JP2010227965A - Method for controlling solidification of casting - Google Patents

Method for controlling solidification of casting Download PDF

Info

Publication number
JP2010227965A
JP2010227965A JP2009077617A JP2009077617A JP2010227965A JP 2010227965 A JP2010227965 A JP 2010227965A JP 2009077617 A JP2009077617 A JP 2009077617A JP 2009077617 A JP2009077617 A JP 2009077617A JP 2010227965 A JP2010227965 A JP 2010227965A
Authority
JP
Japan
Prior art keywords
casting
solidification
concave shape
metal
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009077617A
Other languages
Japanese (ja)
Inventor
Yasuyuki Ishihara
泰之 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2009077617A priority Critical patent/JP2010227965A/en
Publication of JP2010227965A publication Critical patent/JP2010227965A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling the solidification of a casting by which the heat extraction speed of a chiller can be reduced without reducing the size of the chiller, and also, the heat extraction speed of the chiller can be reduced without pasting a heat insulating material. <P>SOLUTION: In the method for controlling the solidification of a casting using a chiller, a part or the whole of a surface in contact with a molten metal, of the chiller 1 is provided with a recessed shape 2, and the solidification of the molten metal in the recessed shape 2 is delayed. The pitch of the recessed shape 2 is 1 to 4 mm, the depth thereof is preferably 0.5 to 1.0 times the pitch, and it is preferable that a material having a thermal conductivity lower than that of the chiller 1 is arranged at the inside of the recessed shape 2, and that the thermal conductivity of the material having a low thermal conductivity is lower by 20 to 320 W/(m×K) than that of the chiller. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、鋳物の凝固制御方法に関し、詳しくは、冷し金の大きさを減じることなく、冷し金の抜熱速度を減じることができ、かつ、断熱材を貼り付けること無く、冷し金の抜熱速度を減じることができる鋳物の凝固制御方法に関する。   The present invention relates to a method for controlling solidification of a casting. More specifically, the present invention can reduce the heat removal rate of the cooling metal without reducing the size of the cooling metal, and can be cooled without attaching a heat insulating material. The present invention relates to a solidification control method for a casting that can reduce the heat removal rate of gold.

鋳物の鋳造方法には様々なものが存在しているが、鋳型材には樹脂等で硬化させた砂型や、エチルシリケートやコロイダルシリカで硬化させたセラミック型、各種耐火材を混合した石膏型、又は鋼材等の金属材料が用いられることが多い。これらの鋳造の際に、鋳物の製品部の機械特性向上や、引け巣欠陥の発生を防止する為の溶湯の指向性凝固を目的として、冷し金を用いることが多い。   There are various casting methods, but the mold material is sand mold cured with resin, ceramic mold cured with ethyl silicate or colloidal silica, gypsum mold mixed with various refractory materials, Alternatively, a metal material such as steel is often used. In these castings, a cooling metal is often used for the purpose of improving the mechanical properties of the product part of the casting and directional solidification of the molten metal to prevent the occurrence of shrinkage defects.

冷やし金の改良に係る技術としては、例えば、特許文献1、2には、冷し金の溶湯接触面全面を、鋳物凝固・冷却促進に活用する技術が開示されている。特許文献3には、冷し金の一部に、断熱材を貼り付けることで、熱容量が大きい冷し金を用いても、抜熱速度を任意に調整することを可能とする技術が開示されている。また、特許文献4、5には、冷し金の熱容量、抜熱速度を増加させる技術が開示されている。   For example, Patent Documents 1 and 2 disclose techniques for utilizing the entire molten metal contact surface of the cooling metal for casting solidification / cooling promotion. Patent Document 3 discloses a technique that allows a heat extraction rate to be arbitrarily adjusted even by using a cooling metal having a large heat capacity by attaching a heat insulating material to a part of the cooling metal. ing. Patent Documents 4 and 5 disclose techniques for increasing the heat capacity and heat removal rate of cooling metal.

特開2007−275973号公報JP 2007-275973 A 特開2004−17145号公報JP 2004-17145 A 特開2007−144480号公報JP 2007-144480 A 特開2006−205228号公報JP 2006-205228 A 特開2001−179392号公報JP 2001-179392 A

しかしながら、特許文献1、2、4および5に記載の手法では、鋳物の凝固・冷却を抑制したい場合には、冷し金の大きさを減少させなくてはならないという不便な点があった。また、特許文献3記載の方法では、断熱材は、鋳造の度に断熱材を準備・貼り付けなくてはならず、断熱材は使い捨てになり、製造コストの面で不利であった。このように従来の冷し金改良技術においては、冷し金の抜熱効果(溶湯からの抜熱速度および抜熱容量)を制御するに際して、何らかの問題点が存在しているのが現状であった。   However, the methods described in Patent Documents 1, 2, 4, and 5 have the inconvenience that the size of the cooling metal must be reduced when it is desired to suppress the solidification and cooling of the casting. Further, in the method described in Patent Document 3, the heat insulating material must be prepared and affixed every time it is cast, and the heat insulating material becomes disposable, which is disadvantageous in terms of manufacturing cost. As described above, in the conventional cooling metal improvement technology, there are some problems when controlling the heat extraction effect of the cooling metal (heat extraction rate and heat extraction capacity from the molten metal). .

そこで、本発明の目的は、冷し金の大きさを減じることなく、冷し金の抜熱速度を減じることができる技術を提供することにある。また、本発明の他の目的は、使い捨ての断熱材を貼り付けること無く、冷し金の抜熱速度を減じることができる技術を提供することにある。   Therefore, an object of the present invention is to provide a technique capable of reducing the heat removal rate of the cooling metal without reducing the size of the cooling metal. Another object of the present invention is to provide a technique capable of reducing the heat removal rate of the cooling metal without attaching a disposable heat insulating material.

本発明者は、上記課題を解消するために鋭意検討した結果、冷やし金を下記構成とすることにより、上記課題を解消することができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that the above-mentioned problems can be solved by setting the cooling metal to the following configuration, and has completed the present invention.

すなわち、本発明の鋳物の凝固制御方法は、冷し金を用いる鋳物の凝固制御方法において、冷やし金の溶湯接触面の一部または全部に凹形状を設け、該凹形状における溶湯凝固を遅らせることを特徴とするものである。これにより、当該部位における溶湯凝固を意図的に遅らせ、製品部から押し湯側への意図的な凝固(以下、「鋳物の指向性凝固」と称する)を促進することが可能となる。   That is, the solidification control method for a casting according to the present invention is a method for solidification control of a casting using a cooling metal, wherein a concave shape is provided on a part or all of the molten metal contact surface of the cooling metal, and the solidification of the molten metal in the concave shape is delayed. It is characterized by. Accordingly, it is possible to intentionally delay the solidification of the molten metal in the portion and promote the intentional solidification from the product portion to the hot metal side (hereinafter referred to as “directional solidification of the casting”).

本発明においては、前記凹形状のピッチが1〜4mmであり、深さがピッチの0.5〜1.0倍であることが好ましい。このような構成とすることで、冷やし金の熱伝導特性と溶湯の凹形状への浸入のバランスを図ることができる。また、前記凹形状内に前記冷し金よりも熱伝導率の低い材料を配置することが好ましい。これにより、鋳造時の溶湯凝固速度を調整することが可能となる。さらに、前記熱伝導率の低い材料の熱伝導率は前記冷し金より20〜320W/(m・K)低いことが好ましい。これにより、上記効果を良好に得ることができる。   In the present invention, the concave pitch is preferably 1 to 4 mm, and the depth is preferably 0.5 to 1.0 times the pitch. By setting it as such a structure, the balance of the heat conduction characteristic of a cooling metal and the penetration | invasion to the concave shape of a molten metal can be aimed at. Moreover, it is preferable to arrange | position the material whose heat conductivity is lower than the said cooling metal in the said concave shape. Thereby, it becomes possible to adjust the melt solidification speed at the time of casting. Furthermore, the thermal conductivity of the material having low thermal conductivity is preferably 20 to 320 W / (m · K) lower than that of the cooling metal. Thereby, the said effect can be acquired favorably.

本発明の鋳物の凝固制御方法は、タイヤ成型用金型の鋳造に好適に適用することができる。本発明の鋳物の凝固制御方法を適用して鋳造されたタイヤ成型用金型は、引け巣欠陥が発生しないため、品質に優れたタイヤを製造することが可能となる。   The casting solidification control method of the present invention can be suitably applied to casting of a tire molding die. Since the mold for molding a tire cast by applying the solidification control method for casting according to the present invention does not cause shrinkage defects, it is possible to manufacture a tire having excellent quality.

本発明によれば、冷し金の大きさを減じることなく、冷し金の抜熱速度を減じることができ、かつ、断熱材を貼り付けること無く、冷し金の抜熱速度を減じることができる鋳物の凝固制御方法を提供することができる。これにより、引け巣欠陥のない鋳物、特には、タイヤ成型用金型を鋳造することが可能となる。   According to the present invention, the heat removal rate of the cooling metal can be reduced without reducing the size of the cooling metal, and the heat removal rate of the cooling gold can be reduced without attaching a heat insulating material. It is possible to provide a method for controlling the solidification of a casting that can be performed. As a result, it is possible to cast a casting having no shrinkage defect, particularly a tire molding die.

本発明に係る冷し金の一好適例を示す斜視図である。It is a perspective view which shows one suitable example of the cooling metal which concerns on this invention. 冷やし金と溶湯の接触部の拡大断面図である。It is an expanded sectional view of the contact part of a cooling metal and a molten metal. (a)および(b)は、それぞれ従来法と本発明における鋳物鋳造における等凝固時間曲面を表す模式図である。(A) And (b) is a schematic diagram showing the equal solidification time curved surface in the casting method in the conventional method and this invention, respectively. (a)〜(c)は、それぞれ本発明に係る冷し金の他の好適例を示す斜視図である。(A)-(c) is a perspective view which shows the other suitable example of the cooling metal which concerns on this invention, respectively. (a)〜(d)は、それぞれ凹形状内に冷し金より熱伝導率の低い材料を配置した場合の好適例の斜視図である。(A)-(d) is a perspective view of a suitable example at the time of arrange | positioning the material whose heat conductivity is lower than gold | metal | money, respectively, in a concave shape. (a)および(b)は、実施例に用いた鋳枠の斜視図および片側断面図である。(A) And (b) is the perspective view and half sectional view of the cast frame used for the Example. 実施例1に用いた鋳枠の片側断面図である。1 is a half sectional view of a casting frame used in Example 1. FIG. 実施例2に用いた鋳枠の片側断面図である。It is a half sectional view of the casting frame used in Example 2. 比較例1に用いた鋳枠の片側断面図である。It is a half sectional view of the cast frame used for the comparative example 1. 比較例2に用いた鋳枠の片側断面図である。6 is a half sectional view of a cast frame used in Comparative Example 2. FIG.

以下、本発明の好適な実施の形態について、図面を用いて詳細に説明する。
本発明の鋳物の凝固制御方法は、冷し金を用いる鋳物の凝固制御方法において、冷やし金の溶湯接触面の一部または全部に凹形状を設け、該凹形状における溶湯凝固を遅らせることを特徴とするものである。図1は本発明に係る冷し金の一例の斜視図であり、冷やし金1の上部に凹形状2を有している。図2は冷し金と溶湯の接触時における断面図である。冷し金1の溶湯接触面側に、鋳造時に溶湯3が進入できない凹形状2を設けておくことで、溶湯3と冷やし金1は線接触となり、当該部位の溶湯凝固を意図的に遅らせ、鋳物の指向性凝固を促進することが可能となる。
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
The solidification control method for a casting according to the present invention is characterized in that, in the solidification control method for a casting using a cooling metal, a concave shape is provided on a part or all of the molten metal contact surface of the cooling metal, and the solidification of the molten metal in the concave shape is delayed. It is what. FIG. 1 is a perspective view of an example of a cooling metal according to the present invention, and has a concave shape 2 on the top of the cooling metal 1. FIG. 2 is a cross-sectional view at the time of contact between the cooling metal and the molten metal. By providing the concave shape 2 on the molten metal contact surface side of the cooling metal 1 where the molten metal 3 cannot enter at the time of casting, the molten metal 3 and the cooling metal 1 are in line contact, and intentionally delays the solidification of the molten metal at the site, It becomes possible to promote the directional solidification of the casting.

図3は、従来の鋳物の鋳造方法(図3(a))と、本発明の鋳物の凝固制御方法を適用した鋳造方法(図3(b))の等凝固時間曲面を表した鋳物の断面図である。ここで、等凝固時間曲面とは、鋳物の冷却過程において、同じ時間で凝固が完了する曲面をいう。図3(a)、(b)ともに鋳枠4を冷やし金とし、上型8の内面に断熱材9を貼り付けて、鋳型7を用いて鋳物を鋳造している。図3(a)に示すように、従来法の鋳枠4に金属製部材を用いて鋳造した場合、鋳枠4側の溶湯凝固が速すぎ、等凝固時間曲面5が押し湯6とつながらない閉空間を形成する場合がある。この閉空間には引け巣欠陥が発生することになる。したがって、これまでは、引け巣欠陥を抑止するためには、鋳枠上部側に断熱材を貼り付け、溶湯の凝固を遅らせるという対策が必要であった。   FIG. 3 is a cross-sectional view of a casting that represents an iso-solid time curve of a conventional casting method (FIG. 3 (a)) and a casting method (FIG. 3 (b)) to which the solidification control method of the present invention is applied. FIG. Here, the uniform solidification time curved surface refers to a curved surface that completes solidification in the same time in the cooling process of the casting. 3A and 3B, the casting frame 4 is used as a cooling metal, the heat insulating material 9 is attached to the inner surface of the upper mold 8, and the casting is cast using the mold 7. As shown in FIG. 3 (a), when the conventional casting frame 4 is cast by using a metal member, the molten metal solidification on the casting frame 4 side is too fast, and the isosolid time curved surface 5 is not connected to the feeder 6. A space may be formed. A shrinkage defect will occur in this closed space. Therefore, until now, in order to suppress the shrinkage defect, it has been necessary to take measures to delay the solidification of the molten metal by attaching a heat insulating material to the upper part of the casting frame.

しかし、本発明においては、鋳枠4として、本発明に係る冷し金1を用いることで、鋳枠4に断熱材を貼り付けることなく、鋳枠上部側の溶湯凝固を遅らせることを可能とした。その結果、等凝固時間曲面5が押し湯6とつながらない閉空間が形成されず、引け巣欠陥発生を効果的に防止することができる(図3(b))。   However, in the present invention, by using the cooling metal 1 according to the present invention as the casting frame 4, it is possible to delay the solidification of the molten metal on the upper side of the casting frame without attaching a heat insulating material to the casting frame 4. did. As a result, a closed space in which the isosolid time curved surface 5 is not connected to the hot water 6 is not formed, and shrinkage defect generation can be effectively prevented (FIG. 3B).

また、従来の、鋳枠自体を冷し金として使用する方式の鋳造の場合では、溶湯接触面に部分的に断熱材を後貼りしなければならないという手間を有している。さらに、鋳造の都度に断熱材を廃棄するという材料コスト面でのデメリットを有している。しかしながら、本発明によれば、これらの問題も容易に解消できる。   Further, in the case of conventional casting using a method in which the casting frame itself is used as a cooling metal, there is a trouble that a heat insulating material must be partially pasted on the molten metal contact surface. Furthermore, it has a demerit in the material cost of discarding the heat insulating material at every casting. However, according to the present invention, these problems can be easily solved.

図1に示す冷し金1の凹形状2は、V溝が連続する構造であるが、本発明においては、図4(a)に示すように、凹形状102としてV溝が断続する構造を有する冷やし金101でもよい。また、図4(b)に示すように、凹形状202としてダイヤカット形状を有する冷やし金201や、図4(c)に示すように、凹形状302として、エンボス形状を有する冷やし金301であってもよい。さらに、冷やし金1の凹形状2が施してある部分と施されていない部分が分離し、使用時に組み立てるタイプの冷し金でもよい。   The concave shape 2 of the cooling metal 1 shown in FIG. 1 has a structure in which V grooves are continuous. However, in the present invention, as shown in FIG. The cooling metal 101 which has may be sufficient. Further, as shown in FIG. 4B, a chill metal 201 having a diamond cut shape as the concave shape 202, and a chill metal 301 having an embossed shape as the concave shape 302 as shown in FIG. 4C. May be. Furthermore, the cooling metal of the type which the part to which the concave shape 2 of the cooling metal 1 is given, and the part which is not given may isolate | separate, and it assembles at the time of use.

なお、冷し金1に刻まれる凹形状2は、鋳造時に溶湯が浸入しない範囲の最大のものであることが望ましい。凹形状2は冷し金1の温度、溶湯との濡れ性、溶湯温度、溶湯の流速、鋳造完了後の溶湯圧力、溶湯材質等により適宜設定すべきものであるが、上記条件は様々に変化するため、一概には言えないが、凹形状2のピッチWは1〜4mmで、凹形状2の深さDは0.5W〜1.0Wであることが望ましい。凹形状2のピッチWが1mm未満の場合や、凹形状2の深さDが0.5W未満の場合は、冷し金の熱伝導特性を十分確保することが困難となる。一方、凹形状2のピッチWが4mmを超えた場合や、凹形状2の深さDが1.0Wを超える場合は、鋳造時に凹形状2に溶湯が浸入してしまうおそれがある。   In addition, it is desirable that the concave shape 2 engraved in the cooling metal 1 is the maximum in a range where the molten metal does not enter during casting. The concave shape 2 should be appropriately set according to the temperature of the cooling metal 1, the wettability with the molten metal, the molten metal temperature, the flow velocity of the molten metal, the molten metal pressure after the completion of casting, the molten metal material, and the like. Therefore, although it cannot be generally stated, it is desirable that the pitch W of the concave shape 2 is 1 to 4 mm, and the depth D of the concave shape 2 is 0.5 W to 1.0 W. When the pitch W of the concave shape 2 is less than 1 mm, or when the depth D of the concave shape 2 is less than 0.5 W, it is difficult to ensure sufficient heat conduction characteristics of the cooling metal. On the other hand, when the pitch W of the concave shape 2 exceeds 4 mm, or when the depth D of the concave shape 2 exceeds 1.0 W, the molten metal may enter the concave shape 2 during casting.

さらに、冷し金は基本的形状が決まっており、通常6面体(直方体)形状のものが用いられることが多い。このため、冷し金表面には6つの表面が存在する。一般的な冷し金は、これらのうちいずれかの1面を溶湯に接触させる形で用いられることが多いが、6面全てについて、その熱伝導率はほぼ等しいため、抜熱効果を微妙に調整したいときは、冷し金自体のサイズ(寸法および重量)を変化させるしか方法がなかった。   Furthermore, the basic shape of the cooling metal is determined, and usually a hexahedron (cuboid) shape is often used. For this reason, there are six surfaces on the chilled gold surface. Common cooling metal is often used in such a way that one of these surfaces is in contact with the molten metal, but the heat conductivity of all six surfaces is almost equal, so the heat removal effect is subtly The only way to make adjustments was to change the size (dimensions and weight) of the chiller itself.

これに対して、冷やし金の6面全てについて異なる凹形状分布(ピッチ、深さ)を付与しておけば、一つの冷し金で、その溶湯接触面を選択するたけで、6種類の抜熱条件に変化させることもできる。通常の鋳物メーカーは多種多様な冷し金を準備しなければならず、鋳造する物件ごとに多数ある冷し金を選択して使用しなければならないという煩雑さが存在しているが、本発明は、この手間を減らすことができるという効果も有している。   On the other hand, if different concave shape distributions (pitch, depth) are given to all six surfaces of the chill metal, it is possible to select six types of extraction by simply selecting the molten metal contact surface with one chill metal. It can also be changed to thermal conditions. A normal casting manufacturer has to prepare a wide variety of cooling metal, and there is a trouble that a large number of cooling metals must be selected and used for each property to be cast. Has the effect of reducing this effort.

また、本発明においては、凹形状内に冷し金よりも熱伝導率が低い材料を配置することが好ましい。凹形状に冷し金よりも熱伝導率の低い材料を断熱材(耐火材)として配置することで、鋳造時の溶湯凝固速度を調整することが可能となり、本発明の効果を良好に得ることができる。熱伝導率の低い材料としては、熱伝導率が冷し金より20W/(m・K)〜320W/(m・K)低いことが好ましい。上記範囲内とすることで、引け巣欠陥を良好に抑制することができる。   Moreover, in this invention, it is preferable to arrange | position the material whose heat conductivity is lower than a cooling gold | metal | money in a concave shape. It is possible to adjust the molten metal solidification rate at the time of casting by arranging a material having a heat conductivity lower than that of gold cooled to a concave shape as a heat insulating material (refractory material), and obtaining the effect of the present invention well. Can do. The material having low thermal conductivity preferably has a thermal conductivity of 20 W / (m · K) to 320 W / (m · K) lower than that of the cooled gold. By setting it within the above range, shrinkage defect can be satisfactorily suppressed.

図5(a)〜(d)は、凹形状内に冷し金よりも熱伝導率の低い材料を配置した場合の斜視図である。凹形状部に冷し金よりも熱伝導率の低い材料を配置する手法としては、熱伝導率の低い材料を嵌め込む方法や、塗布する方法等を挙げることができる。構造としては、例えば、図5(a)は、丸座グリの凹形状402を有し、そこに冷し金401よりも熱伝導率の低い材料を配置した構造であり、図5(b)は、丸残し座グリの凹形状502を有し、そこに冷し金501よりも熱伝導率の低い材料を配置した構造が挙げられる。また、図5(c)のように、楔溝の凹形状602を有し、そこに冷し金601よりも熱伝導率の低い材料を配置した構造や、図5(d)のように、楔格子溝の凹形状702を有し、そこに冷し金701よりも熱伝導率の低い材料を配置した構造でもよい。   FIGS. 5A to 5D are perspective views in the case where a material having a lower thermal conductivity than the cooled gold is disposed in the concave shape. Examples of a method for disposing a material having a lower thermal conductivity than cooling gold in the concave shape portion include a method for fitting a material having a low thermal conductivity, a method for applying the material, and the like. As a structure, for example, FIG. 5A is a structure having a concave shape 402 of a round spot facing, and a material having a lower thermal conductivity than that of the cooling gold 401 is disposed therein, and FIG. Has a concave shape 502 of a round left counterbore, and a structure in which a cooled material having a lower thermal conductivity than that of the gold 501 is disposed therein. Further, as shown in FIG. 5C, the structure has a concave shape 602 of a wedge groove, and a cooled material having a lower thermal conductivity than that of the gold 601 is arranged, as shown in FIG. A structure in which the wedge-shaped groove 702 has a concave shape 702 and a material having a lower thermal conductivity than the cooled gold 701 is disposed there.

熱伝導率の低い材料としては、例えば、シリカ、アルミナ、ムライト等の各種セラミック粉末をエチルシリケートやコロイダルシリカ、水ガラスと混合した塗布できるものでもよく、物理的にはめ込むセラミックファイバー系の固形物であってもよい。なお、冷やし金は繰り返し使用できることが望ましいため、耐摩耗性の高い塗布系の材質がより好ましい。   As a material having low thermal conductivity, for example, various ceramic powders such as silica, alumina, mullite and the like mixed with ethyl silicate, colloidal silica, and water glass may be applied. There may be. In addition, since it is desirable that the cooling metal can be repeatedly used, a coating material having high wear resistance is more preferable.

本発明の鋳物の凝固制御方法は、タイヤ成型用金型の鋳造に好適に適用することができる。本発明の鋳物の凝固制御方法を適用することにより、引け巣欠陥のないタイヤ成型用金型を鋳造することが可能となる。その結果、品質の良いタイヤを製造することができる。   The casting solidification control method of the present invention can be suitably applied to casting of a tire molding die. By applying the casting solidification control method of the present invention, it is possible to cast a tire molding die having no shrinkage defect. As a result, a good quality tire can be manufactured.

本発明の鋳物の凝固制御方法は、冷し金を用いる鋳物の凝固制御方法において、冷やし金の溶湯接触面の一部または全部に凹形状を設け、該凹形状における溶湯凝固を遅らせることに特徴があり、その他、鋳込み工程等の工程は既知の方法に従い適宜おこなうことができる。   The solidification control method for a casting according to the present invention is characterized in that, in the solidification control method for a casting using a cooling metal, a concave shape is provided on a part or all of the molten metal contact surface of the cooling metal, and the solidification of the molten metal in the concave shape is delayed. In addition, processes such as a casting process can be appropriately performed according to a known method.

以下、本発明を、実施例を用いてより詳細に説明する。
<鋳物の製造方法>
鋳鉄鋳枠10と、鋳鉄定盤11と、断熱スリーブ12と、断熱ボード13と、湯口14と、を有する図6(a)に示すタイプの鋳型において、鋳鉄鋳枠10および鋳鉄定盤11を冷し金として、アルミ合金リングのタイヤ金型リング鋳物を鋳造した。鋳鉄の熱伝導率は33W/(m・K)、比熱は670J/kg・K、密度は7.2g/cmである。
Hereinafter, the present invention will be described in more detail with reference to examples.
<Manufacturing method of casting>
In the mold of the type shown in FIG. 6A having the cast iron casting frame 10, the cast iron surface plate 11, the heat insulating sleeve 12, the heat insulating board 13, and the gate 14, the cast iron casting frame 10 and the cast iron surface plate 11 are provided. As a cooling metal, an aluminum alloy ring tire mold ring casting was cast. Cast iron has a thermal conductivity of 33 W / (m · K), a specific heat of 670 J / kg · K, and a density of 7.2 g / cm 3 .

また、図6(b)は図6(a)に示す鋳型の寸法を示す片側断面図であり、寸法は、D1=520mm、D2=600mm、D3=750mm、D4=100mm、W1=30mm、W2=50mm、W3=50mm、W4=50mm、H1=180mm、H2=200mmである。   6B is a half sectional view showing the dimensions of the mold shown in FIG. 6A. The dimensions are D1 = 520 mm, D2 = 600 mm, D3 = 750 mm, D4 = 100 mm, W1 = 30 mm, W2 = 50 mm, W3 = 50 mm, W4 = 50 mm, H1 = 180 mm, H2 = 200 mm.

使用したアルミ合金はAC4C(Si:7%,Mg:0.4%,Fe:0.3%:残Al)であり、鋳鉄鋳枠10の予熱温度は280〜300℃、鋳鉄定盤11の予熱温度は80〜100℃とし、石膏鋳型15はノリタケジプサムG−1発泡石膏(乾燥型密度:0.7/cm)を用いた。鋳造方式は重力鋳造による一点鋳込み方式とし、鋳込み温度は680〜690℃とした。これら条件を下記表1にまとめて示す。 The aluminum alloy used is AC4C (Si: 7%, Mg: 0.4%, Fe: 0.3%: remaining Al), the preheating temperature of the cast iron casting frame 10 is 280 to 300 ° C, and the cast iron surface plate 11 The preheating temperature was 80 to 100 ° C., and Noritake dipsum G-1 foamed gypsum (dry mold density: 0.7 / cm 3 ) was used as the gypsum mold 15. The casting method was a one-point casting method by gravity casting, and the casting temperature was 680 to 690 ° C. These conditions are summarized in Table 1 below.

(実施例1)
図7に示すように、鋳鉄鋳枠10の内面上部に幅68mmにわたり、ピッチ4mm、深さ2mmのV溝による凹形状2を設けた。
Example 1
As shown in FIG. 7, a concave shape 2 with V-grooves having a width of 68 mm, a pitch of 4 mm, and a depth of 2 mm was provided on the inner surface of the cast iron casting frame 10.

(実施例2)
図8に示すように、鋳鉄鋳枠10の内面上部に幅68mmにわたり、ピッチ4mm、深さ2mmのV溝の凹形状2aを設けた。その下部にはピッチ4mm、深さ2mmのエンボス形状の凹形状2bを8mm間隔で設け、塗型剤16を塗布した。塗型剤16として、コロイダルシリカにアルミナ、シリカパウダーを混ぜ込んだスラリーを鋳枠の凹形状2a,2bに塗布し、乾燥させた。鋳鉄鋳枠10の内面の凹形状2a,2b以外の塗型剤は、乾燥前に拭き取り除去した。なお、塗型剤16の熱伝導率は8.4W/(m・K)、比熱は1260J/kg・K、密度は0.2g/cmである。
(Example 2)
As shown in FIG. 8, a V-groove concave shape 2 a having a width of 68 mm, a pitch of 4 mm, and a depth of 2 mm was provided in the upper part of the inner surface of the cast iron casting frame 10. The embossed concave shape 2b having a pitch of 4 mm and a depth of 2 mm was provided at the lower portion thereof at intervals of 8 mm, and the coating agent 16 was applied. As the coating agent 16, a slurry obtained by mixing colloidal silica with alumina and silica powder was applied to the concave shapes 2a and 2b of the casting frame and dried. The coating agents other than the concave shapes 2a and 2b on the inner surface of the cast iron casting frame 10 were wiped off before drying. The coating agent 16 has a thermal conductivity of 8.4 W / (m · K), a specific heat of 1260 J / kg · K, and a density of 0.2 g / cm 3 .

(比較例1)
図9に示すように、鋳鉄鋳枠10の内面上部に凹形状を設けず、また、鋳鉄鋳枠10の内面に断熱材も貼り付けていない。
(Comparative Example 1)
As shown in FIG. 9, no concave shape is provided in the upper part of the inner surface of the cast iron casting frame 10, and no heat insulating material is attached to the inner surface of the cast iron casting frame 10.

(比較例2)
図10に示すように、鋳鉄鋳枠10の内面上部に幅70mmにわたり、3mm厚の断熱材9を貼り付けた。断熱材9の熱伝導率は、2.1W/(m・K)、比熱は1050J/kg・K、密度は0.8g/cmである。
(Comparative Example 2)
As shown in FIG. 10, a heat insulating material 9 having a thickness of 3 mm was attached to the upper part of the inner surface of the cast iron casting frame 10 over a width of 70 mm. The heat insulating material 9 has a thermal conductivity of 2.1 W / (m · K), a specific heat of 1050 J / kg · K, and a density of 0.8 g / cm 3 .

得られたアルミ合金のリングを目視にて観察し、引け巣欠陥の発生の有無を確認した。目視確認可能な引け巣欠陥が発生した場合を×、鋳物内部に目視確認困難な微細引け巣欠陥が発生した場合を△、鋳物表面および内部に引け巣欠陥が発生しない場合を○として評価をした。得られた結果を表2に示す。また、鋳枠または断熱材の再使用の可否についても同表中に記載した。   The obtained aluminum alloy ring was visually observed to confirm the occurrence of shrinkage defect. The case where a shrinkage defect that can be visually confirmed occurred was evaluated as x, the case where a fine shrinkage defect that was difficult to visually confirm inside the casting was evaluated as △, and the case where no shrinkage defect occurred on the casting surface and inside was evaluated as ○. . The obtained results are shown in Table 2. Moreover, it was described in the same table also about the possibility of reuse of a cast frame or a heat insulating material.

Figure 2010227965
Figure 2010227965

Figure 2010227965
Figure 2010227965

表2より、本発明は従来技術と同等若しくはそれ以上の引け巣欠陥対策効果を有していることが確認された。   From Table 2, it was confirmed that the present invention has a shrinkage defect countermeasure effect equivalent to or higher than that of the prior art.

1、101、201、301、401、501、601、701 冷やし金
2、102、202、302、402、502、602、702 凹形状
3 溶湯
4 鋳枠
5 等凝固時間曲面
6 押し湯
7 鋳型
8 上型
9 断熱材
10 鋳鉄鋳枠
11 鋳鉄定盤
12 断熱スリーブ
13 断熱ボード
14 湯口
15 石膏鋳型
16 塗型剤
DESCRIPTION OF SYMBOLS 1, 101, 201, 301, 401, 501, 601, 701 Cooling metal 2, 102, 202, 302, 402, 502, 602, 702 Concave shape 3 Molten metal 4 Cast frame 5 Equivalent solidification time curved surface 6 Hot water 7 Mold 8 Upper mold 9 Thermal insulation material 10 Cast iron casting frame 11 Cast iron surface plate 12 Thermal insulation sleeve 13 Thermal insulation board 14 Cup gate 15 Plaster mold 16 Coating agent

Claims (5)

冷し金を用いる鋳物の凝固制御方法において、冷やし金の溶湯接触面の一部または全部に凹形状を設け、該凹形状における溶湯凝固を遅らせることを特徴とする鋳物の凝固制御方法。   A solidification control method for a casting using a cooling metal, wherein a concave shape is provided on a part or all of the molten metal contact surface of the cooling metal, and the solidification of the casting in the concave shape is delayed. 前記凹形状のピッチが1〜4mmであり、深さがピッチの0.5〜1.0倍である請求項1記載の鋳物の凝固制御方法。   The casting solidification control method according to claim 1, wherein the pitch of the concave shape is 1 to 4 mm, and the depth is 0.5 to 1.0 times the pitch. 前記凹形状内に前記冷し金よりも熱伝導率の低い材料を配置した請求項1または2記載の鋳物の凝固制御方法。   The solidification control method for a casting according to claim 1 or 2, wherein a material having a lower thermal conductivity than the cooling metal is disposed in the concave shape. 前記熱伝導率の低い材料の熱伝導率が前記冷し金より20〜320W/(m・K)低い請求項3記載の鋳物の凝固制御方法。   The method for controlling solidification of a casting according to claim 3, wherein the material having low thermal conductivity has a thermal conductivity of 20 to 320 W / (m · K) lower than that of the cooling metal. 請求項1〜4のうちいずれか一項記載の鋳物の凝固制御方法を用いて鋳造されたことを特徴とするタイヤ成型用金型。   A mold for molding a tire, which is cast using the solidification control method for a casting according to any one of claims 1 to 4.
JP2009077617A 2009-03-26 2009-03-26 Method for controlling solidification of casting Pending JP2010227965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009077617A JP2010227965A (en) 2009-03-26 2009-03-26 Method for controlling solidification of casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009077617A JP2010227965A (en) 2009-03-26 2009-03-26 Method for controlling solidification of casting

Publications (1)

Publication Number Publication Date
JP2010227965A true JP2010227965A (en) 2010-10-14

Family

ID=43044338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009077617A Pending JP2010227965A (en) 2009-03-26 2009-03-26 Method for controlling solidification of casting

Country Status (1)

Country Link
JP (1) JP2010227965A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011131437A (en) * 2009-12-22 2011-07-07 Bridgestone Corp Method of manufacturing tire mold
JP2013226579A (en) * 2012-04-25 2013-11-07 Bridgestone Corp Process for producing casting, and casting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011131437A (en) * 2009-12-22 2011-07-07 Bridgestone Corp Method of manufacturing tire mold
JP2013226579A (en) * 2012-04-25 2013-11-07 Bridgestone Corp Process for producing casting, and casting
EP2842661A4 (en) * 2012-04-25 2016-05-18 Bridgestone Corp Process for producing cast object, and cast object

Similar Documents

Publication Publication Date Title
JP5704641B2 (en) Low temperature mold and low pressure casting method
JP4789241B2 (en) Tire mold casting method
CN105397027A (en) Casting method of casting
JP2009274098A (en) Sand mold for low-pressure casting and low-pressure casting apparatus utilizing the same
CN104368756A (en) Method for complex-structure, thick and large castings of aero-engine by use of investment casting for contoured densener
JP5339764B2 (en) Casting method
CA2205318C (en) Method of casting an engine block of aluminum
JP5852126B2 (en) How to increase the self-feeding capacity of large section cast blanks
JP2010227965A (en) Method for controlling solidification of casting
JP2008221320A (en) Casting apparatus
CN209918861U (en) Composite graphite chill
CN106623785A (en) Casting structure for silica sol investment casting
CN206405382U (en) The cast structure of Ludox investment-casting
JP2005131682A (en) Metallic mold for casting and metallic mold casting method
CN207508236U (en) Aluminium copper structural member casting and forming internal densener structure
JP5352786B2 (en) Cast iron casting method, feeder, mold and mold making method
JP2008036702A (en) Casting mold for metal casting
JPH1099953A (en) Centrifugal casting method
JPH10156484A (en) Mold for precision casting
JP2008055447A (en) Chiller for casting light alloy
JPS6167540A (en) Casting mold
JP4911012B2 (en) Heat-resistant cast steel mold for casting noble metal ingot and method for casting noble metal ingot using the same
JP5060458B2 (en) Die-cast mold and die-cast method
JP2007083265A (en) Casting method
CN118023475A (en) Method for preventing dewaxing and spalling of precision casting mould shell and aeroengine