JP5308068B2 - Method for improving contaminated soil - Google Patents

Method for improving contaminated soil Download PDF

Info

Publication number
JP5308068B2
JP5308068B2 JP2008132298A JP2008132298A JP5308068B2 JP 5308068 B2 JP5308068 B2 JP 5308068B2 JP 2008132298 A JP2008132298 A JP 2008132298A JP 2008132298 A JP2008132298 A JP 2008132298A JP 5308068 B2 JP5308068 B2 JP 5308068B2
Authority
JP
Japan
Prior art keywords
soil
parts
composition mixture
weight
contaminated soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008132298A
Other languages
Japanese (ja)
Other versions
JP2009279492A (en
Inventor
昭三 古沢
Original Assignee
日本硝子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本硝子工業株式会社 filed Critical 日本硝子工業株式会社
Priority to JP2008132298A priority Critical patent/JP5308068B2/en
Publication of JP2009279492A publication Critical patent/JP2009279492A/en
Application granted granted Critical
Publication of JP5308068B2 publication Critical patent/JP5308068B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、汚染土壌の土壌改良技術の技術に関し、更に詳細には、重金属等の汚染物質を含む土壌を現場で掘り起こし、該土壌を特定組成物と混合させた後に埋め戻し、該組成物との間で固化作用を促すことで汚染物質の漏洩を防止し、当該現場を一般の土壌と同様の使用が可能な土壌に改良する方法に関する。 The present invention relates to a technique of soil improvement technology for contaminated soil, and more specifically, excavates soil containing pollutants such as heavy metals in the field, mixes the soil with a specific composition, and then backfills the soil. The present invention relates to a method for preventing the leakage of pollutants by promoting a solidifying action between the soil and improving the site to soil that can be used in the same manner as general soil.

本発明で汚染物質とは、重金属類、揮発性有機化合物(VOC)、農薬を含む薬品等のことをいい、当該汚染物質を含む土壌の処理は世界的に深刻な環境問題となっており、我が国においても、土壌汚染が判明した土地の件数が平成8年度から飛躍的に増加し、現在、約32万箇所の土地で土壌汚染が発生していると推定されている。 In the present invention, pollutants refer to heavy metals, volatile organic compounds (VOC), chemicals including agricultural chemicals, and the treatment of soil containing such pollutants has become a serious environmental problem worldwide. In Japan, the number of land where soil contamination has been found has increased dramatically since 1996, and it is estimated that soil contamination has occurred in about 320,000 locations at present.

環境省発表の「平成15年度土壌汚染調査・対策事例及び対応状況に関する調査結果の概要」によると、平成16年3月31日までに都道府県等が把握した土壌汚染調査結果では、総事例4,812件中、超過事例が1,458件と全体の30%にも及んでおり、我が国の深刻な土壌汚染の現状が明らかになっている。判明した土壌汚染原因の内訳は、超過事例のうち、重金属等超過事例が60%、揮発性有機化合物(VOC)超過事例が28%、複合汚染超過事例が12%となっており、重金属等が汚染原因となっている割合が非常に高い。また重金属等の汚染原因物質は砒素、鉛、六価クロムの順になっている。このような背景の中、我が国では平成15年に土壌汚染対策法が施行され、直接摂取によるリスク、地下水等の摂取によるリスクの回避に重点をおいた対策が示され、土壌汚染対策法の厳しい環境基準に対応できるような、抜本的な対策技術の確立が求められている According to the “Summary of Survey Results on FY 2003 Soil Contamination Surveys / Countermeasures and Response Status” published by the Ministry of the Environment, the results of soil contamination surveys obtained by prefectures by March 31, 2004 showed that all cases 4 , Out of 812 cases, 1,458 cases, accounting for 30% of the total, revealing the current state of serious soil contamination in Japan. The breakdown of the causes of soil contamination was as follows: excess cases such as heavy metals were 60%, volatile organic compound (VOC) excess cases were 28%, and composite pollution excess cases were 12%. The rate of contamination is very high. Contaminants such as heavy metals are in the order of arsenic, lead, and hexavalent chromium. Against this background, the Soil Contamination Countermeasures Law was enforced in Japan in 2003, and measures focusing on avoiding risks from direct intake and groundwater intake were shown. Establishment of drastic countermeasure technology that can meet environmental standards is required.

これに対し従来、重金属等の有害物で汚染された土壌を処理するための技術として、置き換え法,土壌洗浄,遮蔽,有害物の不溶化処理が提案されているが、これら従来の方法では、その処理によっても土地の価値が低下してしまい、又、利用方法にあっても限定的なものに制限されてしまうことが避けられない。
例えば、住宅、駐車場、植樹等を行うのに、置き換え法,土壌洗浄では、汚染土壌を置き換え又は洗浄するのに莫大な費用を要し、遮蔽等では汚染物質を囲い込まねばならず、囲い込んだ土地には汚染物質があるので使用に制限がある。
In contrast, replacement methods, soil cleaning, shielding, and insolubilization treatment of harmful substances have been proposed as techniques for treating soil contaminated with harmful substances such as heavy metals. It is inevitable that the land value will be reduced by the treatment, and that it will be limited to a limited amount even if it is used.
For example, the replacement method and soil cleaning in housing, parking lots, tree planting, etc., require enormous costs to replace or clean the contaminated soil, and shielding must enclose the pollutant. Congested land is contaminated with limited use.

又、これらの技術の中で、有害物の不溶化処理においては、セメント系の不溶化剤を用いることが一般的に行われており、例えばセメントと不溶化剤を用いる方法(特許文献1)が知られているが、上記方法では、カルシウムイオンの供給によって汚染物を不溶化しようとするものであるので、対象物がカウシウムイオンと反応する重金属に限定されてしまい広い範囲での汚染物質の処理は不可能である。
特開2004−313817号公報
Among these techniques, in the insolubilization treatment of harmful substances, a cement-based insolubilizer is generally used. For example, a method using a cement and an insolubilizer (Patent Document 1) is known. However, in the above method, since the contaminant is insolubilized by supplying calcium ions, the object is limited to heavy metals that react with causium ions, and treatment of contaminants in a wide range is not possible. Is possible.
JP 2004-313817 A

本発明は上記実情に鑑みてなされたもので、汚染物質を含む土壌を現場で掘り起こした後に特定組成物と混合させて埋め戻し、該組成物との間で固化作用を促すことで汚染物質の漏洩を防止することができ、土地の価値の低減を防ぐと共に一般の土壌と同様広い範囲での使用が可能となる土壌に改良する方法を提案しようとするものである。 The present invention has been made in view of the above circumstances, and after excavating soil containing pollutants on site, it is mixed with a specific composition and backfilled. It is intended to propose a method for improving the soil that can prevent leakage, prevent the land value from being reduced, and can be used in the same wide range as ordinary soil.

上記目的を達成するために、請求項1記載の汚染土壌の改良方法は、平均粒子径10mm以下の山砂100重量部と、平均粒子径5mm以下の炭5〜15重量部と,ポルトランドセメント60〜65重量部、パーライト4〜10重量部および若干のノニオン系界面活性剤とを混合して成る組成混合物と、掘り起こした重金属、薬品、VOCのうち少なくともいずれか一つを含む土壌とを、1:0.8〜1.2の割合で混合撹拌し、該組成混合物と汚染物質を含んだ土壌と必要に応じて水とを撹拌混合したものを埋め戻し、該汚染土壌を該組成混合物で囲繞した状態で固化させることを特徴とする。 In order to achieve the above object, the method for improving contaminated soil according to claim 1 comprises 100 parts by weight of mountain sand having an average particle diameter of 10 mm or less, 5-15 parts by weight of charcoal having an average particle diameter of 5 mm or less, Portland cement 60 1 to 65 parts by weight, a composition mixture formed by mixing 4 to 10 parts by weight of pearlite and some nonionic surfactant, and soil containing at least one of dug heavy metals, chemicals, and VOCs. : Mixing and stirring at a ratio of 0.8 to 1.2, backfilling the mixture containing the composition mixture, soil containing the pollutant, and water as necessary, and backfilling, and surrounding the contaminated soil with the composition mixture It is characterized in that it is solidified.

請求項2に記載の汚染土壌の改良方法は、組成混合物に無機系顔料を含ませたことを特徴とする。 The method for improving contaminated soil according to claim 2 is characterized in that an inorganic pigment is included in the composition mixture.

本発明に用いられる組成混合物は、そこに汚染物質を含んだ土壌が混入されると、分散されたポルトランドセメント等が水と反応を起こし、汚染物質を含んだ土壌の周囲をポルトランドセメントが囲繞した状態のままに固化されるので、汚染物質の漏洩、拡散を防止することができる。このとき、重金属、農薬等の薬品は土壌に溶解し易く、その重金属、農薬等を含んだ土壌がポルトランドセメントによって囲繞、固化されるので、そこからの漏洩、拡散が防止され、一方、VOCは土壌に溶解され難い性状を有するが、混合された炭の多孔質部分に吸着され、その炭をポルトランドセメントが囲繞するので同様に漏洩、拡散が抑制される。
上記汚染物質を含む土壌は、多分に過剰の水分を含んでドロドロ状態となることが多いが、その際にはパーライトが余分な水分を吸水し、固化反応に必要な最低限の水分量を調整することが出来る。
上記組成混合物に含まれるノニオン系界面活性剤によって、ポルトランドセメントの分散は均一且つ良好になされるので、山砂、土壌等の囲繞は効率的で可及的に薄い層で可能となり、固化反応後には、各粒子との間に間隙(空孔)を形成する。この結果、固化後の土壌をポーラスな状態とすることができ、通水性と通気性を維持し、植生等に優れた土壌とすることができる。
又、山砂は一種の骨材として機能し、固化後の土壌に一定の強度を付与することができ、土壌の上に建築物等を建てる際の基礎としての強度を保持する。
更に、土壌に無機系顔料を配合すれば、処理前の土壌と処理後の土壌とを無機顔料の色によって視覚的に判別することができる。
In the composition mixture used in the present invention, when soil containing pollutants is mixed therein, dispersed Portland cement and the like react with water, and Portland cement surrounds the soil containing pollutants. Since it is solidified as it is, it is possible to prevent leakage and diffusion of contaminants. At this time, chemicals such as heavy metals and agricultural chemicals are easily dissolved in the soil, and since the soil containing the heavy metals and agricultural chemicals is surrounded and solidified by Portland cement, leakage and diffusion from there are prevented, while VOC is Although it is difficult to dissolve in the soil, it is adsorbed by the porous portion of the mixed charcoal, and Portland cement surrounds the charcoal, so that leakage and diffusion are similarly suppressed.
The soil containing the above pollutants often contains a lot of excess water and becomes muddy. In this case, pearlite absorbs excess water and adjusts the minimum amount of water necessary for the solidification reaction. I can do it.
Portion cement is uniformly and satisfactorily dispersed by the nonionic surfactant contained in the above composition mixture, so that sand such as mountain sand and soil can be efficiently and as thin as possible, and after solidification reaction Forms a gap (hole) between each particle. As a result, the solidified soil can be made in a porous state, can maintain water permeability and air permeability, and can have excellent vegetation.
Mountain sand functions as a kind of aggregate, can give a certain strength to the solidified soil, and retains strength as a foundation for building a building or the like on the soil.
Furthermore, if an inorganic pigment is mix | blended with soil, the soil before a process and the soil after a process can be visually discriminate | determined with the color of an inorganic pigment.

本発明の実施の形態を、図1〜3及び表1〜表3に基づいて説明する。
本発明は、重金属、薬品、VOC等の汚染物質を含む土壌を対象とし、透水性、汚染物質の吸着性、化学反応性を保有する無機組成物として組成混合物を形成するが、その構成材料としては山砂、炭、無機系顔料およびポルトランドセメントを用い、添加剤としてノニオン系界面活性剤を混合して組成混合物を成している。
以下、汚染土壌と組成混合物の各構成材料の特徴について説明する。
Embodiments of the present invention will be described with reference to FIGS. 1 to 3 and Tables 1 to 3.
The present invention is intended for soil containing pollutants such as heavy metals, chemicals, and VOCs, and forms a composition mixture as an inorganic composition having water permeability, adsorbability of pollutants, and chemical reactivity. Uses mountain sand, charcoal, inorganic pigments and Portland cement, and a nonionic surfactant as an additive is mixed to form a composition mixture.
Hereinafter, characteristics of each constituent material of the contaminated soil and the composition mixture will be described.

本発明で対象とする汚染土壌は、工場跡地、農地、住宅地等の土壌でその中に汚染物質を含む土壌をいい、汚染物質とは重金属、農薬等の薬品、VOC(揮発性有機化合物)等をいう。重金属とは、カドミウム、シアン、鉛、六価クロム、ヒ素、水銀、セレン、フッ素、ホウ素等をいい、農薬には、シマジン、チラウム、チオペンカルフ、有機リン、PCBが含まれ、VOCには、ジクロロメタン、四塩化炭素、ジクロロエタン、トリクロロエチレン、ベンゼン等が含まれる。
土壌は鉱物粒子等を骨格とし、その隙間に水、空気等を含み、粒子の大きさは約直径10mm以下の異なる径の粒子が混在するが、この土壌との関係にあって、上記重金属、農薬等の薬品は水に溶け難い一方で土に吸着され易く、一方、VOCは水に溶けや易く、土壌には吸着され難い性状がある。
Contaminated soil as a target in the present invention refers to soil containing factory polluted land, agricultural land, residential land, and the like and containing pollutants therein. Pollutants include heavy metals, chemicals such as agricultural chemicals, and VOCs (volatile organic compounds). Etc. Heavy metals are cadmium, cyanide, lead, hexavalent chromium, arsenic, mercury, selenium, fluorine, boron, etc. Agricultural chemicals include simazine, thiraum, thiopencalf, organophosphorus, PCB, and VOC is dichloromethane. , Carbon tetrachloride, dichloroethane, trichloroethylene, benzene and the like.
Soil has mineral particles or the like as a skeleton, and water, air, etc. are included in the gaps, and the particle size is mixed with particles having different diameters of about 10 mm or less in diameter. While chemicals such as agricultural chemicals are hardly soluble in water, they are easily adsorbed on the soil, while VOCs are easily dissolved in water and hardly adsorbed on the soil.

山砂は、主として花崗岩等が風化して出来た土で、山で採取できる砂であり、火山灰等の粘土質を除いた骨材である。岩石を破砕して分粒し組骨材相当の砕石も含まれる。その粒度は、10mm以下のふるい目で主に2mm以下のものが用いられ採用した。
該山砂は、上記土壌と混合された際の硬化後にポーラス構造とすると共に、骨材として機能させるものである。
Mountain sand is soil made mainly from weathered granite and the like, and is sand that can be collected in the mountains, and is an aggregate excluding clay like volcanic ash. It also includes crushed stones that correspond to aggregates by crushing and sizing rocks. The particle size was 10 mm or less and mainly 2 mm or less was used.
The mountain sand has a porous structure after being hardened when mixed with the soil and functions as an aggregate.

ポルトランドセメントは、水の存在下で汚染土壌及び山砂の各粒子を結合して一体的に固化し、汚染土壌及び山砂の表面を実質的に囲繞して、多数の空隙を形成しているが、ポルトランドセメントは骨材間の接合力を大きく保持できる一方で、それ自体が団子状、塊状になり易く、空間を埋め易いので、使用量は可及的に少量でかつ汚染物質を封鎖できる厚みの量とする。 Portland cement combines and solidifies the particles of contaminated soil and mountain sand in the presence of water, and substantially surrounds the surface of contaminated soil and mountain sand to form a number of voids. However, while Portland cement can maintain large joint strength between aggregates, it itself tends to form dumplings and lumps and can easily fill the space, so the amount used can be as small as possible and it can block contaminants. The amount of thickness.

組成混合物の次の組成である炭は、多孔質の性状を備え、その多孔質部分にVOC等の汚染物質を吸着することができ、且つ比表面積が大きいので、少量でも多くのVOCを吸着でき、該組成混合物の内部に多くの汚染物質を担持する働きをなす。 Charcoal, which is the next composition of the composition mixture, has a porous property, can adsorb pollutants such as VOC in the porous portion, and has a large specific surface area, so it can adsorb a lot of VOC even in a small amount. In the composition mixture, a large amount of contaminants are carried.

界面活性剤はノニオン系が使用される。その性状は山砂及び土壌の濡れ性を高め、該山砂及び土壌の表面にポルトランドセメントを均一に分散させ、水の表面において均一に分散されると、水分と反応して適度な強度が現れるが、ポルトランドセメントが山砂及び土壌の表面において不均一であると、団子状や塊状となり、強度が強くなり過ぎる部分と脆い部分が発生してしまい、不適である。しかし、該ノニオン系界面活性剤によって、ポルトランドセメントの分散は均一且つ良好になされるので、山砂、土壌等の囲繞は効率的で可及的に薄い層で可能となり、固化反応後には、各粒子との間に間隙(空孔)を形成する。
該ノニオン系界面活性剤としては、ノニルフェニルエーテル系重合体で炭素数6〜7のものを利用する事が出来る。
Nonionic surfactants are used. Its properties increase the wettability of mountain sand and soil, and when Portland cement is evenly dispersed on the surface of the mountain sand and soil and is uniformly dispersed on the surface of the water, it reacts with moisture and exhibits an appropriate strength. However, if Portland cement is uneven on the surface of mountain sand and soil, it becomes unsuitable because it becomes dumplings or lumps, resulting in excessively strong parts and brittle parts. However, since the nonionic surfactant uniformly and well disperses the Portland cement, the sand such as mountain sand and soil can be efficiently and as thin as possible, and after the solidification reaction, A gap (hole) is formed between the particles.
As the nonionic surfactant, a nonylphenyl ether polymer having 6 to 7 carbon atoms can be used.

パーライトは、黒曜石を砂状に砕き、1000℃で燃成加工した独立気泡の発泡体で、無機質超軽量礫状骨材である。この多孔質性は十分に吸水させても完全には水飽和することが無く、常に空気が相当量含まれている材料である。
上記汚染物質を含む土壌は、多分に過剰の水分を含んでドロドロ状態となることが多く、その際にはパーライトが余分な水分を吸水し、固化反応に必要な最低限の水分量を調整することが出来る。
Perlite is a closed-cell foam made by crushing obsidian into sand and combusting it at 1000 ° C., and is an inorganic ultralight gravel aggregate. This porosity is a material that does not completely saturate even when sufficiently absorbed, and always contains a considerable amount of air.
The soil containing the above pollutants often contains a lot of moisture and becomes muddy. In this case, pearlite absorbs excess moisture and adjusts the minimum amount of moisture required for the solidification reaction. I can do it.

以上に記述した各材料の特徴を踏まえ、本発明汚染土壌の改良方法を説明する。
先ず、透水性、吸着性及び汚染物質溶出の防止を保有した組成混合物の配合例を示すと表1の如くとなる。
Based on the characteristic of each material described above, the improvement method of this invention contaminated soil is demonstrated.
First, Table 1 shows formulation examples of a composition mixture having water permeability, adsorptivity, and prevention of contaminant elution.

上記配合に基づいて組成混合物を得るには、山砂とポルトランドセメントを一定量計量し、撹拌機で攪拌しながら界面活性剤を滴下する。その後、炭及び無機系顔料及びパーライトを添加し山砂、ポルトランドセメント、炭、無機系顔料、パーライト、ノニオン系界面活性剤のサラサラ状態の組成混合物を形成する。 In order to obtain a composition mixture based on the above formulation, a certain amount of mountain sand and Portland cement are weighed, and a surfactant is added dropwise while stirring with a stirrer. Thereafter, charcoal, inorganic pigment, and pearlite are added to form a smooth composition mixture of mountain sand, Portland cement, charcoal, inorganic pigment, pearlite, and nonionic surfactant.

より詳細には、平均粒子径10mm以下の山砂100重量部と、平均粒子径5mm以下の炭5〜15重量部と,ポルトランドセメント60〜65重量部、無機系顔料5〜6重量部、パーライト4〜10重量部および若干のノニオン系界面活性剤とを混合して成る組成混合物を形成する。
山砂100重量部に対し、ポルトランドセメント60〜65重量部としたのは、60部以下では固化後の強度が弱く、又山砂、土壌を十分に囲繞することできなくなり、65部以上では固化後の空隙が少なくなるからである。
平均粒子径5mm以下の炭を5〜15重量部としたのは、5部以下では吸着量が少なく、15部以上では固化後の強度が弱くなるからである。
パーライトを4〜10重量部としたのは、4部以下では吸水量が少なく、10部以上では炭と同様固化後の強度が弱くなるからである
無機系顔料を5〜6重量部としたのは、着色量としてこれで十分だからである。
More specifically, 100 parts by weight of sand with an average particle diameter of 10 mm or less, 5-15 parts by weight of charcoal with an average particle diameter of 5 mm or less, 60-65 parts by weight of Portland cement, 5-6 parts by weight of an inorganic pigment, pearlite A composition mixture is formed by mixing 4 to 10 parts by weight and some nonionic surfactant.
Portland cement 60-65 parts by weight with respect to 100 parts by weight of sand is less than 60 parts, the strength after solidification is weak, can not sufficiently surround the sand and soil, solidification at 65 parts or more This is because the later voids are reduced.
The reason why 5 to 15 parts by weight of charcoal having an average particle diameter of 5 mm or less is used is that the amount of adsorption is small at 5 parts or less and the strength after solidification is weak at 15 parts or more.
The reason why the pearlite is 4 to 10 parts by weight is that the amount of water absorption is small at 4 parts or less, and the strength after solidification is weak at 10 parts or more as in the case of charcoal. This is because this is sufficient as the coloring amount.

次いで、図2に示す如く、汚染物質を含む土壌を有する恐れのある現場にあって、該現場で、重金属、薬品、VOC等の汚染物質を含む土壌を掘り起こす。掘り起こし手段は、限定されないが、バックフォー等の重機を用いるのが一般的である。
そして、該掘り起こした土壌と、上記組成混合物とを、1:0.8〜1.2の割合で大型のミキサー等で混合撹拌する。ここで、汚染土壌と組成混合物との混合比を1:0.8〜1:1.2の割合としたのは、汚染の度合いによって、汚染が重い場合には、土壌の割合を少なくして1:0.8程度とし、逆に汚染の度合いが軽い場合には土壌の割合を多くして1:1.2程度とし、且つ、この1:0.8〜1:1.2の範囲であるなら、山砂との関係で固化後にポーラスな間隙を形成できると共に強度を維持することができるからである。
上記混合の際、必要に応じて水を添加し、次いで、上記組成混合物と汚染土壌及び必要に応じて水を撹拌混合したものを、該現場又はその現場付近において、固化前の未だ混合によるモルタル状態にあるうちに埋め戻しする。つまり、固化前の可動性のあるうちに、掘り起こした現場又はその付近に混合物を埋め戻すことで、その地形、形態にあった形状での埋め戻しを可能とする。
斯くして埋め戻しすると、8〜10時間程度で固化が始まり、約2〜5日程度で該汚染物質を含んだ土壌を該組成混合物で囲繞した状態で固化が完了する。
Next, as shown in FIG. 2, in a site that may have soil containing contaminants, soil containing contaminants such as heavy metals, chemicals, and VOCs is dug up at the site. The digging and raising means is not limited, but a heavy machine such as a back-for is generally used.
Then, the excavated soil and the composition mixture are mixed and stirred with a large mixer or the like at a ratio of 1: 0.8 to 1.2. Here, the mixing ratio of the contaminated soil and the composition mixture was set to a ratio of 1: 0.8 to 1: 1.2 because, depending on the degree of contamination, when the contamination was heavy, the ratio of the soil was decreased. When the degree of contamination is light, the ratio of soil is increased to about 1: 1.2, and in the range of 1: 0.8 to 1: 1.2. If there is, a porous gap can be formed after solidification in relation to mountain sand and strength can be maintained.
At the time of the mixing, water is added as necessary, and then the mixture mixture, the contaminated soil and water mixed as necessary are stirred and mixed at the site or in the vicinity thereof before the solidification. Backfill while in state. In other words, by refilling the mixture at or near the excavated site while it is movable before solidification, it is possible to backfill in a shape suitable for the topography and form.
Thus, when it is backfilled, solidification starts in about 8 to 10 hours, and solidification is completed in a state in which the soil containing the pollutant is surrounded by the composition mixture in about 2 to 5 days.

固化が完了した後には、そこを住宅、駐車場等に利用し、又、その上に盛土等して木々を植樹し庭、公園等に利用する。 After solidification is completed, it will be used for houses, parking lots, etc., and on top of it, trees will be planted and used for gardens, parks, etc.

次に、本発明汚染土壌の改良方法に伴う作用効果について、以下に説明する。
本発明は、例えば、住宅、駐車場、植樹等の建設、利用が予定される箇所であって、そこが過去に工場、クリーニング店、コインランドリー等稼働により重金属、薬品、VOC等の汚染物質を含む恐れのある土壌である場合を対象とする。
当該現場にあって、先ず、上記汚染の恐れのある土壌を掘り起こし、それを上記組成混合物と混合撹拌すると、分散されたポルトランドセメント等と水とが反応を起こし、汚染物質を含んだ土壌をポルトランドセメントが全周域に渡って囲繞した状態のままに固化され、汚染物質の漏洩、拡散を防止する。
このとき、重金属、農薬等の薬品は、土壌に溶解し易い性状なので、その重金属、農薬等を含んだ土壌がポルトランドセメントによって囲繞、固化され、そこからの漏洩、拡散を防止する。しかし一方で、VOCは土壌に溶解され難い性状を有し、そのままでは漏洩等の恐れがあるが、混合された炭の存在によって、その多孔質部分に吸着され、その炭をポルトランドセメントが囲繞するので同様に漏洩、拡散が抑制される。
又、上記現場における汚染物質を含む土壌は、過剰の水分を含んでドロドロ状態となっている場合が少なくない。斯かる場合には、パーライトが作用し、該パーライトが余分な水分を吸水し、土壌と組成混合物とが埋め戻り等に適したモルタル状態とし、且つ、その後の固化反応に必要な最低限の水分量に調整することが出来る。
上記の通りノニオン系界面活性剤によって、ポルトランドセメントの分散が均一且つ良好になされると、山砂、土壌等の囲繞は効率的で可及的に薄い層で可能となり、固化反応後には、各粒子との間に間隙(空孔)が形成される。即ち、ノニオン系界面活性剤によって十分に分散されたポルトランドセメントは、山砂、土壌等を十分に囲繞し、固化した後にその周囲に土壌をポーラスな状態とすることができる。その結果、通水性と通気性を維持することができ、例えば、そこに植樹をする際等に植生に優れた土壌とすることができる。
又、山砂は一種の骨材として機能するので、固化後の土壌に一定の強度を付与することができ、例えば、土壌の上に住宅、その他の建築物等を建てる際に、その基礎としての強度を保持する。
又、土壌に無機系顔料を配合すれば、処理前の土壌と処理後の土壌とを無機顔料の色によって視覚的に判別することができ、処理前の土壌と処理後の土壌を混同する等の弊を避けることができる。
Next, the effect which accompanies the improvement method of this invention contaminated soil is demonstrated below.
The present invention is, for example, a place where construction, use, etc. of a house, a parking lot, a tree planting, etc. are scheduled, and this includes pollutants such as heavy metals, chemicals, VOCs, etc. due to operations in factories, cleaning shops, coin laundry, etc. Applicable when the soil is a fear.
At the site, first, the soil with the possibility of contamination is dug up, and when it is mixed and stirred with the above composition mixture, the dispersed Portland cement etc. reacts with water, and the soil containing the pollutant is converted into the Portland cement. It is solidified in a state of being surrounded by the entire area, preventing leakage and diffusion of pollutants.
At this time, since chemicals such as heavy metals and agricultural chemicals are easily dissolved in the soil, the soil containing the heavy metals and agricultural chemicals is surrounded and solidified by Portland cement, thereby preventing leakage and diffusion therefrom. However, on the other hand, VOC has properties that are difficult to dissolve in the soil, and there is a risk of leakage or the like as it is, but due to the presence of mixed charcoal, it is adsorbed by the porous portion, and Portland cement surrounds the charcoal. Therefore, leakage and diffusion are similarly suppressed.
Moreover, the soil containing the pollutants in the field often contains excessive moisture and is in a muddy state. In such a case, pearlite acts, the pearlite absorbs excess moisture, and the soil and the composition mixture are in a mortar state suitable for backfilling and the minimum moisture necessary for the subsequent solidification reaction. The amount can be adjusted.
As described above, when the Portland cement is uniformly and satisfactorily dispersed by the nonionic surfactant, the sand such as mountain sand and soil can be efficiently and as thin as possible, and after the solidification reaction, A gap (hole) is formed between the particles. That is, Portland cement sufficiently dispersed with a nonionic surfactant can sufficiently surround mountain sand, soil, and the like and solidify the soil, thereby making the soil porous. As a result, water permeability and air permeability can be maintained. For example, when planting trees there, the soil can be made excellent in vegetation.
In addition, mountain sand functions as a kind of aggregate, so it can give a certain level of strength to the solidified soil. For example, when building houses or other buildings on the soil, Keep the strength of.
Moreover, if an inorganic pigment is blended in the soil, the soil before treatment and the soil after treatment can be visually discriminated by the color of the inorganic pigment, and the soil before treatment and the soil after treatment are confused. You can avoid the problems.

この発明の実施例を、上記実施の形態に基づいて製作した。その実施状況を以下に説明する。
上記の形態に基づいて汚染物質吸着土壌改良組成混合物を製造するに当たり、次の配合で実施した。
組成混合物は、山砂600kg、炭40kg、ポルトランドセメント345kg、無機系顔料(ベンガラ)6kg、パーライト20kg及びノニオン系界面活性剤(ノニルフェニルエーテル系重合体)を3kg混合した。
上記配合によって製造された粒状混合物は、図1に混合状態を示し、図2および図3に汚染土壌の改良方法として断面で示す。図2は汚染土壌と該粒状混合物の混合している状態図を示し、汚染土壌を掘削した。第2段階で現地により大型ミキサー等で組成混合物と重量比1対1で混合した。第3段階で混合した組成混合物を流し込み用ホースで掘り起こした穴に埋め戻した。
An example of the present invention was manufactured based on the above embodiment. The implementation status will be described below.
In producing the pollutant-adsorbing soil improving composition mixture based on the above form, the following formulation was carried out.
The composition mixture was prepared by mixing 600 kg of mountain sand, 40 kg of charcoal, 345 kg of Portland cement, 6 kg of inorganic pigment (Bengara), 20 kg of pearlite and 3 kg of nonionic surfactant (nonylphenyl ether polymer).
The granular mixture produced by the above blending is shown in FIG. 1 in a mixed state, and in FIG. 2 and FIG. 3 in cross section as a method for improving contaminated soil. FIG. 2 shows a state diagram in which the contaminated soil and the granular mixture are mixed, and the contaminated soil is excavated. In the second stage, the mixture was mixed with the composition mixture at a weight ratio of 1: 1 with a large mixer. The composition mixture mixed in the third stage was backfilled in the hole dug up by the pouring hose.

上記実施例に基づいて製作したこの発明の試料を、汚染土壌と組成混合物を重量比1対1で混合し、環境基準環境庁告示第46号に基づき溶出試験を行なった。測定方法および その結果を以下に説明する。
台湾原土の汚染土壌と組成混合物を重量比1対1で混合したもの、10cm×10cmの型枠の中に上記混合物を詰め込み、散水をして組成混合物と水を反応させ固化をさせた後に、2mm以下に破砕し純水に浸し、6時間振動させてろ過し、環境庁告示第46号に基づく溶出試験方法にて溶出試験を行なった。実際の機関については財団法人栃木県環境技術協会にて検査を行なった。
The sample of the present invention manufactured based on the above-mentioned example was mixed with contaminated soil and a composition mixture at a weight ratio of 1: 1, and an elution test was conducted based on Environmental Standard Environment Agency Notification No. 46. The measurement method and the results are described below.
After mixing the contaminated soil of Taiwan original soil and the composition mixture at a weight ratio of 1: 1, the mixture is packed in a 10 cm × 10 cm formwork, and after watering, the composition mixture and water are reacted to solidify. The mixture was crushed to 2 mm or less, soaked in pure water, vibrated for 6 hours, filtered, and an elution test was conducted by an elution test method based on Environment Agency Notification No. 46. The actual organization was inspected by the Tochigi Environmental Technology Association.

上表は、処理前の溶出試験結果である。 The above table shows the dissolution test results before treatment.

上表は、処理後の溶出試験結果である。 The above table shows the dissolution test results after treatment.

上表に示される如く、処理前に0.53m/lの銅の溶出が処理後には0.02mg/lに、0.04mg/lの亜鉛の溶出が0.02mg/lに軽減され、本発明による処理が有効であることが確認された。 As shown in the table above, the elution of 0.53 m / l copper before treatment was reduced to 0.02 mg / l after treatment, and the elution of 0.04 mg / l zinc was reduced to 0.02 mg / l. It was confirmed to be effective.

本発明は、工場跡地、住宅、駐車場等で重金属等の汚染物質を含む土壌の有効活用に広く利用が可能である。 INDUSTRIAL APPLICABILITY The present invention can be widely used for effective utilization of soil containing pollutants such as heavy metals in factory sites, houses, parking lots, and the like.

図1は、混合する対象物と該組成混合物の混合状況を示す模式図である。FIG. 1 is a schematic diagram illustrating a mixing state of an object to be mixed and the composition mixture. 図2は、汚染土壌の掘削状況を示す模式図である。FIG. 2 is a schematic diagram showing the excavation status of contaminated soil. 図3は、汚染土壌と該組成混合物の埋め戻し状況を示す模式図である。FIG. 3 is a schematic diagram showing the backfill of contaminated soil and the composition mixture.

Claims (2)

平均粒子径10mm以下の山砂100重量部と、平均粒子径5mm以下の炭5〜15重量部と,ポルトランドセメント60〜65重量部、パーライト4〜10重量部およびノニオン系界面活性剤とを混合して成る組成混合物と、掘り起こした重金属、農薬、VOCのうち少なくともいずれか一つを含む土壌とを、1:0.8〜1.2の割合で混合撹拌し、
該組成混合物と汚染物質を含んだ土壌と必要に応じて水とを撹拌混合したものを固化前の未だ混合によるモルタル状態にあるうちに掘り起こした現場又はその付近に埋め戻し、
該埋め戻された汚染土壌を該組成混合物で囲繞した状態で固化させることを特徴とする汚染土壌の改良方法。
100 parts by weight of sand with an average particle diameter of 10 mm or less, 5-15 parts by weight of charcoal with an average particle diameter of 5 mm or less, 60-65 parts by weight of Portland cement, 4-10 parts by weight of pearlite, and a nonionic surfactant And a mixture containing at least one of the excavated heavy metal, pesticide and VOC at a ratio of 1: 0.8 to 1.2,
Backfilling at or near the site where the composition mixture and the soil containing the pollutant and water as needed are stirred and mixed while still in the mortar state by mixing before solidification,
A method for improving contaminated soil, comprising solidifying the backfilled contaminated soil surrounded by the composition mixture.
組成混合物に無機系顔料を含ませた請求項1記載の汚染土壌の改良方法。 The method for improving contaminated soil according to claim 1, wherein an inorganic pigment is contained in the composition mixture.
JP2008132298A 2008-05-20 2008-05-20 Method for improving contaminated soil Expired - Fee Related JP5308068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008132298A JP5308068B2 (en) 2008-05-20 2008-05-20 Method for improving contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008132298A JP5308068B2 (en) 2008-05-20 2008-05-20 Method for improving contaminated soil

Publications (2)

Publication Number Publication Date
JP2009279492A JP2009279492A (en) 2009-12-03
JP5308068B2 true JP5308068B2 (en) 2013-10-09

Family

ID=41450527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008132298A Expired - Fee Related JP5308068B2 (en) 2008-05-20 2008-05-20 Method for improving contaminated soil

Country Status (1)

Country Link
JP (1) JP5308068B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6184149B2 (en) * 2012-10-11 2017-08-23 太平洋セメント株式会社 Fired product
JP7441685B2 (en) 2020-03-10 2024-03-01 太平洋マテリアル株式会社 Fluidized soil and its manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10230296A (en) * 1997-02-18 1998-09-02 Seibutsu Kankyo Syst Kogaku Kenkyusho:Kk Granulating method of waste sludge and waste soil
JP3794778B2 (en) * 1997-04-24 2006-07-12 大成建設株式会社 Soil purification and its effective use
JP2954569B1 (en) * 1998-05-14 1999-09-27 太平工業株式会社 Granulated material containing trivalent chromium
JP4470449B2 (en) * 2003-10-31 2010-06-02 株式会社大林組 Purification method for contaminated clay soil
JP2005162895A (en) * 2003-12-03 2005-06-23 Sumitomo Osaka Cement Co Ltd Material for hardening harmful substance
JP2006307595A (en) * 2005-05-02 2006-11-09 Nippon Glass Kogyo Kk Underfloor structural block body having moisture absorbing and effluent characteristics, and its forming method
JP4743623B2 (en) * 2006-06-02 2011-08-10 日本硝子工業株式会社 Block using purified water generation soil and manufacturing method thereof

Also Published As

Publication number Publication date
JP2009279492A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
CN101773928B (en) In-situ solidification and segregation treatment method of heavy-metal industrial polluted field
CN103756682B (en) Repair solidifying agent and the methods for making and using same of high density multi-metal contaminated site
US20200338378A1 (en) Method and reagents for treating materials contaminated with mercury, pfas, or other contaminants
CN111303888A (en) Heavy metal combined pollution soil stabilization repairing agent with low environmental risk, and preparation method and application thereof
JP2009112970A (en) Mixture for preventing diffusion of contaminating component and method of preventing diffusion of contaminating component
JP2006247645A (en) Modification treatment agent, modification treatment method of heat history silicate and binding shape body modified it
JP5308068B2 (en) Method for improving contaminated soil
JP4687969B2 (en) Methods for insolubilizing hazardous substances
JP5431682B2 (en) Block body using general waste incineration ash
JP4859458B2 (en) On-site treatment system for improved residual soil
KR100356344B1 (en) Founding method of wall for blocking a leachate from a buried wastes
JP2006111489A (en) Solidification method and solidifying agent used in the same
JP2012110852A (en) Insolubilizing agent for soil contaminated with heavy metals or the like, and insolubilization method
JP4663905B2 (en) Heavy metal elution inhibitor and heavy metal elution control method for heavy metal contaminated soil
JP2007216069A (en) Treating method of contaminated soil
JP2005131574A (en) Insolubilization method of heavy metal contaminated soil
JP2012161735A (en) Method of insolubilizing harmful substance
JP2002029812A (en) Method of reducing eluting quantity of heavy metal in cement-based solidified soil using artificial zeolite
JP2004154744A (en) Decontaminating material for soil contaminated with organochlorine compound, and contaminated soil decontamination method using the same
Bose et al. Stabilized Pond Ash Barrier in Municipal Solid Waste Landfill
JP2010005624A (en) Mixture for preventing diffusion of contaminating components and method of preventing diffusion of contaminating components
JP3966371B2 (en) Containment method for spilled heavy metals from waste final disposal site
KR100574025B1 (en) Capping materials for in situ treating contaminant sediment in water, method for preparing the same and method for deploying with the same
JPH0731955A (en) Method for hardening contaminated coil
KR20120021031A (en) A water leakage preventing layer, and construction method of waste landfill liner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5308068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees