JP5307640B2 - Casting core - Google Patents

Casting core Download PDF

Info

Publication number
JP5307640B2
JP5307640B2 JP2009140182A JP2009140182A JP5307640B2 JP 5307640 B2 JP5307640 B2 JP 5307640B2 JP 2009140182 A JP2009140182 A JP 2009140182A JP 2009140182 A JP2009140182 A JP 2009140182A JP 5307640 B2 JP5307640 B2 JP 5307640B2
Authority
JP
Japan
Prior art keywords
core member
cavity
casting
core
outer core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009140182A
Other languages
Japanese (ja)
Other versions
JP2010284681A (en
Inventor
大介 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2009140182A priority Critical patent/JP5307640B2/en
Publication of JP2010284681A publication Critical patent/JP2010284681A/en
Application granted granted Critical
Publication of JP5307640B2 publication Critical patent/JP5307640B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve mold releasing property of a molding by a simple device configuration without reducing production efficiency in a core for casting. <P>SOLUTION: The core 4 of a casting mold 10 includes: an outer core member 1 protruded from a cavity bottom face 5a toward an inner side of a cavity 6 along the drawing direction of the molding and having at an outer face a core mold face contacting with a melt introduced into the cavity 6; and an inner core member 3 extended along the drawing direction at the inner side of the outer core member 1 and fixed at the inner circumferential face 1c of the outer core member 1 is a state of interposing a heat insulating film 2 for suppressing heat transfer from the outer core member 1. The inner circumferential face 1c is arranged to restrain the deformation of the inner core member 3 to a taper part 3a. An interval between a side face 1a and the inner circumferential face 1c in a direction orthogonal to the extracting direction is arranged to be larger at a tip side than at a base end side on the inner circumferential face 1c. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、鋳造用中子に関する。   The present invention relates to a casting core.

従来、例えば穴などの中空形状を有する部材を鋳造する場合には、鋳造型のキャビティ内に中子(鋳造用中子)を使用しているが、例えば、長い穴などのように、鋳造品(成形品)に求められる中空形状によっては、抜きテーパを十分な大きさに付けられない場合がある。この場合、鋳造後に鋳造品が収縮すると、中子に抱きついてしまい、中子を抜くのが困難になる。離型剤を塗布したり、中子を分解除去できるようにしたりすることも知られているが、いずれも成形品の生産効率を悪化させる原因となる。
このような中子の離型性を改善するための提案として、例えば、特許文献1に記載の技術が知られている。
特許文献1には、外部を線膨張係数の大きな(小さな)金属素材により形成すると共に、内部を線膨張係数の小さな(大きな)金属素材により形成し、成形品の抜き方向に直交する方向における前記線膨張係数の小さな(大きな)金属素材の割合を当該抜き方向に沿って小さく(大きく)したことを特徴とする鋳造型の中子が記載されている。
これらの鋳造型の中子によれば、成形品の抜き方向に直交する断面の熱変形の度合いが、鋳造型に固定された基端部に比べて先端部側で大きくなる。したがって、例えば、溶湯から熱を受けて成形時にストレートな形状となる中子は、冷却時には先端部がより大きく縮径してテーパ形状に変形するため、離型が容易となることが期待される。
Conventionally, when casting a member having a hollow shape such as a hole, a core (core for casting) is used in the cavity of the casting mold. For example, a cast product such as a long hole is used. Depending on the hollow shape required for the (molded product), the draft taper may not be sufficiently large. In this case, when the cast product contracts after casting, it is hugged by the core, and it becomes difficult to remove the core. It is also known to apply a mold release agent or to allow the core to be decomposed and removed, both of which cause the production efficiency of the molded product to deteriorate.
As a proposal for improving the releasability of such a core, for example, a technique described in Patent Document 1 is known.
In Patent Document 1, the outside is formed of a metal material having a large (small) linear expansion coefficient, and the inside is formed of a (large) metal material having a small linear expansion coefficient, and the direction in the direction perpendicular to the drawing direction of the molded product is described above. A casting mold core is described in which the proportion of a metal material having a small (large) linear expansion coefficient is made small (large) along the drawing direction.
According to the cores of these casting molds, the degree of thermal deformation of the cross section orthogonal to the drawing direction of the molded product is greater on the distal end side than on the base end fixed to the casting mold. Therefore, for example, a core that receives heat from the molten metal and has a straight shape at the time of molding is expected to be easy to release because the tip portion is further reduced in diameter and deformed into a tapered shape at the time of cooling. .

特開平5−104201号公報JP-A-5-104201

しかしながら、上記のような従来の鋳造用中子には、以下のような問題があった。
特許文献1に記載の技術では、線膨張係数の異なる金属素材を組合せた二重構造の中子を用い、それぞれの金属素材の線膨張率の差によって、中子の外形が、溶湯充填時に成形品の中空形状に合致する形状となり、冷却時に先端の外形寸法が縮小して、離型性を向上する形状となるようにしている。このため、溶湯からの熱は、中子全体に伝熱されるため、線膨張係数の小さい金属素材も加熱されて熱膨張に寄与する。
離型性を向上するため、中子には大きな形状変化を起こさせる必要があるが、形成すべき中空形状によっては中子全体の熱容量が大きくなりすぎ、成形時の中子の熱変形が少なく、その結果、冷却時におけるテーパの大きさも小さくなり、十分な離型性が得られない場合があるという問題がある。
中子の熱変形を大きくするために、溶湯の温度を上げることも考えられるが、冷却時間が増大するため製造効率が低下したり、成形設備の寿命が低下したりするといった問題がある。
また、同様に、鋳造型や中子に冷却装置を設けることで、中子には大きな形状変化を起こさせることも考えられるが、鋳造型の構造や鋳造装置が複雑となり、製造コストが増大してしまうという問題がある。
However, the conventional casting core as described above has the following problems.
In the technique described in Patent Document 1, a core having a double structure in which metal materials having different linear expansion coefficients are combined is used, and the outer shape of the core is formed at the time of filling the molten metal due to the difference in linear expansion coefficient of each metal material. The shape matches the hollow shape of the product, and the outer dimensions of the tip are reduced during cooling to improve the releasability. For this reason, since the heat from the molten metal is transferred to the entire core, the metal material having a small linear expansion coefficient is also heated and contributes to the thermal expansion.
In order to improve releasability, it is necessary to cause a large shape change in the core. However, depending on the hollow shape to be formed, the heat capacity of the entire core becomes too large and thermal deformation of the core during molding is small. As a result, there is a problem in that the taper size at the time of cooling becomes small and sufficient releasability may not be obtained.
In order to increase the thermal deformation of the core, it is conceivable to raise the temperature of the molten metal, but there are problems such as an increase in cooling time and a decrease in production efficiency and a decrease in the life of the molding equipment.
Similarly, it may be possible to cause a large shape change in the core by providing a cooling device for the casting mold or core. However, the structure of the casting mold and the casting apparatus are complicated, and the manufacturing cost increases. There is a problem that it ends up.

本発明は、上記のような問題に鑑みてなされたものであり、製造効率を低下させることなく、かつ簡素な装置構成により、成形品の離型性を向上することができる鋳造用中子を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a casting core that can improve the releasability of a molded product without reducing the production efficiency and with a simple apparatus configuration. The purpose is to provide.

上記の課題を解決するために、請求項1に記載の発明では、溶湯から成形品を鋳造する鋳造型のキャビティ内に設けられた鋳造用中子であって、前記キャビティの内面から前記キャビティの内部側に向かって、前記成形品の抜き方向に沿って突設され、前記キャビティ内に導入される前記溶湯に接触する中子型面が外表面に形成された外中子部材と、該外中子部材の内側で前記抜き方向に沿って延ばされ、前記外中子部材からの伝熱を抑制する断熱層部を挟んで前記外中子部材の内側の固定部で固定された内中子部材とを備え、前記外中子部材の内側の固定部は、少なくとも、前記キャビティの内面近傍の基端固定部と、前記キャビティの内部側の先端部における先端固定部とにおいて、それぞれ前記内中子部材の外周面に対する前記外中子部材の内側の変形を拘束するように設けられるとともに、前記基端固定部から前記先端固定部までの前記各固定部における、前記抜き方向に対する側面側の前記外中子部材の外周面と前記固定部との、前記抜き方向に直交する方向の各間隔が、前記基端固定部側よりも前記先端固定部側の方が大きな間隔となるように設けられた構成とする。   In order to solve the above-mentioned problem, in the invention according to claim 1, a casting core provided in a cavity of a casting mold for casting a molded product from a molten metal, the inner surface of the cavity from the inner surface of the cavity. An outer core member projecting along the drawing direction of the molded product toward the inner side and having a core mold surface formed on the outer surface contacting the molten metal introduced into the cavity; Inner core that is extended along the drawing direction inside the core member and fixed by a fixing portion inside the outer core member with a heat insulating layer portion that suppresses heat transfer from the outer core member interposed therebetween A fixing member on the inner side of the outer core member, and at least a base end fixing portion in the vicinity of the inner surface of the cavity and a tip fixing portion at a tip portion on the inner side of the cavity, respectively. The outer core with respect to the outer peripheral surface of the core member An outer peripheral surface of the outer core member on the side surface side with respect to the pulling direction and the fixing in each of the fixing portions from the base end fixing portion to the tip fixing portion. It is configured that each interval in a direction perpendicular to the drawing direction with respect to the portion is provided such that the distal end fixing portion side is larger than the proximal end fixing portion side.

請求項2に記載の発明では、請求項1に記載の鋳造用中子において、前記内中子部材は、前記キャビティの内面から前記キャビティの内部側に向かって、外形寸法が減少する凸部を備え、前記外中子部材は、前記内中子部材の前記凸部に沿う形状の凹部を有するともに、該凹部の内周面から前記中子型面までの前記抜き方向に直交する断面での厚さが、前記キャビティの内面から前記キャビティの内部側に向かって増大する形状に設けられ、前記断熱層部は、前記内中子部材の前記凸部の外周面と前記外中子部材の前記凹部の内周面との間に挟まれている構成とする。   According to a second aspect of the present invention, in the casting core according to the first aspect, the inner core member has a convex portion whose outer dimension decreases from the inner surface of the cavity toward the inner side of the cavity. The outer core member has a concave portion along the convex portion of the inner core member, and has a cross section orthogonal to the extraction direction from the inner peripheral surface of the concave portion to the core mold surface. The thickness is provided in a shape that increases from the inner surface of the cavity toward the inner side of the cavity, and the heat insulating layer portion includes an outer peripheral surface of the convex portion of the inner core member and the outer core member. It is set as the structure pinched | interposed between the internal peripheral surfaces of a recessed part.

請求項3に記載の発明では、請求項1に記載の鋳造用中子において、前記外中子部材は、前記キャビティの内面の側に開口部を有する筒状壁体部と、該筒状壁体部を前記キャビティの内部側で覆うように設けられた先端側壁体部とを備え、前記基端固定部が前記筒状壁体部の前記開口部に、前記先端固定部が前記先端側壁体部の中心部にそれぞれ設けられ、前記基端固定部および前記先端固定部の間において、前記内中子部材の外周面と、前記筒状壁体部および前記先端側壁体部の内周面との間が離間されて中空部が形成されている構成とする。   According to a third aspect of the present invention, in the casting core according to the first aspect, the outer core member includes a cylindrical wall body portion having an opening on the inner surface side of the cavity, and the cylindrical wall. A distal end side wall body portion provided so as to cover the body portion on the inner side of the cavity, the proximal end fixing portion at the opening of the cylindrical wall body portion, and the distal end fixing portion at the distal end side wall body. An outer peripheral surface of the inner core member, and an inner peripheral surface of the cylindrical wall body portion and the distal side wall body portion between the proximal end fixing portion and the distal end fixing portion. It is set as the structure by which the space | interval was spaced apart and the hollow part was formed.

請求項4に記載の発明では、請求項3に記載の鋳造用中子において、前記中空部は、真空状態に設けられた構成とする。   According to a fourth aspect of the present invention, in the casting core according to the third aspect, the hollow portion is provided in a vacuum state.

請求項5に記載の発明では、請求項1〜4のいずれかに記載の鋳造用中子において、前記外中子部材は、前記キャビティの外部へ前記溶湯から受けた熱を放熱する放熱部を備える構成とする。   According to a fifth aspect of the present invention, in the casting core according to any one of the first to fourth aspects, the outer core member includes a heat radiating portion that radiates heat received from the molten metal to the outside of the cavity. It is set as the structure provided.

請求項6に記載の発明では、請求項1〜5のいずれかに記載の鋳造用中子において、前記断熱層部は、空隙部を有する構成とする。   In invention of Claim 6, in the core for casting in any one of Claims 1-5, the said heat insulation layer part is set as the structure which has a space | gap part.

請求項7に記載の発明では、請求項6に記載の鋳造用中子において、前記空隙部は、真空状態に設けられた構成とする。   According to a seventh aspect of the present invention, in the casting core according to the sixth aspect, the gap is provided in a vacuum state.

請求項8に記載の発明では、請求項1〜7のいずれかに記載の鋳造用中子において、前記外中子部材を構成する材料の線膨張係数は、前記内中子部材を構成する材料の線膨張係数よりも大きい構成とする。   According to an eighth aspect of the present invention, in the casting core according to any one of the first to seventh aspects, a linear expansion coefficient of a material constituting the outer core member is a material constituting the inner core member. It is set as a structure larger than the linear expansion coefficient.

本発明の鋳造用中子によれば、断熱層部によって内中子部材の熱膨張を抑制することができ、溶湯からの熱を受けて、主に外中子部材が温度変化に応じて膨張、収縮することで、冷却時に先端側が細る形状を形成することができるため、製造効率を低下させることなく、かつ簡素な装置構成により、成形品の離型性を向上することができるという効果を奏する。   According to the casting core of the present invention, the thermal expansion of the inner core member can be suppressed by the heat-insulating layer portion, and the outer core member mainly expands according to the temperature change by receiving heat from the molten metal. By shrinking, it is possible to form a shape in which the tip side is narrowed at the time of cooling, so that it is possible to improve the releasability of the molded product without reducing the manufacturing efficiency and with a simple device configuration. Play.

本発明の第1の実施形態に係る鋳造用中子の概略構成を示す模式的な断面図、そのA視の側面図、およびB−B断面図である。It is typical sectional drawing which shows schematic structure of the core for casting which concerns on the 1st Embodiment of this invention, the side view of the A view, and BB sectional drawing. 本発明の第1の実施形態に係る鋳造用中子を用いた鋳造型で成形された成形品の一例を示す模式的な斜視図である。It is a typical perspective view which shows an example of the molded product shape | molded with the casting die using the core for casting which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る鋳造用中子を用いた成形工程を説明する工程説明図である。It is process explanatory drawing explaining the shaping | molding process using the core for casting which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態の変形例に係る鋳造用中子の概略構成を示す模式的な断面図、そのC視の側面図、D−D断面図、およびE−E断面図である。It is typical sectional drawing which shows schematic structure of the core for casting which concerns on the modification of the 1st Embodiment of this invention, the side view of the C view, DD sectional drawing, and EE sectional drawing. 本発明の第2の実施形態に係る鋳造用中子の概略構成を示す模式的な断面図、そのF視の側面図、およびG−G断面図である。It is typical sectional drawing which shows schematic structure of the core for casting which concerns on the 2nd Embodiment of this invention, the side view of the F view, and GG sectional drawing. 本発明の第2の実施形態に係る鋳造用中子を用いた成形工程を説明する工程説明図である。It is process explanatory drawing explaining the shaping | molding process using the core for casting which concerns on the 2nd Embodiment of this invention. 本発明の第1および第2の実施形態に係る鋳造用中子に好適に用いることができる断熱層部の他例を示す模式的な部分拡大断面図である。It is a typical partial expanded sectional view which shows the other example of the heat insulation layer part which can be used suitably for the core for casting which concerns on the 1st and 2nd embodiment of this invention.

以下では、本発明の実施形態について添付図面を参照して説明する。すべての図面において、実施形態が異なる場合であっても、同一または相当する部材には同一の符号を付し、共通する説明は省略する。   Embodiments of the present invention will be described below with reference to the accompanying drawings. In all the drawings, even if the embodiments are different, the same or corresponding members are denoted by the same reference numerals, and common description is omitted.

[第1の実施形態]
本発明の第1の実施形態に係る鋳造用中子について説明する。
図1(a)は、本発明の第1の実施形態に係る鋳造用中子の概略構成を示す模式的な断面図である。図1(b)、(c)は、それぞれ図1(a)におけるA視の側面図およびB−B断面図である。図2は、本発明の第1の実施形態に係る鋳造用中子を用いた鋳造型で成形された成形品の一例を示す模式的な斜視図である。
[First Embodiment]
The casting core according to the first embodiment of the present invention will be described.
Fig.1 (a) is typical sectional drawing which shows schematic structure of the core for casting which concerns on the 1st Embodiment of this invention. FIGS. 1B and 1C are a side view and a cross-sectional view taken along line BB in FIG. 1A, respectively. FIG. 2 is a schematic perspective view showing an example of a molded product molded with a casting mold using the casting core according to the first embodiment of the present invention.

本実施形態の中子4は、図1(a)に示すように、溶湯から成形品を鋳造する鋳造型10のキャビティ6内に設けられた鋳造用中子である。
以下では、鋳造される成形品が、一例として、図2に示すような成形品8Bの場合の例で説明する。
成形品8Bは、直径Dの円筒面状の側面8cが一方向に長さLだけ延ばされ、一方の端面8bが開口され、他方の端面8dが底面を形成する有底円筒部材である。
成形品8Bは、長手方向の一方の端面8bの中心から内部側に向かって、直径D(ただし、D<D)、深さL(ただし、L<L)を有し、側面8cと同軸の円筒穴を構成する穴内周面8aを備えている。ここで、直径Dと長さL、および直径Dと長さLは、それぞれD<L、D<Lの関係にある。
成形品8Bの抜き方向(以下、単に抜き方向と称する)は、側面8cおよび穴内周面8aの円筒部分の中心軸に沿う方向である。
The core 4 of this embodiment is a core for casting provided in a cavity 6 of a casting mold 10 for casting a molded product from a molten metal, as shown in FIG.
Hereinafter, an example in which the molded product to be cast is a molded product 8B as shown in FIG. 2 will be described.
Moldings 8B is a cylindrical surface shape of the side surface 8c of the diameter D 0 is extended by a length L 0 in one direction, one end face 8b is opened, a bottomed cylindrical member the other end face 8d is formed a bottom surface is there.
The molded product 8B has a diameter D (provided that D <D 0 ) and a depth L (provided that L <L 0 ) from the center of one end surface 8b in the longitudinal direction toward the inside, and a side surface 8c. A hole inner peripheral surface 8a constituting a coaxial cylindrical hole is provided. Here, the diameter D 0 and the length L 0 , and the diameter D and the length L are in a relationship of D 0 <L 0 and D <L, respectively.
The extraction direction of the molded product 8B (hereinafter simply referred to as the extraction direction) is a direction along the central axis of the cylindrical portion of the side surface 8c and the hole inner peripheral surface 8a.

なお、本実施形態の寸法関係は、鋳造型10から成形品8Bを抜いて取り出す際の温度における寸法関係が重要である。
そこで、以下では、上記直径D、D、長さL、Lは、成形品8Bの成形が完了して冷却され、鋳造型10から成形品8Bを取り出す際の成形品8Bの温度(以下、取り出し温度Tと称する)における寸法を意味するものとする。ただし、上記直径D、長さLについては、取り出し温度Tは、厳密に言えば、成形品8Bから中子4を抜く際の温度であるが、成形品8Bは迅速に抜くことができるので、簡単のため、取り出し作業中の成形品8Bの温度変化は無視できるものとする。
この取り出し温度Tは、溶湯全体の固化が終了する固化温度T以下であって、円滑に取り出し作業を行うことができる適宜の温度を採用することができる。このため、常温よりも高い温度、例えば、323K〜523K程度の温度であってもよい。
一方、取り出し温度Tにおいて、穴内周面8aの寸法を直径D×長さLに形成するためには、溶湯の固化温度Tにおいて、穴内周面8aの直径、長さが、それぞれ、D=D+ΔD、L=L+ΔLのように、D、Lよりもわずかに大きな寸法になっている必要がある(ΔD>0、ΔL>0)。
ΔD、ΔLの値は、溶湯の成形収縮による形状変化と、固化温度Tと取り出し温度Tとの間の熱収縮による形状変化とを合わせた寸法で、予め、算出しておくことができる。
In addition, the dimensional relationship in the temperature at the time of extracting the molded product 8B from the casting mold 10 and taking it out is important for the dimensional relationship of the present embodiment.
Therefore, in the following, the diameters D 0 and D and the lengths L 0 and L are the temperatures of the molded product 8B when the molded product 8B is taken out from the casting mold 10 after the molding of the molded product 8B is completed and cooled (hereinafter referred to as the temperature of the molded product 8B). , Referred to as take-out temperature Tt ). However, regarding the diameter D and the length L, the take-out temperature T t is strictly the temperature when the core 4 is removed from the molded product 8B, but the molded product 8B can be quickly extracted. For simplicity, it is assumed that the temperature change of the molded product 8B during the take-out operation can be ignored.
The take-out temperature T t is equal to or lower than the solidification temperature T k at which solidification of the entire molten metal ends, and an appropriate temperature at which the take-out operation can be performed smoothly can be employed. For this reason, the temperature may be higher than room temperature, for example, about 323K to 523K.
On the other hand, at the take-out temperature T t , in order to form the dimension of the hole inner peripheral surface 8a to diameter D × length L, the diameter and length of the hole inner peripheral surface 8a at the solidification temperature T k of the melt are respectively D The dimensions need to be slightly larger than D and L, such as k = D + ΔD and L k = L + ΔL (ΔD> 0, ΔL> 0).
The values of ΔD and ΔL can be calculated in advance with dimensions obtained by combining the shape change due to molding shrinkage of the molten metal and the shape change due to heat shrinkage between the solidification temperature T k and the take-off temperature T t. .

成形品8Bの材質は、鋳造型10および中子4の材質を適宜選択することにより、鋳造可能な適宜の金属材料を採用することができる。
例えば、アルミニウム合金の例としてはADC12、マグネシウム合金の例としてはMDC1Dなどを挙げることができる。この場合の固化温度Tは、凝固温度を採用することができる。
また、例えば、温度幅20K以上のガラス遷移領域を有する非晶質合金も好適である。本明細書では、非晶質合金の中でも温度幅20K以上のガラス遷移領域を有する合金を、金属ガラスと称する。この場合の固化温度Tは、ガラス遷移温度を採用することができる。
As the material of the molded product 8B, an appropriate metal material that can be cast can be adopted by appropriately selecting the material of the casting mold 10 and the core 4.
For example, ADC12 is an example of an aluminum alloy, and MDC1D is an example of a magnesium alloy. In this case, the solidification temperature T k may be a solidification temperature.
For example, an amorphous alloy having a glass transition region having a temperature width of 20 K or more is also suitable. In this specification, among amorphous alloys, an alloy having a glass transition region having a temperature range of 20 K or more is referred to as metallic glass. In this case, the glass transition temperature can be adopted as the solidification temperature T k .

金属ガラスは、複数の金属元素からなる金属原料の溶湯を、臨界冷却速度以上でガラス遷移温度以下になるまで急速冷却することにより形成される。非晶質合金は通常の結晶金属に見うけられるような結晶粒界を有さず、結晶粒界を起因とした粒界腐食(結晶粒界に沿って腐食が進行する現象)を生じないことから、耐食性に優れている。更に、結晶金属のような凝固収縮の発生が少ないことから、成形金型に対する高精度な転写性を有し、かつ熱に対して低膨張である。また、その物性として低ヤング率・高強度・高弾性であることが知られている。   The metallic glass is formed by rapidly cooling a molten metal raw material composed of a plurality of metallic elements until it reaches the glass transition temperature above the critical cooling rate. Amorphous alloys do not have the grain boundaries found in ordinary crystalline metals, and do not cause grain boundary corrosion (a phenomenon in which corrosion progresses along the grain boundaries) due to grain boundaries. Therefore, it has excellent corrosion resistance. Furthermore, since there is little occurrence of solidification shrinkage like crystalline metal, it has high-accuracy transferability to the molding die and low expansion against heat. Further, it is known that the physical properties are low Young's modulus, high strength, and high elasticity.

また、金属ガラスは金属材料が以下の(I)〜(III)の3条件を満足している場合に得られやすいもので、上記の非晶質合金の特性のみにより決まるものではない。
(I)3種類以上の金属元素を含むこと。
(II)前記3種以上の金属元素が、12%以上異なる原子径を有すること。例えば、大、中、小の大きさの金属元素が互いに12%以上異なる原子径を有すること。
(III)各金属元素が化合物化しやすいこと。すなわち、それぞれの金属元素が互いに引きあう性質を有すること。
金属ガラスとしては、ジルコニウム(Zr)基合金、鉄(Fe)基合金、チタン(Ti)基合金、マグネシウム(Mg)基合金などが挙げられる。
具体的な例としては、例えば、Zr55Cu30NiAl10、Fe75Ga12、Ni53Nb20Ti10ZrCoCuなどの組成を挙げることができる。
Further, the metallic glass is easily obtained when the metallic material satisfies the following three conditions (I) to (III), and is not determined only by the characteristics of the amorphous alloy.
(I) It contains three or more kinds of metal elements.
(II) The three or more metal elements have atomic diameters different by 12% or more. For example, large, medium, and small metal elements have atomic diameters different from each other by 12% or more.
(III) Each metal element is easily compounded. That is, each metal element has a property of attracting each other.
Examples of the metallic glass include a zirconium (Zr) based alloy, an iron (Fe) based alloy, a titanium (Ti) based alloy, and a magnesium (Mg) based alloy.
As a specific example, for example, a composition, such as Zr 55 Cu 30 Ni 5 Al 10 , Fe 75 Ga 5 P 12 C 4 B 4, Ni 53 Nb 20 Ti 10 Zr 8 Co 6 Cu 3.

金属ガラスは、上記で述べた非晶質合金の特性に加え、通常の非晶質合金よりもガラス遷移領域が大きく臨界冷却速度が遅いといった特徴を持っている。   In addition to the characteristics of the amorphous alloy described above, the metal glass has a characteristic that the glass transition region is larger and the critical cooling rate is slower than that of a normal amorphous alloy.

このような成形品8Bを鋳造するため、本実施形態の鋳造型10は、図1(a)、(b)、(c)に示すように、外型5、7、および中子4を備える。
外型5は、成形品8Bの端面8bおよび側面8cの形状を成形するために、それぞれに対応したキャビティ底面5aおよびキャビティ側面5bからなる円柱状の空間であるキャビティ6を構成するものである。キャビティ6の大きさは、溶湯材料の成形収縮率や線膨張係数を考慮して、直径D×長さLよりもわずかに大きな値に設定される。
キャビティ底面5aの中心には、中子4を取り付けるため、本実施形態では後述する外中子部材1の基端部の外径に合わせられた直径dの円孔状の中子取付部5cが厚さ方向に貫通して設けられている。
In order to cast such a molded product 8B, the casting mold 10 of this embodiment includes outer molds 5 and 7 and a core 4 as shown in FIGS. 1 (a), (b) and (c). .
The outer mold 5 constitutes a cavity 6 which is a cylindrical space composed of a cavity bottom surface 5a and a cavity side surface 5b corresponding to each of the end surface 8b and the side surface 8c of the molded product 8B. The size of the cavity 6 is set to a value slightly larger than the diameter D 0 × length L 0 in consideration of the molding shrinkage rate and linear expansion coefficient of the molten material.
In the center of the cavity bottom surface 5a, for attaching the core 4, which will be described later outer core member 1 of circular hole-shaped core mounting portion 5c of the diameter d 2 which is matched to the outer diameter of the proximal end portion in the present embodiment Are provided penetrating in the thickness direction.

外型7は、キャビティ6を、外型5のキャビティ底面5aに対向する側で覆うことにより、端面8dの形状を成形するものである。本実施形態ではキャビティ側面5bの内径より大きい円板部材を採用している。外型7の厚さ方向には、キャビティ6内に溶湯を導入するためのランナー部7aが設けられている。   The outer mold 7 forms the shape of the end face 8d by covering the cavity 6 with the side facing the cavity bottom surface 5a of the outer mold 5. In this embodiment, a disk member larger than the inner diameter of the cavity side surface 5b is employed. In the thickness direction of the outer mold 7, a runner portion 7 a for introducing molten metal into the cavity 6 is provided.

外型5、7の材質は、従来の鋳造型同様に、溶湯の金属材料に応じて、適宜の金属材料を採用することができる。例えば、放熱性の良好な金型鋼材であるSKD11(k=29(W/mK)、α=12.1×10−6(1/K))や超硬合金(WC)(k=85(W/mK)、α=5.5×10−6(1/K))などを採用することができる。
ここで、kは熱伝導率、αは線膨張係数を表す(以下も同じ)。
外型5、7は、キャビティ6に充填された溶湯の熱を鋳造型10の外周部に放熱して、迅速に冷却できるように、中子4に比べて熱容量が大きくなっている。
As the material of the outer molds 5 and 7, an appropriate metal material can be adopted according to the metal material of the molten metal as in the conventional casting mold. For example, SKD11 (k = 29 (W / mK), α = 12.1 × 10 −6 (1 / K)) or cemented carbide (WC) (k = 85 ( W / mK), α = 5.5 × 10 −6 (1 / K)) or the like can be employed.
Here, k represents thermal conductivity, and α represents a linear expansion coefficient (the same applies hereinafter).
The outer dies 5, 7 have a larger heat capacity than the core 4 so that the heat of the molten metal filled in the cavities 6 can be dissipated to the outer periphery of the casting mold 10 and cooled quickly.

中子4は、成形品8Bの中空形状である円筒穴状の穴内周面8aを形成する丸棒状の部材であり、外中子部材1、内中子部材3、および断熱膜2(断熱層部)を備える。   The core 4 is a round bar-shaped member that forms a cylindrical hole-shaped inner peripheral surface 8a that is a hollow shape of the molded product 8B. The outer core member 1, the inner core member 3, and the heat insulating film 2 (heat insulating layer) Part).

外中子部材1は、キャビティ6の内面であるキャビティ底面5aからキャビティ6の内部に向かって、成形品8Bの抜き方向に沿って突設され、キャビティ6内に導入される溶湯に接触する中子型面が外表面に形成された部材である。なお、以下では、特に断りなき寸法は、固化温度Tにおける値を表すものとする。
外中子部材1の外部形状は、突設方向の先端部において、側面視(図1(a)のA視)で直径dの円状の先端面1bと、先端面1bの外周端部から、突設方向の基端部である外型5のキャビティ底面5aまでの間に延ばされた側面1aとで形成されている。
先端面1bおよび側面1aは、外中子部材1の中子型面を構成している。
側面1aは、基端部の外径が直径d、先端部の外径が直径d(ただし、d<d)とされ、基端部と先端部の中間部の外径が基端部から先端部に向けて、直径dから直径dに漸次減少する円錐台形状を備える。
側面1aの中心軸の軸線方向は、抜き方向に沿うように設けられている。
また、外中子部材1の内部には、軸方向の貫通孔を構成する内周面1cが形成されている。この内周面1cの形状は、基端部の内径が直径dであり、基端側から先端側に向かって内径が漸次縮径されて、先端面1b(図1(b)参照)では、直径dに比べて小さい直径dとなるような、先端側に縮径された円錐台状の凹部を構成している。
内周面1cの中心軸線は、側面1aの中心軸線と同軸とされている。
The outer core member 1 protrudes from the cavity bottom surface 5 a that is the inner surface of the cavity 6 toward the inside of the cavity 6 along the drawing direction of the molded product 8 </ b> B, and is in contact with the molten metal introduced into the cavity 6. A child mold surface is a member formed on the outer surface. In the following, particularly if no dimensional otherwise denote the value of the solidification temperature T k.
The outer shape of the outer core member 1, in the projecting direction of the distal end portion, side view and circular distal end surface 1b of the diameter d 1 at (A view of the FIG. 1 (a)), the outer peripheral edge portion of the front end surface 1b To the cavity bottom surface 5a of the outer mold 5, which is the base end portion in the projecting direction, and the side surface 1a.
The tip surface 1b and the side surface 1a constitute a core surface of the outer core member 1.
In the side surface 1a, the outer diameter of the base end portion is the diameter d 2 and the outer diameter of the tip end portion is the diameter d 1 (where d 1 <d 2 ), and the outer diameter of the intermediate portion between the base end portion and the tip end portion is the base. A frustoconical shape gradually decreasing from the diameter d 2 to the diameter d 1 from the end to the tip is provided.
The axial direction of the central axis of the side surface 1a is provided along the drawing direction.
In addition, an inner peripheral surface 1c constituting an axial through hole is formed inside the outer core member 1. The shape of the inner peripheral surface 1c has an inner diameter of the proximal end portion is the diameter d 2, and the inner diameter toward the distal side from the proximal end side is gradually reduced in diameter, the distal end surface 1b (see FIG. 1 (b)) A truncated cone-shaped concave portion having a diameter reduced toward the tip side so as to have a diameter d 0 smaller than the diameter d 1 is formed.
The central axis of the inner peripheral surface 1c is coaxial with the central axis of the side surface 1a.

このため、外中子部材1の抜き方向に直交する断面は、図1(c)に示すように、外径d(ただし、d≧d>0)側面1aと、外径dよりも小径の内周面1cとで囲まれた円環状とされている。
このような形状により、外中子部材1の抜き方向に直交する断面での円環の径方向の厚さは、キャビティ底面5aからキャビティ6の内部側に向かって、0から(d−d)/2まで漸次増大している。
Therefore, a cross section perpendicular to the opening direction of the outer core member 1, as shown in FIG. 1 (c), the outer diameter d 3 (however, d 2 ≧ d 3> 0 ) and the side surface 1a, an outer diameter d 3 Further, it is an annular shape surrounded by an inner peripheral surface 1c having a smaller diameter.
With such a shape, the radial thickness of the ring in the cross section perpendicular to the drawing direction of the outer core member 1 is from 0 to (d 1 -d) from the cavity bottom surface 5 a toward the inside of the cavity 6. 0 ) / 2 gradually increasing.

外中子部材1の材質は、適宜の金属材料を採用することができるが、熱膨張係数が大きいことが好ましい。また、熱伝導率も大きいことがより好ましい。例えば、線膨張係数の大きさは、α≧10×10−6(1/K)が好ましく、熱伝導率の大きさは、k≧10(W/mK)であることが好ましい。
例えば、鉄系合金としては、SKD11やSUS303(k=16.3(W/mK)、α=17.2×10−6(1/K))、また、非鉄系金属としては、銅(Cu)(k=400(W/mK)、α=16.8×10−6(1/K))などを採用することができる。
As the material of the outer core member 1, an appropriate metal material can be adopted, but it is preferable that the coefficient of thermal expansion is large. Moreover, it is more preferable that thermal conductivity is also large. For example, the magnitude of the linear expansion coefficient is preferably α ≧ 10 × 10 −6 (1 / K), and the magnitude of the thermal conductivity is preferably k ≧ 10 (W / mK).
For example, SKD11 and SUS303 (k = 16.3 (W / mK), α = 17.2 × 10 −6 (1 / K)) are used as iron-based alloys, and copper (Cu ) (K = 400 (W / mK), α = 16.8 × 10 −6 (1 / K)) or the like can be employed.

内中子部材3は、外中子部材1の内周面1cに断熱膜2を介して固定可能な円錐もしくは円錐台状のテーパ部3aと、このテーパ部3aを、外型5の中子取付部5cに嵌合して取り付ける基端部3bとからなる棒状部材である。このため、内中子部材3は、外中子部材1の内側で成形品の抜き方向に沿って延ばされている。また、テーパ部3aは、キャビティ底面5aからキャビティ6の内部側に向かって、外形寸法が減少する凸部を構成している。
内中子部材3の材質は、本実施形態では、線膨張係数が、外中子部材1に比べて小さい適宜の金属材料、超硬合金、あるいはセラミックスなどの非金属材料を採用することができる。
例えば、鉄系合金としては、SKD11やSU303、また、超硬合金としては、タングステン・カーバイト(WC)(k=85(W/mK)、α=5.5×10−6(1/K))、非金属材料としては、アルミナ(k=32(W/mK)、α=7.1×10−6(1/K))などを採用することができる。
The inner core member 3 includes a conical or frustoconical taper portion 3a that can be fixed to the inner peripheral surface 1c of the outer core member 1 via the heat insulating film 2, and the taper portion 3a. It is a rod-shaped member comprising a base end portion 3b fitted and attached to the attachment portion 5c. For this reason, the inner core member 3 is extended along the drawing direction of the molded product inside the outer core member 1. Further, the tapered portion 3 a constitutes a convex portion whose outer dimension decreases from the cavity bottom surface 5 a toward the inside of the cavity 6.
As the material of the inner core member 3, in this embodiment, an appropriate metal material, a cemented carbide, or a non-metallic material such as a ceramic having a smaller linear expansion coefficient than that of the outer core member 1 can be adopted. .
For example, SKD11 and SU303 are used as iron-based alloys, and tungsten carbide (WC) (k = 85 (W / mK), α = 5.5 × 10 −6 (1 / K) as cemented carbide. )), Alumina (k = 32 (W / mK), α = 7.1 × 10 −6 (1 / K)) or the like can be used as the nonmetallic material.

断熱膜2は、外中子部材1と内中子部材3との間の伝熱を抑制するものである。
本実施形態では、外中子部材1の内周面1cと、内中子部材3のテーパ部3aとの間に、略一定の膜厚を有する薄膜層として設けられている。
断熱膜2を通した伝熱量は少なくなればなるほど望ましいが、薄膜層の熱伝導を0にすることは困難である。そのため、断熱膜2の材質は、外中子部材1および内中子部材3の材質の熱伝導率よりも低い熱伝導率を有する材質を採用し、外中子部材1および内中子部材3の間の単位時間当たりの熱伝導を低減することで伝熱を抑制している。外中子部材1および内中子部材3の材質の熱伝導率と、断熱膜2の材質の熱伝導との差は、大きければ大きいほど好ましい。
The heat insulating film 2 suppresses heat transfer between the outer core member 1 and the inner core member 3.
In the present embodiment, a thin film layer having a substantially constant film thickness is provided between the inner peripheral surface 1 c of the outer core member 1 and the tapered portion 3 a of the inner core member 3.
Although it is desirable that the amount of heat transfer through the heat insulating film 2 is smaller, it is difficult to reduce the heat conduction of the thin film layer to zero. Therefore, the material of the heat insulating film 2 is a material having a thermal conductivity lower than that of the material of the outer core member 1 and the inner core member 3, and the outer core member 1 and the inner core member 3 are used. Heat transfer is suppressed by reducing the heat conduction per unit time. The larger the difference between the thermal conductivity of the material of the outer core member 1 and the inner core member 3 and the thermal conductivity of the material of the heat insulating film 2, the better.

断熱膜2の材質としては、熱伝導率が低い適宜の材質を採用することができる。例えばセラミックスなどを好適に採用することができる。
断熱膜2の材質の例としては、窒化珪素(SiN)(k=20(W/mK)、α=2.6×10−6(1/K))、ジルコニア(ZrO)(k=3(W/mK)、α=7.9×10−6(1/K))、サイアロン(Si2−6Al2−8)のうち、例えばSiAl(k=21(W/mK)、α=2.6×10−6(1/K))、ホトベール(登録商標)(住金セラミックス(株)製、k=1.67(W/mK)、α=8.5×10−6(1/K))などを採用することができる。
断熱膜2は、材質にもよるが、例えば、蒸着や焼結などの方法で内中子部材3の表面であるテーパ部3aに直接形成する方法や、薄層構造や薄いフィルム状に構成して内中子部材3に装着、接合する方法などを採用することができる。
As a material of the heat insulating film 2, an appropriate material having a low thermal conductivity can be adopted. For example, ceramics can be preferably used.
Examples of the material of the heat insulating film 2 include silicon nitride (SiN) (k = 20 (W / mK), α = 2.6 × 10 −6 (1 / K)), zirconia (ZrO 2 ) (k = 3 (W / mK), α = 7.9 × 10 −6 (1 / K)), sialon (Si 2-6 Al 2 O 3 N 2-8 ), for example, Si 3 Al 2 O 3 N 4 ( k = 21 (W / mK), α = 2.6 × 10 −6 (1 / K)), Photovale (registered trademark) (manufactured by Sumikin Ceramics Co., Ltd., k = 1.67 (W / mK), α = 8.5 × 10 −6 (1 / K)) or the like can be employed.
Although the heat insulating film 2 depends on the material, for example, a method of directly forming the taper portion 3a which is the surface of the inner core member 3 by a method such as vapor deposition or sintering, or a thin layer structure or a thin film shape. For example, a method of attaching and joining the inner core member 3 can be employed.

また、内中子部材3、あるいは外中子部材1が、例えば鉄系合金などのように、断熱性の高い酸化皮膜を形成できる場合には、内中子部材3のテーパ部3c、あるいは外中子部材1の内周面1cを酸化させて、表面に形成された酸化皮膜を断熱膜2として用いてもよい。
この場合、他の材質をコーティングする場合に比べて、より厚い断熱膜を形成することができるので、断熱性を向上させやすい。
Further, when the inner core member 3 or the outer core member 1 can form an oxide film having high heat insulation properties, such as an iron alloy, for example, the tapered portion 3c of the inner core member 3 or the outer core member 3 is formed. The inner peripheral surface 1 c of the core member 1 may be oxidized and an oxide film formed on the surface may be used as the heat insulating film 2.
In this case, since a thicker heat insulating film can be formed as compared with the case where other materials are coated, it is easy to improve the heat insulating property.

このような構成の中子4は、例えば、機械的に加工して作成した内中子のテーパ面に蒸着、スパッタなどで断熱膜(例えばZrO)を形成し、機械的に加工して作成した外中子とロウ付けを行うことにより製造することが出来る。
また、外中子の線膨張係数が大きい材質を用いる場合は、外中子を加熱して膨張させた状態で内中子にかぶせて冷却を行うことで、しまりばめ状態として固定して中子4を得ることも可能である。
The core 4 having such a configuration is formed by, for example, forming a heat insulating film (for example, ZrO 2 ) by vapor deposition, sputtering, or the like on a tapered surface of an inner core formed by mechanical processing and mechanically processing the core 4. It can be manufactured by brazing with the outer core.
In addition, when using a material with a large linear expansion coefficient for the outer core, the outer core is heated and expanded, and then cooled by covering the inner core so that it is fixed as a tight fit. It is also possible to obtain a child 4.

このような構成により、外中子部材1の内周面1cは、キャビティ底面5a近傍からキャビティ6の内部側の先端部まで連続する外中子部材1の内側の固定部を構成しており、基端固定部および先端固定部を兼ねている。そして、内周面1cは、それぞれ内中子部材3の外周面であるテーパ部3aに対する変形が拘束されるように、断熱膜2を介して固定されている。抜き方向に対する側面側の外中子部材1の外周面である側面1aと固定部である内周面1cとの、抜き方向に直交する方向の間隔(外中子部材1の肉厚)は、いずれの位置でも、基端固定部側よりも先端固定部側の方が大きな間隔(厚さ)となるように設けられている。
また、外中子部材1の凹部の内周面から中子型面までの抜き方向に直交する断面での厚さが、キャビティ底面5aからキャビティ6の内部側に向かって増大する形状に設けられ、断熱膜2は、内中子部材3の凸部の外周面であるテーパ部3aと外中子部材1の凹部の内周面である内周面1cとの間に挟まれている。
With such a configuration, the inner peripheral surface 1c of the outer core member 1 constitutes a fixed portion inside the outer core member 1 that continues from the vicinity of the cavity bottom surface 5a to the inner tip of the cavity 6, It also serves as a base end fixing part and a tip fixing part. And the inner peripheral surface 1c is being fixed via the heat insulation film | membrane 2 so that the deformation | transformation with respect to the taper part 3a which is an outer peripheral surface of the inner core member 3 may be restrained, respectively. The distance (the thickness of the outer core member 1) in the direction perpendicular to the drawing direction between the side surface 1a that is the outer circumferential surface of the outer core member 1 on the side surface side and the inner circumferential surface 1c that is the fixed portion with respect to the drawing direction is At any position, the distal end fixing portion side is provided with a larger interval (thickness) than the proximal end fixing portion side.
Further, the thickness in the cross section perpendicular to the drawing direction from the inner peripheral surface of the recess of the outer core member 1 to the core mold surface is provided in a shape that increases from the cavity bottom surface 5 a toward the inside of the cavity 6. The heat insulating film 2 is sandwiched between the tapered portion 3 a that is the outer peripheral surface of the convex portion of the inner core member 3 and the inner peripheral surface 1 c that is the inner peripheral surface of the concave portion of the outer core member 1.

次に、本実施形態の中子4の作用について、鋳造型10による成形品8Bの成形方法ととともに説明する。
図3(a)、(b)は、本発明の第1の実施形態に係る鋳造用中子を用いた成形工程を説明する工程説明図である。
Next, the operation of the core 4 of the present embodiment will be described together with a method for forming the molded product 8B using the casting mold 10.
FIGS. 3A and 3B are process explanatory views illustrating a molding process using the casting core according to the first embodiment of the present invention.

まず、図1(a)に示すように、鋳造型10を組み立てる。
そして、外型7のランナー部7aからキャビティ6内に、成形品8Bを鋳造するための金属材料を加熱融解させた溶湯8Aを導入し、キャビティ6内に溶湯8Aを充填する。図3(a)は、この溶湯8Aの充填後における、外型7を除いた部分を示す。
溶湯8Aは、外型5のキャビティ底面5aおよびキャビティ側面5b、外中子部材1の側面1aおよび先端面1b、ならびに先端面1bに露出した断熱膜2にそれぞれ接触する。
外型5、外中子部材1、および断熱膜2は、溶湯8Aよりも低温のため、溶湯8Aの熱は、これら外型5、外中子部材1、および断熱膜2に熱伝導され、溶湯8Aの温度が低下するとともに、外型5、外中子部材1、および断熱膜2が加熱される。これによりそれぞれの温度分布が変化していく。
外型5、外中子部材1、および断熱膜2は、それぞれの温度上昇の大きさに応じて、熱膨張する。
First, as shown in FIG. 1A, a casting mold 10 is assembled.
Then, a molten metal 8A obtained by heating and melting a metal material for casting the molded product 8B is introduced from the runner portion 7a of the outer mold 7 into the cavity 6, and the molten metal 8A is filled into the cavity 6. Fig.3 (a) shows the part except the outer mold | type 7 after filling with this molten metal 8A.
The molten metal 8A comes into contact with the cavity bottom surface 5a and the cavity side surface 5b of the outer mold 5, the side surface 1a and the tip surface 1b of the outer core member 1, and the heat insulating film 2 exposed on the tip surface 1b.
Since the outer mold 5, the outer core member 1, and the heat insulating film 2 are lower in temperature than the molten metal 8A, the heat of the molten metal 8A is thermally conducted to the outer mold 5, the outer core member 1, and the heat insulating film 2, While the temperature of the molten metal 8A is lowered, the outer mold 5, the outer core member 1, and the heat insulating film 2 are heated. Thereby, each temperature distribution changes.
The outer mold 5, the outer core member 1, and the heat insulating film 2 are thermally expanded according to the magnitude of the respective temperature rises.

外型5に伝導された熱は、大部分が外型5を温度上昇させた後、外型5の外表面から外部に放熱される。外型5は、中子取付部5cで内中子部材3の基端部3bと接触しているため内中子部材3にも熱伝導するが、基端部3bの面積は外型5の外表面に比べて小さいから内中子部材3に伝熱される熱量は少ない。
一方、外中子部材1に伝導された溶湯8Aからの熱は、外中子部材1の内部に熱伝導して、断熱膜2に到達するが、断熱膜2の熱伝導率は、外中子部材1の熱伝導率より低いため、内中子部材3への単位時間当たりの伝熱量は、例えば外型5への伝熱量に比べて格段に少ない。
溶湯8Aの熱は、外型5から急速に放熱されるため、溶湯8Aが固化温度Tに達する短い時間内においては、内中子部材3の温度上昇はごくわずかであり、内中子部材3のテーパ部3aの外径および長さはあまり変わらない。
Most of the heat conducted to the outer mold 5 is radiated from the outer surface of the outer mold 5 to the outside after the temperature of the outer mold 5 is raised. The outer die 5 is in thermal contact with the inner core member 3 because it is in contact with the base end portion 3b of the inner core member 3 at the core mounting portion 5c, but the area of the base end portion 3b is the same as that of the outer die 5. Since it is smaller than the outer surface, the amount of heat transferred to the inner core member 3 is small.
On the other hand, the heat from the molten metal 8A conducted to the outer core member 1 is conducted to the inside of the outer core member 1 and reaches the heat insulating film 2, but the heat conductivity of the heat insulating film 2 is Since it is lower than the thermal conductivity of the core member 1, the amount of heat transferred to the inner core member 3 per unit time is significantly smaller than the amount of heat transferred to the outer mold 5, for example.
Heat of the molten metal 8A, since the outer mold 5 is quickly dissipated, within a short time the molten metal 8A reaches the solidification temperature T k, the temperature rise of the inner core member 3 is negligible, the inner core member The outer diameter and length of the third tapered portion 3a do not change much.

このようにして、外中子部材1に伝導された溶湯8Aからの熱は、外中子部材1内に蓄積される。そして、外中子部材1の熱容量が小さいことも相俟って、外中子部材1は急速に温度上昇していき、接触する溶湯8Aと略等しい温度になる。
外中子部材1の材質として、熱伝導率が大きい材質を選択することが好ましい。この場合、熱伝導率が小さい場合に比べて、熱伝導が促進されるため、温度上昇に要する時間がより短縮されるとともに溶湯8Aの温度変化により追従しやすくなる。
また、断熱膜2は、先端面1bの露出部で溶湯8Aと直接接触するが、断熱膜2の材質の熱伝導率は小さい。このため露出面積がきわめて小さいことも相俟って、外中子部材1への伝導される熱量に比べて、断熱膜2に直接伝導される熱量は格段に少ない。
Thus, the heat from the molten metal 8 </ b> A conducted to the outer core member 1 is accumulated in the outer core member 1. And, together with the small heat capacity of the outer core member 1, the temperature of the outer core member 1 rapidly rises to a temperature substantially equal to the molten metal 8 </ b> A in contact therewith.
As the material of the outer core member 1, it is preferable to select a material having a high thermal conductivity. In this case, since heat conduction is promoted as compared with the case where the thermal conductivity is small, the time required for the temperature rise is further shortened and it is easier to follow the temperature change of the molten metal 8A.
The heat insulating film 2 is in direct contact with the molten metal 8A at the exposed portion of the tip surface 1b, but the heat conductivity of the material of the heat insulating film 2 is small. For this reason, combined with the extremely small exposed area, the amount of heat directly conducted to the heat insulating film 2 is much smaller than the amount of heat conducted to the outer core member 1.

このように、溶湯8Aに略等しい温度に昇温された外中子部材1は、内周面1c側が内中子部材3のテーパ部3aの形状に拘束されているため、外中子部材1の肉厚(内周面1cから側面1aまでの径方向の寸法)に略比例して熱膨張する。このため、溶湯8Aから加熱を受ける前の先細の側面1aの外形寸法は、先端側ほど外形寸法が増大する形状に熱膨張していく。   Thus, the outer core member 1 that has been heated to a temperature substantially equal to the molten metal 8A is constrained to the shape of the tapered portion 3a of the inner core member 3 on the inner peripheral surface 1c side. The material expands thermally in proportion to the wall thickness (the dimension in the radial direction from the inner peripheral surface 1c to the side surface 1a). For this reason, the external dimension of the tapered side surface 1a before being heated from the molten metal 8A is thermally expanded to a shape in which the external dimension increases toward the tip side.

溶湯8Aは、固化温度Tまで冷却されると固化が終了するため、溶湯8Aが固化温度Tに達したとき、溶湯8Aは、外型5のキャビティ底面5aおよびキャビティ側面5b、中子4の側面1aおよび先端面1b、ならびに外型7で囲まれるキャビティ6の形状に沿って固化される。
したがって、溶湯8Aから加熱を受ける前の外中子部材1の先細の外形状を、溶湯8Aが固化温度Tに達するときに、熱膨張して成形品8Bの穴内周面8aの直径D×長さLの円柱形状に外形状となるように予め設定しておくことで、成形品8Bの穴内周面8aの中空形状が形成される。
Melt 8A, since the solidification to be cooled to solidification temperature T k is terminated, when the molten metal 8A reaches the solidification temperature T k, melt 8A is a cavity bottom surface 5a and the cavity side surface 5b of the outer mold 5, the core 4 Are solidified along the shape of the cavity 6 surrounded by the side surface 1a and the front end surface 1b of the outer periphery 7 and the outer mold 7.
Therefore, a tapered outer shape of the outer core member 1 before subjected to heat from the molten metal 8A, when the molten metal 8A reaches the solidification temperature T k, the diameter D k of the hole inner peripheral surface 8a of the molded article 8B and thermal expansion × by preset so that the outer shape into a cylindrical shape length L k, hollow shape of the hole inner peripheral surface 8a of the molded article 8B is formed.

さらに冷却が進むと、外型5、成形品8B、中子4は、それぞれの熱膨張特性に応じて収縮していく。外型5に対しては、成形品8Bの収縮量が大きいため、側面8cがキャビティ側面5bから離間していく。
また、成形品8Bの穴内周面8aも収縮していくが、中子4の外形状は、加熱時に熱膨張量の大きい先端側ほど、冷却時の収縮量も大きくなるため、外中子部材1の側面1aは、穴内周面8aのストレートな円筒面に対して、次第に先端が先細のテーパ形状を呈し、固化した成形品8Bの穴内周面8aから径方向内側に離間していく。
このため、穴内周面8aが収縮しても、中子4に食いつく(抱きつく)ことがなく、取り出し温度Tに達したときに、図3(b)に示すように、適度の抜きテーパを有する状態となる。この結果、中子4からの成形品8Bの離型性が向上する。したがって、外型7を除去した後、外型5から抜き方向に沿って、成形品8Bを円滑に抜いて、鋳造型10の外部に取り出すことができる。
When the cooling further proceeds, the outer mold 5, the molded product 8B, and the core 4 contract according to their respective thermal expansion characteristics. For the outer mold 5, since the contraction amount of the molded product 8 </ b> B is large, the side surface 8 c is separated from the cavity side surface 5 b.
Further, the inner peripheral surface 8a of the hole of the molded product 8B also shrinks. However, the outer shape of the core 4 is such that the amount of shrinkage at the time of cooling increases toward the tip side where the amount of thermal expansion is large at the time of heating. The side surface 1a of 1 has a tapered shape with a tapered end gradually with respect to the straight cylindrical surface of the hole inner peripheral surface 8a, and is spaced radially inward from the hole inner peripheral surface 8a of the solidified molded product 8B.
For this reason, even if the hole inner peripheral surface 8a contracts, the core 4 does not bite (hold), and when the removal temperature Tt is reached, as shown in FIG. It will have a state. As a result, the releasability of the molded product 8B from the core 4 is improved. Therefore, after removing the outer mold 7, the molded product 8 </ b> B can be smoothly extracted from the outer mold 5 along the extraction direction and taken out of the casting mold 10.

また、断熱膜2は、熱伝導率が小さいため、伝熱を抑制するものの、加熱時と比べて長時間を要する冷却時においては、断熱膜2は、加熱時に外中子部材1に蓄積された熱を、徐々に内中子部材3に伝熱させる。このため、内中子部材3の基端部3dや、基端部3dが嵌合された外型5を介して、放熱する伝達路としての働きも有している。これにより、成形品8Bの内部側からの冷却を補助する働きもある。   The heat insulating film 2 has a low thermal conductivity and suppresses heat transfer. However, the heat insulating film 2 is accumulated in the outer core member 1 during heating during cooling that requires a longer time than during heating. Heat is gradually transferred to the inner core member 3. For this reason, it also has a function as a transmission path for radiating heat through the base end 3d of the inner core member 3 and the outer mold 5 fitted with the base end 3d. Thereby, there also exists a function which assists the cooling from the inner side of the molded article 8B.

本実施形態においては、中子4の形状や材質を予め適切に選定しておくことで、成形品8Bの中空形状を、例えば、抜き方向にストレートな抜き勾配のない形状であっても、良好な形状精度で形成して、円滑な取り出しを行うことができる。
このような中子4の形状や材質の選定方法の一例について説明する。
まず、鋳造型10、中子4の形状や材質、放熱条件や導入する溶湯の温度等を、仮に設定して、溶湯がキャビティ6内に導入されてからの鋳造型10内の温度分布を解析する。これにより、キャビティ6内の溶湯8Aが固化温度Tまで冷却されたときの外中子部材1、内中子部材3の温度を、それぞれ、例えば、Tout、Tin(ただし、Tout>Tin)として求めることができる。本実施形態のように、外中子部材1の熱容量が中分小さい場合には、温度Toutは、固化温度Tに等しくなるが、熱容量の大きさによっては、Tout<Tであってもよい。
In the present embodiment, by appropriately selecting the shape and material of the core 4 in advance, the hollow shape of the molded product 8B is good, for example, even if the shape has no straight draft in the drawing direction. It can be formed with a good shape accuracy and can be taken out smoothly.
An example of a method for selecting the shape and material of the core 4 will be described.
First, the shape and material of the casting mold 10 and the core 4, the heat radiation conditions, the temperature of the molten metal to be introduced, etc. are set temporarily, and the temperature distribution in the casting mold 10 after the molten metal is introduced into the cavity 6 is analyzed. To do. As a result, the temperatures of the outer core member 1 and the inner core member 3 when the molten metal 8A in the cavity 6 is cooled to the solidification temperature T k are, for example, T out and T in (where T out > T in ). As in the present embodiment, when the heat capacity of the outer core member 1 is small middle fraction, the temperature T out is equal to the solidification temperature T k, depending on the size of the heat capacity, met T out <T k May be.

次に、温度Tinにおける内中子部材3の外形状を求める。
次に、外中子部材1の内周面1cが、温度Tinにおける内中子部材3のテーパ部3aの形状に拘束されるという条件の下で、温度Toutにおける外中子部材1の外形状を求める。この形状が固化温度T時におけるキャビティ6内の中子4の外形状になる。
次に、この外形状と、直径D×長さLの円柱形状との差を算出して、この差を0にするような外中子部材1の形状、基端部の直径d、先端部の直径d、長さLの大きさを算出しておき、これを外中子部材1の外形状に設定する。
これにより、成形品8Bは、固化温度Tにおいて、穴内周面8aが直径D×長さLに形成されるので、取り出し温度Tでは、直径D×長さLの大きさの円筒穴形状に収縮する。
取り出し温度Tにおける側面1aのテーパθは、次式から算出される。
ただし、(d−d)は、L、Lのいずれに比べても十分に微小なので、次式では、L=Lとして計算してもよい。
Next, the outer shape of the inner core member 3 at the temperature T in is obtained.
Then, the inner peripheral surface 1c of the outer core member 1, under the condition that is constrained to the shape of the inner core member 3 of the tapered portion 3a at the temperature T in, the outer core member 1 at the temperature T out Find the outer shape. This shape is the outer shape of the core 4 in the cavity 6 during the solidification temperature T k.
Next, the difference between this outer shape and the cylindrical shape of diameter D k × length L k is calculated, and the shape of the outer core member 1 that makes this difference zero, the diameter d 2 of the proximal end portion The diameter d 1 and the length L 1 of the tip are calculated and set as the outer shape of the outer core member 1.
Thereby, since the inner peripheral surface 8a of the molded product 8B is formed to have a diameter D k × length L k at the solidification temperature T k , a cylinder having a diameter D × length L at the take-out temperature T t. Shrink to hole shape.
Taper theta t of side face 1a in extraction temperature T t is calculated from the following equation.
However, since (d 2 −d 1 ) is sufficiently small compared to either L 1 or L k , it may be calculated as L 1 = L k in the following equation.

θ=tan−1{(d−d)/(2・L)} ・・・(1) θ t = tan −1 {(d 2 −d 1 ) / (2 · L 1 )} (1)

テーパθが小さすぎて、円滑に成形品8Bを抜くことができない場合には、外中子部材1の材質をより線膨張係数の大きな材質としたり、断熱膜2の材質をより熱伝導率の小さいものに変更したり、内中子部材3の材質を線膨張係数のより小さな材質としたりして、上記の解析を繰り返して、適切なテーパθが得られるようにする。
適切なテーパθとしては、外中子の表面粗さとの関係も有るが、一般的な高精度加工において0.1(度)以上であることが好ましく、0.5(度)以上であることがより好ましい。0.1(度)より小さい場合には、外中子の表面粗さの影響が著しく増加し、離型力が増加してしまう傾向があるのである。
Tapered theta t is too small, if it can not be pulled out smoothly molded article 8B is a major material of more linear expansion coefficient material of the outer core member 1 or, more thermal conductivity of the material of the heat insulating layer 2 or changed to small, or by the material of the inner core member 3 and the smaller the material of the linear expansion coefficient, repeat the analysis described above, so that appropriate taper theta t is obtained.
The appropriate taper θ t has a relationship with the surface roughness of the outer core, but is preferably 0.1 (degrees) or more in general high-precision machining, and is 0.5 (degrees) or more. It is more preferable. If it is smaller than 0.1 (degrees), the influence of the surface roughness of the outer core is remarkably increased, and the release force tends to increase.

本実施形態では、断熱膜2を設けることによって、断熱膜2を設けない場合に比べてより大きなテーパθを実現することができる。これについて、具体例に基づいて説明する。
簡単のため、本実施形態に対応して、断熱膜2の熱伝導率kが非常に小さいものとする。また、外型5から内中子部材3への熱伝導も非常に小さいものとする。
この場合、線膨張係数αの内中子部材3の外形状の熱膨張、熱収縮は無視することができるので、中子4の外形の形状変化は、線膨張係数α(ただし、α>α)の外中子部材1の径方向の形状変化のみで決まる。また、Tout=Tとしてよい。したがって、次式(2)〜(4)が成り立つ。
In the present embodiment, by providing the heat insulating film 2, a larger taper θ t can be realized as compared with the case where the heat insulating film 2 is not provided. This will be described based on a specific example.
For simplicity, it is assumed that the thermal conductivity k2 of the heat insulating film 2 is very small corresponding to the present embodiment. Also, heat conduction from the outer mold 5 to the inner core member 3 is very small.
In this case, since the thermal expansion and thermal contraction of the outer shape of the inner core member 3 having a linear expansion coefficient α 3 can be ignored, the shape change of the outer shape of the core 4 is caused by the linear expansion coefficient α 1 (where α It is determined only by the shape change in the radial direction of the outer core member 1 with 1 > α 3 ). Further, T out = T k may be set. Therefore, the following expressions (2) to (4) are established.

=L=L ・・・(2)
=d ・・・(3)
=d・{1+α・(T−T)} ・・・(4)
L 1 = L = L k (2)
D k = d 2 (3)
D k = d 1 · {1 + α 1 · (T k −T t )} (4)

式(2)〜(4)を式(1)に代入すると、次式が得られる。   Substituting equations (2) to (4) into equation (1) yields the following equation:

θ=tan−1{d・α・(T−T)/(2・L)} ・・・(5) θ t = tan −1 {d 1 · α 1 · (T k −T t ) / (2 · L k )} (5)

次に比較例として、断熱膜2がない場合の形状変化を考えると、溶湯8Aの熱は、外中子部材1を介して内中子部材3に容易に熱伝導するので、Tout、Tinは、簡単のためいずれもTに等しいとする。
この場合、固化温度Tで、直径D×長さLに膨張するための、基端部および先端部の取り出し温度Tにおける外径d’、d’は、次式から求められる。
Next, as a comparative example, considering the shape change in the case where the heat insulating film 2 is not provided, the heat of the molten metal 8A is easily conducted to the inner core member 3 via the outer core member 1, so that T out , T In is assumed to be equal to T k for simplicity.
In this case, at the solidification temperature T k, for inflating the diameter D k × length L k, the outer diameter d 2 at the extraction temperature T t of the proximal and distal ends ', d 1' is calculated using: It is done.

=d’・{1+α・(T−T)} ・・・(6)
=d’・{1+α・(T−T)} ・・・(7)
’=d/{1+α・(T−T)} ・・・(8)
’=d ・・・(9)
D k = d 2 ′ · {1 + α 3 · (T k −T t )} (6)
D k = d 1 ′ · {1 + α 1 · (T k −T t )} (7)
d 2 ′ = d 2 / {1 + α 3 · (T k −T t )} (8)
d 1 '= d 1 (9)

このため、この場合の取り出し温度Tにおける外形のテーパθ’は、次式の関係を満たす。 For this reason, the taper θ t ′ of the outer shape at the take-out temperature T t in this case satisfies the relationship of the following equation.

tanθ’=(d’−d’)/(2・L
=[d/{1+α・(T−T)}−d)]/(2・L
・・・(10)
tan θ t ′ = (d 2 ′ −d 1 ′) / (2 · L k )
= [D 2 / {1 + α 3 · (T k −T t )} − d 1 )] / (2 · L k )
... (10)

例えば、外中子部材1の材質がSKD61(α=12.2×10−6(1/K))、内中子部材3の材質が、アルミナ(α=7.8×10−6(1/K))であり、成形品8Bの穴内周面8aの形状を、D=φ10(mm)、L=14(mm)とし、T=993(K)、T=523(K)とすると、テーパθ’、θ、それぞれ次式のようになる。 For example, the material of the outer core member 1 is SKD61 (α 1 = 12.2 × 10 −6 (1 / K)), and the material of the inner core member 3 is alumina (α 3 = 7.8 × 10 −6). (1 / K)), and the shape of the hole inner circumferential surface 8a of the molded product 8B is D k = φ10 (mm), L k = 14 (mm), T k = 993 (K), T t = 523 Assuming (K), the taper θ t ′ and θ t are respectively expressed by the following equations.

=10/{(1+12.2×10−6×(993−523)}
=9.94(mm)
=20(mm)
θ=tan−1{9.94・12.2×10−6×470/(2・14)}
=0.12(度)
θ’=tan−1[{(10/(1+7.8×10−6×470))−9.94}
/(2・14)]
=0.05(度)
d 1 = 10 / {(1 + 12.2 × 10 −6 × (993-523)}
= 9.94 (mm)
d 2 = 20 (mm)
θ t = tan −1 {9.94 · 12.2 × 10 −6 × 470 / (2 · 14)}
= 0.12 (degrees)
θ t ′ = tan −1 [{(10 / (1 + 7.8 × 10 −6 × 470)) − 9.94}
/(2.14)]
= 0.05 (degrees)

このように、本実施形態によるテーパθは断熱膜2がない場合のテーパθ’の2倍以上の大きさになることが分かる。
したがって、断熱膜2によって、内中子部材3の熱膨張を抑制することができるため、断熱膜2がない場合に比べてより大きなテーパとなり、中子4の離型性を向上することができることが分かる。
また、上記の例では、T−T=470(K)の場合の例であるが、溶湯8Aとして、より融点が高い金属材料、例えば、金属ガラスなどを用いる場合には、テーパθは、さらに大きな値に設定することもできる。例えば、T−T=950(K)の場合、θ=0.24(度)となる。
Thus, it can be seen that the taper θ t according to the present embodiment is at least twice as large as the taper θ t ′ when the heat insulating film 2 is not provided.
Therefore, since the thermal expansion of the inner core member 3 can be suppressed by the heat insulating film 2, the taper is larger than that without the heat insulating film 2, and the releasability of the core 4 can be improved. I understand.
The above example is an example in the case of T k −T t = 470 (K). However, when a metal material having a higher melting point, such as metal glass, is used as the molten metal 8A, the taper θ t is used. Can be set to a larger value. For example, when T k -T t = 950 (K), θ t = 0.24 (degrees).

また、断熱膜2がない従来技術の場合には、内中子部材3の温度膨張による基端部側での形状変化がある。一方、本実施形態では、内中子部材3の基端部側での形状変化は、ほとんど発生しないため、成形品8Bの端面8b側(中子4の基端側)の加工精度を、断熱膜2がない場合に比べて向上することができる。   In the case of the prior art without the heat insulating film 2, there is a shape change on the base end side due to the temperature expansion of the inner core member 3. On the other hand, in the present embodiment, since the shape change on the base end side of the inner core member 3 hardly occurs, the processing accuracy on the end surface 8b side (the base end side of the core 4) of the molded product 8B is insulated. This can be improved as compared with the case without the film 2.

本実施形態の中子4によれば、断熱膜2によって内中子部材3の熱膨張を抑制することができ、溶湯8Aからの熱を受けて、主に外中子部材1が温度変化に応じて膨張、収縮することで、冷却時に先端側が細る形状を形成することができる。これにより、溶湯8Aからの熱の利用効率が向上し、少ない熱量で、成形に必要な中空形状を得る形状変化と、冷却時の必要な抜きテーパを得る形状変化を起こすことができる。
また、例えば、スライド型などによって、鋳造型10を複雑化させることなく、円滑な離型を行うことができる。
すなわち、本実施形態の中子4によれば、製造効率を低下させることなく、かつ簡素な装置構成により、成形品8Bの離型性を向上することができる。
According to the core 4 of this embodiment, the thermal expansion of the inner core member 3 can be suppressed by the heat insulating film 2, and the outer core member 1 is mainly subjected to a temperature change by receiving heat from the molten metal 8A. By expanding and contracting accordingly, it is possible to form a shape in which the tip side is narrowed during cooling. Thereby, the utilization efficiency of the heat from the molten metal 8A is improved, and the shape change for obtaining a hollow shape necessary for molding and the shape change for obtaining a required taper during cooling can be caused with a small amount of heat.
Moreover, smooth mold release can be performed without complicating the casting mold 10 by using, for example, a slide mold.
That is, according to the core 4 of the present embodiment, the mold releasability of the molded product 8B can be improved without reducing the manufacturing efficiency and with a simple device configuration.

また、本実施形態では、特に溶湯8Aの材質として金属ガラスを採用すると、融点の高さに応じて溶湯温度が高くなるため、中子4の変形量がより大きくなること、および、金属ガラスは固化時の成形収縮率が小さい材料であることとが相俟って、より離型性を向上させることができる。   In the present embodiment, in particular, when metallic glass is used as the material of the molten metal 8A, the molten metal temperature increases according to the height of the melting point, and therefore the deformation amount of the core 4 becomes larger, and the metallic glass Combined with the material having a small molding shrinkage at the time of solidification, the releasability can be further improved.

また、金属ガラスは、非晶質化させるために、一般の金属材料と比べて、大きな冷却速度で成形を行う必要がある。すなわち、溶湯8Aの導入から固化までの時間をより短くする必要がある。
本実施形態では、溶湯8Aからの熱がほぼ外中子部材1のみに伝わることで、成形に必要な形状が得られるため、このような金属ガラスの成形など、短時間で行う成形に特に好適となる。
Moreover, in order to make a metallic glass amorphous, it is necessary to perform molding at a higher cooling rate than a general metallic material. That is, it is necessary to shorten the time from introduction of the molten metal 8A to solidification.
In the present embodiment, since the shape necessary for forming is obtained by transferring the heat from the molten metal 8A to only the outer core member 1, it is particularly suitable for forming in a short time such as forming such a metal glass. It becomes.

次に、本実施形態の変形例の鋳造用中子について説明する。
図4(a)は、本発明の第1の実施形態の変形例に係る鋳造用中子の概略構成を示す模式的な断面図である。図4(b)、(c)、(d)は、それぞれ、図4(a)におけるC視の側面図、D−D断面図、およびE−E断面図である。
Next, a casting core according to a modification of this embodiment will be described.
Fig.4 (a) is typical sectional drawing which shows schematic structure of the core for casting which concerns on the modification of the 1st Embodiment of this invention. 4B, 4C, and 4D are a side view, a cross-sectional view taken along line DD, and a cross-sectional view taken along line EE in FIG. 4A, respectively.

本変形例の中子4Aは、図4(a)に示すように、上記第1の実施形態と同様の成形品8Bを鋳造するため、鋳造型10Aに用いるものである。
鋳造型10Aは、上記第1の実施形態の鋳造型10の中子4を、中子4A(鋳造用中子)に代えたものである。中子4Aは、上記第1の実施形態の中子4の外中子部材1、内中子部材3、断熱膜2に代えて、それぞれ、外中子部材1A、内中子部材3Aを備える。
以下、上記第1の実施形態と異なる点を中心に説明する。
As shown in FIG. 4A, the core 4A of the present modification is used for a casting mold 10A in order to cast a molded product 8B similar to that of the first embodiment.
The casting mold 10A is obtained by replacing the core 4 of the casting mold 10 of the first embodiment with a core 4A (core for casting). The core 4A includes an outer core member 1A and an inner core member 3A, respectively, instead of the outer core member 1, the inner core member 3, and the heat insulating film 2 of the core 4 of the first embodiment. .
Hereinafter, a description will be given centering on differences from the first embodiment.

外中子部材1Aは、外中子部材1と同様の側面1aおよび先端面1bからなる外形を有する型形状部1dと、型形状部1dの基端側(先端面1bと反対側)から、外型5の内部側から外部側に貫通するように延ばされた放熱部1eとを備える。
型形状部1dは、外中子部材1と同様、キャビティ6の内面であるキャビティ底面5aからキャビティ6の内部に向かって、成形品8Bの抜き方向に沿って突設され、キャビティ6内に導入される溶湯に接触するものとなっている。
本実施形態の放熱部1eの放熱部外周面1gは、側面1aの基端部の直径dと等しい円筒面状とされ、外型5の中子取付部5cに内嵌して固定されている。また、放熱部1eにおける外型5の外部側の放熱部端面1hは、外型5の外側表面とほぼ整列された位置で外型5の外部側に露出されている。
また、外中子部材1Aの内部には、軸方向の貫通孔を構成する内周面1fが形成されている。この内周面1fの形状は、放熱部1eでは、内径d(ただし、d<d)の円筒面とされている。また、型形状部1dでは、放熱部1eでの円筒面に接続され、基端側から先端側に向かって内径dから漸次縮径されて、先端面1b(図4(b)参照)では、外径dに比べて小さい内径dとなるような、先端側に縮径された円錐台状の凹形状を有する。
内周面1fの中心軸線は、放熱部外周面1gおよび側面1aの中心軸線と同軸とされている。
The outer core member 1A includes a mold shape portion 1d having an outer shape made up of a side surface 1a and a distal end surface 1b similar to those of the outer core member 1, and a base end side of the mold shape portion 1d (opposite the distal end surface 1b). And a heat dissipating part 1e extending from the inner side of the outer mold 5 to the outer side.
Similar to the outer core member 1, the mold-shaped portion 1 d is projected from the cavity bottom surface 5 a, which is the inner surface of the cavity 6, toward the inside of the cavity 6 along the direction in which the molded product 8 B is pulled out, and is introduced into the cavity 6. It will be in contact with the molten metal.
Radiating portion outer peripheral surface 1g of the heat radiating portion 1e of this embodiment is the diameter d 2 of the base end portion of the side surface 1a equal cylindrical surface, and is fixed by fitted into the core mounting portion 5c of the outer mold 5 Yes. Further, the heat radiating portion end face 1 h on the outer side of the outer mold 5 in the heat radiating portion 1 e is exposed to the outside of the outer die 5 at a position substantially aligned with the outer surface of the outer die 5.
Further, an inner peripheral surface 1f constituting an axial through hole is formed inside the outer core member 1A. The shape of the inner peripheral surface 1f is a cylindrical surface having an inner diameter d 4 (where d 4 <d 2 ) in the heat radiating portion 1e. Further, the mold-shaped portion 1d, is connected to the cylindrical surface of the heat radiating portion 1e, gradually reduced in diameter from the inner diameter d 4 toward the proximal end side to the distal side, the distal end surface 1b (see FIG. 4 (b)) , Having a conical concave shape with a reduced diameter on the tip side such that the inner diameter d 0 is smaller than the outer diameter d 1 .
The central axis of the inner peripheral surface 1f is coaxial with the central axes of the heat radiating portion outer peripheral surface 1g and the side surface 1a.

このため、キャビティ6内における外中子部材1Aの抜き方向に直交する断面は、図4(c)に示すように、外径d(ただし、d≧d>0)側面1aと、基端側の内径dよりも小径の内周面1fとで囲まれた円環状とされている。
このような形状により、キャビティ6内における外中子部材1Aの抜き方向に直交する断面での円環の径方向の厚さは、キャビティ底面5aからキャビティ6の内部側に向かって、(d−d)/2から(d−d)/2まで漸次増大している。
For this reason, as shown in FIG.4 (c), the cross section orthogonal to the extraction direction of the outer core member 1A in the cavity 6 has an outer diameter d 3 (where d 2 ≧ d 3 > 0) side surface 1a, It is an annular surrounded by the small-diameter inner peripheral surface 1f than the inner diameter d 4 of the base end side.
With such a shape, the radial thickness of the ring in the cross section orthogonal to the drawing direction of the outer core member 1A in the cavity 6 is (d 2) from the cavity bottom surface 5a toward the inside of the cavity 6. It gradually increases from −d 4 ) / 2 to (d 1 −d 0 ) / 2.

外中子部材1Aの材質は、上記第1の実施形態の外中子部材1と同様の金属材料を採用することができる。
特に、外中子部材1Aにおいては、熱伝導率が大きい材質ほど、放熱部1eの放熱効果を高めることができて好ましい。
As the material of the outer core member 1A, the same metal material as that of the outer core member 1 of the first embodiment can be adopted.
In particular, in the outer core member 1A, a material having a higher thermal conductivity is preferable because the heat dissipation effect of the heat dissipation portion 1e can be enhanced.

内中子部材3Aは、外中子部材1Aの型形状部1dの内周面1fに断熱膜2を介して固定可能な円錐もしくは円錐台状のテーパ部3cと、外中子部材1Aの放熱部1eの内周面1fに内嵌される円柱状の基端部3dとからなる棒状部材である。このため、内中子部材3Aは、外中子部材1Aの内側で成形品の抜き方向に沿って延ばされている。
内中子部材3Aの材質は、上記第1の実施形態の内中子部材3と同様の材質を採用することができる。
The inner core member 3A includes a conical or truncated cone-shaped tapered portion 3c that can be fixed to the inner peripheral surface 1f of the mold-shaped portion 1d of the outer core member 1A via the heat insulating film 2, and heat dissipation of the outer core member 1A. This is a rod-shaped member composed of a columnar base end portion 3d fitted into the inner peripheral surface 1f of the portion 1e. For this reason, the inner core member 3A is extended along the drawing direction of the molded product inside the outer core member 1A.
The material of the inner core member 3A can be the same material as that of the inner core member 3 of the first embodiment.

次に、本変形例の中子4Aの作用について、上記第1の実施形態と異なる点を中心に説明する。
本変形例の中子4Aは、キャビティ6内では、上記第1の実施形態の外中子部材1に比べて、抜き方向に沿う外中子部材1Aの径方向の厚さが基端側でやや厚く、これに対応して内中子部材3に比べて内中子部材3Aの外径が基端側でやや小さいものの、基端側から先端側に向かって、外中子部材1Aの径方向の厚さが漸次増大する点で、上記第1の実施形態と同様の作用を備える。
このため、外中子部材1Aの形状や材質を適宜選定することで、上記第1の実施形態と同様に、製造効率を低下させることなく、かつ簡素な装置構成により、成形品8Bの離型性を向上することができる。
ここで、放熱部1eの内径dは、あまり小さくしすぎると、外中子部材1Aの径方向の厚さの変化が小さくなって、良好な離型性が得られなくなるので、放熱部1eの径方向の厚さ(d−d)/2は、厚くなりすぎないようにする。例えば、厚さ(d−d)/2は、外中子部材1Aの先端部の厚さ(d−d)/2dの概ね5%〜20%程度であることが好ましい。
Next, the operation of the core 4A of this modified example will be described focusing on differences from the first embodiment.
In the core 4A of the present modification, the radial thickness of the outer core member 1A along the pulling direction is closer to the proximal end side in the cavity 6 than in the outer core member 1 of the first embodiment. Although slightly thicker and the outer diameter of the inner core member 3A is slightly smaller on the proximal end side than the inner core member 3, the diameter of the outer core member 1A is gradually increased from the proximal end side toward the distal end side. It has the same action as the first embodiment in that the thickness in the direction gradually increases.
For this reason, by appropriately selecting the shape and material of the outer core member 1A, as in the first embodiment, the mold release of the molded product 8B can be performed without reducing the manufacturing efficiency and with a simple device configuration. Can be improved.
Here, the inner diameter d 4 of the heat radiating portion 1e is too much small, the change in the radial direction of the outer core member 1A thickness is decreased, because good releasability can not be obtained, the heat radiating portion 1e The thickness (d 2 -d 4 ) / 2 in the radial direction is not excessively increased. For example, the thickness (d 2 -d 4 ) / 2 is preferably about 5% to 20% of the thickness (d 1 -d 0 ) / 2d 1 of the front end portion of the outer core member 1A.

中子4Aは、このように放熱部1eを備えることで、溶湯8Aから外中子部材1Aに伝熱された熱を、基端部3dを介して放熱性の良好な外型5に、また、放熱部端面1hを介して外型5の外部に、それぞれ放熱することができる。
このため、外中子部材1Aは、まったく放熱部を有しない上記第1の実施形態の外中子部材1に比べて放熱が促進されるため、溶湯8Aの冷却速度を向上することができる。したがって、金属ガラスのようなアモルファスな合金(非晶質合金)を鋳造する際には結晶化してしまう可能性を低減することができる。
また、外中子部材1Aの先端側が迅速に縮径するため、成形後速やかに離型することができ、鋳造の生産性を向上することができる。
The core 4A includes the heat dissipating part 1e as described above, so that the heat transferred from the molten metal 8A to the outer core member 1A can be transferred to the outer mold 5 with good heat dissipation via the base end part 3d. The heat can be radiated to the outside of the outer mold 5 via the heat radiating portion end face 1h.
For this reason, since the outer core member 1A promotes heat dissipation compared to the outer core member 1 of the first embodiment that does not have any heat radiating portion, the cooling rate of the molten metal 8A can be improved. Therefore, when casting an amorphous alloy such as metallic glass (amorphous alloy), the possibility of crystallization can be reduced.
Moreover, since the front end side of the outer core member 1A is rapidly reduced in diameter, it can be released immediately after molding, and the productivity of casting can be improved.

なお、本実施形態の放熱部1eは、全体として熱容量が小さい外中子部材1Aのうちでも、最も薄い厚さになっている。このため、溶湯8Aが高温である充填初期には、外中子部材1Aに伝熱される熱量が格段に大きく、外中子部材1Aが、穴内周面8aの形状を形成する形状に熱膨張する時間の遅れはほとんど無視できる程度である。   In addition, the thermal radiation part 1e of this embodiment is the thinnest thickness also in 1 A of outer core members with small heat capacity as a whole. For this reason, at the initial filling stage when the molten metal 8A is at a high temperature, the amount of heat transferred to the outer core member 1A is remarkably large, and the outer core member 1A thermally expands to a shape that forms the shape of the hole inner peripheral surface 8a. The time delay is almost negligible.

また、放熱部1eを有することで、外中子部材1Aは、内中子部材3Aの外周面全体に密着する二重構造となっており、内中子部材3Aと外中子部材1Aとの間の保持力が向上する。このため、成形品8Bの離型の際に、離型力によって外中子部材1Aが脱落することを防止することができる。特に、上記の説明のように、放熱部1eと基端部3bとを直接密着させると、外中子部材1Aと内中子部材3Aとの間の保持力をより強固にすることができる。
なお、必要な保持力が得られる場合には、断熱膜2は、放熱部1eと基端部3bとの間にまで延在して設けてよい。この場合、内中子部材3Aと外中子部材1Aとの間の断熱性能をさらに向上することができる。
Further, by having the heat dissipating part 1e, the outer core member 1A has a double structure in close contact with the entire outer peripheral surface of the inner core member 3A, and the inner core member 3A and the outer core member 1A The holding power between is improved. For this reason, it is possible to prevent the outer core member 1 </ b> A from falling off due to the release force when the molded product 8 </ b> B is released. In particular, as described above, when the heat dissipating part 1e and the base end part 3b are in direct contact, the holding force between the outer core member 1A and the inner core member 3A can be further strengthened.
In addition, when a required holding force is obtained, the heat insulation film 2 may be provided to extend between the heat radiating portion 1e and the base end portion 3b. In this case, the heat insulation performance between the inner core member 3A and the outer core member 1A can be further improved.

[第2の実施形態]
本発明の第2の実施形態に係る鋳造用中子について説明する。
図5(a)は、本発明の第2の実施形態に係る鋳造用中子の概略構成を示す模式的な断面図である。図5(b)、(c)は、それぞれ図5(a)におけるF視の側面図およびG−G断面図である。
[Second Embodiment]
A casting core according to a second embodiment of the present invention will be described.
Fig.5 (a) is typical sectional drawing which shows schematic structure of the core for casting which concerns on the 2nd Embodiment of this invention. FIGS. 5B and 5C are a side view and a GG cross-sectional view, respectively, as viewed in FIG. 5A.

本実施形態の中子24は、図5(a)に示すように、上記第1の実施形態と同様の成形品8Bを鋳造するため、鋳造型20に用いるものである。
鋳造型20は、上記第1の実施形態の鋳造型10の中子4を、中子24(鋳造用中子)に代えたものである。中子24は、上記第1の実施形態の中子4の外中子部材1、内中子部材3に代えて、それぞれ、外中子部材21、内中子部材23を備え、上記第1の実施形態の断熱膜2に代えて、断熱膜22a、22b(断熱層部)を備えるものである。
以下、上記第1の実施形態と異なる点を中心に説明する。
As shown in FIG. 5A, the core 24 of the present embodiment is used for the casting mold 20 in order to cast the molded product 8B similar to that of the first embodiment.
The casting mold 20 is obtained by replacing the core 4 of the casting mold 10 of the first embodiment with a core 24 (a casting core). The core 24 includes an outer core member 21 and an inner core member 23 in place of the outer core member 1 and the inner core member 3 of the core 4 of the first embodiment, respectively. Instead of the heat insulating film 2 of the embodiment, heat insulating films 22a and 22b (heat insulating layer portions) are provided.
Hereinafter, a description will be given centering on differences from the first embodiment.

外中子部材21は、キャビティ底面5aの側に開口部を有する筒状壁体部21Aと、筒状壁体部21Aをキャビティ6の内部側で覆うように設けられた先端側壁体部21Bとを備える。
筒状壁体部21Aは、上記第1の実施形態の外中子部材1の側面1aに対応して、同形状の外周側面21aを外周側に備え、外周側面21aの裏面には側部内周面21cが形成されている。本実施形態では、筒状壁体部21Aの厚さは、開口部を除いて一定とされている。
筒状壁体部21Aの開口部には、断熱膜22bと当接して固定するため、外中子部材21の基端側から先端側に向かって縮径するテーパ状の固定部21e(基端側固定部)が設けられている。
外周側面21aの寸法は、基端側が外径d、先端側が外径dである。
先端側壁体部21Bは、中心部に断熱膜22aと当接して固定するため、ほぼ円孔状の固定部21f(先端側固定部)が貫通され、直径dの外周部が、筒状壁体部21Aの先端側の端部に接続されている。先端側壁体部21Bは、外表面側に、上記第1の実施形態の外中子部材1の先端面1bに対応して、先端面21bを備え、先端面21bの裏面に底部内周面21dが形成されている。本実施形態では、先端側壁体部21Bの厚さは一定とされている。
固定部21fの外周側面21a側の内径はdとされている(図5(b)参照)。
ただし、先端側壁体部21Bは、キャビティ底面5aから先端面21bにおける固定部21fまでの距離がLとされ、キャビティ底面5aから先端面21bの外縁部までの距離がL(ただし、L<L)とされている。
外中子部材21の材質は、上記第1の実施形態の外中子部材1と同様の材質を採用することができる。
The outer core member 21 includes a cylindrical wall body portion 21A having an opening on the cavity bottom surface 5a side, and a distal end side wall body portion 21B provided so as to cover the cylindrical wall body portion 21A on the inner side of the cavity 6. Is provided.
The cylindrical wall portion 21A includes an outer peripheral side surface 21a of the same shape on the outer peripheral side corresponding to the side surface 1a of the outer core member 1 of the first embodiment, and the inner surface of the side portion is provided on the rear surface of the outer peripheral side surface 21a. A surface 21c is formed. In the present embodiment, the thickness of the cylindrical wall portion 21A is constant except for the opening.
In the opening portion of the cylindrical wall portion 21A, a tapered fixing portion 21e (base end) that decreases in diameter from the base end side to the tip end side of the outer core member 21 in order to contact and fix the heat insulating film 22b. Side fixing part) is provided.
Regarding the dimensions of the outer peripheral side surface 21a, the base end side is the outer diameter d 2 and the tip end side is the outer diameter d 1 .
Distal wall body 21B, in order to fix in contact with the heat insulating film 22a against the center is penetrated substantially circular hole-shaped fixing portion 21f (distal-side fixing portion), the outer peripheral portion of diameter d 1, a cylindrical wall It is connected to the end on the distal end side of the body part 21A. The distal end side wall 21B includes a distal end surface 21b on the outer surface side corresponding to the distal end surface 1b of the outer core member 1 of the first embodiment, and a bottom inner peripheral surface 21d on the rear surface of the distal end surface 21b. Is formed. In the present embodiment, the thickness of the tip side wall body portion 21B is constant.
The outer peripheral side surface 21a side of the inner diameter of the fixing portion 21f is the d 0 (see Figure 5 (b)).
However, distal wall body 21B, the distance from the cavity bottom surface 5a to the fixing portion 21f of the distal end face 21b is an L 1, the distance L 2 from the cavity bottom surface 5a to the outer edge of the distal end surface 21b (where L 2 <L 1 ).
As the material of the outer core member 21, the same material as that of the outer core member 1 of the first embodiment can be adopted.

内中子部材23は、外中子部材21の固定部21e、21fでそれぞれ断熱膜22a、22bを介して固定可能な円錐台状のテーパ部23aと、このテーパ部23aを外型5の中子取付部5cに嵌合して取り付ける基端部23bとからなる棒状部材である。
このため、内中子部材23は、外中子部材21の内側で成形品の抜き方向に沿って延ばされている。
また、内中子部材23の中心軸線は、外中子部材21の中心軸線と同軸とされている。
テーパ部23aの先端部の外径は、固定部21fの内径dから断熱膜22bの厚さの2倍を引いた円形とされている。本実施形態では、テーパ部23aの先端面は外中子部材21の先端面21bに整列され、溶湯に接触されるようになっている。
内中子部材23の材質は、上記第1の実施形態の内中子部材3と同様の材質を採用することができる。
The inner core member 23 includes a frustoconical taper portion 23a that can be fixed via the heat insulating films 22a and 22b at the fixing portions 21e and 21f of the outer core member 21, respectively. It is a rod-like member comprising a base end portion 23b fitted and attached to the child attachment portion 5c.
For this reason, the inner core member 23 is extended along the drawing direction of the molded product inside the outer core member 21.
The central axis of the inner core member 23 is coaxial with the central axis of the outer core member 21.
The outer diameter of the distal end portion of the tapered portion 23a is from the inner diameter d 0 of the fixed portion 21f a circular minus twice the thickness of the heat insulating layer 22b. In this embodiment, the front end surface of the taper part 23a is aligned with the front end surface 21b of the outer core member 21, and is brought into contact with the molten metal.
As the material of the inner core member 23, the same material as that of the inner core member 3 of the first embodiment can be adopted.

断熱膜22a、22bは、外中子部材21と内中子部材23との間の伝熱を抑制するもので、本実施形態では、外中子部材21の固定部21e、21fに対向する範囲における内中子部材23のテーパ部23a上に、略一定の膜厚を有する薄膜層として設けられている。
断熱膜22a、22bの材質は、上記第1の実施形態の断熱膜2と同様の材質を採用することができる。
The heat insulating films 22a and 22b suppress heat transfer between the outer core member 21 and the inner core member 23. In the present embodiment, the ranges facing the fixing portions 21e and 21f of the outer core member 21. Is provided as a thin film layer having a substantially constant film thickness on the tapered portion 23a of the inner core member 23.
The material of the heat insulation films 22a and 22b can be the same material as that of the heat insulation film 2 of the first embodiment.

このような構成により、外中子部材21と内中子部材23との間には、側部内周面21c、テーパ部23a、および底部内周面21dで囲まれた閉空間からなる中空部22cが形成されている。
このため、筒状壁体部21Aおよび先端側壁体部21Bは、固定部21e、21fが内中子部材23に固定され、筒状壁体部21Aの先端部と先端側壁体部21Bの外周部が連結された状態で、熱変形すること可能になっている。このため、特に、筒状壁体部21Aの中間部では、径方向および軸方向への移動が容易となっている。
また、中空部22cにより、外中子部材21の側部内周面21cおよび底部内周面21dと、内中子部材23のテーパ部23aとは、互いに離間されているため、断熱膜22a、22bと同様に、外中子部材21と内中子部材23との間の伝熱を抑制する断熱層部を構成している。
中空部22cの内部には、例えば、大気圧の空気や不活性ガスが封止されていてもよいが、本実施形態では真空状態とされている。このため、中空部22cは、大気圧の空気や不活性ガスが封止された場合に比べて、格段に優れた断熱性を有している。
With such a configuration, a hollow portion 22c including a closed space surrounded by the side inner peripheral surface 21c, the tapered portion 23a, and the bottom inner peripheral surface 21d is provided between the outer core member 21 and the inner core member 23. Is formed.
For this reason, the cylindrical wall body portion 21A and the distal side wall body portion 21B have the fixed portions 21e and 21f fixed to the inner core member 23, and the distal end portion of the cylindrical wall body portion 21A and the outer peripheral portion of the distal side wall body portion 21B. Can be thermally deformed in a connected state. For this reason, in particular, movement in the radial direction and the axial direction is easy at the intermediate portion of the cylindrical wall portion 21A.
Further, the side inner peripheral surface 21c and the bottom inner peripheral surface 21d of the outer core member 21 and the tapered portion 23a of the inner core member 23 are separated from each other by the hollow portion 22c, so that the heat insulating films 22a and 22b are separated from each other. Similarly, the heat insulation layer part which suppresses the heat transfer between the outer core member 21 and the inner core member 23 is comprised.
For example, atmospheric pressure air or inert gas may be sealed inside the hollow portion 22c, but in the present embodiment, it is in a vacuum state. For this reason, the hollow part 22c has a far superior heat insulating property as compared with the case where air at atmospheric pressure or inert gas is sealed.

このような構成により、本実施形態は、外中子部材21と内中子部材23との固定部が、基端固定部および先端固定部のみからなる場合の例となっている。
そして、基端固定部および先端固定部では、抜き方向に対する側面側の外中子部材21の外周面である外周側面21aと固定部との、抜き方向に直交する方向の各間隔が、基端固定部側では、固定部21eと外周側面21aとの間の厚さであり、先端固定部側では、固定部21fと外周側面21aとの間の間隔、すなわち、(d−d)/2である。このため、基端固定部側の間隔よりも先端固定部側の方が大きな間隔となっている。
With this configuration, the present embodiment is an example in which the fixing portion between the outer core member 21 and the inner core member 23 is composed of only the base end fixing portion and the tip end fixing portion.
In the proximal end fixing portion and the distal end fixing portion, each interval in the direction orthogonal to the extraction direction between the outer peripheral side surface 21a that is the outer peripheral surface of the outer core member 21 on the side surface side with respect to the extraction direction and the fixing portion is the proximal end. On the fixed portion side, the thickness is between the fixed portion 21e and the outer peripheral side surface 21a. On the distal end fixed portion side, the distance between the fixed portion 21f and the outer peripheral side surface 21a, that is, (d 2 −d 0 ) / 2. For this reason, the space | interval on the front-end | tip fixing | fixed part side is larger than the space | interval on the base end fixing | fixed part side.

次に、本実施形態の中子24の作用について、鋳造型20による成形品8Bの成形方法とともに説明する。
図6(a)、(b)は、本発明の第2の実施形態に係る鋳造用中子を用いた成形工程を説明する工程説明図である。
Next, the operation of the core 24 of the present embodiment will be described together with a method for forming the molded product 8B using the casting mold 20.
6 (a) and 6 (b) are process explanatory views illustrating a forming process using the casting core according to the second embodiment of the present invention.

本実施形態の成形方法は、上記第1の実施形態の鋳造型10に代えて鋳造型20を用いて行うもので、上記第1の実施形態の中子4と、本実施形態の中子24との間の構造上の相違に基づいて、それぞれの熱変形が異なるのみである。以下では、上記第1の実施形態と異なる点を中心に説明する。   The molding method of the present embodiment is performed by using the casting mold 20 instead of the casting mold 10 of the first embodiment, and the core 4 of the first embodiment and the core 24 of the present embodiment. They differ only in their thermal deformation based on the structural differences between the two. Below, it demonstrates centering on a different point from the said 1st Embodiment.

図5(a)に示すように組み立てられた鋳造型20のキャビティ6内に、成形品8Bを鋳造するための金属材料を加熱融解させた溶湯8Aを導入し、キャビティ6内に溶湯8Aを充填する。図6(a)は、この溶湯8Aの充填後における、外型7を除いた部分を示す。
溶湯8Aは、中子24の外表面では、外中子部材21の外周側面21aおよび先端面21b、ならびに先端面21bに露出した断熱膜22bおよび内中子部材23にそれぞれ接触する。
ここで、内中子部材23は、小面積の先端部が溶湯8Aと接触する他は、上記第1の実施形態の内中子部材3と同様に、断熱膜22a、22b、中空部22cによって、外中子部材21からの伝熱が抑制されているため、内中子部材3とほぼ同様に、溶湯8Aが固化温度Tに達するまでの時間ではほとんど温度上昇しない。
このため、溶湯8Aからの熱は、ほとんどが外中子部材21の温度上昇に寄与する。
外中子部材21は、上記第1の実施形態の外中子部材1に比べて中空部22cを有する分だけ、熱容量が小さいから、外中子部材1よりも迅速に温度上昇して、より短時間で溶湯8Aとほぼ同温度となる。
As shown in FIG. 5A, a molten metal 8A in which a metal material for casting the molded product 8B is heated and melted is introduced into the cavity 6 of the casting mold 20 assembled as shown in FIG. 5A, and the molten metal 8A is filled into the cavity 6. To do. FIG. 6A shows a portion excluding the outer mold 7 after filling with the molten metal 8A.
On the outer surface of the core 24, the molten metal 8 </ b> A comes into contact with the outer peripheral side surface 21 a and the front end surface 21 b of the outer core member 21, and the heat insulating film 22 b and the inner core member 23 exposed on the front end surface 21 b.
Here, the inner core member 23 is formed by the heat insulating films 22a and 22b and the hollow portion 22c in the same manner as the inner core member 3 of the first embodiment except that the tip of the small area comes into contact with the molten metal 8A. since the heat transfer from the outer core member 21 is suppressed, much like the inner core member 3, little temperature rise in time to melt 8A reaches the solidification temperature T k.
For this reason, most of the heat from the molten metal 8 </ b> A contributes to the temperature rise of the outer core member 21.
Since the outer core member 21 has a smaller heat capacity than the outer core member 1 of the first embodiment, the temperature rises more quickly than the outer core member 1, and more It becomes almost the same temperature as the molten metal 8A in a short time.

温度上昇された外中子部材21は、温度上昇分に応じて熱膨張する。
外中子部材21は、固定部21e、21fで内中子部材23と固定されているので、外周側面21a、先端面21bの形状は、筒状壁体部21A、先端側壁体部21Bの厚さに関係なく、筒状壁体部21Aの軸方向の長さ、および先端側壁体部21Bの外径の熱膨張によって決まる。このため、上記第1の実施形態の式(2)、(3)とともに、取り出し温度Tにおける長さLと、外径d、dとを、次式の関係を満足するように、設定しておく。
The outer core member 21 whose temperature has been increased thermally expands in accordance with the temperature increase.
Since the outer core member 21 is fixed to the inner core member 23 by the fixing portions 21e and 21f, the outer peripheral side surface 21a and the distal end surface 21b have the same thicknesses as the cylindrical wall body portion 21A and the distal side wall body portion 21B. Regardless of the thickness, it is determined by the axial length of the cylindrical wall portion 21A and the thermal expansion of the outer diameter of the distal end side wall portion 21B. Therefore, together with the equations (2) and (3) of the first embodiment, the length L 2 at the take-out temperature T t and the outer diameters d 2 and d 1 satisfy the relationship of the following equation: Set it.

=(d−d)・{1+α・(T−T)}+d ・・・(11)
=L=L・{1+α・(T−T)} ・・・(12)
D k = (d 1 −d 0 ) · {1 + α 1 · (T k −T t )} + d 0 (11)
L k = L 1 = L 2 · {1 + α 1 · (T k -T t )} (12)

溶湯8Aは、固化温度Tに達すると固化が終了するため、溶湯8Aが固化温度Tに達したとき、中子24の外表面では、外周側面21a、先端面21b、および先端面21bに整列された内中子部材23の先端面の形状に沿って固化される。
したがって、成形品8Bの穴内周面8aの直径D×長さLの中空形状が形成される(図6(a)参照)。
Melt 8A, since the solidification reaches the solidification temperature T k is terminated, when the molten metal 8A reaches the solidification temperature T k, the outer surface of the core 24, the outer peripheral side surface 21a, the distal end surface 21b, and the distal end face 21b It is solidified along the shape of the front end surface of the aligned inner core member 23.
Accordingly, a hollow shape of diameter D k × length L k of the hole inner peripheral surface 8a of the molded product 8B is formed (see FIG. 6A).

さらに、冷却が進むと、外型5、成形品8B、中子4は、それぞれの熱膨張特性に応じて、収縮していく。外型5に対しては、上記第1の実施形態と同様、側面8cは、次第にキャビティ側面5bから離間していく。
また、成形品8Bの穴内周面8aも均等に収縮していくが、中子24の外形状は、図6(b)に示すように、先端側壁体部21Bの外径がDからdになるように円錐台状に収縮するため、側面8cに対して、先端側(穴内周面8aの抜き方向奥側)ほど、収縮量が大きくなる。このため、外中子部材21の外周側面21aは、穴内周面8aのストレートな円筒面に対して、次第に先端が先細のテーパ形状を呈し、穴内周面8aから径方向内側に離間していく。
この結果、穴内周面8aが収縮しても、中子24に食いつくことがなく、取り出し温度Tに達したときに、適度の抜きテーパθを有する状態となる。ここで、テーパθは、上記第1の実施形態の式(1)と同様になる。
したがって、中子24からの成形品8Bの離型性が向上する。この結果、外型7を除去した後、外型5から抜き方向に沿って、成形品8Bを円滑に抜いて、鋳造型20の外部に取り出すことができる。
Further, as the cooling progresses, the outer mold 5, the molded product 8B, and the core 4 contract according to their respective thermal expansion characteristics. For the outer mold 5, the side surface 8c gradually separates from the cavity side surface 5b, as in the first embodiment.
Also, the hole inner peripheral surface 8a of the molded product 8B shrinks evenly. However, as shown in FIG. 6B, the outer shape of the core 24 is such that the outer diameter of the tip side wall 21B is from Dk to d. to shrink to the truncated cone shape such that 1, with respect to the side surface 8c, the more distal end side (opening direction inner side of the bore peripheral face 8a), shrinkage amount increases. For this reason, the outer peripheral side surface 21a of the outer core member 21 gradually has a tapered shape with a tapered tip with respect to the straight cylindrical surface of the hole inner peripheral surface 8a, and is spaced radially inward from the hole inner peripheral surface 8a. .
As a result, even if the hole inner peripheral surface 8a contracts, without bite in the core 24, upon reaching the extraction temperature T t, a state with a moderate draft taper theta t. Here, the taper θ t is the same as the expression (1) in the first embodiment.
Therefore, the releasability of the molded product 8B from the core 24 is improved. As a result, after removing the outer mold 7, the molded product 8 </ b> B can be smoothly extracted from the outer mold 5 along the extraction direction and taken out of the casting mold 20.

本実施形態の中子24によれば、断熱膜22a、22b、中空部22cによって内中子部材23の熱膨張を抑制することができ、溶湯8Aからの熱を受けて、主に外中子部材1が温度変化に応じて膨張、収縮することで、冷却時に先端側が細る形状を形成することができる。これにより、溶湯8Aからの熱の利用効率が向上し、少ない熱量で必要な形状変化を起こすことができる。
そして、冷却時には、先端側壁体部21Bが冷却されることで収縮すると、穴内周面8aに対して外中子部材21の先端側から徐々に剥離するように離間されていく。したがって、上記第1の実施形態のように、外中子部材1の全体が冷却されることで全体的に、成形品8Bの穴内周面8aから離間する場合に比べてより容易に離間される。
本実施形態では、このように、外中子部材21が薄肉の構造を取るため、加熱時の熱膨張も、冷却時の熱収縮も、上記第1の実施形態に比べてより迅速に行うことができる。
また、上記第1の実施形態と同様、必要な形状変化を起こす目的のために、例えば、加熱機構を追加して溶湯の温度を高温化したり、冷却装置を追加したりしなくてもよい。
また、例えば、スライド型などによって、鋳造型20を複雑化させることなく、円滑な離型を行うことができる。
すなわち、本実施形態の中子24によれば、製造効率を低下させることなく、かつ簡素な装置構成により、成形品8Bの離型性を向上することができる。
According to the core 24 of the present embodiment, the thermal expansion of the inner core member 23 can be suppressed by the heat insulating films 22a and 22b and the hollow portion 22c, and the outer core is mainly received by receiving heat from the molten metal 8A. The member 1 expands and contracts according to the temperature change, so that a shape in which the tip side is narrowed during cooling can be formed. Thereby, the utilization efficiency of the heat from the molten metal 8A is improved, and a necessary shape change can be caused with a small amount of heat.
At the time of cooling, when the distal end side wall body portion 21B is cooled and contracts, it is separated from the inner peripheral surface 8a so as to be gradually separated from the distal end side of the outer core member 21. Accordingly, as in the first embodiment, the entire outer core member 1 is cooled, so that it is more easily separated as compared with the case where the outer core member 1 is separated from the hole inner peripheral surface 8a of the molded product 8B. .
In the present embodiment, since the outer core member 21 has a thin structure as described above, the thermal expansion during heating and the thermal contraction during cooling are performed more quickly than in the first embodiment. Can do.
Further, similarly to the first embodiment, for the purpose of causing a necessary shape change, for example, it is not necessary to add a heating mechanism to increase the temperature of the molten metal or to add a cooling device.
Moreover, smooth mold release can be performed without complicating the casting mold 20 by using, for example, a slide mold.
That is, according to the core 24 of the present embodiment, it is possible to improve the releasability of the molded product 8B without reducing the manufacturing efficiency and with a simple device configuration.

また、本実施形態では、外中子部材21が薄肉構造を取ることで、中子24の実質的な熱容量が小さくなるので、溶湯8Aを冷却する冷却効果が低い。このため、例えば、中子24と接触しても、溶湯8Aの固化が進行しにくいので、成形品8Bが薄肉構造物であっても高い充填性が得られる。   In the present embodiment, since the outer core member 21 has a thin structure, the substantial heat capacity of the core 24 is reduced, so that the cooling effect for cooling the molten metal 8A is low. For this reason, for example, even if it contacts with the core 24, solidification of the molten metal 8A is difficult to proceed. Therefore, even if the molded product 8B is a thin-walled structure, a high filling property can be obtained.

また、本実施形態でも、上記第1の実施形態と同様に、溶湯8Aの材質として金属ガラスを採用すると、金属ガラスは溶湯温度が極めて高くなるため、中子24の変形量がより大きくこと、および、金属ガラスは、固化時の成形収縮率が小さい材料であることが相俟って、より離型性を向上させることができる。
また、溶湯8Aからの熱がほぼ外中子部材21のみに伝わることで、成形に必要な形状が得られるため、金属ガラスの成形など、短時間で行う成形により一層好適となる。
Also in this embodiment, similarly to the first embodiment, when metal glass is used as the material of the molten metal 8A, the molten glass temperature becomes extremely high, and therefore the deformation amount of the core 24 is larger. In addition, the metallic glass is a material having a small molding shrinkage at the time of solidification, so that the mold release property can be further improved.
Moreover, since the shape required for shaping | molding is obtained because the heat | fever from the molten metal 8A is transmitted only to the outer core member 21, it becomes more suitable for shaping | molding performed in a short time, such as shaping | molding of metal glass.

次に、上記第1の実施形態において、外中子部材1、内中子部材3、断熱膜2、溶湯8Aの材質を変えた場合の実施例1〜6について、比較例1〜3とともに説明する。
ここでは、材質の違い等による離型性の違いを評価するため、すべての実施例および比較例において、成形品8Bの形状は、温度298(K)において、D=10(mm)、L=14(mm)、D=11(mm)、L=15(mm)とし、中子4の寸法は、同様に温度298(K)において、d=9.93(mm)、d=10(mm)、L=10(mm)とした。したがって、これらの寸法は、各材質に応じて最適化されたものではなく、実施例3において、取り出し温度T(298K)におけるテーパが、概ねθ=0.1(度)となるように選定されている。
各実施例、比較例の詳細な条件および評価結果について、次の表1に示す。
Next, in the said 1st Embodiment, Examples 1-6 at the time of changing the material of the outer core member 1, the inner core member 3, the heat insulation film 2, and the molten metal 8A are demonstrated with Comparative Examples 1-3. To do.
Here, in order to evaluate the difference in releasability due to the difference in material and the like, in all examples and comparative examples, the shape of the molded product 8B is D = 10 (mm) and L = at a temperature of 298 (K). 14 (mm), D 0 = 11 (mm), L 0 = 15 (mm), and the dimensions of the core 4 are similarly d 1 = 9.93 (mm) and d 2 at a temperature of 298 (K). = 10 (mm), L 1 = 10 (mm). Therefore, these dimensions are not optimized according to each material, and in Example 3, the taper at the take-out temperature T t (298 K) is approximately θ t = 0.1 (degrees). Selected.
The detailed conditions and evaluation results of each example and comparative example are shown in the following Table 1.

Figure 0005307640
Figure 0005307640

[各実施例の説明]
実施例1は、溶湯8Aとして、アルミニウム合金ADC12を採用した、溶湯温度TはT=993(K)、固化温度Tは、T=843(K)、取り出し温度Tは、T=298(K)である。また、内中子部材3の材質はアルミナとし、外中子部材1の材質は、鉄系合金のSKD11とした。また、断熱膜2は、厚さ10μmのZrOを採用した(実施例2〜6も同じ)。
実施例2は、実施例1において、溶湯8Aの材質を、ADC12に代えてマグネシウム合金であるMDC1D(T=923(K)、T=783(K)、T=298(K))とし、断熱膜2の材質をアルミナに代えて、SKD11とした例である。
実施例3は、実施例2において、溶湯8Aの材質を、MDC1Dに代えて金属ガラスを形成するための材質であるZr55Cu30NiAl10(T=1373(K)、T=763(K)、T=298(K))とした例である。
実施例4は、実施例2において、溶湯8Aの材質を、MDC1Dに代えて金属ガラスを形成するための材質であるFe75Ga12(T=1373(K)、T=823(K)、T=298(K))とし、外中子部材1の材質として、SKD11に代えてCuとした例である。
実施例5は、実施例2において、溶湯8Aの材質を、MDC1Dに代えて金属ガラスを形成するための材質であるNi53Nb20Ti10ZrCoCu(T=1273(K)、T=823(K)、T=298(K))とし、外中子部材1、内中子部材3の材質として、それぞれSUS303を採用した例である。
実施例6は、実施例5において、溶湯8Aの材質を、Ni53Nb20Ti10ZrCoCuに代えてZr55Cu30NiAl10とし、内中子部材3の材質として、WCを採用した例である。
[Description of each example]
In Example 1, an aluminum alloy ADC12 was adopted as the molten metal 8A, the molten metal temperature T was T = 993 (K), the solidification temperature T k was T k = 843 (K), and the take-out temperature T t was T t = 298 (K). The material of the inner core member 3 was alumina, and the material of the outer core member 1 was SKD11 of an iron-based alloy. Further, the heat insulating layer 2 was adopted ZrO 2 with a thickness of 10 [mu] m (Example 2-6 versa).
In Example 2, the material of the molten metal 8A in Example 1 is MDC1D (T = 923 (K), T k = 783 (K), T t = 298 (K)) which is a magnesium alloy instead of the ADC 12. In this example, the material of the heat insulating film 2 is replaced with alumina to form SKD11.
Example 3 is Zr 55 Cu 30 Ni 5 Al 10 (T = 1373 (K), T k = 763) which is a material for forming metal glass instead of MDC 1D as the material of molten metal 8A in Example 2. (K), T t = 298 (K)).
Example 4 is Fe 75 Ga 5 P 12 C 4 B 4 (T = 1373 (K), T k ), which is a material for forming metal glass instead of MDC 1D as the material of molten metal 8A in Example 2. = 823 (K), T t = 298 (K)), and the material of the outer core member 1 is Cu instead of SKD11.
In Example 5, the material of the molten metal 8A is Ni 53 Nb 20 Ti 10 Zr 8 Co 6 Cu 3 (T = 1273 (K), which is a material for forming metal glass instead of the MDC 1D in Example 2. In this example, T k = 823 (K) and T t = 298 (K)), and SUS303 is adopted as the material of the outer core member 1 and the inner core member 3.
In Example 5, the material of the molten metal 8A in Example 5 was changed to Ni 53 Nb 20 Ti 10 Zr 8 Co 6 Cu 3 instead of Zr 55 Cu 30 Ni 5 Al 10 and the material of the inner core member 3 was: This is an example employing WC.

[各比較例の説明]
比較例1は、実施例1において、中子4に代えて、SKD11による直径10(mm)×長さ14(mm)の一体型の円柱ピンからなる中子を用いた場合の例である。このため、本比較例は、実施例1に対して、断熱膜2がなく、冷却時の中子に先細のテーパが生じない場合の例になっている。
比較例2は、実施例1において、断熱膜2を除去し、アルミナ製の内中子部材3とSKD11製の外中子部材1とを直接接触させた場合の例になっている。
比較例3は、実施例3において、中子4に代えて、SKD11による直径10(mm)×長さ14(mm)の円柱ピンからなる中子を用いた場合の例である。
[Description of each comparative example]
Comparative Example 1 is an example in which, in Example 1, instead of the core 4, a core composed of an integrated cylindrical pin having a diameter 10 (mm) × length 14 (mm) by the SKD 11 is used. For this reason, this comparative example is an example in which the heat insulating film 2 is not provided and the taper of the core at the time of cooling does not occur as compared with the first embodiment.
The comparative example 2 is an example in which the heat insulating film 2 is removed and the inner core member 3 made of alumina and the outer core member 1 made of SKD11 are brought into direct contact with each other in the first embodiment.
Comparative Example 3 is an example in which, in Example 3, instead of the core 4, a core made of a cylindrical pin having a diameter 10 (mm) × length 14 (mm) by the SKD 11 is used.

[評価方法の説明]
上記各実施例、比較例の条件に基づいて、鋳造成形を行って、離型を試み、その結果を評価した。
評価結果○は、一体型のテーパ付きの中子(テーパ角は0.5度)と同等以上の容易さで離型することができ、かつ、成形品8Bの穴内周面8aや中子の表面にダメージが見られず、実用に十分耐える結果であったことを示す。
評価結果△は、離型はできたものの、成形品8Bの穴内周面8aや中子の表面に傷などのダメージが見られたため、許容できないことを示す。
評価結果×は、離型自体が困難であったことを示す。
[Explanation of evaluation method]
Based on the conditions of the above Examples and Comparative Examples, casting was performed, mold release was attempted, and the results were evaluated.
The evaluation result ○ indicates that the mold can be released with the same or better ease as the integral tapered core (taper angle is 0.5 degree), and the inner peripheral surface 8a of the molded product 8B and the core No damage was seen on the surface, indicating that the results were sufficiently practical.
The evaluation result Δ indicates that although the mold release was possible, damage such as scratches was observed on the inner peripheral surface 8a of the molded product 8B and the surface of the core, so that it was not acceptable.
Evaluation result x shows that mold release itself was difficult.

[評価結果について]
上記表1に示すように、実施例1〜6の離型性の評価結果は○であった。一体型のテーパ付き中子では、各実施例のようなストレートな円筒穴形状は成形できないのに対して、これら実施例では、ストレートな円筒穴形状の穴内周面8aを形成できた。
一方、比較例1、3は、それぞれ実施例1、3に対応して、それぞれテーパのない円柱状の中子で、鋳造を行った場合の例になっている。この場合、いずれも、評価結果は×で、離型は困難であった。
また、比較例2は、実施邸1において、断熱膜2のみを削除した場合の例であり、アルミナとSKD11の線膨張係数の差、および外中子部材1の抜き方向における厚さの変化によって、冷却時に、先細のテーパが形成できるため、先細のテーパのない比較例1のように、離型できなくなることはなかったが、評価結果は△であった。
これは、断熱膜2がないため、アルミナ製の内中子部材3の線膨張係数とMDC1D製の外中子部材1の線膨張係数の差に対応したテーパが形成されるため、冷却時に実施例1に比べて小さいテーパしか形成されないためである。
[About evaluation results]
As shown in Table 1 above, the evaluation results of the releasability in Examples 1 to 6 were good. In the integrated tapered core, a straight cylindrical hole shape as in each example cannot be formed, but in these examples, a straight cylindrical hole-shaped inner peripheral surface 8a can be formed.
On the other hand, Comparative Examples 1 and 3 correspond to Examples 1 and 3, respectively, and are examples in which casting is performed with a cylindrical core having no taper. In each case, the evaluation result was x, and it was difficult to release the mold.
Moreover, the comparative example 2 is an example at the time of removing only the heat insulation film 2 in the implementation house 1, and the difference in the linear expansion coefficient between the alumina and the SKD 11 and the change in the thickness of the outer core member 1 in the drawing direction. Since a tapered taper can be formed during cooling, it was not possible to release the mold as in Comparative Example 1 without the tapered taper, but the evaluation result was Δ.
Since there is no heat insulating film 2, a taper corresponding to the difference between the linear expansion coefficient of the inner core member 3 made of alumina and the linear expansion coefficient of the outer core member 1 made of MDC1D is formed. This is because only a smaller taper than that in Example 1 is formed.

また、実施例のうちでも、実施例3〜6と、実施例1、2とを比べると、実施例3〜6のように金属ガラスによる鋳造の方が、より離型性が優れていた。
これは、金属ガラスは、溶融温度が1000度程度とアルミニウム合金やマグネシウム合金に比べて高いため、外中子部材1の温度変化による変形量が大きくなることと、および、急冷固化によって非晶質となることによりアルミニウム合金やマグネシウム合金に比べて固化収縮が格段に小さいため、固化収縮による中子への抱きつきの度合いは軽減されることとの相乗効果によると考えられる。
すなわち、中子が変形してから離型可能であるため、硬度の高い金属ガラスから外中子部材1の表面がまず剥離してから抜かれることとなり、外中子部材1の表面と成形品8Bの穴内周面8aがせん断方向に摩擦をされにくいため、硬度の高い金属ガラスによる中子4の磨耗や傷などのダメージを効果的に回避することができる。
また、逆に、金属ガラスは、多くの型材料よりも弾性率や硬度が高いため、十分なテーパがないと離型時に型を損傷しやすく、従来技術では、ストレートな円筒穴形状の成形には、スライド型などが必要となり、型構造が複雑かつ高価なものとなってしまう。
Moreover, among Examples, when Examples 3 to 6 were compared with Examples 1 and 2, casting with metal glass as in Examples 3 to 6 was more excellent in releasability.
This is because metal glass has a melting temperature of about 1000 ° C., which is higher than that of an aluminum alloy or a magnesium alloy, so that the deformation amount due to temperature change of the outer core member 1 becomes large, and it is amorphous by rapid solidification. Therefore, the solidification shrinkage is remarkably smaller than that of the aluminum alloy or the magnesium alloy, and this is considered to be due to a synergistic effect that the degree of hugging the core by the solidification shrinkage is reduced.
That is, since the mold can be released after the core is deformed, the surface of the outer core member 1 is first peeled off from the metal glass having a high hardness, and then the surface of the outer core member 1 and the molded product are removed. Since the inner peripheral surface 8a of the hole 8B is not easily rubbed in the shearing direction, damage such as wear and scratches on the core 4 due to the high hardness metal glass can be effectively avoided.
Conversely, metallic glass has a higher modulus of elasticity and hardness than many mold materials, so if there is not enough taper, the mold is easily damaged during mold release. Requires a slide mold, and the mold structure is complicated and expensive.

なお、上記の説明では、断熱層部が、熱伝導率の小さい薄膜層からなる場合、および熱伝導固体が除去された中空部からなる場合の例で説明したが、外中子部材と内中子部材との間に、空隙部を設け、熱伝導に寄与する接触面積を低減することにより、伝熱を抑制する構成としてもよい。
このような断熱層部が空隙部を有する場合について、図7を参照して説明する。
図7は、本発明の第1および第2の実施形態に係る鋳造用中子に好適に用いることができる断熱層部の他例を示す模式的な部分拡大断面図である。
In the above description, the heat insulating layer portion is described as an example of a thin film layer having a low thermal conductivity and a case of a hollow portion from which a heat conductive solid has been removed. It is good also as a structure which suppresses heat transfer by providing a space | gap part between a child member and reducing the contact area which contributes to heat conduction.
The case where such a heat insulation layer part has a space | gap part is demonstrated with reference to FIG.
FIG. 7 is a schematic partial enlarged cross-sectional view showing another example of the heat insulating layer portion that can be suitably used for the casting core according to the first and second embodiments of the present invention.

図7に示す断熱層部2Aは、上記各実施形態、変形例の外中子部材1、1A、21や内中子部材3、3A、23において、断熱膜2、断熱膜22a、22bなどに代えて用いることができるものである。以下では、外中子部材1および内中子部材3に適用した場合の例で説明する。
断熱層部2Aは、外中子部材1の内周面1cに形成された微細な凹凸を有する粗面100と、内中子部材3のテーパ部3aに形成された微罪な凹凸を有する粗面101とが、当接して接合され、粗面100、101の各凸部同士が点接触するように固定され、粗面100、101の間に、微細な多数の空隙部102が形成されたものである。
粗面100、101は、例えば、表目粗さの粗い機械加工を行ったり、ブラスト加工を施したり、さらにそのような粗面の凹凸を化学処理によって増大させたりして形成することができる。
このような構成の断熱層部2Aによれば、外中子部材1と内中子部材3との間の真実接触面積が低下して、熱伝導路の面積が小さくなるとともに、空隙部102によって、伝熱が抑制される。
空隙部102は、真空状態とすれば、より断熱性が向上するので、より好ましい。
The heat insulation layer 2A shown in FIG. 7 is formed on the heat insulation film 2, the heat insulation films 22a, 22b, etc. in the outer core members 1, 1A, 21 and the inner core members 3, 3A, 23 of the above-described embodiments and modifications. It can be used instead. Below, the example at the time of applying to the outer core member 1 and the inner core member 3 is demonstrated.
2 A of heat insulation layer parts are the rough surface 100 which has the fine unevenness | corrugation formed in the internal peripheral surface 1c of the outer core member 1, and the rough surface which has the fine sinister unevenness formed in the taper part 3a of the inner core member 3 101 is abutted and joined, and is fixed so that the convex portions of the rough surfaces 100 and 101 are in point contact with each other, and a large number of minute voids 102 are formed between the rough surfaces 100 and 101. It is.
The rough surfaces 100 and 101 can be formed, for example, by performing machining with rough surface roughness, blasting, or increasing the unevenness of such rough surfaces by chemical treatment.
According to the heat insulating layer portion 2A having such a configuration, the real contact area between the outer core member 1 and the inner core member 3 is reduced, the area of the heat conduction path is reduced, and the gap portion 102 Heat transfer is suppressed.
It is more preferable that the void portion 102 is in a vacuum state since the heat insulation is further improved.

このような空隙部を有する断熱層部のさらに他の例としては、微小な穴や気泡を有するポーラスな材料による層膜を形成する形態を挙げることができる。   As still another example of the heat insulating layer portion having such a void portion, a form of forming a layer film of a porous material having minute holes and bubbles can be exemplified.

また、上記の説明では、鋳造用中子で形成される成形品の中空形状としてストレートな円筒穴を有する棒状部材を鋳造する場合の例で説明したが、これは、一例であって、成形品の形状はこれに限定されない。例えば、中空形状の断面形状は、例えば、多角形や楕円などの任意の形状を採用することができる。
また、鋳造用中子で形成される成形品の中空形状は、抜き方向にストレートな穴部に限らず、抜き方向にストレートな貫通孔でもよい。
また、鋳造用中子で形成される成形品の中空形状は、もともと抜き勾配が付いた形状としてもよいし、冷却時の外中子部材を抜き方向に引き抜くことができる形状であれば逆テーパのついた形状であってもよい。このため、外中子部材の外形は、取り出し温度において、抜き方向に沿って先細となるテーパを有することが好ましいが、場合によっては抜き方向にストレートであってもよい。
また、外中子部材の外形は、階段状であってもよい。
Further, in the above description, an example in the case of casting a rod-shaped member having a straight cylindrical hole as a hollow shape of a molded product formed by a casting core is described as an example, and the molded product The shape is not limited to this. For example, an arbitrary shape such as a polygon or an ellipse can be adopted as the hollow cross-sectional shape.
Further, the hollow shape of the molded product formed of the casting core is not limited to a hole that is straight in the drawing direction, and may be a through hole that is straight in the drawing direction.
In addition, the hollow shape of the molded product formed by the casting core may be originally a shape with a draft, or a reverse taper as long as the outer core member can be pulled out in the drawing direction during cooling. It may be a shape with For this reason, the outer shape of the outer core member preferably has a taper that tapers along the drawing direction at the take-out temperature, but may be straight in the drawing direction depending on circumstances.
Further, the outer shape of the outer core member may be stepped.

また、上記第1の実施形態の変形例の説明では、放熱部1eは、外中子部材1Aと同材質で一体に形成する場合の例で説明したが、放熱部1eは、溶湯8Aには接触しないので、例えば、融点は低いが、型形状部1dよりも熱伝導率が高い材質による別部材で構成してもよい。   In the description of the modification of the first embodiment, the heat radiating portion 1e is described as an example in which the outer core member 1A is integrally formed of the same material, but the heat radiating portion 1e is formed on the molten metal 8A. Since it does not contact, for example, the melting point is low, but it may be constituted by another member made of a material having a higher thermal conductivity than the mold-shaped portion 1d.

また、上記の説明では、断熱層部を設けることで、内中子部材の温度上昇を抑制していたが、より効率的に内中子部材の温度上昇を抑制するため、あるいは、冷却時の冷却効率を向上するため、例えば、内中子部材の内部に冷媒を流す冷却用の配管を設けておき、必要に応じて内中子部材の冷却を行える構成としてもよい。   Further, in the above description, by providing the heat insulating layer portion, the temperature rise of the inner core member is suppressed, but in order to more efficiently suppress the temperature rise of the inner core member, or at the time of cooling In order to improve the cooling efficiency, for example, a cooling pipe through which a refrigerant flows inside the inner core member may be provided, and the inner core member may be cooled as necessary.

また、上記の説明では、鋳造用中子は、キャビティ内に導入された溶湯から熱を受けて、熱膨張するようにした場合の例で説明したが、鋳造用中子は、少なくとも溶湯と接触する外中子部材を、溶湯導入前に加熱しておき、十分に膨張させておいてから鋳造を行ってもよい。   Further, in the above description, the casting core is described as an example in which the casting core receives heat from the molten metal introduced into the cavity and is thermally expanded. However, the casting core is in contact with at least the molten metal. Casting may be performed after the outer core member to be heated is heated and sufficiently expanded before introducing the molten metal.

また、上記の第2実施形態の説明では、内中子部材23は、テーパ部23aを有するとして説明したが、第2の実施形態では、固定部21e、21fをそれぞれ固定する位置の外形が変化していればよい。このため、中空部22cに接するテーパ部23aの軸方向の中間部では、筒状壁体部21A、先端側壁体部21Bの熱変形を妨げない限りは任意の断面形状を採用することができる。例えば、階段状の先細形状であってもよいし、固定部21eの先端側から、外径dの円柱状に延ばされた形状でもよい。 In the above description of the second embodiment, the inner core member 23 has been described as having the tapered portion 23a. However, in the second embodiment, the outer shape of the position at which the fixing portions 21e and 21f are fixed is changed. If you do. For this reason, any cross-sectional shape can be adopted in the intermediate portion in the axial direction of the taper portion 23a in contact with the hollow portion 22c as long as thermal deformation of the cylindrical wall portion 21A and the tip side wall portion 21B is not hindered. For example, it may be a stepped tapered from the distal end side of the fixing portion 21e, or in an extended cylindrical shape having an outer diameter d 0 shape.

また、上記の説明では、内中子部材の基端部の外形寸法は、外中子部材1の基端側の外形寸法である外径dと同じ値とした例で説明したが、これは一例であり、内中子部材の基端部の寸法は、外中子部材の基端側の外形寸法と異なっていてもよい。冷却時に、成形品の冷却を内部側から促進する点では、内中子部材の基端部は外中子部材の基端側の外形寸法に比べて大きいことが好ましい。 In the above description, the outer dimension of the proximal end portion of the inner core member is described as an example in which the outer diameter d 2 that is the outer dimension of the proximal end of the outer core member 1 is the same value. Is an example, and the dimension of the proximal end portion of the inner core member may be different from the outer dimension of the proximal end side of the outer core member. In terms of promoting cooling of the molded product from the inner side during cooling, it is preferable that the base end portion of the inner core member is larger than the outer dimension on the base end side of the outer core member.

また、上記の各実施形態、変形例等で説明したすべての構成要素は、本発明の技術的思想の範囲で適宜組み合わせて実施することができる。
例えば、上記第1の実施形態の変形例の放熱部1eを、上記第2の実施形態の外中子部材21に組み合わせて実施してもよい。
また、例えば、内中子部材3の先端部は、内中子部材23の先端部と同様に、溶湯8Aと接触する形状としてもよい。
In addition, all the constituent elements described in the above embodiments, modifications, and the like can be implemented in appropriate combination within the scope of the technical idea of the present invention.
For example, the heat radiating portion 1e of the modification of the first embodiment may be combined with the outer core member 21 of the second embodiment.
Further, for example, the distal end portion of the inner core member 3 may have a shape in contact with the molten metal 8 </ b> A similarly to the distal end portion of the inner core member 23.

請求項1に記載の発明では、溶湯から成形品を鋳造する鋳造型のキャビティ内に設けられた鋳造用中子であって、前記キャビティの内面から前記キャビティの内部側に向かって、前記成形品の抜き方向に沿って突設され、前記キャビティ内に導入される前記溶湯に接触する中子型面が外表面に形成された外中子部材と、該外中子部材の内側で前記抜き方向に沿って延ばされ、前記外中子部材からの伝熱を抑制する断熱層部を挟んで前記外中子部材の内側の固定部で固定された内中子部材とを備え、前記外中子部材の内側の固定部は、少なくとも、前記キャビティの内面近傍の基端固定部と、前記キャビティの内部側の先端部における先端固定部とにおいて、それぞれ前記内中子部材の外周面に対する前記外中子部材の内側の変形を拘束するように設けられるとともに、前記基端固定部から前記先端固定部までの前記各固定部における、前記抜き方向に対する側面側の前記外中子部材の外周面と前記固定部との、前記抜き方向に直交する方向の各間隔が、前記基端固定部側よりも前記先端固定部側の方が大きな間隔となるように設けられた構成とする。
この発明によれば、鋳造型のキャビティ内に溶湯が導入されると、溶湯は中子型面に接触し、外中子部材が加熱され熱膨張する。外中子部材は内側の固定部で、外中子部材からの伝熱を抑制する断熱層部を挟んで、内中子部材と固定されているため、溶湯からの熱は、主に外中子部材を熱膨張させるのに使われ、内中子部材はほとんど熱膨張しない。したがって、主として外中子部材の熱膨張により中子型面の形状が変化する。
溶湯の充填が完了して鋳造型を通して放熱が進むと、溶湯が冷却され、熱膨張した外中子部材の中子型面に沿って固化し、成形品の中空形状が成形される。同時に、外中子部材も収縮していく。
外中子部材の内側の固定部は、少なくとも、キャビティの内面近傍の基端固定部と、キャビティの内部側の先端部における先端固定部とにおいて、それぞれ内中子部材の外周面に対する外中子部材の内側の変形を拘束するように設けられるとともに、基端固定部から先端固定部までの各固定部における、抜き方向に対する側面側の外中子部材の外周面と固定部との、抜き方向に直交する方向の各間隔が、基端固定部側よりも先端固定部側の方が大きな間隔となるように設けられている。
このため、外中子部材は、各固定部において、固定部から抜き方向に対する側面側の外中子部材の外周面が、固定部からこの外周面までの間隔に応じた熱膨張量で熱膨張する。したがって、一定の温度上昇による熱膨張量、熱収縮量が、基端固定部側よりも先端固定部側の方が大きくなる。この結果、中子型面の形状が、成形品の中空形状の奥側となる外中子部材の先端側でより大きく変化して、冷却時には、熱膨張時に比べて全体として先端側が細る形状となる。
The invention according to claim 1 is a casting core provided in a cavity of a casting mold for casting a molded product from a molten metal, wherein the molded product is directed from the inner surface of the cavity toward the inner side of the cavity. An outer core member formed on the outer surface of a core mold surface that protrudes along the pulling direction and contacts the molten metal introduced into the cavity, and the pulling direction on the inner side of the outer core member And an inner core member fixed at an inner fixed portion of the outer core member across a heat insulating layer portion that suppresses heat transfer from the outer core member. The inner fixed portion of the child member includes at least a base end fixed portion in the vicinity of the inner surface of the cavity and a distal end fixed portion in the distal end portion on the inner side of the cavity, respectively, with respect to the outer peripheral surface of the inner core member. Constrain deformation inside the core member In each of the fixed portions from the base end fixing portion to the distal end fixing portion, the outer peripheral surface of the outer core member on the side surface with respect to the pulling direction and the fixing portion are orthogonal to the pulling direction. Each interval in the direction to be arranged is set to be larger on the distal end fixing portion side than on the proximal end fixing portion side.
According to this invention, when the molten metal is introduced into the cavity of the casting mold, the molten metal contacts the core surface, and the outer core member is heated and thermally expanded. The outer core member is an inner fixed part, and is fixed to the inner core member with a heat insulating layer portion that suppresses heat transfer from the outer core member interposed therebetween. It is used to thermally expand the child member, and the inner core member hardly thermally expands. Therefore, the shape of the core surface changes mainly due to the thermal expansion of the outer core member.
When the filling of the molten metal is completed and heat dissipation proceeds through the casting mold, the molten metal is cooled and solidified along the core surface of the outer core member that has been thermally expanded, and the hollow shape of the molded product is formed. At the same time, the outer core member contracts.
The inner core fixing portion includes at least a base end fixing portion in the vicinity of the inner surface of the cavity and a tip fixing portion at the inner end of the cavity, and the outer core with respect to the outer peripheral surface of the inner core member. The pulling direction between the outer peripheral surface of the outer core member on the side surface with respect to the pulling direction and the fixing portion at each fixing portion from the base end fixing portion to the distal end fixing portion, provided to restrain deformation inside the member. The intervals in the direction orthogonal to the front end fixing portion side are set to be larger than the base end fixing portion side.
For this reason, the outer core member has a thermal expansion amount at each fixed portion so that the outer peripheral surface of the outer core member on the side surface in the pulling direction from the fixed portion has a thermal expansion amount corresponding to the interval from the fixed portion to the outer peripheral surface. To do. Therefore, the amount of thermal expansion and heat shrinkage due to a constant temperature increase is greater on the distal end fixing portion side than on the proximal end fixing portion side. As a result, the shape of the core mold surface changes more greatly on the distal end side of the outer core member that is the back side of the hollow shape of the molded product, and the shape in which the distal end side becomes thinner as a whole compared to the time of thermal expansion during cooling. Become.

請求項2に記載の発明では、請求項1に記載の鋳造用中子において、前記内中子部材は、前記キャビティの内面から前記キャビティの内部側に向かって、外形寸法が減少する凸部を備え、前記外中子部材は、前記内中子部材の前記凸部に沿う形状の凹部を有するともに、該凹部の内周面から前記中子型面までの前記抜き方向に直交する断面での厚さが、前記キャビティの内面から前記キャビティの内部側に向かって増大する形状に設けられ、前記断熱層部は、前記内中子部材の前記凸部の外周面と前記外中子部材の前記凹部の内周面との間に挟まれている構成とする。
この発明によれば、内中子部材の、キャビティの内面からキャビティの内部側に向かって、外形寸法が減少する凸部に、断熱層部を挟んで外中子部材が固定される。
外中子部材は、内中子部材の凸部に沿う形状の凹部を有するともに、この凹部の内周面から中子型面までの抜き方向に直交する断面での厚さが、キャビティの内面からキャビティの内部側に向かって増大する形状に設けられるので、外中子部材の凹部の内周面が、断熱層部の作用によりほとんど熱膨張しない内中子部材の凸部の外周面の形状に拘束される。このため、外中子部材は、抜き方向に直交する方向の厚さに応じて、熱膨張するため、冷却時には、成形品の中空形状の奥側に当たる外中子部材の先端側がより大きく収縮して、中子型面では、熱膨張時に比べて全体として先端側が細る形状となる。
According to a second aspect of the present invention, in the casting core according to the first aspect, the inner core member has a convex portion whose outer dimension decreases from the inner surface of the cavity toward the inner side of the cavity. The outer core member has a concave portion along the convex portion of the inner core member, and has a cross section orthogonal to the extraction direction from the inner peripheral surface of the concave portion to the core mold surface. The thickness is provided in a shape that increases from the inner surface of the cavity toward the inner side of the cavity, and the heat insulating layer portion includes an outer peripheral surface of the convex portion of the inner core member and the outer core member. It is set as the structure pinched | interposed between the internal peripheral surfaces of a recessed part.
According to the present invention, the outer core member is fixed to the convex portion whose outer dimension decreases from the inner surface of the cavity toward the inner side of the cavity with the heat insulating layer portion interposed therebetween.
The outer core member has a concave portion shaped along the convex portion of the inner core member, and the thickness in a cross section perpendicular to the drawing direction from the inner peripheral surface of the concave portion to the core mold surface is the inner surface of the cavity. Since the inner peripheral surface of the concave portion of the outer core member hardly expands due to the action of the heat insulating layer portion, the shape of the outer peripheral surface of the convex portion of the inner core member is increased. Restrained by For this reason, the outer core member thermally expands in accordance with the thickness in the direction orthogonal to the drawing direction, and therefore, at the time of cooling, the distal end side of the outer core member that contacts the hollow side of the molded product contracts more greatly Thus, the core-shaped surface has a shape in which the tip side is thinner as a whole compared to the case of thermal expansion.

請求項3に記載の発明では、請求項1に記載の鋳造用中子において、前記外中子部材は、前記キャビティの内面の側に開口部を有する筒状壁体部と、該筒状壁体部を前記キャビティの内部側で覆うように設けられた先端側壁体部とを備え、前記基端固定部が前記筒状壁体部の前記開口部に、前記先端固定部が前記先端側壁体部の中心部にそれぞれ設けられ、前記基端固定部および前記先端固定部の間において、前記内中子部材の外周面と、前記筒状壁体部および前記先端側壁体部の内周面との間が離間されて中空部が形成されている構成とする。
この発明によれば、筒状壁体部と先端側壁体部とを備える外中子部材が、筒状壁外部の開口部の基端固定部と先端側壁体部の中心部の先端固定部とでそれぞれ断熱層部を挟んで、内中子部材に固定されている。これら基端固定部と先端固定部との間には、内中子部材の外周面と、筒状壁体部および先端側壁体部の内周面との間が離間された中空部が形成されているので、断熱層部および中空部の作用により、外中子部材から内中子部材への伝熱が抑制される。
加熱された外中子部材の筒状壁体部および先端側壁体部は、それぞれが固定された位置で内周面が内中子部材に拘束された状態で熱膨張し、熱膨張量は、それぞれにおける外中子部材の内周面と外周面との間の抜き方向に直交する方向の間隔に比例する。このため、筒状壁体部の基端固定部における外形寸法は、ほとんど変化せず、中子型面の先端側の外形寸法は、先端側壁体部の抜き方向に直交する方向の熱膨張によって変化する。
したがって、冷却時には、成形品の中空形状の奥側に当たる外中子部材の先端側がより大きく収縮して、中子型面では、熱膨張時に比べて全体として先端側が細る形状となる。
According to a third aspect of the present invention, in the casting core according to the first aspect, the outer core member includes a cylindrical wall body portion having an opening on the inner surface side of the cavity, and the cylindrical wall. A distal end side wall body portion provided so as to cover the body portion on the inner side of the cavity, the proximal end fixing portion at the opening of the cylindrical wall body portion, and the distal end fixing portion at the distal end side wall body. An outer peripheral surface of the inner core member, and an inner peripheral surface of the cylindrical wall body portion and the distal side wall body portion between the proximal end fixing portion and the distal end fixing portion. It is set as the structure by which the space | interval was spaced apart and the hollow part was formed.
According to this invention, the outer core member provided with the cylindrical wall body portion and the distal end side wall body portion includes the proximal end fixing portion of the opening outside the cylindrical wall and the distal end fixing portion at the center portion of the distal end side wall body portion. And each is fixed to the inner core member with the heat insulating layer portion interposed therebetween. A hollow portion is formed between the proximal end fixing portion and the distal end fixing portion, the outer peripheral surface of the inner core member being separated from the inner peripheral surfaces of the cylindrical wall body portion and the distal end side wall body portion. Therefore, heat transfer from the outer core member to the inner core member is suppressed by the action of the heat insulating layer portion and the hollow portion.
The cylindrical wall body portion and the tip side wall body portion of the heated outer core member are thermally expanded in a state where the inner peripheral surface is constrained by the inner core member at a position where each is fixed, and the thermal expansion amount is It is proportional to the interval in the direction orthogonal to the drawing direction between the inner peripheral surface and the outer peripheral surface of the outer core member in each. For this reason, the outer dimensions at the proximal end fixing portion of the cylindrical wall portion hardly change, and the outer dimensions at the distal end side of the core mold surface are caused by thermal expansion in a direction perpendicular to the drawing direction of the distal end sidewall body portion. Change.
Therefore, at the time of cooling, the front end side of the outer core member corresponding to the back side of the hollow shape of the molded product is contracted more greatly, and the core mold surface has a shape in which the front end side is thinner as a whole than at the time of thermal expansion.

請求項4に記載の発明では、請求項3に記載の鋳造用中子において、前記中空部は、真空状態に設けられた構成とする。
この発明によれば、中空部による断熱性を向上することができる。
According to a fourth aspect of the present invention, in the casting core according to the third aspect, the hollow portion is provided in a vacuum state.
According to this invention, the heat insulation by a hollow part can be improved.

請求項5に記載の発明では、請求項1〜4のいずれかに記載の鋳造用中子において、前記外中子部材は、前記キャビティの外部へ前記溶湯から受けた熱を放熱する放熱部を備える構成とする。
この発明によれば、放熱部を通して、溶湯によって加熱された外中子部材の熱が、キャビティの外部に迅速に放熱される。
According to a fifth aspect of the present invention, in the casting core according to any one of the first to fourth aspects, the outer core member includes a heat radiating portion that radiates heat received from the molten metal to the outside of the cavity. It is set as the structure provided.
According to this invention, the heat of the outer core member heated by the molten metal is quickly radiated to the outside of the cavity through the heat radiating portion.

請求項6に記載の発明では、請求項1〜5のいずれかに記載の鋳造用中子において、前記断熱層部は、空隙部を有する構成とする。
この発明によれば、断熱層部が空隙部を備えるため、簡素な構成で伝熱を抑制することができる。
In invention of Claim 6, in the core for casting in any one of Claims 1-5, the said heat insulation layer part is set as the structure which has a space | gap part.
According to this invention, since a heat insulation layer part is provided with a space | gap part, heat transfer can be suppressed with a simple structure.

請求項7に記載の発明では、請求項6に記載の鋳造用中子において、前記空隙部は、真空状態に設けられた構成とする。
この発明によれば、空隙部による断熱性を向上することができる。
According to a seventh aspect of the present invention, in the casting core according to the sixth aspect, the gap is provided in a vacuum state.
According to this invention, the heat insulation by a space | gap part can be improved.

請求項8に記載の発明では、請求項1〜7のいずれかに記載の鋳造用中子において、前記外中子部材を構成する材料の線膨張係数は、前記内中子部材を構成する材料の線膨張係数よりも大きい構成とする。
この発明によれば、内中子部材に伝熱されて、内中子部材がある程度熱膨張したとしても、外中子部材の温度変化による形状の変化が内中子部材に比べて相対的に大きくなる。
According to an eighth aspect of the present invention, in the casting core according to any one of the first to seventh aspects, a linear expansion coefficient of a material constituting the outer core member is a material constituting the inner core member. It is set as a structure larger than the linear expansion coefficient.
According to this invention, even if heat is transferred to the inner core member and the inner core member is thermally expanded to some extent, the shape change due to the temperature change of the outer core member is relatively less than that of the inner core member. growing.

1、1A、21 外中子部材
1a 側面
1b 先端面
1c、1f 内周面
1d 型形状部
1e 放熱部
2、22a、22b 断熱膜(断熱層部)
3、3A、23 内中子部材
3a、3c、23a テーパ部
3b、3d、23b 基端部
4、4A、24 中子(鋳造用中子)
5、7 外型
5a キャビティ底面(キャビティの内面)
6 キャビティ
8A 溶湯
8B 成形品
8a 穴内周面
10、10A、20 鋳造型
21A 筒状壁体部
21B 先端側壁体部
21a 外周側面
21b 先端面
21c 側部内周面
21d 底部内周面
21e 固定部(基端固定部)
21f 固定部(先端固定部)
22c 中空部(断熱層部)
1, 1A, 21 Outer core member 1a Side surface 1b Tip surface 1c, 1f Inner peripheral surface 1d Mold shape portion 1e Heat radiation portion 2, 22a, 22b Heat insulation film (heat insulation layer portion)
3, 3A, 23 Inner core member 3a, 3c, 23a Taper part 3b, 3d, 23b Base end part 4, 4A, 24 Core (core for casting)
5, 7 Outer mold 5a Cavity bottom (inside of cavity)
6 Cavity 8A Molten metal 8B Molded product 8a Hole inner peripheral surface 10, 10A, 20 Casting mold 21A Cylindrical wall portion 21B Tip side wall portion 21a Outer peripheral side surface 21b Tip end surface 21c Side inner peripheral surface 21d Bottom inner peripheral surface 21e Fixed portion (base End fixing part)
21f Fixed part (tip fixed part)
22c Hollow part (heat insulation layer part)

Claims (8)

溶湯から成形品を鋳造する鋳造型のキャビティ内に設けられた鋳造用中子であって、
前記キャビティの内面から前記キャビティの内部側に向かって、前記成形品の抜き方向に沿って突設され、前記キャビティ内に導入される前記溶湯に接触する中子型面が外表面に形成された外中子部材と、
該外中子部材の内側で前記抜き方向に沿って延ばされ、前記外中子部材からの伝熱を抑制する断熱層部を挟んで前記外中子部材の内側の固定部で固定された内中子部材とを備え、
前記外中子部材の内側の固定部は、
少なくとも、前記キャビティの内面近傍の基端固定部と、前記キャビティの内部側の先端部における先端固定部とにおいて、それぞれ前記内中子部材の外周面に対する前記外中子部材の内側の変形を拘束するように設けられるとともに、
前記基端固定部から前記先端固定部までの前記各固定部における、前記抜き方向に対する側面側の前記外中子部材の外周面と前記固定部との、前記抜き方向に直交する方向の各間隔が、前記基端固定部側よりも前記先端固定部側の方が大きな間隔となるように設けられたことを特徴とする鋳造用中子。
A casting core provided in a cavity of a casting mold for casting a molded product from a molten metal,
A core mold surface that protrudes from the inner surface of the cavity toward the inner side of the cavity along the drawing direction of the molded product and contacts the molten metal introduced into the cavity is formed on the outer surface. An outer core member;
The inner core member is extended along the drawing direction and fixed by a fixing portion inside the outer core member with a heat insulating layer portion for suppressing heat transfer from the outer core member interposed therebetween. An inner core member,
The fixed portion inside the outer core member is
At least at the proximal end fixing portion in the vicinity of the inner surface of the cavity and the distal end fixing portion at the distal end portion on the inner side of the cavity, the deformation inside the outer core member with respect to the outer peripheral surface of the inner core member is restrained. As well as
Each interval in the direction orthogonal to the extraction direction between the outer peripheral surface of the outer core member on the side surface with respect to the extraction direction and the fixed portion in each of the fixation portions from the proximal end fixation portion to the distal end fixation portion. However, the core for casting is characterized in that it is provided so that the gap on the distal end fixing portion side is larger than the base end fixing portion side.
前記内中子部材は、
前記キャビティの内面から前記キャビティの内部側に向かって、外形寸法が減少する凸部を備え、
前記外中子部材は、
前記内中子部材の前記凸部に沿う形状の凹部を有するともに、該凹部の内周面から前記中子型面までの前記抜き方向に直交する断面での厚さが、前記キャビティの内面から前記キャビティの内部側に向かって増大する形状に設けられ、
前記断熱層部は、前記内中子部材の前記凸部の外周面と前記外中子部材の前記凹部の内周面との間に挟まれていることを特徴とする請求項1に記載の鋳造用中子。
The inner core member is
From the inner surface of the cavity toward the inner side of the cavity, a convex portion whose outer dimension decreases,
The outer core member is
The inner core member has a concave portion shaped along the convex portion, and the thickness in a cross section perpendicular to the drawing direction from the inner peripheral surface of the concave portion to the core mold surface is from the inner surface of the cavity. Provided in a shape that increases toward the inside of the cavity;
The said heat insulation layer part is pinched | interposed between the outer peripheral surface of the said convex part of the said inner core member, and the inner peripheral surface of the said recessed part of the said outer core member. Casting core.
前記外中子部材は、
前記キャビティの内面の側に開口部を有する筒状壁体部と、該筒状壁体部を前記キャビティの内部側で覆うように設けられた先端側壁体部とを備え、
前記基端固定部が前記筒状壁体部の前記開口部に、前記先端固定部が前記先端側壁体部の中心部にそれぞれ設けられ、
前記基端固定部および前記先端固定部の間において、前記内中子部材の外周面と、前記筒状壁体部および前記先端側壁体部の内周面との間が離間されて中空部が形成されていることを特徴とする請求項1に記載の鋳造用中子。
The outer core member is
A cylindrical wall body portion having an opening on the inner surface side of the cavity, and a tip side wall body portion provided so as to cover the cylindrical wall body portion on the inner side of the cavity,
The proximal end fixing portion is provided in the opening of the cylindrical wall body portion, and the distal end fixing portion is provided in a central portion of the distal end side wall body portion;
Between the base end fixing portion and the distal end fixing portion, the outer peripheral surface of the inner core member and the inner peripheral surface of the cylindrical wall body portion and the distal end side wall body portion are separated from each other so that a hollow portion is formed. The casting core according to claim 1, wherein the casting core is formed.
前記中空部は、真空状態に設けられたことを特徴とする請求項3に記載の鋳造用中子。   The casting core according to claim 3, wherein the hollow portion is provided in a vacuum state. 前記外中子部材は、前記キャビティの外部へ前記溶湯から受けた熱を放熱する放熱部を備えることを特徴とする請求項1〜4のいずれかに記載の鋳造用中子。   5. The casting core according to claim 1, wherein the outer core member includes a heat radiating portion that radiates heat received from the molten metal to the outside of the cavity. 前記断熱層部は、空隙部を有することを特徴とする請求項1〜5のいずれかに記載の鋳造用中子。   The core for casting according to any one of claims 1 to 5, wherein the heat insulating layer portion has a void portion. 前記空隙部は、真空状態に設けられたことを特徴とする請求項6に記載の鋳造用中子。   The casting core according to claim 6, wherein the gap is provided in a vacuum state. 前記外中子部材を構成する材料の線膨張係数は、前記内中子部材を構成する材料の線膨張係数よりも大きいことを特徴とする請求項1〜7のいずれかに記載の鋳造用中子。   8. The medium for casting according to claim 1, wherein a linear expansion coefficient of a material constituting the outer core member is larger than a linear expansion coefficient of a material constituting the inner core member. Child.
JP2009140182A 2009-06-11 2009-06-11 Casting core Expired - Fee Related JP5307640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009140182A JP5307640B2 (en) 2009-06-11 2009-06-11 Casting core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009140182A JP5307640B2 (en) 2009-06-11 2009-06-11 Casting core

Publications (2)

Publication Number Publication Date
JP2010284681A JP2010284681A (en) 2010-12-24
JP5307640B2 true JP5307640B2 (en) 2013-10-02

Family

ID=43540800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009140182A Expired - Fee Related JP5307640B2 (en) 2009-06-11 2009-06-11 Casting core

Country Status (1)

Country Link
JP (1) JP5307640B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011000634A (en) * 2009-06-22 2011-01-06 Olympus Corp Centrifugal casting apparatus and method of producing molded body
CN105478682A (en) * 2015-11-30 2016-04-13 贵州安吉航空精密铸造有限责任公司 Manufacturing technology of complex cavity component
EP3895827B1 (en) * 2020-04-17 2023-11-15 Heraeus Amloy Technologies GmbH Process for manufacturing a hollow body from amorphous metal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05104201A (en) * 1991-10-11 1993-04-27 Olympus Optical Co Ltd Core in casting mold
JP3036302B2 (en) * 1993-07-08 2000-04-24 トヨタ自動車株式会社 Casting pins for casting

Also Published As

Publication number Publication date
JP2010284681A (en) 2010-12-24

Similar Documents

Publication Publication Date Title
US8418366B2 (en) Internal gear manufacturing method and metallic glass internal gear manufactured thereby
JP5307640B2 (en) Casting core
US20220161319A1 (en) Injection-molding device and method for manufacturing parts made of metallic glass
JP2004162179A (en) METHOD FOR MANUFACTURING SPUTTER TARGET CONSISTING OF Si-BASED ALLOY, SPUTTER TARGET OF THIS KIND, AND ITS USE
JP2006044245A (en) Mold for injection molding and injection molding method
JP5099053B2 (en) Method for producing glass mold and method for producing glass molded body
TWI613018B (en) Method and apparatus for forming a liquid-forged article
WO2012140965A1 (en) Cast pin
JP5616122B2 (en) Core pin, core pin manufacturing method, die casting mold, and die casting mold manufacturing method
JP5853207B2 (en) Injection mold for cylindrical molded products
JP2000343205A (en) Manufacture of amorphous alloy formed stock
JP2008006447A (en) Molding die and molding apparatus
US20230201913A1 (en) Hollow article made of amorphous metal
JP2009072803A (en) Forming die and its manufacturing method
JP2016156049A (en) Method for manufacturing cylindrical sputtering target
JP2010210818A (en) Method for manufacturing optical component
CN106246682B (en) Ceramic fastener
JP7490589B2 (en) Method for forming holes in ceramic members
JP2004026607A (en) Glass mold and method for manufacturing the same
JP2010227965A (en) Method for controlling solidification of casting
JPS61103661A (en) Combination pin for die casting
TWI329620B (en) Mold for molding glass optical articles
JP3746584B2 (en) Material for forming amorphous alloy block and method for forming amorphous alloy block
JP2008284704A (en) Mold and method of manufacturing optical element
JP2004017100A (en) Method for manufacturing vehicle wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130627

R151 Written notification of patent or utility model registration

Ref document number: 5307640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees