation rod 12 is rotationally driven by the two general-purpose motors 5a and 5b so that the excavation rod 12 is rotationally driven by the single general-purpose motor 5a. It is a thing. FIG. 12 is a circuit diagram of a support ground detection device in Modification 2 of the second embodiment of the present invention. The second modification of the second embodiment is the same as the second embodiment except that the number of general-purpose motors 5a is one and the output shaft (rotary shaft) 11 is rotated by one general-purpose motor 5a. The description is omitted.

第二実施形態の変形例2の支持地盤検出装置13は、交流電源(三相交流電源)からの交流電圧を直流電圧に変換するコンバータ部14aと、該コンバータ部14aからの出力電圧を平滑するコンデンサ部15aと、該コンデンサ部15aにより平滑された直流電圧を三相交流に変換し、汎用モータ(誘導電動機)5aに出力する出力ブリッジ部16aと、該出力ブリッジ部16aを駆動制御する制御装置(図示略)と、コンバータ部14aとコンデンサ部15aの間に接続された突入電流抑制抵抗部18aと、該突入電流抑制抵抗部18aに並列接続された第一スイッチ19aと、汎用モータ5aのコンデンサ部15aと並列接続させた第二スイッチ20と、該第二スイッチ20が設けられた並列回路に放電抵抗21を接続させ、該放電抵抗21が設けられた並列回路に接続された第三スイッチ22を有している。また、第二実施形態の変形例2の支持地盤検出装置13は、W相電流計測器36aと、U相−V相間電圧計測器37aと、有効電力量検出手段40(図示略)と、N値換算手段41(図示略)と有している。   The support ground detection device 13 of Modification 2 of the second embodiment smoothes the output voltage from the converter unit 14a that converts an AC voltage from an AC power source (three-phase AC power source) into a DC voltage, and the converter unit 14a. Capacitor unit 15a, output bridge unit 16a that converts the DC voltage smoothed by capacitor unit 15a into three-phase AC and outputs the same to general-purpose motor (induction motor) 5a, and a control device that controls driving of output bridge unit 16a (Not shown), an inrush current suppression resistor portion 18a connected between the converter portion 14a and the capacitor portion 15a, a first switch 19a connected in parallel to the inrush current suppression resistor portion 18a, and a capacitor of the general-purpose motor 5a The discharge resistor 21 is connected to the second switch 20 connected in parallel with the section 15a and the parallel circuit provided with the second switch 20, and the discharge resistor 21 has a third switch 22 connected in parallel circuit provided. Further, the support ground detection device 13 of the second modification of the second embodiment includes a W-phase current measuring device 36a, a U-phase / V-phase voltage measuring device 37a, an active energy detection means 40 (not shown), N It has value conversion means 41 (not shown).

有効電力量検出手段40は、単位掘削体積あたりの汎用モータ5aに印加される有効電力量Pval(n)を検出するものである。ここで、汎用モータ5aに印加される有効電力量Pval(n)を検出する方法は、第二実施形態と同様、(数4)を用いて求められ、(数5)を用いて有効電力量検出手段40により検出された有効電力量Pval(n)を標準貫入試験のN値に換算される。   The effective power amount detection means 40 detects the effective power amount Pval (n) applied to the general-purpose motor 5a per unit excavation volume. Here, the method of detecting the active power amount Pval (n) applied to the general-purpose motor 5a is obtained using (Equation 4) and the active power amount using (Equation 5), as in the second embodiment. The active power amount Pval (n) detected by the detection means 40 is converted into an N value of the standard penetration test.

N値換算手段41によりN値が求められた後は、汎用モータ5aのN値と支持地盤検出値Kを比較して掘削ロッド12が支持地盤に到着したかが判断(S4)される。このように、第二実施形態の変形例2でも、第一実施形態と同様の効果を有する。   After the N value is obtained by the N value conversion means 41, the N value of the general-purpose motor 5a and the support ground detection value K are compared to determine whether the excavation rod 12 has reached the support ground (S4). Thus, Modification 2 of the second embodiment has the same effect as that of the first embodiment.

(変形例3)
次に、本発明の第二実施形態の変形例3について図面を参照しながら説明する。第二実施形態の変形例3と変形例2とでは、第二実施形態の変形例2ではインバータ8aを用いているのに対し、変形例3ではインバータを用いず三相交流電源から直接汎用モータに電力を供給するところが異なる。図13は、本発明の第二実施形態の変形例3における支持地盤検出装置の回路図である。図13に示すように、インバータを用いない場合も、第二実施形態の変形例2と同様、W相電流計測器36aと、U相−V相間電圧計測器37aと、有効電力量検出手段40と、N値換算手段41が用いられ、単位掘削体積あたりの汎用モータ5aに印加される有効電力量Pval(n)およびN値が求められる。その他の支持地盤の検出方法は、第二実施形態の変形例2と同様であるので、説明は省略する。
(Modification 3)
Next, Modification 3 of the second embodiment of the present invention will be described with reference to the drawings. In Modification 3 and Modification 2 of the second embodiment, the inverter 8a is used in Modification 2 of the second embodiment, whereas in Modification 3, a general-purpose motor is directly used from a three-phase AC power source without using an inverter. The place where power is supplied to is different. FIG. 13 is a circuit diagram of a support ground detection device in Modification 3 of the second embodiment of the present invention. As shown in FIG. 13, even when the inverter is not used, the W-phase current measuring device 36a, the U-phase / V-phase voltage measuring device 37a, and the active energy detecting means 40 are the same as in the second modification of the second embodiment. Then, the N value conversion means 41 is used, and the effective power amount Pval (n) and the N value applied to the general-purpose motor 5a per unit excavation volume are obtained. Since the other detection methods of the supporting ground are the same as in Modification 2 of the second embodiment, description thereof is omitted.

(第三実施形態)
以下、本発明の第三実施形態について図面を参照しながら説明する。図14(a)は本発明の第三実施形態における支持地盤検出装置が用いられた掘削機の上面図X軸方向の側面図であり、図14(b)は同掘削機の上面図Y軸方向の側面図であり、図14(c)は同掘削機の上面図である。
(Third embodiment)
Hereinafter, a third embodiment of the present invention will be described with reference to the drawings. FIG. 14A is a side view in the X-axis direction of the top view of the excavator in which the support ground detection device according to the third embodiment of the present invention is used, and FIG. 14B is a top view of the excavator in the Y-axis direction. FIG. 14C is a top view of the excavator.

本発明の第三実施形態と第一実施形態および第二実施形態の異なるところは、第一実施形態および第二実施形態の下部ケース4の内部は中空状のものであったのに対し、第三実施形態では、その下部ケース4の内部に遊星歯車装置24を備え、出力軸11に取り付けられた掘削ロッド12で掘削するとともに、下部部材7を介し遊星歯車装置24の内歯車25に取り付けられた掘削刃26でも掘削できるようにしたところである。なお、図14では、出力軸11に取り付けられた掘削ロッド12を省略しているが、第三実施形態でも第一実施形態および第二実施形態同様に、掘削ロッド12で掘削が行われる。以下、具体的に説明する。   The difference between the third embodiment of the present invention and the first embodiment and the second embodiment is that the inside of the lower case 4 of the first embodiment and the second embodiment is hollow, In the third embodiment, the planetary gear device 24 is provided inside the lower case 4 and excavated by the excavating rod 12 attached to the output shaft 11 and attached to the internal gear 25 of the planetary gear device 24 via the lower member 7. The excavating blade 26 can be excavated. In FIG. 14, the excavation rod 12 attached to the output shaft 11 is omitted, but excavation is performed with the excavation rod 12 in the third embodiment as in the first and second embodiments. This will be specifically described below.

図14に示すように、掘削刃26がボルトとナットからなる固定手段(図示略)により下部部材7に取り付けられている。   As shown in FIG. 14, the excavation blade 26 is attached to the lower member 7 by fixing means (not shown) including bolts and nuts.

次に、下部ケース4の内部に備えられた遊星歯車装置24について説明する。ここで、図15は、図14(a)のC-C断面図であり、図16は図15のD-D断面図である。   Next, the planetary gear device 24 provided in the lower case 4 will be described. Here, FIG. 15 is a CC cross-sectional view of FIG. 14A, and FIG. 16 is a DD cross-sectional view of FIG.

図14および図15に示すように、遊星歯車装置24は、出力軸11(回転軸)に太陽歯車取付ボス(太陽歯車取付手段(図示略))を用いて圧入された太陽歯車27と、該太陽歯車27の外周を覆うように、太陽歯車27に空隙を介して同軸状に配設されている内歯車25と、太陽歯車27と内歯車25の間の空隙に配設され、太陽歯車27及び内歯車25に噛合し、太陽歯車27の周囲で自転する遊星歯車28と、を備えている。遊星歯車28は、回転軸上に配設された太陽歯車27の周囲に等間隔で複数個(本実施形態では、3つ)配設されている。   As shown in FIGS. 14 and 15, the planetary gear device 24 includes a sun gear 27 press-fitted to the output shaft 11 (rotary shaft) using a sun gear mounting boss (sun gear mounting means (not shown)), The sun gear 27 is arranged in a space between the sun gear 27 and the internal gear 25 so as to cover the outer periphery of the sun gear 27, and the sun gear 27 is arranged coaxially via the space. And a planetary gear 28 that meshes with the internal gear 25 and rotates around the sun gear 27. A plurality of planetary gears 28 (three in this embodiment) are arranged at equal intervals around the sun gear 27 arranged on the rotation shaft.

太陽歯車27は、外周面に歯が形成された略円柱状のギア部29と、ギア部29より小径で、出力軸11と嵌合する嵌合部30とを有する。ギア部29は、遊星歯車28と噛み合うように構成され、嵌合部30は、出力軸11の嵌合部31と嵌合することにより出力軸11と一体となって回転する。   The sun gear 27 includes a substantially cylindrical gear portion 29 having teeth formed on the outer peripheral surface, and a fitting portion 30 that has a smaller diameter than the gear portion 29 and is fitted to the output shaft 11. The gear portion 29 is configured to mesh with the planetary gear 28, and the fitting portion 30 rotates integrally with the output shaft 11 by fitting with the fitting portion 31 of the output shaft 11.

各遊星歯車28は、中央部分に軸方向に貫通する貫通孔32が形成され、この貫通孔32に挿入されたピン34の周りを自転することができる。ここで、遊星歯車28はニードルベアリング(図示略)を介してピン34に挿入されている。このピン34は、下部ケース4と一体的に構成されたケーシング51にニードルベアリング(図示略)を介して回転自在に取り付けられている。   Each planetary gear 28 is formed with a through hole 32 penetrating in the axial direction in the central portion, and can rotate around a pin 34 inserted into the through hole 32. Here, the planetary gear 28 is inserted into the pin 34 via a needle bearing (not shown). The pin 34 is rotatably attached to a casing 51 formed integrally with the lower case 4 via a needle bearing (not shown).

内歯車25は、下部ケース4にベアリング50を介し回転自在に取り付けられている。これにより、各遊星歯車28は、太陽歯車27の回転に伴ってピン34を中心として自転し、その遊星歯車28の自転により内歯車25を回転させることができる。   The internal gear 25 is rotatably attached to the lower case 4 via a bearing 50. Thus, each planetary gear 28 rotates around the pin 34 as the sun gear 27 rotates, and the internal gear 25 can be rotated by the rotation of the planetary gear 28.

下部部材7は、内歯車25にボルト52などの固着手段により取り付けられている。また、上述したように内歯車25には下部部材7を介し掘削刃26(図17参照)が取り付けられている。このように、掘削刃26は、内歯車25が回転することにより下部部材7を介し内歯車25と同回転で回転することができ、この掘削刃26が回転することにより円形の穴を掘削することができる。そして、この円形の穴の内部では、掘削刃26の内側の掘削ロッド12で土を掻き揚げながら掘削され、円柱型の穴を造成することができる。このようにして、掘削刃26の継ぎ手を順次接続しながら掘削し、掘削刃26が地中に挿入される。なお、本実施形態では、掘削刃26が下部部材7を介し内歯車25に取り付けられる態様を示したが、これに限らず、掘削刃26を直接内歯車25に取り付けられるようにしてもよい。すなわち、掘削刃26は直接的または間接的に内歯車25に取り付けられるようにすればよい。ここで、図17は、本発明の第三実施形態における支持地盤検出装置が用いられた掘削機の掘削刃を示す図である。   The lower member 7 is attached to the internal gear 25 by fixing means such as a bolt 52. Further, as described above, the excavating blade 26 (see FIG. 17) is attached to the internal gear 25 via the lower member 7. Thus, the excavating blade 26 can rotate at the same rotational speed as the internal gear 25 via the lower member 7 as the internal gear 25 rotates, and the circular hole is excavated as the excavating blade 26 rotates. be able to. And inside this circular hole, it is excavated while scraping up the soil with the excavating rod 12 inside the excavating blade 26, and a cylindrical hole can be formed. In this manner, excavation is performed while the joints of the excavation blades 26 are sequentially connected, and the excavation blades 26 are inserted into the ground. In the present embodiment, the aspect in which the excavating blade 26 is attached to the internal gear 25 via the lower member 7 is shown, but the present invention is not limited to this, and the excavating blade 26 may be directly attached to the internal gear 25. That is, the excavation blade 26 may be attached to the internal gear 25 directly or indirectly. Here, FIG. 17 is a diagram showing an excavating blade of an excavator in which the support ground detecting device according to the third embodiment of the present invention is used.

以上のように、遊星歯車装置24を設け、その遊星歯車装置24の内歯車25に掘削刃26を設けているので、少ない歯車数で大きな減速比を得ながら掘削することができ、掘削機の小型化も図ることができる。   As described above, the planetary gear device 24 is provided, and the excavating blade 26 is provided on the internal gear 25 of the planetary gear device 24, so that excavation can be performed while obtaining a large reduction ratio with a small number of gears. Miniaturization can also be achieved.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。さらに本発明の範囲は、上記した説明ではなく特許請求の範囲の記載によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. Further, the scope of the present invention is shown not by the above description but by the description of the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

次に、変形例について説明する。
(1) 第一実施形態〜第三実施形態(変形例も含む)では、図4のS4により、単位掘削体積あたりの汎用モータ5a、5bに印加される有効電力量Pval(n)が検出され、S5により、単位掘削体積あたりの有効電力量Pval(n)(合計値)が標準貫入試験のN値に換算され、そして、S6により、そのN値が支持地盤検出値Kになった場合に支持地盤に到達したと判断されるが、これに限らず、S4により単位掘削体積あたりの汎用モータ5a、5bに印加される有効電力量Pval(n)が検出され、S5およびS6として、その単位掘削体積あたりの有効電力量Pval(n)(汎用モータが2個の場合は合計値)があらかじめ定められた支持地盤検出値KKになったときに、掘削ロッド12が支持地盤に到達したと判定してもよい。すなわち、N値は、S4により検出される単位掘削体積あたりの汎用モータ5a、5bに印加される有効電力量Pval(n)の(0.3S/mgh)倍(定数倍)であるので、支持地盤検出値KKを支持地盤検出値Kの(mgh/0.3S)倍することにより、単位掘削体積あたりの汎用モータに印加される有効電力量(汎用モータが2個の場合は合計値)を用いることにより、掘削ロッド12が支持地盤に到達したかを判定することができる。
Next, a modified example will be described.
(1) In the first to third embodiments (including modifications), the effective power amount Pval (n) applied to the general-purpose motors 5a and 5b per unit excavation volume is detected by S4 in FIG. , S5 converts the effective electric energy Pval (n) (total value) per unit excavation volume into the N value of the standard penetration test, and when the N value becomes the support ground detection value K by S6. Although it is determined that the support ground has been reached, the present invention is not limited to this, and the effective power amount Pval (n) applied to the general-purpose motors 5a and 5b per unit excavation volume is detected by S4, and the unit is designated as S5 and S6. It is determined that the excavation rod 12 has reached the support ground when the effective power amount Pval (n) per excavation volume (the total value when there are two general-purpose motors) reaches the predetermined support ground detection value KK. Shi May be. In other words, the N value is (0.3S / mgh) times (a constant multiple) times the active power amount Pval (n) applied to the general-purpose motors 5a and 5b per unit excavation volume detected by S4. By multiplying the ground detection value KK by (mgh / 0.3S) the support ground detection value K, the effective electric energy applied to the general-purpose motor per unit excavation volume (the total value when there are two general-purpose motors) By using it, it can be determined whether the excavation rod 12 has reached the support ground.

1 掘削機
2 上部ケース
3 中部ケース
4 下部ケース
5a、5b 汎用モータ
6a、6b モータ回転軸
7 下部部材
8a、8b インバータ
9a、9b 電動機歯車
10 入力歯車
11 出力軸
12 掘削ロッド
13 支持地盤検出装置
14a、14b コンバータ部
15a、15b コンデンサ部
16a、16b 出力ブリッジ部
17 制御装置
18a、18b 突入電流抑制抵抗部
19a、19b 第一スイッチ
20 第二スイッチ
21 放電抵抗
22 第三スイッチ
23 V相電流計算器
24 遊星歯車機構
25 内歯車
26 掘削刃
27 太陽歯車
28 遊星歯車
29 ギア部
30 嵌合部
31 嵌合部
32 貫通孔
34 ピン
35a、35b U相電流計測器
36a、36b W相電流計測器
37a、37b U−V相間電圧計測器
38a、38b V−W相間電圧計測器
39a、39b 相間−相電圧変換器
40 有効電力量検出手段
41 N値換算手段
50 ベアリング
51 ケーシング
52 ボルト

DESCRIPTION OF SYMBOLS 1 Excavator 2 Upper case 3 Middle case 4 Lower case 5a, 5b General-purpose motor 6a, 6b Motor rotating shaft 7 Lower member 8a, 8b Inverter 9a, 9b Electric gear 10 Input gear 11 Output shaft 12 Excavation rod 13 Support ground detection apparatus 14a , 14b Converter unit 15a, 15b Capacitor unit 16a, 16b Output bridge unit 17 Controller 18a, 18b Inrush current suppression resistor unit 19a, 19b First switch 20 Second switch 21 Discharge resistor 22 Third switch 23 V-phase current calculator 24 Planetary gear mechanism 25 Internal gear 26 Excavation blade 27 Sun gear 28 Planetary gear 29 Gear portion 30 Fitting portion 31 Fitting portion 32 Through hole 34 Pins 35a, 35b U-phase current measuring devices 36a, 36b W-phase current measuring devices 37a, 37b U-V phase voltage measuring instrument 38a, 38b V-W phase voltage measuring instrument 39a 39b Interphase-phase voltage converter 40 Active energy detection means 41 N value conversion means 50 Bearing 51 Casing 52 Bolt

Claims (6)

三相交流電源から汎用モータに電力が供給され、該汎用モータにより回転軸を介し回転駆動される掘削ロッドで地盤を掘削して、地盤内の支持地盤を検出する支持地盤検出装置であって、
PQ法に基づいて、単位掘削体積あたりの前記汎用モータに印加される有効電力量を検出する有効電力量検出手段と、
該有効電力量検出手段により検出された有効電力量があらかじめ定められた値になったときに、前記掘削ロッドが支持地盤に到達したと判定する支持地盤判定手段と、を備え
前記有効電力量検出手段は、数式1と数式2を用いて、前記汎用モータに入力される三相交流のU相を流れる皮相電流IuとV相を流れる皮相電流IvとW相を流れる皮相電流Iw、およびU相のU相電圧EuとV相のV相電圧EvとW相のW相電圧Ewから電流値(Iα、Iβ)と電圧値(Eα、Eβ)を求め、
Figure 0005308405
Figure 0005308405
次に、数式3を用いて、電流値(Iα、Iβ)と電圧値(Eα、Eβ)から単位掘削体積あたりの前記汎用モータに印加される瞬時有効電力Pを求め、
Figure 0005308405
Figure 0005308405
そして、数式4を用いて、有効電力量を検出することを特徴とする支持地盤検出装置。
A support ground detection device for detecting power support ground in the ground by excavating the ground with a drill rod that is powered by a three-phase AC power supply to a general-purpose motor and rotated by the general-purpose motor via a rotating shaft,
Based on the PQ method, effective power amount detecting means for detecting an effective power amount applied to the general-purpose motor per unit excavation volume;
Support ground determination means for determining that the excavation rod has reached the support ground when the active power amount detected by the active power amount detection means reaches a predetermined value ;
The active energy detection means uses Equations 1 and 2 to obtain an apparent current Iu that flows through the three-phase AC U phase, an apparent current Iv that flows through the V phase, and an apparent current that flows through the W phase that are input to the general-purpose motor. Current values (Iα, Iβ) and voltage values (Eα, Eβ) are obtained from Iw, U phase U phase voltage Eu, V phase V phase voltage Ev, and W phase W phase voltage Ew,
Figure 0005308405
Figure 0005308405
Next, using Formula 3, the instantaneous active power P applied to the general-purpose motor per unit excavation volume is obtained from the current values (Iα, Iβ) and voltage values (Eα, Eβ),
Figure 0005308405
Figure 0005308405
And the supporting ground detection apparatus characterized by detecting active electric energy using Numerical formula 4 .
前記汎用モータは、インバータにより駆動制御される請求項1記載の支持地盤検出装置。   The support ground detection device according to claim 1, wherein the general-purpose motor is driven and controlled by an inverter. 2個の汎用モータにより回転軸を介し回転駆動される掘削ロッドで地盤を掘削して、地盤内の支持地盤を検出する支持地盤検出装置であって、
前記各汎用モータは、各汎用モータに対応してそれぞれ設けられたインバータにより駆動制御され、
前記有効電力量検出手段は、前記各汎用モータに印加される有効電力量を検出し、
前記支持地盤判定手段は、該有効電力量検出手段に検出された各汎用モータの有効電力量の合計値があらかじめ定められた値になったときに、前記掘削ロッドが支持地盤に到達したと判定することを特徴とする請求項1記載の支持地盤検出装置。
A support ground detection device that detects a support ground in the ground by excavating the ground with a drill rod that is rotationally driven by two general-purpose motors via a rotating shaft,
Each general-purpose motor is driven and controlled by an inverter provided corresponding to each general-purpose motor,
The active power amount detecting means detects an effective power amount applied to each general-purpose motor,
The supporting ground determining means determines that the excavation rod has reached the supporting ground when the total value of the effective electric energy of each general-purpose motor detected by the active electric energy detecting means reaches a predetermined value. The supporting ground detection device according to claim 1, wherein
三相交流電源から汎用モータに電力が供給され、該汎用モータにより回転軸を介し回転駆動される掘削ロッドで地盤を掘削して、地盤内の支持地盤を検出する支持地盤検出装置であって、
PQ法に基づいて、単位掘削体積あたりの前記汎用モータに印加される有効電力量を検出する有効電力量検出手段と、
該有効電力量検出手段により検出された有効電力量を標準貫入試験のN値に換算するN値換算手段と、
該N値換算手段により換算されたN値があらかじめ定められた値になったときに、前記掘削ロッドが支持地盤に到達したと判定する支持地盤判定手段とを備え、
前記有効電力量検出手段は、数式1と数式2を用いて、前記汎用モータに入力される三相交流のU相を流れる皮相電流IuとV相を流れる皮相電流IvとW相を流れる皮相電流Iw、およびU相のU相電圧EuとV相のV相電圧EvとW相のW相電圧Ewから電流値(Iα、Iβ)と電圧値(Eα、Eβ)を求め、
Figure 0005308405
Figure 0005308405
次に、数式3を用いて、電流値(Iα、Iβ)と電圧値(Eα、Eβ)から単位掘削体積あたりの前記汎用モータに印加される瞬時有効電力Pを求め、
Figure 0005308405
Figure 0005308405
そして、数式4を用いて、有効電力量を検出することを特徴とする支持地盤検出装置。
A support ground detection device for detecting power support ground in the ground by excavating the ground with a drill rod that is powered by a three-phase AC power supply to a general-purpose motor and rotated by the general-purpose motor via a rotating shaft,
Based on the PQ method, effective power amount detecting means for detecting an effective power amount applied to the general-purpose motor per unit excavation volume;
N value conversion means for converting the active power amount detected by the active power amount detection means to the N value of the standard penetration test;
Support ground judgment means for judging that the excavation rod has reached the support ground when the N value converted by the N value conversion means reaches a predetermined value;
The active energy detection means uses Equations 1 and 2 to obtain an apparent current Iu that flows through the three-phase AC U phase, an apparent current Iv that flows through the V phase, and an apparent current that flows through the W phase that are input to the general-purpose motor. Current values (Iα, Iβ) and voltage values (Eα, Eβ) are obtained from Iw, U phase U phase voltage Eu, V phase V phase voltage Ev, and W phase W phase voltage Ew,
Figure 0005308405
Figure 0005308405
Next, using Formula 3, the instantaneous active power P applied to the general-purpose motor per unit excavation volume is obtained from the current values (Iα, Iβ) and voltage values (Eα, Eβ),
Figure 0005308405
Figure 0005308405
And the supporting ground detection apparatus characterized by detecting active electric energy using Numerical formula 4 .
2個の汎用モータにより回転軸を介し回転駆動される掘削ロッドで地盤を掘削して、地盤内の支持地盤を検出する支持地盤検出装置であって、
前記各汎用モータは、各汎用モータに対応してそれぞれ設けられたインバータにより駆動制御され、
前記有効電力量検出手段は、前記各汎用モータに印加される有効電力量を検出し、
前記支持地盤判定手段は、前記N値換算手段により換算された各汎用モータのN値の合計値があらかじめ定められた値になったときに、前記掘削ロッドが支持地盤に到達したと判定することを特徴とする請求項4記載の支持地盤検出装置。
A support ground detection device that detects a support ground in the ground by excavating the ground with a drill rod that is rotationally driven by two general-purpose motors via a rotating shaft,
Each general-purpose motor is driven and controlled by an inverter provided corresponding to each general-purpose motor,
The active power amount detecting means detects an effective power amount applied to each general-purpose motor,
The supporting ground determining means determines that the excavation rod has reached the supporting ground when the total value of the N values of the general-purpose motors converted by the N value converting means reaches a predetermined value. The support ground detection device according to claim 4 characterized by things.
前記汎用モータにより回転される回転軸と一体に回動する太陽歯車と、
前記太陽歯車の外周を覆うように、該太陽歯車に空隙を介して同軸状に配設されている内歯車と、
空隙に配設され前記太陽歯車及び前記内歯車に噛合する遊星歯車と、
前記回転軸に取り付けられた掘削ロッドと、
前記内歯車に取り付けられた掘削刃とを、有し、
前記掘削ロッドおよび前記掘削刃により掘削することを特徴とする請求項1〜5のいずれかに記載の支持地盤検出装置を用いた掘削機。
A sun gear that rotates integrally with a rotating shaft that is rotated by the general-purpose motor;
An internal gear coaxially disposed in the sun gear via a gap so as to cover the outer periphery of the sun gear;
A planetary gear disposed in a gap and meshing with the sun gear and the internal gear;
A drilling rod attached to the rotating shaft;
A drilling blade attached to the internal gear,
The excavator using the support ground detection device according to any one of claims 1 to 5, wherein excavation is performed by the excavation rod and the excavation blade.
JP2010139399A 2010-06-18 2010-06-18 Support ground detection device and excavator using the same Active JP5308405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010139399A JP5308405B2 (en) 2010-06-18 2010-06-18 Support ground detection device and excavator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010139399A JP5308405B2 (en) 2010-06-18 2010-06-18 Support ground detection device and excavator using the same

Publications (2)

Publication Number Publication Date
JP2012002007A JP2012002007A (en) 2012-01-05
JP5308405B2 true JP5308405B2 (en) 2013-10-09

Family

ID=45534293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010139399A Active JP5308405B2 (en) 2010-06-18 2010-06-18 Support ground detection device and excavator using the same

Country Status (1)

Country Link
JP (1) JP5308405B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6849901B2 (en) * 2016-09-02 2021-03-31 ジャパンパイル株式会社 Support layer arrival judgment device and judgment method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57116830A (en) * 1981-01-08 1982-07-21 Takechi Koumushiyo:Kk Control on foundation pile construction
JPH0328410A (en) * 1989-06-24 1991-02-06 Nippon Concrete Ind Co Ltd Estimation of support layer for pile in pile embedding
JP2003096776A (en) * 2001-09-25 2003-04-03 Asahi Kasei Corp Execution control method of steel pipe pile
JP3790512B2 (en) * 2002-11-26 2006-06-28 三菱重工業株式会社 GAS TURBINE POWER PLANT, ITS CONTROL METHOD, AND GAS TURBINE CONTROL DEVICE
JP4753132B2 (en) * 2005-06-14 2011-08-24 三谷セキサン株式会社 Pile hole drilling method
JP5091611B2 (en) * 2007-09-28 2012-12-05 東邦車輛株式会社 Friction pressure welding system and friction pressure welding method
JP2010119290A (en) * 2009-12-06 2010-05-27 Tomec Corp Inverter control driving system and excavator using the same

Also Published As

Publication number Publication date
JP2012002007A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
EP2296265B1 (en) System for detecting generator winding faults
US8810173B2 (en) Rotating machinery condition monitoring using position sensor
US8299641B2 (en) Magnetically geared generator
EP2175131A2 (en) Apparatus and method for continuous pitching of wind turbine blades
JP2007255012A (en) Vane shear testing device of ground in situ
JP5308405B2 (en) Support ground detection device and excavator using the same
JP6166833B1 (en) Management equipment for deep mixing equipment
BR102015012585A2 (en) computer-deployed method, load management system, and one or more computer-readable storage media
JP4885325B1 (en) Construction management system for ground improvement method
JP5553676B2 (en) Excavator using inverter control drive
JP3583307B2 (en) Construction management system in ground improvement method
CN105424245B (en) A kind of torque rotary speed measuring device for anti-falling safety device
JP2021124464A (en) Fluid system abnormality monitoring and diagnosing method of fluid rotary machine
CN217106972U (en) Bored pile pore-forming quality detector
CN205403687U (en) Iron core plane degree straightness pick -up plate that hangs down
JP4191910B2 (en) Measuring device and specimen characteristic analysis device
KR100771118B1 (en) Measuring system for efficiency estimation of helical turbine
JP4566254B2 (en) Ground improvement measuring device
JP2019002785A (en) Harmonic analysis device
Kirschner et al. Dynamic runner forces and pressure fluctuations on the draft tube wall of a model pump-turbine
Houck et al. A high-accuracy torque transducer for small-scale wind and hydrokinetic turbine experiments
KR101022363B1 (en) Ground layer sinking volume measurement system using
JPH05280031A (en) Pile support layer detecting device
JP4998789B2 (en) Speed detection device
JPH07311133A (en) Method and instrument for measuring hardness of ground

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5308405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250