JP5307445B2 - Substrate holder and method for manufacturing the same - Google Patents

Substrate holder and method for manufacturing the same Download PDF

Info

Publication number
JP5307445B2
JP5307445B2 JP2008117689A JP2008117689A JP5307445B2 JP 5307445 B2 JP5307445 B2 JP 5307445B2 JP 2008117689 A JP2008117689 A JP 2008117689A JP 2008117689 A JP2008117689 A JP 2008117689A JP 5307445 B2 JP5307445 B2 JP 5307445B2
Authority
JP
Japan
Prior art keywords
substrate
bonding film
alumina
cooling plate
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008117689A
Other languages
Japanese (ja)
Other versions
JP2009267256A (en
Inventor
靖文 相原
育久 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2008117689A priority Critical patent/JP5307445B2/en
Publication of JP2009267256A publication Critical patent/JP2009267256A/en
Application granted granted Critical
Publication of JP5307445B2 publication Critical patent/JP5307445B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate retainer, capable of suppressing a temperature distribution on a surface of the substrate retainer and obtaining high uniform heating, and to provide a method for manufacturing the retainer. <P>SOLUTION: The system includes a base 11, constituted of a ceramic sintered compact, on an upper surface of which the substrate is loaded; a heater 13 embedded in the base 11; a cooling plate 20 that cools the substrate; and a binding film 30, where thermal conductivity of a substance disposed between the substrate 11 and the cooling plate 20 is varied. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、基板保持体及びその製造方法に関する。   The present invention relates to a substrate holder and a method for manufacturing the same.

半導体装置や液晶装置等の電子装置の製造工程において、半導体基板やガラス基板等の基板が製造装置で処理される。反応性イオンエッチング(RIE)等のプラズマエッチング装置では、基板を基板保持体に載置して処理が行われる。基板保持体は、耐蝕性の高いセラミックス基体を備える。セラミックス基体には静電チャック(ESC)電極及び発熱体が埋め込まれている。セラミックス基体は冷却板上に取り付けられる。プラズマエッチング処理中において、基板保持体上面に吸着された基板は、冷却板中に設けられた流路に冷媒を流すことにより冷却されながら、発熱体により加熱されて処理温度に制御される。   In a manufacturing process of an electronic device such as a semiconductor device or a liquid crystal device, a substrate such as a semiconductor substrate or a glass substrate is processed by the manufacturing device. In a plasma etching apparatus such as reactive ion etching (RIE), processing is performed by placing a substrate on a substrate holder. The substrate holder includes a ceramic substrate having high corrosion resistance. An electrostatic chuck (ESC) electrode and a heating element are embedded in the ceramic substrate. The ceramic substrate is mounted on a cooling plate. During the plasma etching process, the substrate adsorbed on the upper surface of the substrate holder is heated by a heating element and controlled to a processing temperature while being cooled by flowing a coolant through a flow path provided in a cooling plate.

発熱体は理想的には全面が均一に発熱するように配置すべきであるが、実際には配線間で絶縁距離を取る必要があること、リフトピン穴やガス穴等を避ける必要があること等から、発熱体のパターンには制約がかかり、発熱体がある部分と無い部分で基板保持体表面の温度分布が発生し、均熱性が悪化する。また、セラミックス基体に埋設された発熱体の抵抗は焼成時に変化するが、その変化の度合いが面内で異なることから、均熱性が悪化する。   Ideally, the heating element should be placed so that the entire surface generates heat uniformly, but in practice it is necessary to provide an insulation distance between the wires, and it is necessary to avoid lift pin holes, gas holes, etc. Therefore, the pattern of the heating element is restricted, and the temperature distribution on the surface of the substrate holder is generated between the portion where the heating element is present and the portion where the heating element is absent, so that the heat uniformity is deteriorated. Further, the resistance of the heating element embedded in the ceramic substrate changes during firing, but the degree of change is different in the plane, so that the heat uniformity deteriorates.

この温度分布を緩和するために、セラミックス基体と冷却板とを接合する接合膜の熱伝導率を円周状に変えたものや、接合膜の一部にギャップを設けたもの、更にはそのギャップにガスを流す手法が知られている(例えば、特許文献1参照。)。   In order to alleviate this temperature distribution, the thermal conductivity of the bonding film that joins the ceramic substrate and the cooling plate is changed to a circumferential shape, a gap is provided in part of the bonding film, and the gap There is known a method of flowing a gas through (see, for example, Patent Document 1).

しかしながら、温度分布は製品ごとに固有であり、基板保持体表面の温度分布を抑制し、高い均熱性を得ることは困難である。
実用新案登録3129419号公報
However, the temperature distribution is unique for each product, and it is difficult to suppress the temperature distribution on the surface of the substrate holder and obtain high thermal uniformity.
Utility Model Registration No. 3129419

本発明の目的は、基板保持体表面の温度分布を抑制し、高い均熱性を得ることができる基板保持体及びその製造方法を提供することである。   An object of the present invention is to provide a substrate holder that can suppress the temperature distribution on the surface of the substrate holder and obtain high thermal uniformity and a method for manufacturing the same.

本願発明の一態様によれば、(イ)上面に基板を載置するセラミックス焼結体からなる基体と、(ロ)基体中に埋設された発熱体と、(ハ)基板を冷却する冷却板と、(ニ)基体と冷却板との間に配置された熱伝導率の分布を変化させた接合膜とを備える基板保持体が提供される。   According to one aspect of the present invention, (a) a base made of a ceramic sintered body on which a substrate is placed, (b) a heating element embedded in the base, and (c) a cooling plate for cooling the substrate And (d) a substrate holder provided with a bonding film that is disposed between the substrate and the cooling plate and has a distribution of thermal conductivity changed.

本願発明の他の態様によれば、(イ)上面に基板を載置するセラミックス焼結体からなる基体を作製する工程と、(ロ)基体と基板を冷却する冷却板との間に第1の接合膜を挟んでクランプする工程と、(ハ)基体表面の温度分布を測定する工程と、(ニ)基体及び冷却板と第1の接合膜とを分離する工程と、(ホ)温度分布を緩和するように第1の接合膜の熱伝導率の分布を変化させた第2の接合膜を作製する工程と、(ヘ)基体と冷却板との間に第2の接合膜を挟んで基体及び冷却板のそれぞれと第2の接合膜とを接合する工程とを含む基板保持体の製造方法が提供される。   According to another aspect of the present invention, there is provided a first step between (a) a step of producing a base body made of a ceramic sintered body on which a substrate is placed, and (b) a cooling plate for cooling the base body and the substrate. (C) a step of measuring the temperature distribution on the surface of the substrate, (d) a step of separating the substrate and the cooling plate from the first bonding film, and (e) a temperature distribution. And (f) sandwiching the second bonding film between the substrate and the cooling plate, and a step of producing the second bonding film in which the thermal conductivity distribution of the first bonding film is changed so as to relax There is provided a method of manufacturing a substrate holder including a step of bonding each of a base body and a cooling plate to a second bonding film.

本発明によれば、基板保持体表面の温度分布を抑制し、高い均熱性を得ることができる基板保持体及びその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the substrate holder which can suppress the temperature distribution of the substrate holder surface, and can obtain high thermal uniformity can be provided, and its manufacturing method.

次に、図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。   Next, embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

また、以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。この発明の技術的思想は、特許請求の範囲において、種々の変更を加えることができる。   Further, the embodiments described below exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention includes the material, shape, structure, The layout is not specified as follows. The technical idea of the present invention can be variously modified within the scope of the claims.

本発明の実施の形態に係る基板保持体10は、図1及び図2に示すように、上面に基板を載置するセラミックス焼結体からなる基体11と、基体11中に埋設された発熱体13と、基板を冷却する冷却板20と、基体11と冷却板20との間に配置された熱伝導率の分布を変化させた接合膜30とを備える。   As shown in FIGS. 1 and 2, a substrate holder 10 according to an embodiment of the present invention includes a base body 11 made of a ceramic sintered body on which a substrate is placed, and a heating element embedded in the base body 11. 13, a cooling plate 20 that cools the substrate, and a bonding film 30 that is disposed between the base 11 and the cooling plate 20 and has a changed thermal conductivity distribution.

基体11の内部には、上面側に静電チャック電極(ESC電極)12、下面側に発熱体13が埋め込まれる。ESC電極12及び発熱体13のそれぞれには、電極端子40,41が接続される。冷却板20には、基板を冷却する冷媒を流すための流路21が設けられている。   Inside the base 11, an electrostatic chuck electrode (ESC electrode) 12 is embedded on the upper surface side, and a heating element 13 is embedded on the lower surface side. Electrode terminals 40 and 41 are connected to the ESC electrode 12 and the heating element 13, respectively. The cooling plate 20 is provided with a flow path 21 for flowing a coolant for cooling the substrate.

ESC電極12及び発熱体13の材料として、タングステン(W)、モリブデン(Mo)、ニオブ(Nb)等の高融点金属、又は炭化タングステン(WC)等の高融点金属炭化物等の導電材料、あるいはそれらの高融点金属や高融点金属炭化物にアルミナ(Al)や窒化アルミニウム(AlN)等のセラミックス粉末を混合したものが用いられる。発熱体13の形状としては、コイル状や、メッシュ、スクリーン印刷体、あるいは箔等の平面型形状等の種々の形状が採用できる。 As materials for the ESC electrode 12 and the heating element 13, conductive materials such as refractory metals such as tungsten (W), molybdenum (Mo), niobium (Nb), refractory metal carbides such as tungsten carbide (WC), or the like A mixture of ceramic powder such as alumina (Al 2 O 3 ) or aluminum nitride (AlN) with refractory metal or refractory metal carbide is used. As the shape of the heating element 13, various shapes such as a coil shape, a planar shape such as a mesh, a screen printing body, or a foil can be adopted.

接合膜30の膜厚は0.05〜0.5mm程度である。接合膜30の材料としては、熱伝導率が0.2〜1.0W/mK程度のシリコーン系やアクリル系の粘着剤が使用可能である。   The film thickness of the bonding film 30 is about 0.05 to 0.5 mm. As a material for the bonding film 30, a silicone-based or acrylic-based adhesive having a thermal conductivity of about 0.2 to 1.0 W / mK can be used.

基体11として、窒化アルミニウム(AlN)、アルミナ(Al23)、炭化珪素(SiC)、窒化珪素(Si)、サイアロン(SiAlON)、ベリリア(BeO)、窒化ボロン(BN)等のセラミックス焼結体が用いられる。 As the base 11, aluminum nitride (AlN), alumina (Al 2 O 3 ), silicon carbide (SiC), silicon nitride (Si 3 N 4 ), sialon (SiAlON), beryllia (BeO), boron nitride (BN), etc. A ceramic sintered body is used.

図3に示すように、図1及び図2に示した基板保持体10は、例えばプラズマエッチング装置の処理室51の保持部材57上に取り付けられる。ESC電極12は、電極端子40を介して処理室51外部の直流電源42に接続される。発熱体13は、電極端子41を介して外部の交流電源43に接続される。冷却板44は、外部の高周波電源44に接続される。流路21は、冷媒を供給循環する外部の供給装置(図示省略)に接続される。   As shown in FIG. 3, the substrate holder 10 shown in FIGS. 1 and 2 is mounted on a holding member 57 of a processing chamber 51 of a plasma etching apparatus, for example. The ESC electrode 12 is connected to a DC power source 42 outside the processing chamber 51 through an electrode terminal 40. The heating element 13 is connected to an external AC power supply 43 through the electrode terminal 41. The cooling plate 44 is connected to an external high frequency power supply 44. The flow path 21 is connected to an external supply device (not shown) that supplies and circulates the refrigerant.

基板50は、基体11の上面に載置され、ESC電極12により静電チャックされる。流路21に冷媒が供給され、基板50が冷却される。発熱体13により基板50の温度が制御される。基板50と対向するように、対向電極52が設けられる。対向電極52の内部にはガス配管54より、エッチングガス等が導入される。対向電極52の基板と対向する面には、複数のガス導入孔53が設けられる。ガス導入孔53から処理室51内にエッチングガスを導入し、冷却板20に接続された高周波電源44により、基板50表面と接地された対向電極52との間にプラズマを励起する。   The substrate 50 is placed on the upper surface of the base 11 and electrostatically chucked by the ESC electrode 12. A coolant is supplied to the flow path 21 and the substrate 50 is cooled. The temperature of the substrate 50 is controlled by the heating element 13. A counter electrode 52 is provided so as to face the substrate 50. Etching gas or the like is introduced into the counter electrode 52 from the gas pipe 54. A plurality of gas introduction holes 53 are provided on the surface of the counter electrode 52 facing the substrate. An etching gas is introduced into the processing chamber 51 from the gas introduction hole 53, and plasma is excited between the surface of the substrate 50 and the grounded counter electrode 52 by the high frequency power supply 44 connected to the cooling plate 20.

次に、図1及び図2に示した基板保持体10の製造方法の一例を、図4〜図14を用いて説明する。   Next, an example of a method for manufacturing the substrate holder 10 shown in FIGS. 1 and 2 will be described with reference to FIGS.

まず、アルミナ焼結体の原料粉末に、バインダー、水、分散剤等を添加して混合し、スラリーを作製する。原料粉末は、アルミナ粉末、アルミナ粉末とジルコニア粉末の混合粉末、アルミナ粉末とマグネシア粉末の混合粉末、アルミナ粉末とシリカ粉末の混合粉末などを用いることができる。但し、原料粉末に含まれるアルミナ量は、95質量%以上であることが好ましく、98質量%以上であることがより好ましい。又、アルミナ粉末の純度は、99.5質量%以上であることが好ましく、99.9質量%以上であることがより好ましい。又、アルミナ粉末や混合粉末の平均粒子径は、0.2〜1.0μmであることが好ましい。   First, a binder, water, a dispersing agent, etc. are added and mixed with the raw material powder of an alumina sintered compact, and a slurry is produced. As the raw material powder, alumina powder, mixed powder of alumina powder and zirconia powder, mixed powder of alumina powder and magnesia powder, mixed powder of alumina powder and silica powder, and the like can be used. However, the amount of alumina contained in the raw material powder is preferably 95% by mass or more, and more preferably 98% by mass or more. The purity of the alumina powder is preferably 99.5% by mass or more, and more preferably 99.9% by mass or more. Moreover, it is preferable that the average particle diameter of an alumina powder or mixed powder is 0.2-1.0 micrometer.

更に、炭素や炭素となる有機バインダーなどを、得られるアルミナ焼結体に含まれる炭素量が500〜5000ppmとなるように添加してもよい。これにより、高い強度を有し、均一な黒色を呈するアルミナ焼結体を得ることができる。   Furthermore, you may add carbon, the organic binder used as carbon, etc. so that the carbon amount contained in the alumina sintered body obtained may be 500-5000 ppm. Thereby, the alumina sintered compact which has high intensity | strength and exhibits uniform black can be obtained.

そして、スラリーを噴霧造粒法等により造粒して造粒顆粒を得る。造粒顆粒を用いて、金型成形法、冷間静水圧プレス(CIP)法、スリップキャスト法などの成形方法によりアルミナ成形体を作製する。アルミナ成形体を、窒素ガスやアルゴンガスなどの不活性ガス雰囲気中、減圧下、又は、大気中などの酸化雰囲気中で、ホットプレス法や常圧焼結法等の焼結方法により焼成し、図4に示すようにアルミナ焼結体11aを形成する。   Then, the slurry is granulated by a spray granulation method or the like to obtain granulated granules. Using the granulated granules, an alumina molded body is produced by a molding method such as a die molding method, a cold isostatic pressing (CIP) method, a slip casting method, or the like. The alumina molded body is fired by a sintering method such as a hot press method or an atmospheric pressure sintering method in an inert gas atmosphere such as nitrogen gas or argon gas, under reduced pressure, or in an oxidizing atmosphere such as air. As shown in FIG. 4, an alumina sintered body 11a is formed.

アルミナ成形体の焼成温度は、1500〜1800℃とすることが好ましく、アルミナ成形体の焼成温度は、1700〜1800℃とすることがより好ましい。このようにアルミナ成形体を高温で焼成することにより、アルミナ焼結体11aをより緻密に焼結することができ、アルミナ焼結体11aの体積抵抗率を向上できる。   The firing temperature of the alumina molded body is preferably 1500-1800 ° C, and the firing temperature of the alumina molded body is more preferably 1700-1800 ° C. By firing the alumina molded body at a high temperature in this way, the alumina sintered body 11a can be sintered more densely, and the volume resistivity of the alumina sintered body 11a can be improved.

次に、図5に示すように、アルミナ焼結体11a上にESC電極12を形成する。例えば、ESC電極12は、アルミナ焼結体11a表面に、電極材料粉末(高融点材料粉末)を含む印刷ペーストを、スクリーン印刷法などを用いて印刷することにより形成できる。これによれば、ESC電極12の平坦度を向上させることができ、様々な形状のESC電極12を容易に高精度に形成できるため、好ましい。   Next, as shown in FIG. 5, the ESC electrode 12 is formed on the alumina sintered body 11a. For example, the ESC electrode 12 can be formed by printing a printing paste containing electrode material powder (high melting point material powder) on the surface of the alumina sintered body 11a by using a screen printing method or the like. This is preferable because the flatness of the ESC electrode 12 can be improved and various shapes of the ESC electrode 12 can be easily formed with high accuracy.

この場合、電極材料粉末(高融点材料粉末)に、アルミナ粉末を混合した印刷ペーストを用いることが好ましい。これによれば、ESC電極12と、アルミナ焼結体11aとの熱膨張係数を近づけることができ、アルミナ焼結体11aとESC電極12との密着性を向上できる。又、この後の焼成工程における印刷ペーストの熱収縮率を小さくできる。この場合、印刷ペーストに含まれるアルミナ粉末の総量は、5〜30質量%であることが好ましい。これによれば、ESC電極12としての機能に影響を与えることなく、高い密着性向上効果を得ることができる。   In this case, it is preferable to use a printing paste in which alumina powder is mixed with electrode material powder (high melting point material powder). According to this, the thermal expansion coefficients of the ESC electrode 12 and the alumina sintered body 11a can be made closer, and the adhesion between the alumina sintered body 11a and the ESC electrode 12 can be improved. Moreover, the thermal contraction rate of the printing paste in the subsequent baking step can be reduced. In this case, the total amount of alumina powder contained in the printing paste is preferably 5 to 30% by mass. According to this, a high adhesion improvement effect can be obtained without affecting the function as the ESC electrode 12.

あるいは、アルミナ焼結体11a表面に、電極材料(高融点材料)のバルク体やシート(箔)を載置することや、アルミナ焼結体11a表面に、電極材料(高融点材料)の薄膜をCVDやPVDによって形成することによっても、ESC電極12を形成できる。尚、ESC電極12形成前に、アルミナ焼結体11aの静電電極を形成する面に研削加工を施し、平面度10μm以下の平滑面を形成しおくことが好ましい。   Alternatively, a bulk body or a sheet (foil) of electrode material (high melting point material) is placed on the surface of the alumina sintered body 11a, or a thin film of electrode material (high melting point material) is placed on the surface of the alumina sintered body 11a. The ESC electrode 12 can also be formed by forming by CVD or PVD. Before forming the ESC electrode 12, it is preferable to grind the surface of the alumina sintered body 11a on which the electrostatic electrode is formed to form a smooth surface having a flatness of 10 μm or less.

次に、アルミナ焼結体の原料粉末を準備し、造粒顆粒11bを作製する。図6に示すように、金型の収容部61に、ESC電極12が形成されたアルミナ焼結体11aを収容する。アルミナ焼結体11a及びESC電極12上に造粒顆粒11bを充填する。   Next, the raw material powder of an alumina sintered body is prepared, and the granulated granule 11b is produced. As shown in FIG. 6, the alumina sintered body 11 a on which the ESC electrode 12 is formed is accommodated in the mold accommodating portion 61. The granulated granule 11b is filled on the alumina sintered body 11a and the ESC electrode 12.

そして、蓋体部62を用いて造粒顆粒11bの上方からプレスし、図7に示すように、金型成型法によりアルミナ成形体11bを成形する。同時に、アルミナ焼結体11aと、ESC電極12と、アルミナ成形体11bを一体化できる。尚、造粒顆粒11bを用いてアルミナ成形体11bを形成し、アルミナ焼結体11a及びESC電極12上に載置してプレスすることにより、アルミナ焼結体11aと、ESC電極12と、アルミナ成形体11bを一体化してもよい。   And it presses from the upper direction of the granulated granule 11b using the cover body part 62, and as shown in FIG. 7, the alumina molded object 11b is shape | molded by the metal mold | die molding method. At the same time, the alumina sintered body 11a, the ESC electrode 12, and the alumina molded body 11b can be integrated. In addition, the alumina molded body 11b is formed using the granulated granule 11b, and is placed on the alumina sintered body 11a and the ESC electrode 12 and pressed to thereby obtain the alumina sintered body 11a, the ESC electrode 12, and the alumina. The molded body 11b may be integrated.

次に、アルミナ焼結体11aと、ESC電極12と、アルミナ成形体11bとを、ホットプレス法により一体に焼成し、アルミナ焼結体11aと、ESC電極12と、アルミナ焼結体11bの一体焼結体を作製する。このように、アルミナ焼結体11bの形成工程の一部と一体化工程は同時に行われる。   Next, the alumina sintered body 11a, the ESC electrode 12, and the alumina molded body 11b are integrally fired by a hot press method, and the alumina sintered body 11a, the ESC electrode 12, and the alumina sintered body 11b are integrated. A sintered body is produced. Thus, a part of formation process of the alumina sintered body 11b and an integration process are performed simultaneously.

例えば、一軸方向に加圧しながら、窒素ガスやアルゴンガスなどの不活性ガス雰囲気中で焼成できる。アルミナ成形体の焼成温度ともなる一体焼結体作製時の焼成温度は、1400〜1700℃とすることが好ましく、1400〜1600℃とすることがより好ましい。このように一体焼結体を低温焼成で作製することにより、アルミナ焼結体11bの過剰な粒成長を防止でき、アルミナ焼結体11bの機械的強度を向上できる。昇温速度や焼成時に加える圧力はアルミナ焼結体11aを焼成した場合と同様にできる。   For example, firing can be performed in an inert gas atmosphere such as nitrogen gas or argon gas while applying pressure in a uniaxial direction. The firing temperature at the time of producing the integral sintered body, which is also the firing temperature of the alumina molded body, is preferably 1400 to 1700 ° C, and more preferably 1400 to 1600 ° C. By producing the integrally sintered body by low-temperature firing in this way, excessive grain growth of the alumina sintered body 11b can be prevented, and the mechanical strength of the alumina sintered body 11b can be improved. The temperature increase rate and the pressure applied during firing can be the same as when the alumina sintered body 11a is fired.

尚、アルミナ焼結体11aに代えて、アルミナ仮焼体を形成し、アルミナ仮焼体上にESC電極12を形成し、アルミナ仮焼体及びESC電極12上にアルミナ成形体を形成し、アルミナ仮焼体と、ESC電極12と、アルミナ成形体とを一体に焼成してもよい。この場合、焼成温度をアルミナ焼結体11aを形成する場合よりも低く設定したり、焼成時間をアルミナ焼結体11aを形成する場合よりも短く設定したりすることによって、アルミナ仮焼体を形成できる。   In place of the alumina sintered body 11a, an alumina calcined body is formed, an ESC electrode 12 is formed on the alumina calcined body, and an alumina molded body is formed on the alumina calcined body and the ESC electrode 12. The calcined body, the ESC electrode 12, and the alumina molded body may be fired integrally. In this case, the alumina calcined body is formed by setting the firing temperature lower than when the alumina sintered body 11a is formed or by setting the firing time shorter than when the alumina sintered body 11a is formed. it can.

次に、図8に示すように、アルミナ焼結体11b上に発熱体13を形成する。例えば、発熱体13は、アルミナ焼結体11b表面に、電極材料粉末(高融点材料粉末)を含む印刷ペーストを、スクリーン印刷法などを用いて印刷することにより形成できる。   Next, as shown in FIG. 8, the heating element 13 is formed on the alumina sintered body 11b. For example, the heating element 13 can be formed by printing a printing paste containing electrode material powder (high melting point material powder) on the surface of the alumina sintered body 11b using a screen printing method or the like.

次に、アルミナ焼結体の原料粉末を準備し、造粒顆粒11cを作製する。図9に示すように、金型の収容部63に、ESC電極12が埋設され発熱体13が形成されたアルミナ焼結体11a,11bを収容する。アルミナ焼結体11b及び発熱体13上に造粒顆粒11cを充填する。   Next, the raw material powder of an alumina sintered compact is prepared, and the granulated granule 11c is produced. As shown in FIG. 9, the alumina sintered bodies 11 a and 11 b in which the ESC electrode 12 is embedded and the heating element 13 is formed are accommodated in the mold accommodating portion 63. The granulated granule 11 c is filled on the alumina sintered body 11 b and the heating element 13.

そして、蓋体部64を用いて造粒顆粒11cの上方からプレスし、図10に示すように、金型成型法によりアルミナ成形体11cを成形する。同時に、アルミナ焼結体11a,11b、ESC電極12、発熱体13及びアルミナ成形体11cを一体化できる。尚、造粒顆粒11cを用いてアルミナ成形体11cを形成し、アルミナ焼結体11b及び発熱体13上に載置してプレスすることにより、アルミナ焼結体11a,11b、ESC電極12、発熱体13及びアルミナ成形体11cを一体化してもよい。   And it presses from the upper direction of the granulated granule 11c using the cover part 64, and as shown in FIG. 10, the alumina molded object 11c is shape | molded by the metal mold | die molding method. At the same time, the alumina sintered bodies 11a and 11b, the ESC electrode 12, the heating element 13 and the alumina molded body 11c can be integrated. In addition, the alumina molded body 11c is formed using the granulated granule 11c, and is placed on the alumina sintered body 11b and the heat generating body 13 and pressed, whereby the alumina sintered bodies 11a and 11b, the ESC electrode 12, and the heat generated. The body 13 and the alumina molded body 11c may be integrated.

次に、アルミナ焼結体11a,11b、ESC電極12、発熱体13及びアルミナ成形体11cを、ホットプレス法により一体に焼成し、アルミナ焼結体11a,11b,11c、ESC電極12及び発熱体13の一体焼結体を作製する。このように、アルミナ焼結体11cの形成工程の一部と一体化工程は同時に行われる。   Next, the alumina sintered bodies 11a and 11b, the ESC electrode 12, the heating element 13 and the alumina molded body 11c are integrally fired by a hot press method, and the alumina sintered bodies 11a, 11b and 11c, the ESC electrode 12 and the heating element are fired. 13 integral sintered bodies are produced. Thus, a part of formation process of the alumina sintered body 11c and an integration process are performed simultaneously.

次に、図11に示すように、アルミナ焼結体11b,11cにESC電極12を露出する開口部や、発熱体13を露出する開口部を開口する。開口部を介してESC電極12及び発熱体13に電極端子40,41がそれぞれ接続される。   Next, as shown in FIG. 11, openings for exposing the ESC electrodes 12 and openings for exposing the heating elements 13 are opened in the alumina sintered bodies 11b and 11c. Electrode terminals 40 and 41 are connected to the ESC electrode 12 and the heating element 13 through the openings, respectively.

次に、厚さが約0.05mm〜約0.5mm程度のシリコーン系又はアクリル系の粘着剤等の接合膜(第1の接合膜)30を用意し、図12に示すように、基体11の下面と冷却板20の上面との間に第1の接合膜30を挟む。そして、基体11に接触したクランプ部材61と、クランプ部材61及び冷却板20を貫通するピン62と、ピン62の両端に取り付けられた締め付けボルト63,64等からなるクランプ装置60を用いて、基体11、第1の接合膜30及び冷却板20をクランプする。   Next, a bonding film (first bonding film) 30 such as a silicone or acrylic adhesive having a thickness of about 0.05 mm to about 0.5 mm is prepared. As shown in FIG. The first bonding film 30 is sandwiched between the lower surface of the substrate and the upper surface of the cooling plate 20. Then, using the clamping device 60 comprising the clamping member 61 in contact with the substrate 11, the pin 62 penetrating the clamping member 61 and the cooling plate 20, and the fastening bolts 63 and 64 attached to both ends of the pin 62, the substrate is used. 11. Clamp the first bonding film 30 and the cooling plate 20.

基体11、第1の接合膜30及び冷却板20をクランプした状態で、基体11表面の均熱性評価を行う。図13に示すように、基板保持体10を処理室51に装着する。冷却板20の流路21には冷媒を流す。処理室51を真空に引いた後、ヒータパワーをオンして、発熱体13により基体11表面を昇温する。温度が安定した時点で、赤外線放射温度計(IRカメラ)等の温度測定器56を用いて測定用窓55を介して基体11表面の温度分布を測定する。例えば、図14に示すような温度分布が測定される。その後、基体11と冷却板20とから第1の接合膜30を取り外す。   With the substrate 11, the first bonding film 30, and the cooling plate 20 clamped, the thermal uniformity evaluation of the surface of the substrate 11 is performed. As shown in FIG. 13, the substrate holder 10 is mounted in the processing chamber 51. A coolant is passed through the flow path 21 of the cooling plate 20. After the processing chamber 51 is evacuated, the heater power is turned on and the surface of the substrate 11 is heated by the heating element 13. When the temperature is stabilized, the temperature distribution on the surface of the substrate 11 is measured through the measurement window 55 using a temperature measuring device 56 such as an infrared radiation thermometer (IR camera). For example, a temperature distribution as shown in FIG. 14 is measured. Thereafter, the first bonding film 30 is removed from the base 11 and the cooling plate 20.

測定された基体11表面の温度分布から、有限要素法(FEM)解析等により、第1の接合膜30がどのような熱伝導率の分布であれば基体11表面の温度分布が均一となるか計算する。そして、測定された基体11表面の温度分布に応じて、第1の接合膜30の面内を複数の領域に分割する。レーザ加工機を用いて、FEM解析等の計算結果に応じて領域毎に異なる密度で、直径1mm程度の小穴を分割領域内に均一に分散するように開口し、第2の接合膜30を作製する。   Based on the measured temperature distribution on the surface of the substrate 11, by using a finite element method (FEM) analysis or the like, what kind of thermal conductivity distribution the first bonding film 30 has is a uniform temperature distribution on the surface of the substrate 11. calculate. Then, the surface of the first bonding film 30 is divided into a plurality of regions according to the measured temperature distribution on the surface of the substrate 11. Using a laser processing machine, small holes having a diameter of about 1 mm are opened so as to be evenly distributed in the divided regions at different densities depending on the calculation results such as FEM analysis, and the second bonding film 30 is produced. To do.

その後、基体11の下面と冷却板20の上面との間に第2の接合膜30を挟み、熱圧接等により基体11と冷却板20と第2の接合膜30とをそれぞれ接合する。このようにして図1及び図2に示す基板保持体10を作製できる。   Thereafter, the second bonding film 30 is sandwiched between the lower surface of the substrate 11 and the upper surface of the cooling plate 20, and the substrate 11, the cooling plate 20, and the second bonding film 30 are bonded to each other by thermal pressure welding or the like. In this way, the substrate holder 10 shown in FIGS. 1 and 2 can be manufactured.

本発明の実施の形態に係る基板保持体10及びその製造方法によれば、測定した基体11表面の温度分布から、接合膜30の熱伝導率を領域毎に変化させることにより、基体11表面の温度分布が製品毎に異なる場合であっても、その温度分布を均一化できるので、基体11表面の均熱性を向上させることが可能となる。   According to the substrate holder 10 and the method for manufacturing the same according to the embodiment of the present invention, the thermal conductivity of the bonding film 30 is changed for each region from the measured temperature distribution on the surface of the substrate 11, thereby Even if the temperature distribution differs for each product, the temperature distribution can be made uniform, so that the heat uniformity on the surface of the substrate 11 can be improved.

なお、第1の接合膜30と第2の接合膜30とは同一の接合膜を用いても良いし、異なる接合膜を用いても良い。   Note that the first bonding film 30 and the second bonding film 30 may be the same bonding film or different bonding films.

次に、本発明の実施の形態に係る基板保持体10の製造方法の実施例を説明する。第1の接合膜30を基体11及び冷却板20で挟んでクランプした状態で、図13に示すように処理室51にセットし、冷却板20の流路21に5℃の冷媒を流す。処理室51を真空に引いた後、ヒータパワーをONして、74℃となるまで昇温する。温度が安定した時点でIRカメラ56を用いて基体11表面の温度分布を測定した。図14に測定結果を示す。直径300mmの基体11表面の温度分布は最大9.2℃であった。   Next, examples of the method for manufacturing the substrate holder 10 according to the embodiment of the present invention will be described. In a state where the first bonding film 30 is clamped by being sandwiched between the base 11 and the cooling plate 20, it is set in the processing chamber 51 as shown in FIG. After the processing chamber 51 is evacuated, the heater power is turned on and the temperature is raised to 74 ° C. When the temperature was stabilized, the temperature distribution on the surface of the substrate 11 was measured using the IR camera 56. FIG. 14 shows the measurement results. The maximum temperature distribution on the surface of the substrate 11 having a diameter of 300 mm was 9.2 ° C.

測定した温度分布に応じて接合膜30を2℃毎の領域に分割した。本実施例では、最も温度が高いところが78.7℃、最も温度が低いところが69.5℃であったことから、図15〜図19にそれぞれ示すように、接合膜30の面内を79〜77℃、77〜75、75〜73,73〜71,71〜69℃の領域に分割した。   The bonding film 30 was divided into regions every 2 ° C. according to the measured temperature distribution. In this example, the highest temperature was 78.7 ° C., and the lowest temperature was 69.5 ° C., so that the in-plane of the bonding film 30 was 79-79 as shown in FIGS. It divided | segmented into the area | region of 77 degreeC, 77-75, 75-73, 73-71, 71-69 degreeC.

ここで、ヒータパワーが入ったときの各材料部分の厚み方向の上面と下面との間の温度差ΔTは、ヒータパワーをQ、材料の厚みをl、材料の熱伝導率をλ、材料の断面積をSとして、式(1)のように計算できる。   Here, the temperature difference ΔT between the upper surface and the lower surface in the thickness direction of each material portion when the heater power is turned on is Q for the heater power, l for the material thickness, λ for the thermal conductivity of the material, Assuming that the cross-sectional area is S, it can be calculated as shown in Equation (1).


ΔT=(Ql)/(λS) …(1)

接合膜30について、ヒータパワー(Q)が3KW、材料の厚み(l)が300μm、材料の熱伝導率(λ)が0.2W/mK、材料の断面積(S)が700cmであり、温度差ΔTは64℃である。又、基体11(Al23)について、ヒータパワー(Q)が3KW、材料の厚み(l)が3mm、材料の熱伝導率(λ)が25W/mK、材料の断面積(S)が700cmであり、温度差ΔTは5℃である。したがって、冷却板20の温度が5℃の時、3KWのヒータパワーが入ると、接合膜30及び基体11の温度差により基体11の表面温度は約74℃となる。

ΔT = (Ql) / (λS) (1)

The bonding film 30 has a heater power (Q) of 3 KW, a material thickness (l) of 300 μm, a material thermal conductivity (λ) of 0.2 W / mK, and a material cross-sectional area (S) of 700 cm 2 . The temperature difference ΔT is 64 ° C. Further, regarding the substrate 11 (Al 2 O 3 ), the heater power (Q) is 3 KW, the material thickness (l) is 3 mm, the material thermal conductivity (λ) is 25 W / mK, and the material cross-sectional area (S) is 700 cm 2 and the temperature difference ΔT is 5 ° C. Accordingly, when the temperature of the cooling plate 20 is 5 ° C. and 3 KW of heater power is applied, the surface temperature of the substrate 11 becomes about 74 ° C. due to the temperature difference between the bonding film 30 and the substrate 11.

接合膜30の温度差ΔTが64℃であることから、基体11表面の温度を2℃上げるためには、2/64=3%の密度で接合膜30に小穴を開口すればよい。よって、図15に示した最も温度が高い79〜77℃の領域に対しては小穴を開口せず、図16〜図19に示した77〜75、75〜73,73〜71,71〜69℃の各領域に対してはそれぞれ、レーザ加工機を用いて3%、6%、9%、12%の密度で直径1mmの小穴を各領域内に均一に分散するように開口し、第2の接合膜30を作製した。その後、第2の接合膜30を基体11及び冷却板20と接合し、基板保持体10を作製した。   Since the temperature difference ΔT of the bonding film 30 is 64 ° C., small holes may be opened in the bonding film 30 at a density of 2/64 = 3% in order to increase the temperature of the surface of the substrate 11 by 2 ° C. Therefore, a small hole is not opened in the region of 79 to 77 ° C. having the highest temperature shown in FIG. 15, and 77 to 75, 75 to 73, 73 to 71, 71 to 69 shown in FIGS. For each region at 0 ° C., small holes having a diameter of 1 mm are opened with a density of 3%, 6%, 9%, and 12% using a laser processing machine so as to be evenly distributed in each region. A bonding film 30 was prepared. Thereafter, the second bonding film 30 was bonded to the base body 11 and the cooling plate 20 to produce the substrate holder 10.

この基板保持体10に対して、基体11表面の温度分布をIRカメラを用いて測定した結果を図20に示す。第2の接合膜30で接合したときの温度分布が第1の接合膜30を用いて測定したときの9.2℃から3.1℃まで改善した。   FIG. 20 shows the result of measuring the temperature distribution on the surface of the substrate 11 with respect to the substrate holder 10 using an IR camera. The temperature distribution at the time of bonding with the second bonding film 30 was improved from 9.2 ° C. when measured using the first bonding film 30 to 3.1 ° C.

(変形例)
上述した本発明の実施の形態に係る基板保持体10の製造方法は一例であり、種々の方法が使用可能である。例えば、図4〜図11で説明した工程の代わりに図21〜図25の工程を用いても良い。
(Modification)
The above-described method for manufacturing the substrate holder 10 according to the embodiment of the present invention is an example, and various methods can be used. For example, the steps of FIGS. 21 to 25 may be used instead of the steps described with reference to FIGS.

図21及び図25に示すように、2枚のアルミナ焼結体11d,11eを準備し、2枚のアルミナ焼結体11d,11e表面にESC電極12と発熱体13をそれぞれ印刷する。   As shown in FIGS. 21 and 25, two alumina sintered bodies 11d and 11e are prepared, and the ESC electrode 12 and the heating element 13 are printed on the surfaces of the two alumina sintered bodies 11d and 11e, respectively.

図23に示すように、金型の収容部65に、アルミナ焼結体11dのESC電極12が形成された面と、アルミナ焼結体11eの発熱体13が形成された面で挟むように造粒顆粒11fを収容する。そして、蓋体部66を用いて造粒顆粒11fの上方からプレスし、図24に示すように、金型成型法によりアルミナ成形体11fを成形する。   As shown in FIG. 23, the mold accommodating portion 65 is sandwiched between the surface on which the ESC electrode 12 of the alumina sintered body 11d is formed and the surface on which the heating element 13 of the alumina sintered body 11e is formed. The granule 11f is accommodated. And it presses from the upper direction of the granulated granule 11f using the cover part 66, and as shown in FIG. 24, the alumina molded object 11f is shape | molded by the metal mold | die molding method.

引き続き、アルミナ焼結体11e,11d、ESC電極12、発熱体13及びアルミナ成形体11fを、ホットプレス法により一体に焼成し、一体焼結体を作製する。その後、図25に示すように、アルミナ焼結体11c,11dにESC電極12を露出する開口部や、発熱体13を露出する開口部を開口する。開口部を介してESC電極12及び発熱体13に電極端子40,41がそれぞれ接続される。このようにして、図11に示した構造と同様な基体11を作製することができる。   Subsequently, the alumina sintered bodies 11e and 11d, the ESC electrode 12, the heating element 13 and the alumina molded body 11f are integrally fired by a hot press method to produce an integrally sintered body. Thereafter, as shown in FIG. 25, openings for exposing the ESC electrodes 12 and openings for exposing the heating elements 13 are opened in the alumina sintered bodies 11c and 11d. Electrode terminals 40 and 41 are connected to the ESC electrode 12 and the heating element 13 through the openings, respectively. In this way, a substrate 11 similar to the structure shown in FIG. 11 can be manufactured.

(その他の実施の形態)
上記のように、本発明は実施の形態及び変形例によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As described above, the present invention has been described by the embodiments and the modifications. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

本発明の実施の形態では、接合膜30に小穴を開口する場合を説明したが、小穴を開口する代わりに、接合膜30に含有されるフィラーの量の分布を変化させても良い。接合膜30の面内を分割した領域毎に異なる含有量のフィラーを入れることにより、小穴を開口する場合と同様に接合膜30の熱伝導率の分布を変化させて、温度分布を抑制することができる。   In the embodiment of the present invention, the case where small holes are opened in the bonding film 30 has been described. Instead of opening small holes, the distribution of the amount of filler contained in the bonding film 30 may be changed. By inserting fillers with different contents for each region where the in-plane of the bonding film 30 is divided, the distribution of the thermal conductivity of the bonding film 30 is changed as in the case of opening the small holes, thereby suppressing the temperature distribution. Can do.

本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   It goes without saying that the present invention includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

本発明の実施の形態に係る基板保持体の一例を示す平面概略図である。It is a plane schematic diagram showing an example of a substrate holder concerning an embodiment of the invention. 図1に示した基板保持体のA−A断面を示す概略図である。It is the schematic which shows the AA cross section of the board | substrate holding body shown in FIG. 本発明の実施の形態に係る基板保持体を用いたプラズマ処理装置の一例を示す図である。It is a figure which shows an example of the plasma processing apparatus using the substrate holding body which concerns on embodiment of this invention. 本発明の実施の形態に係る基板保持体の製造方法の一例を示す断面図(その1)である。It is sectional drawing (the 1) which shows an example of the manufacturing method of the board | substrate holding body which concerns on embodiment of this invention. 本発明の実施の形態に係る基板保持体の製造方法の一例を示す断面図(その2)である。It is sectional drawing (the 2) which shows an example of the manufacturing method of the board | substrate holding body which concerns on embodiment of this invention. 本発明の実施の形態に係る基板保持体の製造方法の一例を示す断面図(その3)である。It is sectional drawing (the 3) which shows an example of the manufacturing method of the board | substrate holding body which concerns on embodiment of this invention. 本発明の実施の形態に係る基板保持体の製造方法の一例を示す断面図(その4)である。It is sectional drawing (the 4) which shows an example of the manufacturing method of the board | substrate holding body which concerns on embodiment of this invention. 本発明の実施の形態に係る基板保持体の製造方法の一例を示す断面図(その5)である。It is sectional drawing (the 5) which shows an example of the manufacturing method of the board | substrate holding body which concerns on embodiment of this invention. 本発明の実施の形態に係る基板保持体の製造方法の一例を示す断面図(その6)である。It is sectional drawing (the 6) which shows an example of the manufacturing method of the board | substrate holding body which concerns on embodiment of this invention. 本発明の実施の形態に係る基板保持体の製造方法の一例を示す断面図(その7)である。It is sectional drawing (the 7) which shows an example of the manufacturing method of the board | substrate holding body which concerns on embodiment of this invention. 本発明の実施の形態に係る基板保持体の製造方法の一例を示す断面図(その8)である。It is sectional drawing (the 8) which shows an example of the manufacturing method of the board | substrate holding body which concerns on embodiment of this invention. 本発明の実施の形態に係る基板保持体の製造方法の一例を示す断面図(その9)である。It is sectional drawing (the 9) which shows an example of the manufacturing method of the board | substrate holding body which concerns on embodiment of this invention. 本発明の実施の形態に係る基板保持体の温度分布の測定に用いるプラズマ処理装置の一例を示す図である。It is a figure which shows an example of the plasma processing apparatus used for the measurement of the temperature distribution of the substrate holding body which concerns on embodiment of this invention. 本発明の実施の形態に係る基板保持体の温度分布の測定結果の一例を示す概略図である。It is the schematic which shows an example of the measurement result of the temperature distribution of the board | substrate holding body which concerns on embodiment of this invention. 本発明の実施の形態に係る基板保持体の接合膜の分割領域の一例を示す概略図(その1)である。It is the schematic (the 1) which shows an example of the division area | region of the joining film | membrane of the board | substrate holding body which concerns on embodiment of this invention. 本発明の実施の形態に係る基板保持体の接合膜の分割領域の一例を示す概略図(その2)である。It is the schematic (the 2) which shows an example of the division area | region of the joining film | membrane of the board | substrate holding body which concerns on embodiment of this invention. 本発明の実施の形態に係る基板保持体の接合膜の分割領域の一例を示す概略図(その3)である。It is the schematic (the 3) which shows an example of the division area | region of the joining film | membrane of the board | substrate holding body which concerns on embodiment of this invention. 本発明の実施の形態に係る基板保持体の接合膜の分割領域の一例を示す概略図(その4)である。It is the schematic (the 4) which shows an example of the division area | region of the joining film | membrane of the board | substrate holding body which concerns on embodiment of this invention. 本発明の実施の形態に係る基板保持体の接合膜の分割領域の一例を示す概略図(その5)である。It is the schematic (the 5) which shows an example of the division area | region of the joining film | membrane of the board | substrate holding body which concerns on embodiment of this invention. 本発明の実施の形態に係る基板保持体の温度分布の測定結果の一例を示す概略図である。It is the schematic which shows an example of the measurement result of the temperature distribution of the board | substrate holding body which concerns on embodiment of this invention. 本発明の実施の形態の変形例に係る基板保持体の製造方法の一例を示す断面図(その1)である。It is sectional drawing (the 1) which shows an example of the manufacturing method of the board | substrate holding body which concerns on the modification of embodiment of this invention. 本発明の実施の形態の変形例に係る基板保持体の製造方法の一例を示す断面図(その2)である。It is sectional drawing (the 2) which shows an example of the manufacturing method of the board | substrate holding body which concerns on the modification of embodiment of this invention. 本発明の実施の形態の変形例に係る基板保持体の製造方法の一例を示す断面図(その3)である。It is sectional drawing (the 3) which shows an example of the manufacturing method of the board | substrate holding body which concerns on the modification of embodiment of this invention. 本発明の実施の形態の変形例に係る基板保持体の製造方法の一例を示す断面図(その4)である。It is sectional drawing (the 4) which shows an example of the manufacturing method of the board | substrate holding body which concerns on the modification of embodiment of this invention. 本発明の実施の形態の変形例に係る基板保持体の製造方法の一例を示す断面図(その5)である。It is sectional drawing (the 5) which shows an example of the manufacturing method of the board | substrate holding body which concerns on the modification of embodiment of this invention.

符号の説明Explanation of symbols

10…基板保持体
11…基体
11a,11b,11c,11d,11e,11d,11f…アルミナ成形体(アルミナ焼結体)
12…静電チャック電極(ESC電極)
13…発熱体
20…冷却板
21…流路
30…接合膜
40,41…電極端子
42…直流電源
43…交流電源
44…高周波電源
50…基板
51…処理室
52…対向電極
53…ガス導入孔
54…ガス配管
55…測定用窓
56…温度測定器
57…保持部材
60…クランプ装置
61…クランプ部材
62…ピン
63,64…締め付けボルト
DESCRIPTION OF SYMBOLS 10 ... Substrate holding body 11 ... Base | substrate 11a, 11b, 11c, 11d, 11e, 11d, 11f ... Alumina molded object (alumina sintered compact)
12 ... Electrostatic chuck electrode (ESC electrode)
DESCRIPTION OF SYMBOLS 13 ... Heat generating body 20 ... Cooling plate 21 ... Flow path 30 ... Bonding film 40, 41 ... Electrode terminal 42 ... DC power supply 43 ... AC power supply 44 ... High frequency power supply 50 ... Substrate 51 ... Processing chamber 52 ... Counter electrode 53 ... Gas introduction hole 54 ... Gas piping 55 ... Measuring window 56 ... Temperature measuring device 57 ... Holding member 60 ... Clamping device 61 ... Clamping member 62 ... Pin 63, 64 ... Clamping bolt

Claims (2)

上面に基板を載置するセラミックス焼結体からなる基体と、
前記基体中に埋設された発熱体と、
前記基板を冷却する冷却板と、
前記基体と前記冷却板との間に配置された熱伝導率の分布を変化させた接合膜
とを備え
前記接合膜が、前記熱伝導率の分布を形成する開口部を有し、
前記開口部が、前記接合膜の面内を分割した領域毎に異なる密度で設けられている
ことを特徴とする基板保持体。
A substrate made of a ceramic sintered body on which a substrate is placed;
A heating element embedded in the substrate;
A cooling plate for cooling the substrate;
A bonding film arranged between the substrate and the cooling plate and having a distribution of thermal conductivity changed ,
The bonding film has an opening for forming the thermal conductivity distribution;
The substrate holder is characterized in that the openings are provided at different densities for each region obtained by dividing the in-plane of the bonding film .
上面に基板を載置するセラミックス焼結体からなる基体を作製する工程と、
前記基体と前記基板を冷却する冷却板との間に第1の接合膜を挟んでクランプする工程
と、
前記基体表面の温度分布を測定する工程と、
前記基体及び前記冷却板と前記第1の接合膜とを分離する工程と、
前記温度分布を緩和するように前記第1の接合膜の熱伝導率の分布を変化させた第2の
接合膜を作製する工程と、
前記基体と前記冷却板との間に前記第2の接合膜を挟んで前記基体及び前記冷却板のそ
れぞれと前記第2の接合膜とを接合する工程
とを含み、
前記第2の接合膜を作製する工程は、
前記温度分布に応じて前記第1の接合膜の面内を複数の領域に分割し、
前記複数の領域毎に異なる密度で前記第1の接合膜に開口部を開口する
ことを特徴とする基板保持体の製造方法。
Producing a substrate made of a ceramic sintered body on which a substrate is placed;
Clamping the first bonding film between the base and a cooling plate for cooling the substrate; and
Measuring the temperature distribution of the substrate surface;
Separating the substrate and the cooling plate from the first bonding film;
Producing a second bonding film in which the distribution of thermal conductivity of the first bonding film is changed so as to relax the temperature distribution;
Look including the step of bonding the respective said second bonding film of the substrate and the cooling plate across the second bonding film between said cooling plate and said substrate,
The step of producing the second bonding film includes:
Dividing the surface of the first bonding film into a plurality of regions according to the temperature distribution,
A manufacturing method of a substrate holder , wherein openings are formed in the first bonding film at different densities for each of the plurality of regions .
JP2008117689A 2008-04-28 2008-04-28 Substrate holder and method for manufacturing the same Active JP5307445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008117689A JP5307445B2 (en) 2008-04-28 2008-04-28 Substrate holder and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008117689A JP5307445B2 (en) 2008-04-28 2008-04-28 Substrate holder and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2009267256A JP2009267256A (en) 2009-11-12
JP5307445B2 true JP5307445B2 (en) 2013-10-02

Family

ID=41392691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008117689A Active JP5307445B2 (en) 2008-04-28 2008-04-28 Substrate holder and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP5307445B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8637794B2 (en) 2009-10-21 2014-01-28 Lam Research Corporation Heating plate with planar heating zones for semiconductor processing
JP6066728B2 (en) 2009-12-15 2017-01-25 ラム リサーチ コーポレーションLam Research Corporation Method for adjusting substrate temperature and plasma etching system for improving CD uniformity
JP5434636B2 (en) * 2010-01-29 2014-03-05 住友電気工業株式会社 Substrate holder with electrostatic chuck
US8791392B2 (en) 2010-10-22 2014-07-29 Lam Research Corporation Methods of fault detection for multiplexed heater array
US8546732B2 (en) * 2010-11-10 2013-10-01 Lam Research Corporation Heating plate with planar heater zones for semiconductor processing
JP5953012B2 (en) * 2011-06-22 2016-07-13 株式会社アルバック Substrate holding device
US9307578B2 (en) 2011-08-17 2016-04-05 Lam Research Corporation System and method for monitoring temperatures of and controlling multiplexed heater array
US10388493B2 (en) 2011-09-16 2019-08-20 Lam Research Corporation Component of a substrate support assembly producing localized magnetic fields
JP6017781B2 (en) * 2011-12-07 2016-11-02 新光電気工業株式会社 Substrate temperature adjustment fixing device and manufacturing method thereof
US9324589B2 (en) 2012-02-28 2016-04-26 Lam Research Corporation Multiplexed heater array using AC drive for semiconductor processing
US10049948B2 (en) 2012-11-30 2018-08-14 Lam Research Corporation Power switching system for ESC with array of thermal control elements
JP6441927B2 (en) * 2013-08-06 2018-12-19 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Multi-zone substrate support heated locally
US10217615B2 (en) 2013-12-16 2019-02-26 Lam Research Corporation Plasma processing apparatus and component thereof including an optical fiber for determining a temperature thereof
KR101791871B1 (en) * 2015-08-31 2017-10-31 세메스 주식회사 Electrostatic chuck and substrate treating apparatus including the same
JP6639940B2 (en) * 2016-02-17 2020-02-05 日本特殊陶業株式会社 Holding device and method of manufacturing holding device
JP7184578B2 (en) * 2018-09-25 2022-12-06 日本特殊陶業株式会社 Manufacturing method of holding device
JP7278072B2 (en) * 2018-12-27 2023-05-19 日本特殊陶業株式会社 Electrostatic chuck and method for manufacturing electrostatic chuck

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4409373B2 (en) * 2004-06-29 2010-02-03 日本碍子株式会社 Substrate placing apparatus and substrate temperature adjusting method
JP4749072B2 (en) * 2005-07-26 2011-08-17 京セラ株式会社 Wafer holder
US7501605B2 (en) * 2006-08-29 2009-03-10 Lam Research Corporation Method of tuning thermal conductivity of electrostatic chuck support assembly

Also Published As

Publication number Publication date
JP2009267256A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
JP5307445B2 (en) Substrate holder and method for manufacturing the same
US20060021705A1 (en) Substrate mounting apparatus and control method of substrate temperature
US9245775B2 (en) Heating device
TWI459851B (en) Heating equipment
JP5229780B2 (en) Substrate mounting table
US6108190A (en) Wafer holding device
KR102244625B1 (en) Heated substrate support with temperature profile control
CN1917722B (en) Heater
US20050258160A1 (en) Substrate heating device
US20050215073A1 (en) Wafer supporting member
JP4986830B2 (en) Substrate holder and method for manufacturing the same
JP2004132702A (en) Temperature measuring device and ceramic heater using it
EP1507442A2 (en) Method of manufacturing electrical resistance heating element
JP5189928B2 (en) Method for producing ceramic member and electrostatic chuck
JP2007250313A (en) Heater unit for manufacturing and inspecting semiconductor and flat display panel, and device equipped with it
KR100551643B1 (en) Ceramic susceptor
JP2005150506A (en) Semiconductor manufacturing apparatus
US20080083732A1 (en) Wafer holder and exposure apparatus equipped with wafer holder
JP3791432B2 (en) Heating device for semiconductor manufacturing
JP2005018992A (en) Electrode embedding member for plasma generator
US20050184054A1 (en) Ceramics heater for semiconductor production system
JP2009141344A (en) Substrate support
JPH11162620A (en) Ceramic heater and its temperature equalizing method
JP5061269B2 (en) Molding stamper and molding apparatus
JP2010283364A (en) Holder for semiconductor manufacturing device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090715

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5307445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150