JP2000343205A - Manufacture of amorphous alloy formed stock - Google Patents

Manufacture of amorphous alloy formed stock

Info

Publication number
JP2000343205A
JP2000343205A JP11157314A JP15731499A JP2000343205A JP 2000343205 A JP2000343205 A JP 2000343205A JP 11157314 A JP11157314 A JP 11157314A JP 15731499 A JP15731499 A JP 15731499A JP 2000343205 A JP2000343205 A JP 2000343205A
Authority
JP
Japan
Prior art keywords
temperature
core member
amorphous alloy
glass transition
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11157314A
Other languages
Japanese (ja)
Inventor
Hidenobu Nagahama
秀信 長浜
Jiyunichi Nagahora
純一 永洞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp filed Critical YKK Corp
Priority to JP11157314A priority Critical patent/JP2000343205A/en
Publication of JP2000343205A publication Critical patent/JP2000343205A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of forming even a small and long hole with a specified shape, high dimensional accuracy and surface quality, and manufacturing an amorphous alloy formed stock in a simple process and with excellent mass productivity. SOLUTION: A molten metal A of a material to generate an amorphous alloy in a melting container 1 is poured and cast in a cavity 4 of a die 3 which is maintained at the temperature that the die temperature Tm is not lower than the glass transition temperature Tg of the alloy and lower than the melting point Tm. Then, a small wire-like core member 6 is penetrated in a casting material B in a condition that the die temperature Tm is maintained at the temperature not lower than the glass transition Tg, and drawn to form a small hole 7. After the die is cooled until the die temperature is not higher than the glass transition temperature Tg, the die is separated, and an amorphous alloy formed stock 8 is taken out. The core member may be set in the die in advance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アモルファス合金
成形品の製造方法に関し、さらに詳しくは、アモルファ
ス合金(金属ガラス)の過冷却液体状態もしくはガラス
遷移領域を利用して成形する技術、特に光コネクタ部品
(フェルール、キャピラリ)などの成形に有用な寸法精
度の高い細穴成形技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an amorphous alloy molded article, and more particularly, to a technique for molding an amorphous alloy (metallic glass) using a supercooled liquid state or a glass transition region, and in particular, an optical connector. The present invention relates to a technique for forming a fine hole with high dimensional accuracy useful for forming parts (ferrules, capillaries) and the like.

【0002】[0002]

【従来の技術】従来、細穴を成形加工する技術として
は、ドリルによる穴明け加工法、ドリル加工に超音波を
付加した加工法、レーザ加工法など、種々の方法が知ら
れている。しかしながら、ドリルによる穴明け加工で
は、穴の深さはドリル径の約5倍が限界であり、細くそ
して長い穴はあけられない。長い穴の場合には放電加工
が行なわれているが、穴径に関しては限界がある。ま
た、ドリル加工に超音波を付加する加工法でも深い穴は
成形できない。例えば穴径φ0.1mmに対して5mm
くらいが限度であり、しかも高い精度は求められないと
いう難点がある。一方、レーザ加工でも、例えば穴径φ
0.1mmに対して3〜5mmがせいぜいであり、この
加工法でも高い精度は達成できないという問題がある。
2. Description of the Related Art Conventionally, as a technique for forming a small hole, various methods such as a drilling method, a processing method in which ultrasonic waves are added to drilling, and a laser processing method are known. However, in drilling, the depth of a hole is limited to about 5 times the diameter of a drill, and a thin and long hole cannot be drilled. In the case of a long hole, electrical discharge machining is performed, but there is a limit on the hole diameter. Further, a deep hole cannot be formed by a processing method in which ultrasonic waves are added to drilling. For example, 5mm for hole diameter φ0.1mm
However, there is a drawback that the degree is the limit and high precision is not required. On the other hand, even in laser processing, for example, the hole diameter φ
At most, 3 to 5 mm is required for 0.1 mm, and there is a problem that high precision cannot be achieved even with this processing method.

【0003】特に細長い貫通孔を有し、しかも高い寸法
精度が要求される代表的なものとして、光コネクタのキ
ャピラリもしくはフェルールが挙げられる。以下、添付
図面を参照しながら説明すると、図7は、光コネクタに
おけるキャピラリ部11とフランジ部12が一体型のフ
ェルール10を示している。すなわち、フェルール10
は、光ファイバ17(もしくは光ファイバ素線)を挿入
するための小径の貫通孔13が中心軸線に沿って形成さ
れたキャピラリ部11と、中心軸線に沿って光ファイバ
心線16(光ファイバの外周に外被が被着されたもの)
挿通用の大径の貫通孔14が形成されたフランジ部12
とからなり、小径の貫通孔13と大径の貫通孔14はテ
ーパ径部15を介して接続されている。一対の光ファイ
バ17,17の接続は、それらが挿入・接合された各フ
ェルール10,10を割りスリーブ18の両端から挿入
し、フェルール10,10同士の端部を突き合わせるこ
とにより行なわれ、これによって光ファイバ17,17
の軸線が整列した状態で先端部が突き合わせ接続され
る。一方、図8は、光コネクタのキャピラリ11aとフ
ランジ12aが別体の光コネクタ用フェルール10aを
示している。
[0003] A capillary or a ferrule of an optical connector is a typical example having an elongated through hole and requiring high dimensional accuracy. Referring to the accompanying drawings, FIG. 7 shows a ferrule 10 in which an optical connector has a capillary portion 11 and a flange portion 12 which are integrated. That is, the ferrule 10
Is a capillary section 11 in which a small-diameter through hole 13 for inserting an optical fiber 17 (or an optical fiber) is formed along a central axis, and an optical fiber core 16 (of an optical fiber) along the central axis. With outer jacket attached to the outer periphery)
Flange part 12 in which large-diameter through hole 14 for insertion is formed
The small-diameter through-hole 13 and the large-diameter through-hole 14 are connected via a tapered diameter portion 15. The pair of optical fibers 17, 17 is connected by inserting the ferrules 10, 10 into which they are inserted and joined, from both ends of the split sleeve 18, and butting the ends of the ferrules 10, 10 together. The optical fibers 17, 17
The tip ends are butt-connected while the axes of are aligned. On the other hand, FIG. 8 shows an optical connector ferrule 10a in which a capillary 11a of an optical connector and a flange 12a are separate bodies.

【0004】光ファイバを通す細穴の穴径は、タイプに
より様々であるが、例えばSC型と呼ばれるキャピラリ
(フェルール)ではφ0.126mm、深さ10mmの
細穴を有している。主としてキャピラリはジルコニアな
どのセラミックスで作製されている。この細穴成形は、
予め小さめの細穴を有するキャピラリを射出成形してお
き、焼成後、ワイヤーラッピング加工により正規寸法に
細穴加工されている。またこの部品は、細穴加工の他
に、外径加工・研磨等多くの工程を経て作製されてい
る。そのため、製造工程が長大でコストの増大を余儀な
くされている。
[0004] The diameter of the small hole through which the optical fiber passes varies depending on the type. For example, a capillary (ferrule) called an SC type has a small hole of φ0.126 mm and a depth of 10 mm. Primarily, capillaries are made of ceramics such as zirconia. This small hole molding,
A capillary having a small hole is injection molded in advance, and after firing, the hole is formed into a regular size by wire wrapping. In addition, this part is manufactured through many steps such as outer diameter processing and polishing in addition to fine hole processing. Therefore, the manufacturing process is long and the cost is forced to increase.

【0005】その他の材質のキャピラリとして、ガラス
製のものがあるが、これは逆にあらかじめ大きく穴をあ
けた(結晶化)ガラス管を、ガラス遷移領域で所定の外
径・内径寸法に制御しながら引き延ばし、成形してい
る。しかしながら、このような方法では寸法制御が難し
いという難点がある。
As a capillary made of another material, there is a capillary made of glass. On the contrary, a glass tube having a large hole (crystallized) in advance is controlled to predetermined outer and inner diameters in a glass transition region. It is stretched and molded. However, such a method has a disadvantage that dimensional control is difficult.

【0006】[0006]

【発明が解決しようとする課題】従って、本発明の目的
は、複雑な又は微細な形状の成形加工ができ、特に細長
い穴であっても所定の形状、高い寸法精度及び表面品質
で成形加工でき、従ってこのようなアモルファス合金成
形品を簡単な工程で量産性良く製造できる方法を提供
し、もって耐久性、強度、耐衝撃性等に優れた安価なア
モルファス合金成形品、特に細穴を有するアモルファス
合金成形品を提供しようとするものである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to form a complicated or minute shape, and in particular to form a long and narrow hole with a predetermined shape, high dimensional accuracy and surface quality. Therefore, the present invention provides a method for producing such an amorphous alloy molded product in a simple process with good mass productivity, and is thus inexpensive amorphous alloy molded product having excellent durability, strength, impact resistance, etc. It is intended to provide an alloy molded product.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に、本発明によれば、アモルファス合金成形品の製造方
法が提供され、その基本的な態様は、ガラス遷移温度
(Tg)以上、融点(Tm)未満の温度領域においてア
モルファス合金内に存在する中子部材を引き抜いて中子
部材の断面形状を付与した成形体とする成形工程、及び
該成形体を冷却する工程を含むことを特徴としている。
According to the present invention, there is provided, in accordance with the present invention, a method for producing an amorphous alloy molded article, the method comprising: A molding step of extracting a core member present in the amorphous alloy in a temperature region lower than (Tm) to obtain a molded body having a cross-sectional shape of the core member, and a step of cooling the molded body. I have.

【0008】本発明のアモルファス合金成形品の製造方
法のより具体的な第一の態様は、アモルファス合金を生
じ得る材料の溶湯を金型のキャビティ内に注入する工
程、キャビティ内のガラス遷移温度(Tg)以上、融点
(Tm)未満の温度に保持した状態のアモルファス合金
内に中子部材を突き刺し、引き抜いて中子部材の断面形
状を付与した成形体とする成形工程、及び該成形体を冷
却する工程を含むことを特徴としている。
A more specific first aspect of the method for producing an amorphous alloy molded article of the present invention is a step of injecting a molten metal of a material capable of forming an amorphous alloy into a cavity of a mold, a glass transition temperature ( A molding step of piercing a core member into an amorphous alloy maintained at a temperature equal to or higher than Tg) and lower than a melting point (Tm), and extracting the core member to form a molded body having a cross-sectional shape of the core member; and cooling the molded body. It is characterized by including the step of performing.

【0009】また、本発明のアモルファス合金成形品の
製造方法のより具体的な第二の態様は、所望の断面形状
の中子部材が予めセットされ、かつアモルファス合金の
ガラス遷移温度(Tg)以上、融点(Tm)未満の温度
に保持した金型のキャビティ内にアモルファス合金を生
じ得る材料の溶湯を注入する工程、キャビティ内のガラ
ス遷移温度(Tg)以上、融点(Tm)未満の温度に保
持した状態のアモルファス合金から中子部材を引き抜い
て中子部材の断面形状を付与した成形体とする成形工
程、及び該成形体を冷却する工程を含むことを特徴とし
ている。
In a second more specific embodiment of the method for producing an amorphous alloy molded article according to the present invention, a core member having a desired cross-sectional shape is set in advance and the glass transition temperature (Tg) of the amorphous alloy or higher is set. Injecting a molten metal of a material capable of forming an amorphous alloy into a cavity of a mold maintained at a temperature lower than the melting point (Tm), and maintaining the temperature at a temperature higher than the glass transition temperature (Tg) and lower than the melting point (Tm) in the cavity. The method is characterized by including a forming step of extracting a core member from the amorphous alloy in the state as described above to form a molded body having a cross-sectional shape of the core member, and cooling the molded body.

【0010】さらに本発明のアモルファス合金成形品の
製造方法のより具体的な第三の態様は、所望の断面形状
の中子部材が予めセットされた金型のキャビティ内にア
モルファス合金を生じ得る材料の溶湯を鋳込み、キャビ
ティ内の鋳造材を一旦ガラス遷移温度(Tg)以下の温
度に冷却する工程、キャビティ内の鋳造材をガラス遷移
温度(Tg)以上、融点(Tm)未満の温度に加熱した
状態において中子部材を引き抜いて中子部材の断面形状
を付与した成形体とする成形工程、及び該成形体を冷却
する工程を含むことを特徴としている。
[0010] Further, a third embodiment of the method for producing an amorphous alloy molded article according to the present invention relates to a material capable of forming an amorphous alloy in a cavity of a mold in which a core member having a desired sectional shape is set in advance. And cooling the cast material in the cavity to a temperature lower than the glass transition temperature (Tg). The cast material in the cavity was heated to a temperature higher than the glass transition temperature (Tg) and lower than the melting point (Tm). The method is characterized by including a forming step of extracting the core member in the state to form a molded body having the core member with a cross-sectional shape, and a step of cooling the molded body.

【0011】さらに本発明のアモルファス合金成形品の
製造方法のより具体的な第四の態様は、所望の断面形状
の中子部材が予めセットされた金型のキャビティ内にア
モルファス合金を生じ得る材料の溶湯を鋳込み、キャビ
ティ内の鋳造材を一旦ガラス遷移温度(Tg)以下の温
度に冷却する工程、キャビティ内の中子部材をその電気
抵抗を利用して発熱させ、該中子部材近傍の鋳造材をガ
ラス遷移温度(Tg)以上、融点(Tm)未満の温度に
加熱した状態において中子部材を引き抜いて中子部材の
断面形状を付与した成形体とする成形工程、及び該成形
体を冷却する工程を含むことを特徴としている。
Further, a fourth embodiment of the method for producing an amorphous alloy molded article according to the present invention is directed to a material capable of forming an amorphous alloy in a cavity of a mold in which a core member having a desired sectional shape is set in advance. And cooling the casting material in the cavity to a temperature lower than the glass transition temperature (Tg). The core member in the cavity is heated by using its electric resistance, and the casting near the core member is cast. A molding step in which the core member is pulled out in a state where the material is heated to a temperature equal to or higher than the glass transition temperature (Tg) and lower than the melting point (Tm) to form a molded body having a core member having a cross-sectional shape, and cooling the molded body It is characterized by including the step of performing.

【0012】前記いずれの方法も、中子部材として細い
線状部材を用いることにより、高い寸法精度で細穴を成
形することができ、特に長い細穴を有する光コネクタ用
のフェルールもしくはキャピラリの製造に有利に適用で
きる。
In any of the above methods, a fine hole can be formed with high dimensional accuracy by using a thin linear member as a core member. In particular, a ferrule or capillary for an optical connector having a long thin hole can be manufactured. It can be applied to advantage.

【0013】さらに本発明によれば、細穴の成形加工に
限られず、種々の断面形状の成形も可能なより一般的な
成形方法も提供される。すなわち、本発明の別の態様に
よれば、アモルファス合金を、CCT(連続冷却変態)
曲線図におけるノーズに触れない昇温速度でガラス遷移
温度(Tg)以上、融点(Tm)未満の温度に昇温さ
せ、この温度域おいて成形する工程、及び該成形体を冷
却する工程を含むことを特徴とするアモルファス合金成
形品の製造方法も提供される。この方法において、上記
成形工程を、前記したいずれかの態様の方法の成形工程
により行なうように組み合わせることもできる。
Further, according to the present invention, there is provided a more general forming method capable of forming not only a small hole but also various cross-sectional shapes. That is, according to another aspect of the present invention, an amorphous alloy is converted to a continuous cooling transformation (CCT).
Includes a step of raising the temperature to a temperature equal to or higher than the glass transition temperature (Tg) and lower than the melting point (Tm) at a temperature rising rate that does not touch the nose in the curve diagram, forming in this temperature range, and cooling the formed body. There is also provided a method for producing an amorphous alloy molded article characterized by the above. In this method, the above-mentioned molding step may be combined so as to be performed by the molding step of any one of the above-described embodiments.

【0014】[0014]

【発明の実施の形態】本発明のアモルファス合金成形品
の製造方法は、アモルファス合金(金属ガラス)の過冷
却液体状態もしくはガラス遷移領域での粘性流動を利用
して光コネクタ部品(フェルール、キャピラリ)などの
細穴等を成形するものである。アモルファス合金組成の
溶湯を適切な冷却速度で冷却すれば、溶湯は融点以下で
も液体状態で存在するいわゆる過冷却液体状態となる
(粘性が固体物質より小さい)。また、アモルファス形
成能が大きな合金組成では、溶湯を融点以上から冷却
し、途中、ガラス遷移温度(あるいは、固体物質として
取り扱える粘性となる温度)以上で所定時間保持してそ
の後冷却しても、少なくとも非晶質相を含有する合金が
得られる。また、金属ガラスと呼ばれる安定なアモルフ
ァス合金では、一旦非晶質化した後、昇温すると、結晶
化前に粘性が小さくなるガラス遷移領域を有している。
一般にアモルファス合金は非常に高い強度を有している
ため、室温では加工が殆どできないが、これら過冷却液
体状態やガラス遷移領域を利用することにより、粘性が
小さいため比較的小さな力で加工を施せ、寸法精度の高
い少なくとも非晶質相を含む成形品、特に細穴を有する
部品を作製することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing an amorphous alloy molded article according to the present invention uses an optical connector component (ferrule, capillary) utilizing a supercooled liquid state of an amorphous alloy (metallic glass) or viscous flow in a glass transition region. And the like to form small holes and the like. If the molten alloy having the amorphous alloy composition is cooled at an appropriate cooling rate, the molten metal becomes a so-called supercooled liquid state that exists in a liquid state even at a temperature lower than its melting point (has a lower viscosity than a solid substance). Further, in an alloy composition having a large amorphous forming ability, the molten metal is cooled from the melting point or higher, and is kept at a temperature higher than the glass transition temperature (or a temperature at which the material can be handled as a solid substance) for a predetermined time and then cooled. An alloy containing an amorphous phase is obtained. In addition, a stable amorphous alloy called a metallic glass has a glass transition region in which the viscosity is reduced before crystallization when the temperature is raised after the amorphous is once amorphized.
In general, amorphous alloys have very high strength and can hardly be processed at room temperature, but by using these supercooled liquid state and glass transition region, they can be processed with relatively small force due to their low viscosity. Thus, it is possible to produce a molded article containing at least an amorphous phase having high dimensional accuracy, particularly a part having fine holes.

【0015】そこで、本発明によるアモルファス合金成
形品の製造方法は、ガラス遷移温度(Tg)以上、融点
(Tm)未満の温度領域にあるアモルファス合金内に存
在する中子部材を引き抜いて中子部材の断面形状を付与
した成形体とするものであり、中子部材として細い線状
部材を用いれば、高い寸法精度で細穴を成形することが
できる。中子部材の引き抜きは、ガラス遷移温度(T
g)以上、融点(Tm)未満の温度に保持した状態のア
モルファス合金内に中子部材を突き刺した後、引き抜く
方法、あるいは、所望の断面形状の中子部材が予めセッ
トされ、かつアモルファス合金のガラス遷移温度(T
g)以上、融点(Tm)未満の温度に保持した金型のキ
ャビティ内に、アモルファス合金を生じ得る材料の溶湯
を鋳込んだ後、上記温度に保持した状態のアモルファス
合金から中子部材を引き抜く方法、又はキャビティ内の
鋳造材を一旦ガラス遷移温度(Tg)以下の温度に冷却
した後、再度キャビティ内の鋳造材をガラス遷移温度
(Tg)以上、融点(Tm)未満の温度に加熱した状態
において中子部材を引き抜く方法などが採用できる。最
後に述べた方法においては、必ずしもキャビティ内の鋳
造材全体をガラス遷移温度(Tg)以上の温度に加熱す
る必要はなく、成形が必要な部分のみを加熱することも
できる。例えば、キャビティ内の中子部材をその電気抵
抗を利用して発熱させ、該中子部材近傍のアモルファス
合金をガラス遷移温度(Tg)以上の温度に加熱した状
態において中子部材を引き抜くこともできる。
Therefore, the method for manufacturing an amorphous alloy molded article according to the present invention is a method for extracting a core member existing in an amorphous alloy in a temperature range from a glass transition temperature (Tg) to a melting point (Tm). When a thin linear member is used as the core member, a fine hole can be formed with high dimensional accuracy. The core member is pulled out at the glass transition temperature (T
g) A method in which the core member is pierced into the amorphous alloy maintained at a temperature lower than the melting point (Tm) and then pulled out, or a core member having a desired sectional shape is set in advance and the amorphous alloy is Glass transition temperature (T
g) After casting a molten metal of a material capable of forming an amorphous alloy into a cavity of a mold maintained at a temperature not lower than the melting point (Tm), the core member is pulled out of the amorphous alloy maintained at the above temperature. Method or a state in which the casting material in the cavity is once cooled to a temperature lower than the glass transition temperature (Tg), and then the casting material in the cavity is heated again to a temperature higher than the glass transition temperature (Tg) and lower than the melting point (Tm). For example, a method of pulling out a core member can be adopted. In the last-mentioned method, it is not always necessary to heat the entire cast material in the cavity to a temperature equal to or higher than the glass transition temperature (Tg), and it is also possible to heat only a portion requiring molding. For example, the core member in the cavity is heated by utilizing its electrical resistance, and the core member can be pulled out while the amorphous alloy near the core member is heated to a temperature equal to or higher than the glass transition temperature (Tg). .

【0016】また、前記各工程を真空中又は不活性ガス
雰囲気下において行なうことにより、合金溶湯の酸化皮
膜の形成を防止し、良好な品質のアモルファス合金成形
品を製造することができる。なお、溶湯の酸化皮膜形成
を防止するためには、装置全体を真空中又はArガス等
の不活性ガス雰囲気中に配置するか、あるいは少なくと
も合金溶湯が露出している箇所に不活性ガスを流すこと
が好ましい。
By performing each of the above steps in a vacuum or in an inert gas atmosphere, it is possible to prevent the formation of an oxide film of the molten alloy and to produce an amorphous alloy molded article of good quality. In order to prevent formation of an oxide film on the molten metal, the entire apparatus is placed in a vacuum or in an inert gas atmosphere such as Ar gas, or an inert gas is flowed at least at a location where the molten alloy is exposed. Is preferred.

【0017】本発明の方法で用いる材料としては、実質
的に非晶質の合金からなる製品を得ることができる材料
であれば全て使用可能であり、特定の材料に限定される
ものではないが、下記一般式(1)〜(6)のいずれか
1つで示される組成を有するアモルファス合金を好適に
使用できる。 一般式(1):M1 a2 bLnc3 d4 e5 f 但し、M1はZr及びHfから選ばれる1種又は2種の
元素、M2はNi、Cu、Fe、Co、Mn、Nb、T
i、V、Cr、Zn、Al及びGaよりなる群から選ば
れる少なくとも1種の元素、LnはY、La、Ce、N
d、Sm、Gd、Tb、Dy、Ho、Yb及びMm(希
土類元素の集合体であるミッシュメタル)よりなる群か
ら選ばれる少なくとも1種の元素、M3はBe、B、
C、N及びOよりなる群から選ばれる少なくとも1種の
元素、M4はTa、W及びMoよりなる群から選ばれる
少なくとも1種の元素、M5はAu、Pt、Pd及びA
gよりなる群から選ばれる少なくとも1種の元素、a、
b、c、d、e及びfはそれぞれ原子%で、25≦a≦
85、15≦b≦75、0≦c≦30、0≦d≦30、
0≦e≦15、0≦f≦15である。
As the material used in the method of the present invention, any material capable of obtaining a product made of a substantially amorphous alloy can be used, and is not limited to a specific material. An amorphous alloy having a composition represented by any one of the following general formulas (1) to (6) can be suitably used. Formula (1): M 1 a M 2 b Ln c M 3 d M 4 e M 5 f However, one or two elements M 1 is selected from Zr and Hf, M 2 is Ni, Cu, Fe , Co, Mn, Nb, T
at least one element selected from the group consisting of i, V, Cr, Zn, Al and Ga; Ln is Y, La, Ce, N
at least one element selected from the group consisting of d, Sm, Gd, Tb, Dy, Ho, Yb, and Mm (mish metal which is an aggregate of rare earth elements); M 3 is Be, B,
At least one element selected from the group consisting of C, N and O; M 4 is at least one element selected from the group consisting of Ta, W and Mo; M 5 is Au, Pt, Pd and A;
at least one element selected from the group consisting of g, a,
b, c, d, e and f are each atomic%, and 25 ≦ a ≦
85, 15 ≦ b ≦ 75, 0 ≦ c ≦ 30, 0 ≦ d ≦ 30,
0 ≦ e ≦ 15 and 0 ≦ f ≦ 15.

【0018】上記アモルファス合金は、下記一般式(1
−a)〜(1−p)のアモルファス合金を含む。 一般式(1−a):M1 a2 b このアモルファス合金は、M2元素がZr又はHfと共
存するために、混合エンタルピーが負で大きく、アモル
ファス形成能が良い。 一般式(1−b):M1 a2 bLnc このアモルファス合金のように、上記一般式(1−a)
の合金に希土類元素を添加することによりアモルファス
の熱的安定性が向上する。
The amorphous alloy has the following general formula (1)
-A) to (1-p) amorphous alloys. General formula (1-a): M 1 a M 2 b This amorphous alloy has a large negative enthalpy of mixture and good amorphous forming ability because the M 2 element coexists with Zr or Hf. Formula (1-b): M 1 a M 2 b Ln c , as in this amorphous alloy, the formula (1-a)
By adding a rare earth element to the alloy of the above, the thermal stability of the amorphous is improved.

【0019】一般式(1−c):M1 a2 b3 d 一般式(1−d):M1 a2 bLnc3 d これらのアモルファス合金のように、原子半径の小さな
元素(Be,B,C,N,O)でアモルファス構造中の
隙間を埋めることによって、その構造が安定化し、アモ
ルファス形成能が向上する。
[0019] Formula (1-c): M 1 a M 2 b M 3 d general formula (1-d): M 1 a M 2 b Ln c M 3 d like these amorphous alloys, the atomic radius of By filling the gaps in the amorphous structure with small elements (Be, B, C, N, O), the structure is stabilized and the ability to form an amorphous phase is improved.

【0020】一般式(1−e):M1 a2 b4 e 一般式(1−f):M1 a2 bLnc4 e 一般式(1−g):M1 a2 b3 d4 e 一般式(1−h):M1 a2 bLnc3 d4 e これらのアモルファス合金のように、高融点金属(T
a,W,Mo)を添加した場合、アモルファス形成能に
影響を与えずに耐熱性、耐食性が向上する。
[0020] formula (1-e): M 1 a M 2 b M 4 e general formula (1-f): M 1 a M 2 b Ln c M 4 e general formula (1-g): M 1 a M 2 b M 3 d M 4 e general formula (1-h): M 1 a M 2 b Ln c M 3 d M 4 e like these amorphous alloys, refractory metals (T
When (a, W, Mo) is added, heat resistance and corrosion resistance are improved without affecting the ability to form an amorphous phase.

【0021】一般式(1−i):M1 a2 b5 f 一般式(1−j):M1 a2 bLnc5 f 一般式(1−k):M1 a2 b3 d5 f 一般式(1−l):M1 a2 bLnc3 d5 f 一般式(1−m):M1 a2 b4 e5 f 一般式(1−n):M1 a2 bLnc4 e5 f 一般式(1−o):M1 a2 b3 d4 e5 f 一般式(1−p):M1 a2 bLnc3 d4 e5 f これらの貴金属M5(Au,Pt,Pd,Ag)を含ん
だアモルファス合金の場合、結晶化が起きても脆くなら
ない。
The general formula (1-i): M 1 a M 2 b M 5 f general formula (1-j): M 1 a M 2 b Ln c M 5 f general formula (1-k): M 1 a M 2 b M 3 d M 5 f general formula (1-l): M 1 a M 2 b Ln c M 3 d M 5 f general formula (1-m): M 1 a M 2 b M 4 e M 5 f general formula (1-n): M 1 a M 2 b Ln c M 4 e M 5 f general formula (1-o): M 1 a M 2 b M 3 d M 4 e M 5 f general formula (1 -p): for M 1 a M 2 b Ln c M 3 d M 4 e M 5 f these noble metals M 5 (Au, Pt, Pd , Ag) laden amorphous alloys, even crystallization occurred fragile No.

【0022】 一般式(2):Al100-g-h-iLng6 h3 i 但し、LnはY、La、Ce、Nd、Sm、Gd、T
b、Dy、Ho、Yb及びMmよりなる群から選ばれる
少なくとも1種の元素、M6はTi、V、Cr、Mn、
Fe、Co、Ni、Cu、Zr、Nb、Mo、Hf、T
a及びWよりなる群から選ばれる少なくとも1種の元
素、M3はBe、B、C、N及びOよりなる群から選ば
れる少なくとも1種の元素、g、h及びiはそれぞれ原
子%で、30≦g≦90、0<h≦55、0≦i≦10
である。
The general formula (2): Al 100-ghi Ln g M 6 h M 3 i However, Ln is Y, La, Ce, Nd, Sm, Gd, T
at least one element selected from the group consisting of b, Dy, Ho, Yb, and Mm; M 6 is Ti, V, Cr, Mn,
Fe, Co, Ni, Cu, Zr, Nb, Mo, Hf, T
at least one element selected from the group consisting of a and W, M 3 is at least one element selected from the group consisting of Be, B, C, N, and O; g, h, and i are each atomic%; 30 ≦ g ≦ 90, 0 <h ≦ 55, 0 ≦ i ≦ 10
It is.

【0023】上記アモルファス合金は、下記一般式(2
−a)及び(2−b)のアモルファス合金を含む。 一般式(2−a):Al100-g-hLng6 h このアモルファス合金は、混合エンタルピーが負で大き
く、アモルファス形成能が良い。 一般式(2−b):Al100-g-h-iLng6 h3 i このアモルファス合金においては、原子半径の小さな元
素(Be,B,C,N,O)でアモルファス構造中の隙
間を埋めることによって、その構造が安定化し、アモル
ファス形成能が向上する。
The above amorphous alloy has the following general formula (2)
-A) and (2-b) amorphous alloys. Formula (2-a): Al 100 -gh Ln g M 6 h This amorphous alloy, mixing enthalpy is large in negative, amorphous forming ability is good. Formula (2-b): In the Al 100-ghi Ln g M 6 h M 3 i This amorphous alloy fills atomic radius smaller elements (Be, B, C, N , O) a gap amorphous structure in This stabilizes the structure and improves the ability to form an amorphous phase.

【0024】一般式(3):Mg100-p7 p 但し、M7はCu、Ni、Sn及びZnよりなる群から
選ばれる少なくとも1種の元素、pは原子%で5≦p≦
60である。このアモルファス合金は、混合エンタルピ
ーが負で大きく、アモルファス形成能が良い。
General formula (3): Mg 100-p M 7 p where M 7 is at least one element selected from the group consisting of Cu, Ni, Sn and Zn, and p is atomic% and 5 ≦ p ≦
60. This amorphous alloy has a large negative enthalpy of mixing and good amorphous forming ability.

【0025】一般式(4):Mg100-q-r7 q8 r 但し、M7はCu、Ni、Sn及びZnよりなる群から
選ばれる少なくとも1種の元素、M8はAl、Si及び
Caよりなる群から選ばれる少なくとも1種の元素、q
及びrはそれぞれ原子%で、1≦q≦35、1≦r≦2
5である。このアモルファス合金のように、前記一般式
(3)の合金において原子半径の小さな元素(Al,S
i,Ca)でアモルファス構造中の隙間を埋めることに
よって、その構造が安定化し、アモルファス形成能が向
上する。
General formula (4): Mg 100-qr M 7 q M 8 r where M 7 is at least one element selected from the group consisting of Cu, Ni, Sn and Zn, and M 8 is Al, Si and At least one element selected from the group consisting of Ca, q
And r are each atomic%, 1 ≦ q ≦ 35, 1 ≦ r ≦ 2
5 Like this amorphous alloy, an element having a small atomic radius (Al, S
By filling gaps in the amorphous structure with (i, Ca), the structure is stabilized, and the ability to form an amorphous phase is improved.

【0026】一般式(5):Mg100-q-s7 q9 s 一般式(6):Mg100-q-r-s7 q8 r9 s 但し、M7はCu、Ni、Sn及びZnよりなる群から
選ばれる少なくとも1種の元素、M8はAl、Si及び
Caよりなる群から選ばれる少なくとも1種の元素、M
9はY、La、Ce、Nd、Sm及びMmよりなる群か
ら選ばれる少なくとも1種の元素、q、r及びsはそれ
ぞれ原子%で、1≦q≦35、1≦r≦25、3≦s≦
25である。これらのアモルファス合金のように、前記
一般式(3)及び(4)の合金に希土類元素を添加する
ことによりアモルファスの熱的安定性が向上する。
General formula (5): Mg 100-qs M 7 q M 9 s General formula (6): Mg 100-qrs M 7 q M 8 r M 9 s where M 7 is Cu, Ni, Sn and Zn At least one element selected from the group consisting of M, M 8 is at least one element selected from the group consisting of Al, Si, and Ca;
9 is at least one element selected from the group consisting of Y, La, Ce, Nd, Sm and Mm, q, r and s are each atomic%, and 1 ≦ q ≦ 35, 1 ≦ r ≦ 25, 3 ≦ s ≦
25. Like these amorphous alloys, the thermal stability of the amorphous is improved by adding a rare earth element to the alloys of the general formulas (3) and (4).

【0027】前記したアモルファス合金の中でも、ガラ
ス遷移温度(Tg)と結晶化温度(Tx)の温度差が極
めて広いZr−TM−Al系及びHf−TM−Al系
(TM:遷移金属)アモルファス合金は、高強度、高耐
食性であると共に、過冷却液体領域(ガラス遷移領域)
ΔTx=Tx−Tgが30K以上、特にZr−TM−A
l系アモルファス合金は60K以上と極めて広く、この
温度領域では粘性流動により数10MPa以下の低応力
でも非常に良好な加工性を示す。また、冷却速度が数1
0K/s程度の鋳造法によっても非晶質バルク材が得ら
れるなど、非常に安定で製造し易い特徴を持っている。
これらの合金は、溶湯からの金型鋳造によっても、また
ガラス遷移領域を利用した粘性流動による成形加工によ
っても、非晶質材料ができると同時に、金型形状及び寸
法を極めて忠実に再現する。
Among the above-mentioned amorphous alloys, Zr-TM-Al-based and Hf-TM-Al-based (TM: transition metal) amorphous alloys having an extremely wide temperature difference between the glass transition temperature (Tg) and the crystallization temperature (Tx) Is a super-cooled liquid region (glass transition region) with high strength and high corrosion resistance
ΔTx = Tx−Tg is 30K or more, especially Zr-TM-A
The 1-type amorphous alloy is extremely wide at 60K or more, and exhibits very good workability even in a low stress of several tens MPa or less due to viscous flow in this temperature range. In addition, the cooling rate is
It is very stable and easy to manufacture, for example, an amorphous bulk material can be obtained even by a casting method of about 0 K / s.
These alloys produce an amorphous material and at the same time reproduce the mold shape and dimensions very faithfully, either by die casting from the melt or by viscous flow forming utilizing the glass transition region.

【0028】本発明に利用されるこれらのZr−TM−
Al系及びHf−TM−Al系アモルファス合金は、合
金組成、測定法によっても異なるが、非常に大きなΔT
xの範囲を持っている。例えばZr60Al15Co2.5
7.5Cu15合金(Tg:652K、Tx:768K)
のΔTxは116Kと極めて広い。耐酸化性も極めて良
く、空気中でTgまでの高温に熱してもほとんど酸化さ
れない。硬度は室温からTg付近までビッカース硬度
(Hv)で460(DPN)、引張強度は1,600M
Pa、曲げ強度は3,000MPaに達する。熱膨張率
αは室温からTg付近まで1×10-5/Kと小さく、ヤ
ング率は91GPa、圧縮時の弾性限界は4〜5%を超
える。さらに靭性も高く、シャルピー衝撃値で6〜7J
/cm2を示す。このように非常に高強度の特性を示し
ながら、ガラス遷移領域まで加熱されると、流動応力は
10MPa程度まで低下する。このため極めて加工が容
易で、低応力で複雑な形状の微小部品や高精度部品に成
形できるのが本合金の特徴である。しかも、いわゆるガ
ラス(非晶質)としての特性から加工(変形)表面は極
めて平滑性が高く、結晶合金を変形させたときのように
滑り帯が表面に現われるステップなどは実質的に発生し
ない特徴を持っている。
These Zr-TM- used in the present invention
Although the Al-based and Hf-TM-Al-based amorphous alloys vary depending on the alloy composition and the measuring method, a very large ΔT
x range. For example, Zr 60 Al 15 Co 2.5 N
i 7.5 Cu 15 alloy (Tg: 652K, Tx: 768K)
Is very wide at 116K. It has very good oxidation resistance, and is hardly oxidized even when heated to a high temperature up to Tg in air. The hardness is 460 (DPN) in Vickers hardness (Hv) from room temperature to around Tg, and the tensile strength is 1,600 M
Pa and the bending strength reach 3,000 MPa. The coefficient of thermal expansion α is as small as 1 × 10 −5 / K from room temperature to around Tg, the Young's modulus is 91 GPa, and the elastic limit during compression exceeds 4 to 5%. Higher toughness, 6-7J Charpy impact value
/ Cm 2 . When the glass transition region is heated while exhibiting such a very high strength characteristic, the flow stress decreases to about 10 MPa. For this reason, it is a feature of the present alloy that it is extremely easy to process and can be formed into a small component having a complicated shape with low stress and a high precision component. Moreover, the processed (deformed) surface has extremely high smoothness due to the characteristics as a so-called glass (amorphous), and substantially no steps such as a step in which a slip band appears on the surface as when a crystalline alloy is deformed. have.

【0029】一般に、アモルファス合金はガラス遷移領
域まで加熱すると長時間の保持によって結晶化が始まる
が、本合金のようにΔTxが広い合金は非晶質相が安定
であり、ΔTx内の温度を適当に選べば2時間程度まで
は結晶が発生せず、通常の成形加工においては結晶化を
懸念する必要はない。また、本合金は溶湯からの凝固に
おいてもこの特性を如何なく発揮する。一般にアモルフ
ァス合金の製造には急速な冷却が必要とされるが、本合
金は冷却速度10K/s程度の冷却で溶湯から容易に非
晶質単相からなるバルク材を得ることができる。その凝
固表面はやはり極めて平滑であり、金型表面のミクロン
オーダーの研磨傷でさえも忠実に再現する転写性を持っ
ている。従って、合金材料として本合金を適用すれば、
金型表面が成形品の要求特性を満たす表面品質を持って
おれば、鋳造材においても金型の表面特性をそのまま再
現し、従来の金型鋳造法、金型成形法においても寸法調
整、表面粗さ調整の工程を省略又は短縮することができ
る。
In general, when an amorphous alloy is heated to the glass transition region, crystallization starts due to holding for a long time. However, an alloy having a wide ΔTx such as the present alloy has a stable amorphous phase, and the temperature within ΔTx is adjusted appropriately. No crystal is generated until about 2 hours, and there is no need to worry about crystallization in ordinary molding. In addition, the alloy exerts this property even when solidifying from the molten metal. Generally, rapid cooling is required for the production of an amorphous alloy, but with this alloy, a bulk material consisting of an amorphous single phase can be easily obtained from a molten metal at a cooling rate of about 10 K / s. The solidified surface is still extremely smooth, and has a transferability that faithfully reproduces even micron-order polishing scratches on the mold surface. Therefore, if this alloy is applied as an alloy material,
If the surface of the mold has a surface quality that meets the required characteristics of the molded product, the surface characteristics of the mold can be reproduced as it is in the cast material, and the dimensions can be adjusted and the surface can be adjusted in the conventional mold casting method and mold molding method. The step of adjusting the roughness can be omitted or shortened.

【0030】以上のように、比較的低い硬度、高い引張
強度及び高い曲げ強度、比較的低いヤング率、高弾性限
界、高耐衝撃性、高耐磨耗性、表面の平滑性、高精度の
鋳造又は加工性を併せ持った特徴は、光ファイバコネク
タのフェルールやスリーブ、歯車、マイクロマシン等の
精密部品など、種々の分野の成形品の材料として適して
いるばかりでなく、従来の成形加工方法を適用できる。
また、アモルファス合金は、高精度の鋳造性及び加工性
を有し、かつ金型のキャビティ形状を忠実に再現できる
優れた転写性を有するため、金型を適切に作製すること
により、金型鋳造法や金型成形法によって所定の形状、
寸法精度、及び表面品質を満足する成形品を単一のプロ
セスで量産性良く製造できる。
As described above, relatively low hardness, high tensile strength and high bending strength, relatively low Young's modulus, high elasticity limit, high impact resistance, high abrasion resistance, surface smoothness, high precision Features that have both castability and workability are not only suitable as materials for molded products in various fields such as precision parts such as ferrules, sleeves, gears and micromachines of optical fiber connectors, but also apply conventional molding methods. it can.
In addition, since amorphous alloys have high-precision castability and workability, and have excellent transferability that can faithfully reproduce the cavity shape of the mold, by appropriately manufacturing the mold, the mold casting is performed. Shape by molding method or mold molding method,
A molded product satisfying dimensional accuracy and surface quality can be manufactured with high productivity in a single process.

【0031】[0031]

【実施例】以下、添付図面に示す実施例を説明しながら
本発明についてさらに具体的に説明する。図1(A)〜
(E)は、本発明の方法によりアモルファス合金製円筒
体を製造する方法の一実施例の概略構成を示している。
図1において、符号1はアモルファス合金を生じ得る合
金材料を溶融、保持するための溶解用容器であり、該容
器1の下部には製品形状のキャビティ4を有する分割金
型3が配置されている。溶解用容器1の加熱手段(図示
せず)としては、高周波誘導加熱、抵抗加熱等、任意の
手段が採用できる。溶解用容器1の材質としては、セラ
ミックス、耐熱皮膜コーティング金属材料などの耐熱性
材料が好ましい。一方、金型3は、銅、銅合金、超硬合
金その他の金属材料から作製することができる。また、
金型3には流体、気体等の冷却媒体や加熱媒体を流通さ
せる流路を配設することもできる。なお、溶湯の酸化皮
膜形成を防止するために、装置全体を真空中又はArガ
ス等の不活性ガス雰囲気中に配置するか、あるいは少な
くとも溶解用容器1と金型3上部との間に不活性ガスを
流すことが好ましい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described more specifically with reference to the embodiments shown in the accompanying drawings. FIG. 1 (A) ~
(E) shows a schematic configuration of an embodiment of a method for producing a cylinder made of an amorphous alloy by the method of the present invention.
In FIG. 1, reference numeral 1 denotes a melting vessel for melting and holding an alloy material capable of forming an amorphous alloy, and a split mold 3 having a product-shaped cavity 4 is disposed below the vessel 1. . As a heating means (not shown) of the melting vessel 1, any means such as high-frequency induction heating and resistance heating can be adopted. As a material of the melting container 1, a heat-resistant material such as a ceramic or a heat-resistant coating metal material is preferable. On the other hand, the mold 3 can be made of copper, a copper alloy, a cemented carbide, or another metal material. Also,
The mold 3 may be provided with a flow path through which a cooling medium such as a fluid or a gas or a heating medium flows. In order to prevent the formation of an oxide film on the molten metal, the entire apparatus is placed in a vacuum or an inert gas atmosphere such as Ar gas, or at least an inert gas is provided between the melting vessel 1 and the upper part of the mold 3. It is preferable to flow gas.

【0032】アモルファス合金成形品の製造に際して
は、図1(A)に示すように、溶解用容器1を加熱して
アモルファス合金を溶融状態(融点Tmより高温状態)
とし、その底部に形成されている細孔2を金型3の注湯
口5に接続した後、溶解用容器1内の溶湯Aに例えば不
活性ガスを介して圧力を加え、溶解用容器1底部の細孔
2から所定量の溶湯Aを金型温度(TM)がガラス遷移
温度(Tg)以上の温度に保持された金型3のキャビテ
ィ4内に注入して鋳造する。次いで、図1(B)に示す
ように、金型温度(TM)がガラス遷移温度(Tg)以
上の温度に保持された状態で、図1(C)に示すよう
に、金型3の分割面底部に形成された孔部4aから、鋳
造材Bに所望の径を有する細い線状の中子部材6を突き
刺し、図1(D)に示すように引き抜き、細穴7を成形
する。この過程においても鋳造材は冷却されるが、引き
抜きが終了するまでは、金型温度はガラス遷移温度(T
g)以上に保持されている必要がある。その後、金型温
度がガラス遷移温度(Tg)以下になるまで冷却した
後、図1(E)に示すように金型3を分離して、金型3
のキャビティ面を忠実に再現した平滑な表面を有するア
モルファス合金成形品8を取り出す。
In manufacturing an amorphous alloy molded product, as shown in FIG. 1A, the melting vessel 1 is heated to melt the amorphous alloy (state higher than the melting point Tm).
After the pores 2 formed at the bottom are connected to the pouring port 5 of the mold 3, pressure is applied to the molten metal A in the melting vessel 1 via, for example, an inert gas, and the bottom of the melting vessel 1 is formed. A predetermined amount of the molten metal A is injected into the cavity 4 of the mold 3 in which the mold temperature (TM) is maintained at a temperature equal to or higher than the glass transition temperature (Tg) through the fine holes 2 and cast. Next, as shown in FIG. 1B, while the mold temperature (TM) is maintained at a temperature equal to or higher than the glass transition temperature (Tg), the mold 3 is divided as shown in FIG. A thin linear core member 6 having a desired diameter is pierced into the casting material B from the hole 4a formed in the bottom of the surface, and is drawn out as shown in FIG. In this process, the cast material is cooled, but until the drawing is completed, the mold temperature is the glass transition temperature (T
g). Then, after cooling the mold temperature to the glass transition temperature (Tg) or lower, the mold 3 is separated as shown in FIG.
An amorphous alloy molded product 8 having a smooth surface that faithfully reproduces the cavity surface of the above is taken out.

【0033】図2(A)〜(D)は前記した方法の変形
例を示し、この方法の場合、まず図2(A)に示すよう
に、細い線状の中子部材6が予めセットされ、かつ金型
温度(TM)がガラス遷移温度(Tg)以上の温度に保
持された金型3のキャビティ4内に溶湯Aを注入して鋳
造する(図2(B))。次いで、図2(C)に示すよう
に、金型温度(TM)がガラス遷移温度(Tg)以上の
温度に保持された状態で、鋳造材Bから中子部材6を引
き抜き、細穴7を成形する。その後、金型温度がガラス
遷移温度(Tg)以下になるまで冷却した後、図2
(D)に示すように金型3を分離して、アモルファス合
金成形品8を取り出す。
FIGS. 2A to 2D show a modification of the above-described method. In this method, first, as shown in FIG. 2A, a thin linear core member 6 is set in advance. The molten metal A is poured into the cavity 4 of the mold 3 in which the mold temperature (TM) is maintained at a temperature equal to or higher than the glass transition temperature (Tg) and cast (FIG. 2 (B)). Next, as shown in FIG. 2 (C), the core member 6 is pulled out of the cast material B while the mold temperature (TM) is maintained at a temperature equal to or higher than the glass transition temperature (Tg), and the fine holes 7 are formed. Molding. Then, after cooling until the mold temperature becomes equal to or lower than the glass transition temperature (Tg), FIG.
As shown in (D), the mold 3 is separated, and the amorphous alloy molded product 8 is taken out.

【0034】図3(A)〜(D)に示す方法の場合、ま
ず図3(A)に示すように、細い線状の中子部材6が予
めセットされ、かつ金型温度(TM)がガラス遷移温度
(Tg)より低い温度に保持された金型3のキャビティ
4内に溶湯Aを注入して鋳造する(図3(B))。この
段階では鋳造材Bはガラス遷移温度(Tg)より低い温
度に冷却される。その後、金型3をガラス遷移温度(T
g)以上、融点(Tm)未満の温度に加熱し、この状態
で、図3(C)に示すように鋳造材Bから中子部材6を
引き抜き、細穴7を成形する。その後、金型温度がガラ
ス遷移温度(Tg)以下になるまで冷却した後、図3
(D)に示すように金型3を分離して、アモルファス合
金成形品8を取り出す。
In the case of the method shown in FIGS. 3A to 3D, first, as shown in FIG. 3A, a thin linear core member 6 is set in advance, and the mold temperature (TM) is reduced. The molten metal A is poured into the cavity 4 of the mold 3 maintained at a temperature lower than the glass transition temperature (Tg) and cast (FIG. 3B). At this stage, the casting material B is cooled to a temperature lower than the glass transition temperature (Tg). Thereafter, the mold 3 is set to the glass transition temperature (T
g) At this time, the core member 6 is heated to a temperature lower than the melting point (Tm), and in this state, the core member 6 is pulled out from the cast material B as shown in FIG. Then, after cooling until the mold temperature becomes equal to or lower than the glass transition temperature (Tg), FIG.
As shown in (D), the mold 3 is separated, and the amorphous alloy molded product 8 is taken out.

【0035】図4(A)〜(D)に示す方法は、図3
(A)〜(D)に示す方法のように鋳造材全体を加熱せ
ず、成形しようとする部分のみをガラス遷移温度(T
g)以上の温度に加熱する方法の一例を示している。図
4(A)〜(D)に示す方法の場合、まず図4(A)に
示すように、絶縁体9で被覆された細い線状の中子部材
6が予めセットされ、かつ金型温度(TM)がガラス遷
移温度(Tg)より低い温度に保持された金型3のキャ
ビティ4内に溶湯Aを注入して鋳造する(図4
(B))。この段階では鋳造材Bはガラス遷移温度(T
g)より低い温度に冷却される。その後、中子部材6に
電流を流し、その電気抵抗を利用して発熱させ、中子部
材近傍の鋳造材部分のみをガラス遷移温度(Tg)以
上、融点(Tm)未満の温度に加熱し、この状態で図4
(C)に示すように鋳造材Bから中子部材6を引き抜
き、細穴7を成形する。その後、金型温度がガラス遷移
温度(Tg)以下になるまで冷却した後、図4(D)に
示すように金型3を分離して、アモルファス合金成形品
8を取り出す。
The method shown in FIGS. 4A to 4D is similar to the method shown in FIG.
Unlike the methods shown in (A) to (D), the entire cast material is not heated, and only the portion to be formed is heated to the glass transition temperature (T
g) An example of a method of heating to the above temperature is shown. In the case of the method shown in FIGS. 4A to 4D, first, as shown in FIG. 4A, a thin linear core member 6 covered with an insulator 9 is set in advance, and the mold temperature is reduced. The molten metal A is injected into the cavity 4 of the mold 3 in which (TM) is maintained at a temperature lower than the glass transition temperature (Tg) and cast (FIG. 4).
(B)). At this stage, the casting material B has a glass transition temperature (T
g) Cool to a lower temperature. Thereafter, an electric current is applied to the core member 6 to generate heat using the electric resistance, and only the cast material portion near the core member is heated to a temperature equal to or higher than the glass transition temperature (Tg) and lower than the melting point (Tm), In this state, FIG.
As shown in (C), the core member 6 is pulled out from the cast material B, and the small hole 7 is formed. Thereafter, the mold is cooled until the mold temperature becomes equal to or lower than the glass transition temperature (Tg), and then the mold 3 is separated as shown in FIG.

【0036】前記したいずれの方法を採用するかは、ア
モルファス合金のガラス遷移領域ΔTxやアモルファス
形成能に応じて選定すればよい。また、前記した方法で
は、同一径の細長い中子部材6を用いたが、引き抜き方
向に段階的に又は傾斜的に線径が大きくなっている中子
部材を用いることにより、軸線方向に段階的に又は傾斜
的に内径が大きくなっている細穴を成形することも可能
である。さらに、前記した各実施例では貫通孔の形成に
ついて説明したが、アモルファス合金内に突き刺す中子
部材の深さや、金型内にセットする中子部材の高さを調
整することにより、所望の深さの非貫通の細穴を形成す
ることができる。
Which of the above-mentioned methods is adopted may be selected according to the glass transition region ΔTx of the amorphous alloy and the capability of forming the amorphous. Further, in the above-described method, the elongated core member 6 having the same diameter is used. However, by using a core member having a wire diameter that is increased stepwise or inclined in the drawing direction, stepwise in the axial direction. It is also possible to form a small hole having an inner diameter that is gradually or inclinedly increased. Further, in each of the embodiments described above, the formation of the through-hole has been described. However, by adjusting the depth of the core member piercing into the amorphous alloy and the height of the core member set in the mold, a desired depth can be obtained. A non-penetrating narrow hole can be formed.

【0037】さらに本発明の方法は、前記したような細
穴の成形加工に限られず、種々の断面形状の成形を行な
う一般的な成形方法にも適用される。図5は、Zr55
10Ni5Cu30アモルファス合金のCCT(連続冷却
変態)曲線図である。成形品の結晶化を防ぐためには
(特に非晶質単相の組織を維持するためには)、融点
(Tm)以上に加熱した合金溶湯は、図5の曲線a及び
bで示すように結晶化領域に入らない冷却速度で、ガラ
ス遷移領域の温度まで冷却されなければならない。この
冷却過程において、図5の曲線aのように合金溶湯がガ
ラス遷移温度(Tg)以上、好ましくは結晶化温度(T
x)とガラス遷移温度(Tg)の間の温度に保持されて
いる間に成形したり(成形工程はギザギザの曲線で示
す)、あるいは曲線bのように合金溶湯が一旦ガラス遷
移温度(Tg)より低い温度に冷却されても、ガラス遷
移温度(Tg)以上、融点(Tm)未満の温度、好まし
くは結晶化温度(Tx)とガラス遷移温度(Tg)の間
の温度に加熱した状態で成形すれば、アモルファス合金
成形品を得ることができる。
Further, the method of the present invention is not limited to the above-described processing for forming a fine hole, but is also applicable to a general forming method for forming various cross-sectional shapes. FIG. 5 shows Zr 55 A
l 10 Ni 5 Cu 30 of amorphous alloy CCT is (CCT) curves. In order to prevent crystallization of the molded product (especially in order to maintain the structure of an amorphous single phase), the alloy melt heated to a melting point (Tm) or higher is crystallized as shown by curves a and b in FIG. It must be cooled to a temperature in the glass transition region at a cooling rate that does not enter the transition zone. In this cooling process, the alloy melt is at or above the glass transition temperature (Tg), preferably at the crystallization temperature (Tg), as shown by the curve a in FIG.
x) and the glass transition temperature (Tg) while the temperature is maintained (the forming process is shown by a jagged curve), or as shown by the curve b, the molten alloy is once heated to the glass transition temperature (Tg). Even when cooled to a lower temperature, molding is performed while heating to a temperature higher than or equal to the glass transition temperature (Tg) and lower than the melting point (Tm), preferably between crystallization temperature (Tx) and glass transition temperature (Tg). Then, an amorphous alloy molded product can be obtained.

【0038】図6は、一旦製造したアモルファス合金に
対して成形加工を施す一般的な説明図である。すなわ
ち、アモルファス合金を、図6の曲線cで示すように、
CCT(連続冷却変態)曲線図におけるノーズXに触れ
ない昇温速度でガラス遷移温度(Tg)以上、融点(T
m)未満の温度に急速昇温させ、この温度おいて成形す
ればよい。その後、成形体を冷却することにより、アモ
ルファス合金成形品が得られる。また、図6の曲線dで
示すように、ガラス遷移温度(Tg)以上、融点(T
m)未満の温度に保持されているかぎり、2回以上の成
形加工を行なうこともできる。急速昇温の方法として
は、イメージ炉やPAS(プラズマ放電加工装置)など
による加熱方法がある。この方法は、前記したような細
穴成形に限定されるものではなく、種々の成形加工に適
用できるが、前記した各態様の細穴成形工程を行なうよ
うに組み合わせることもできる。
FIG. 6 is a general explanatory view in which forming processing is performed on an amorphous alloy once manufactured. That is, as shown by the curve c in FIG.
In the CCT (Continuous Cooling Transformation) curve diagram, the glass transition temperature (Tg) or higher and the melting point (T
m) may be rapidly raised to a temperature less than m) and molded at this temperature. Thereafter, by cooling the molded body, an amorphous alloy molded article is obtained. As shown by a curve d in FIG. 6, the melting point (Tg) is higher than the glass transition temperature (Tg).
As long as the temperature is kept below m), two or more molding operations can be performed. As a method of rapidly increasing the temperature, there is a heating method using an image furnace, a PAS (plasma discharge machining apparatus), or the like. This method is not limited to the narrow hole forming as described above, and can be applied to various forming processes. However, the method can be combined so as to perform the above-described narrow hole forming steps.

【0039】[0039]

【発明の効果】以上のように、本発明の方法によれば、
複雑な又は微細な形状であっても成形加工ができ、特に
細長い穴であっても高い寸法精度で成形加工でき、所定
の形状、寸法精度及び表面品質を満足するアモルファス
合金成形品を生産性よく低コストで製造することができ
る。しかも、本発明に利用されるアモルファス合金は強
度、靭性、耐食性等に優れ、各種精密成形品として摩
耗、変形、欠け等が発生し難く長期間の使用に耐えるこ
とができる。
As described above, according to the method of the present invention,
Forming is possible even for complicated or fine shapes, and it is possible to form with high dimensional accuracy, especially for long and narrow holes, and to produce amorphous alloy molded products that satisfy the prescribed shape, dimensional accuracy and surface quality with good productivity. It can be manufactured at low cost. In addition, the amorphous alloy used in the present invention is excellent in strength, toughness, corrosion resistance, etc., and is resistant to wear, deformation, chipping, etc. as various precision molded products, and can be used for a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のアモルファス合金成形品の製造工程の
一実施例を示す概略部分断面図である。
FIG. 1 is a schematic partial sectional view showing one embodiment of a production process of an amorphous alloy molded product of the present invention.

【図2】本発明のアモルファス合金成形品の製造工程の
他の実施例を示す概略部分断面図である。
FIG. 2 is a schematic partial sectional view showing another embodiment of the manufacturing process of the amorphous alloy molded product of the present invention.

【図3】本発明のアモルファス合金成形品の製造工程の
さらに他の実施例を示す概略部分断面図である。
FIG. 3 is a schematic partial cross-sectional view showing still another embodiment of the production process of the amorphous alloy molded product of the present invention.

【図4】本発明のアモルファス合金成形品の製造工程の
さらに別の実施例を示す概略部分断面図である。
FIG. 4 is a schematic partial sectional view showing still another embodiment of the production process of the amorphous alloy molded article of the present invention.

【図5】Zr55Al10Ni5Cu30アモルファス合金の
CCT(連続冷却変態)曲線図である。
FIG. 5 is a CCT (continuous cooling transformation) curve diagram of a Zr 55 Al 10 Ni 5 Cu 30 amorphous alloy.

【図6】一般的なアモルファス合金のCCT(連続冷却
変態)曲線図である。
FIG. 6 is a CCT (continuous cooling transformation) curve diagram of a general amorphous alloy.

【図7】キャピラリ部とフランジ部が一体型の光コネク
タ用フェルールを示す概略部分断面図である。
FIG. 7 is a schematic partial sectional view showing a ferrule for an optical connector in which a capillary portion and a flange portion are integrated.

【図8】キャピラリとフランジが別体型の光コネクタ用
フェルールを示す概略部分断面図である。
FIG. 8 is a schematic partial cross-sectional view showing a ferrule for an optical connector in which a capillary and a flange are separate types.

【符号の説明】[Explanation of symbols]

1 溶解用容器 3 金型 4 キャビティ 6 中子部材 7 細穴 8 アモルファス合金成形品 A 溶湯 B 鋳造材 DESCRIPTION OF SYMBOLS 1 Melting container 3 Die 4 Cavity 6 Core member 7 Fine hole 8 Amorphous alloy molding A Melt B Cast material

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 ガラス遷移温度(Tg)以上、融点(T
m)未満の温度領域においてアモルファス合金内に存在
する中子部材を引き抜いて中子部材の断面形状を付与し
た成形体とする成形工程、及び該成形体を冷却する工程
を含むことを特徴とするアモルファス合金成形品の製造
方法。
1. A glass transition temperature (Tg) or higher and a melting point (T
m) forming a molded body having a cross-sectional shape of the core member by extracting the core member present in the amorphous alloy in a temperature range of less than m), and cooling the molded body. Manufacturing method of amorphous alloy molded product.
【請求項2】 アモルファス合金を生じ得る材料の溶湯
を金型のキャビティ内に注入する工程、キャビティ内の
ガラス遷移温度(Tg)以上、融点(Tm)未満の温度
に保持した状態のアモルファス合金内に中子部材を突き
刺し、引き抜いて中子部材の断面形状を付与した成形体
とする成形工程、及び該成形体を冷却する工程を含むこ
とを特徴とするアモルファス合金成形品の製造方法。
2. A step of injecting a molten metal of a material capable of forming an amorphous alloy into a cavity of a mold, wherein the amorphous alloy is maintained at a temperature equal to or higher than a glass transition temperature (Tg) and lower than a melting point (Tm) in the cavity. A method for producing an amorphous alloy molded article, comprising: a step of forming a molded article having a core member having a cross-sectional shape by piercing a core member into the molded article and pulling out the molded article; and a step of cooling the molded article.
【請求項3】 所望の断面形状の中子部材が予めセット
され、かつアモルファス合金のガラス遷移温度(Tg)
以上、融点(Tm)未満の温度に保持した金型のキャビ
ティ内にアモルファス合金を生じ得る材料の溶湯を注入
する工程、キャビティ内のガラス遷移温度(Tg)以
上、融点(Tm)未満の温度に保持した状態のアモルフ
ァス合金から中子部材を引き抜いて中子部材の断面形状
を付与した成形体とする成形工程、及び該成形体を冷却
する工程を含むことを特徴とするアモルファス合金成形
品の製造方法。
3. A core member having a desired cross-sectional shape set in advance, and a glass transition temperature (Tg) of an amorphous alloy.
As described above, the step of injecting a molten metal of a material capable of forming an amorphous alloy into the cavity of the mold held at a temperature lower than the melting point (Tm), the temperature of the glass transition temperature (Tg) within the cavity being lower than the melting point (Tm). Manufacturing a molded article of an amorphous alloy, comprising: a forming step of extracting a core member from the held amorphous alloy to form a molded body having a cross-sectional shape of the core member, and a step of cooling the molded body. Method.
【請求項4】 所望の断面形状の中子部材が予めセット
された金型のキャビティ内にアモルファス合金を生じ得
る材料の溶湯を鋳込み、キャビティ内の鋳造材を一旦ガ
ラス遷移温度(Tg)以下の温度に冷却する工程、キャ
ビティ内の鋳造材をガラス遷移温度(Tg)以上、融点
(Tm)未満の温度に加熱した状態において中子部材を
引き抜いて中子部材の断面形状を付与した成形体とする
成形工程、及び該成形体を冷却する工程を含むことを特
徴とするアモルファス合金成形品の製造方法。
4. A molten metal of a material capable of forming an amorphous alloy is cast into a cavity of a mold in which a core member having a desired cross-sectional shape is set in advance, and the cast material in the cavity is once cooled to a temperature lower than a glass transition temperature (Tg). A step of cooling to a temperature, forming a molded product in which the core member is drawn out in a state where the cast material in the cavity is heated to a temperature equal to or higher than the glass transition temperature (Tg) and lower than the melting point (Tm) to give a cross-sectional shape of the core member; And a step of cooling the compact.
【請求項5】 所望の断面形状の中子部材が予めセット
された金型のキャビティ内にアモルファス合金を生じ得
る材料の溶湯を鋳込み、キャビティ内の鋳造材を一旦ガ
ラス遷移温度(Tg)以下の温度に冷却する工程、キャ
ビティ内の中子部材をその電気抵抗を利用して発熱さ
せ、該中子部材近傍の鋳造材をガラス遷移温度(Tg)
以上、融点(Tm)未満の温度に加熱した状態において
中子部材を引き抜いて中子部材の断面形状を付与した成
形体とする成形工程、及び該成形体を冷却する工程を含
むことを特徴とするアモルファス合金成形品の製造方
法。
5. A molten metal of a material capable of forming an amorphous alloy is cast in a cavity of a mold in which a core member having a desired cross-sectional shape is set in advance, and the cast material in the cavity is temporarily cooled to a temperature lower than a glass transition temperature (Tg). Cooling to a temperature, the core member in the cavity is heated by utilizing its electric resistance, and the cast material in the vicinity of the core member is heated to a glass transition temperature (Tg).
As described above, the method includes a molding step of extracting the core member in a state where the core member is heated to a temperature lower than the melting point (Tm) to obtain a molded body having a cross-sectional shape of the core member, and a step of cooling the molded body. Of manufacturing amorphous alloy moldings.
【請求項6】 前記中子部材が細い線状部材であり、細
穴を成形することを特徴とする請求項1乃至5のいずれ
か一項に記載の方法。
6. The method according to claim 1, wherein the core member is a thin linear member, and a small hole is formed.
【請求項7】 アモルファス合金を、CCT(連続冷却
変態)曲線図におけるノーズに触れない昇温速度でガラ
ス遷移温度(Tg)以上、融点(Tm)未満の温度に昇
温させ、この温度域おいて成形する工程、及び該成形体
を冷却する工程を含むことを特徴とするアモルファス合
金成形品の製造方法。
7. The amorphous alloy is heated to a temperature not lower than the glass transition temperature (Tg) and lower than the melting point (Tm) at a temperature rising rate that does not touch the nose in a CCT (continuous cooling transformation) curve diagram. And a step of cooling the formed body.
【請求項8】 前記成形工程を、請求項1乃至6のいず
れか一項に記載の成形工程により行なうことを特徴とす
る請求項7に記載の方法。
8. The method according to claim 7, wherein the forming step is performed by the forming step according to any one of claims 1 to 6.
【請求項9】 前記成形品が、光コネクタ用のフェルー
ルもしくはキャピラリであることを特徴とする請求項1
乃至8のいずれか一項に記載の方法。
9. The optical device according to claim 1, wherein the molded product is a ferrule or a capillary for an optical connector.
The method according to any one of claims 1 to 8.
JP11157314A 1999-06-04 1999-06-04 Manufacture of amorphous alloy formed stock Pending JP2000343205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11157314A JP2000343205A (en) 1999-06-04 1999-06-04 Manufacture of amorphous alloy formed stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11157314A JP2000343205A (en) 1999-06-04 1999-06-04 Manufacture of amorphous alloy formed stock

Publications (1)

Publication Number Publication Date
JP2000343205A true JP2000343205A (en) 2000-12-12

Family

ID=15646987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11157314A Pending JP2000343205A (en) 1999-06-04 1999-06-04 Manufacture of amorphous alloy formed stock

Country Status (1)

Country Link
JP (1) JP2000343205A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325984A (en) * 2004-05-17 2005-11-24 Namiki Precision Jewel Co Ltd Ultraprecise gear mechanism and micro geared motor
US7017645B2 (en) * 2002-02-01 2006-03-28 Liquidmetal Technologies Thermoplastic casting of amorphous alloys
JP2009506895A (en) * 2005-09-08 2009-02-19 アルカン テヒノロギー ウント メーニッジメント リミテッド Forming tool
JP2009172674A (en) * 2008-01-25 2009-08-06 Olympus Medical Systems Corp Ultrasonic transmitting member
CN105911648A (en) * 2016-06-18 2016-08-31 苏州高精特专信息科技有限公司 Die for manufacturing optical fiber joint
CN107037543A (en) * 2016-06-18 2017-08-11 苏州高精特专信息科技有限公司 A kind of fiber connector automated production mould, system and method
CN108372278A (en) * 2018-04-02 2018-08-07 广东劲胜智能集团股份有限公司 The preparation method and device of the alloy pipe of controllable diameter and wall thickness
CN111687752A (en) * 2020-06-19 2020-09-22 松山湖材料实验室 Manufacturing method of amorphous alloy gear based on abrasive water jet cutting and product thereof
CN115786825A (en) * 2022-11-24 2023-03-14 西安交通大学 Process for preparing amorphous alloy capable of resisting high-low temperature circulating environment

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101053756B1 (en) * 2002-02-01 2011-08-02 크루서블 인텔렉츄얼 프라퍼티 엘엘씨. Thermoplastic Casting of Amorphous Alloys
US7017645B2 (en) * 2002-02-01 2006-03-28 Liquidmetal Technologies Thermoplastic casting of amorphous alloys
KR101190440B1 (en) * 2002-02-01 2012-10-11 크루서블 인텔렉츄얼 프라퍼티 엘엘씨. Thermoplastic casting of amorphous alloys
JP2010105049A (en) * 2002-02-01 2010-05-13 Liquidmetal Technologies Inc Thermoplastic casting of amorphous alloy
JP2005325984A (en) * 2004-05-17 2005-11-24 Namiki Precision Jewel Co Ltd Ultraprecise gear mechanism and micro geared motor
JP4596559B2 (en) * 2004-05-17 2010-12-08 並木精密宝石株式会社 Ultra-precision gear mechanism and micro geared motor
JP2009506895A (en) * 2005-09-08 2009-02-19 アルカン テヒノロギー ウント メーニッジメント リミテッド Forming tool
CN101494048B (en) * 2008-01-25 2011-07-20 奥林巴斯医疗株式会社 Ultrasonic transmission member
US7869307B2 (en) 2008-01-25 2011-01-11 Olympus Medical Systems Corp. Ultrasonic transmission member
JP2009172674A (en) * 2008-01-25 2009-08-06 Olympus Medical Systems Corp Ultrasonic transmitting member
CN106918874A (en) * 2016-06-18 2017-07-04 苏州高精特专信息科技有限公司 A kind of manufacture method of fiber connector and the mould of manufacture fiber connector
CN107037543A (en) * 2016-06-18 2017-08-11 苏州高精特专信息科技有限公司 A kind of fiber connector automated production mould, system and method
CN105911648B (en) * 2016-06-18 2017-09-29 苏州高精特专信息科技有限公司 A kind of mould for manufacturing fiber connector
CN107037543B (en) * 2016-06-18 2018-10-16 华远高科电缆有限公司 A kind of fiber connector automated production mold, system and method
CN105911648A (en) * 2016-06-18 2016-08-31 苏州高精特专信息科技有限公司 Die for manufacturing optical fiber joint
CN108372278A (en) * 2018-04-02 2018-08-07 广东劲胜智能集团股份有限公司 The preparation method and device of the alloy pipe of controllable diameter and wall thickness
CN111687752A (en) * 2020-06-19 2020-09-22 松山湖材料实验室 Manufacturing method of amorphous alloy gear based on abrasive water jet cutting and product thereof
CN115786825A (en) * 2022-11-24 2023-03-14 西安交通大学 Process for preparing amorphous alloy capable of resisting high-low temperature circulating environment

Similar Documents

Publication Publication Date Title
JP3808258B2 (en) Method and apparatus for manufacturing cast molded article having fine hole
JP3808167B2 (en) Method and apparatus for manufacturing amorphous alloy molded article formed by pressure casting with mold
JP3784578B2 (en) Method and apparatus for manufacturing amorphous alloy molded article formed by pressure casting with mold
KR100307672B1 (en) Sleeve for optical connector ferrule and manufacturing method thereof
US6435731B1 (en) Ferrule having optical fiber incorporated therein as an integral part thereof and method for production thereof
JP3326087B2 (en) Ferrule for optical fiber connector and method of manufacturing the same
JP2001140047A (en) Surface hardened formed part made of amorphous alloy, and its manufacturing method
JP2003014988A (en) Optical connector and ferrule for optical connector used therefor
JP2000343205A (en) Manufacture of amorphous alloy formed stock
US6695487B2 (en) Conversion adapter for ferrules having different diameters and method for production thereof
JP3792471B2 (en) Mold and apparatus for continuous injection molding to wire
US6627008B1 (en) Grooved substrates for multifiber optical connectors and for alignment of multiple optical fibers and method for production thereof
JP3396632B2 (en) Manufacturing method of amorphous alloy molded product
JP2001001130A (en) Manufacture of amorphous alloy formed product having fine hole and apparatus thereof
JP2001108866A (en) Ferrule integrated with metallic pipe and its manufacturing method
JP2002055257A (en) Ceramic pipe integrated type ferrule and its manufacturing method
JP2001033657A (en) Optical connector member made of magnesium-based amorphous alloy
JP2001239550A (en) Method and apparatus for manufacturing injection- molded article having pores
JP2001033652A (en) Optical connector member made of rare earth-based amorphous alloy
JP2001249250A (en) Method and device for producing optical fiber integrated ferrule
JPH06206738A (en) Production of fluoride glass tube
JPH11344639A (en) Ferrule for optical connector and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060829