JP5306286B2 - Power supply system control method and power supply system - Google Patents

Power supply system control method and power supply system Download PDF

Info

Publication number
JP5306286B2
JP5306286B2 JP2010134204A JP2010134204A JP5306286B2 JP 5306286 B2 JP5306286 B2 JP 5306286B2 JP 2010134204 A JP2010134204 A JP 2010134204A JP 2010134204 A JP2010134204 A JP 2010134204A JP 5306286 B2 JP5306286 B2 JP 5306286B2
Authority
JP
Japan
Prior art keywords
value
power generation
measurement command
measurement
distributed power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010134204A
Other languages
Japanese (ja)
Other versions
JP2011259667A (en
Inventor
明宏 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2010134204A priority Critical patent/JP5306286B2/en
Publication of JP2011259667A publication Critical patent/JP2011259667A/en
Application granted granted Critical
Publication of JP5306286B2 publication Critical patent/JP5306286B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently control distributed power supplies connected to a power system. <P>SOLUTION: In each distributed power supply 3, a first measurement and command device 10 performing measurement and control of each distributed power supply 3 is arranged. The first measurement and command device 10 receives a total value of power generation which is a sum of power outputs of the distributed power supplies 3 in the power system 2 from the other first measurement and command devices 10, obtains a current frequency of the power system 2, obtains occasionally a current output of own machine which is the current output of the distributed power supply 3 for which it has own responsibility, calculates an area requiring power amount based on the obtained frequency and the total value of power generation and allocates it to each distributed power supply 3, generates a command value for the distributed power supply 3 for which it has own responsibility based on the allocated value of the distributed power supply 3 for which it has own responsibility and the obtained current output of own machine, controls power output according to the generated command value, calculates the total value of power generation by adding the obtained current output of own machine to the received total value of power generation, and transmits the total value of power generation to the other first measurement and command devices 10. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

この発明は、電力供給システムの制御方法、及び電力供給システムに関し、とくに電力系統に接続されている分散型電源を効率よく制御するための技術に関する。   The present invention relates to a power supply system control method and a power supply system, and more particularly to a technique for efficiently controlling a distributed power source connected to a power system.

昨今、複数の分散型電源や電力貯蔵システムを組み合わせ、分散型電源の発電量を需要に合わせて制御するように構成した小規模電力系統(以下、マイクログリッドと称する)が注目されている。   Recently, a small-scale power system (hereinafter referred to as a microgrid) configured to combine a plurality of distributed power sources and power storage systems and control the amount of power generated by the distributed power sources according to demand has attracted attention.

例えば、特許文献1には、複数の分散型電源の夫々に、演算装置と、分散型電源の出力又は分散型電源に接続する電力系統の周波数を計測取得する計測装置と、分散型電源の出力を制御する制御装置とを付設し、各演算装置は各分散型電源の計測値を各計測装置から取得し、全ての計測値に基づいて自身の分散型電源の指令値を生成し、生成した指令値を制御装置に入力し、制御装置は指令値に応じて自身の分散型電源を制御する電力供給システムの制御方法が記載されている。   For example, Patent Document 1 discloses, for each of a plurality of distributed power sources, an arithmetic device, a measurement device that measures and acquires the output of the distributed power source or the frequency of the power system connected to the distributed power source, and the output of the distributed power source. And a control device for controlling each of the calculation devices, each measurement unit obtains a measurement value of each distributed power source from each measurement device, generates a command value of its own distributed power source based on all the measurement values, and generates A control method for a power supply system is described in which a command value is input to a control device, and the control device controls its own distributed power source according to the command value.

特許文献2には、電力系統の区分開閉器で分離された区間内で、区分開閉器に配置した開閉器エージェントをInitiatorとし、区間内の発電機や負荷および下流側開閉器に配置したエージェントをResponderとし、これらエージェント間で契約ネットプロトコルを用いて電力需給の契約をすることで、区間内の分散型電源と負荷および下流区間の需給制御を行う分散型電源の制御システムが記載されている。   In Patent Document 2, a switch agent placed in a section switch is an initiator in a section separated by a section switch of the power system, and an agent placed in a generator or load and a downstream switch in the section is referred to as Patent Document 2. A control system for a distributed power source is described in which a Responder is used to make a power supply / demand contract between these agents using a contract net protocol to perform a distributed power supply in a section and a load and supply / demand control in a downstream section.

特許文献3には、電力系統の区分開閉器で分離された区間内で、発電機、負荷および下流側開閉器のいずれかに配置した区間エージェントをInitiatorとし、区間内の発電機や負荷および下流側開閉器に配置したエージェントをResponderとし、これらエージェント間で契約ネットプロトコルを用いて電力需給の契約を行い、区間エージェントは潮流量を把握し、潮流増減量を発電機エージェントまたは下流区間エージェントに対して調整依頼し、その発電機エージェントまたは下流区間エージェントがそれぞれ自律的に他の発電機エージェントまたは下流区間エージェントと調整を行う連鎖を繰り返すことで、区間内の分散型電源、および下流区間の需給制御を行う電力系統の制御システムが記載されている。   In Patent Document 3, a section agent placed in any one of a generator, a load, and a downstream switch in a section separated by a section switch of a power system is called an initiator, and the generator, load, and downstream in the section The agent placed on the side switch is the Responder, and contracts for power supply and demand are made between these agents using the contract net protocol.The section agent grasps the tidal flow, and the tidal current increase / decrease amount to the generator agent or the downstream section agent. The generator agent or the downstream section agent autonomously repeats the chain of coordination with other generator agents or downstream section agents, respectively, so that the distributed power supply in the section and the supply and demand control of the downstream section are controlled. A power system control system is described.

特開2009−278834号公報JP 2009-278834 A 特開2008−301641号公報JP 2008-301641 A 特開2009−159808号公報JP 2009-159808 A

上記特許文献1のように、分散型電源に付設されている演算装置が、他の分散型電源に付設されている計測装置と通信して計測値を取得する構成とした場合、分散型電源の数が増えると通信量が必然的に増大し、演算装置の処理速度の低下や通信時のデータの欠落などが生じる可能性があり、電力系統に接続されている分散型電源の制御に影響を与える。   When the arithmetic unit attached to the distributed power source is configured to acquire the measurement value by communicating with the measuring device attached to the other distributed power source as in Patent Document 1 above, If the number increases, the amount of communication will inevitably increase, and the processing speed of the computing device may decrease and data may be lost during communication, affecting the control of distributed power sources connected to the power system. give.

本発明はこのような背景に鑑みてなされたもので、電力系統に接続されている分散型電源を効率よく確実に制御することが可能な電力供給システムの制御方法、及び電力供給システムを提供することを目的とする。   The present invention has been made in view of such a background, and provides a power supply system control method and a power supply system capable of efficiently and reliably controlling a distributed power source connected to an electric power system. For the purpose.

上記目的を達成するための本発明の一つは、複数の分散型電源を含んで構成される電力供給システムの制御方法であって、前記分散型電源の夫々に、夫々の計測及び制御を担当する第1計測指令装置を設け、前記第1計測指令装置は、演算装置と、分散型電源が接続している電力系統の周波数及び夫々が担当する前記分散型電源の出力を計測する計測装置と、夫々が担当する前記分散型電源の出力を制御する制御装置とを備え、前記第1計測指令装置の夫々を互いに通信可能に接続し、前記第1計測指令装置は、前記電力系統における前記分散型電源の出力の合計である発電量合計値を他の前記第1計測指令装置から受信し、前記電力系統の現在の周波数を取得し、自身が担当する前記分散型電源の現在の出力である自機現在出力を随時取得し、取得した前記周波数と前記電力系統における基準周波数とに基づき現在の周波数偏差を求め、前記周波数偏差に系統周波数特性定数を乗算した値と前記発電量合計値とを乗算することにより地域要求量を求め、求めた前記地域要求量を所定の配分条件に従い前記各分散型電源に配分し、前記地域要求量のうち自身が担当する前記分散型電源の配分値と、取得した前記自機現在出力とに基づき、自身が担当する前記分散型電源の出力を制御するための指令値を生成し、生成した前記指令値に従い自身が担当する前記分散型電源の出力を制御し、受信した前記発電量合計値に取得した前記自機現在出力を加算して発電量合計値を求め、求めた前記発電量合計値を前記他の第1計測指令装置に送信することとする。   In order to achieve the above object, one aspect of the present invention is a method for controlling a power supply system including a plurality of distributed power sources, and is responsible for each measurement and control of each of the distributed power sources. A first measurement commanding device, wherein the first measurement commanding device measures the frequency of the power system to which the distributed power source is connected and the output of the distributed power source that each takes charge of A control device that controls the output of the distributed power source that each takes charge of, and each of the first measurement command devices is communicably connected to each other, and the first measurement command device is connected to the distribution system in the power system. The total power generation value that is the sum of the outputs of the power sources is received from the other first measurement command device, the current frequency of the power system is obtained, and the current output of the distributed power source that it is responsible for Obtain the current output of the aircraft at any time Determining the current frequency deviation based on the acquired frequency and a reference frequency in the power system, and multiplying the frequency deviation by a value obtained by multiplying the frequency deviation by a system frequency characteristic constant and the total power generation amount Determining and distributing the determined regional demand to each of the distributed power sources according to a predetermined distribution condition, the distributed power distribution value that the local power is responsible for among the regional demands, and the acquired current output of the own device Based on the above, the command value for controlling the output of the distributed power source that is in charge of itself is generated, the output of the distributed power source that is in charge of itself is controlled according to the generated command value, and the total amount of power generation received The power generation amount total value is obtained by adding the acquired current output of the own device to the value, and the obtained power generation amount total value is transmitted to the other first measurement command device.

このように本発明においては、第1計測指令装置が、電力系統の現在の周波数や自機現在出力については自ら計測して取得し、電力系統における分散型電源の出力の合計である発電量合計値については他の第1計測指令装置から取得し、これにより自身が担当する分散型電源の指令値を生成する。このように本発明の第1計測指令装置は、発電量合計値のみを他の計測指令装置から取得するので、計測指令装置間を結ぶ通信ネットワークの輻輳を防ぐことができ、計測指令装置の処理速度の低下や通信時のデータの欠落などを防ぐことができる。そしてこれにより電力系統に接続されている分散型電源を効率よく確実に制御することができる。   As described above, in the present invention, the first measurement command device measures and acquires the current frequency of the power system and the current output of its own device, and generates the total amount of power generation that is the total output of the distributed power sources in the power system. The value is acquired from the other first measurement command device, and thereby the command value of the distributed power source that it is in charge of is generated. Thus, since the 1st measurement command device of the present invention acquires only the total amount of electric power generation from other measurement command devices, it can prevent congestion of the communication network which connects between measurement command devices, and processing of a measurement command device It is possible to prevent a decrease in speed and data loss during communication. As a result, the distributed power source connected to the power system can be controlled efficiently and reliably.

本発明の他の一つは、上記電力供給システムの制御方法であって、前記第1計測指令装置は、前記発電量合計値の前記送信に際して前記取得した自機現在出力を保持し、新たに取得した前記自機現在出力と前記発電量合計値の前回送信時に記憶しておいた前記自機現在出力との差の絶対値が所定の閾値を超えている場合に、前記他の第1計測指令装置から受信した前記発電量合計値に前記新たに取得した自機現在出力を加算して発電量合計値を求め、求めた前記発電量合計値を前記他の第1計測指令装置に送信することとする。   Another aspect of the present invention is a control method for the power supply system, wherein the first measurement command device holds the acquired current output of the own device upon the transmission of the total power generation value, and newly When the absolute value of the difference between the acquired current output of the own device and the current output of the own device stored at the previous transmission of the total amount of power generation exceeds a predetermined threshold, the other first measurement The power generation amount total value is obtained by adding the newly acquired current output to the power generation amount total value received from the command device, and the calculated power generation amount total value is transmitted to the other first measurement command device. I will do it.

本発明によれば、計測指令装置は、自機現在出力の変化量が所定の閾値を超えている場合にのみ発電量合計値を求めて他の計測指令装置に送信するので、発電量合計値の送信が不必要に行われるのを防ぐことができ、各計測指令装置間の通信量を必要な範囲に抑えることができる。   According to the present invention, the measurement command device obtains the total power generation value and transmits it to the other measurement command devices only when the change amount of the current output of the own machine exceeds a predetermined threshold value. Can be prevented from being transmitted unnecessarily, and the amount of communication between the measurement command devices can be kept within a necessary range.

本発明の他の一つは、上記電力供給システムの制御方法であって、前記第1計測指令装置は、前記電力系統において前記発電量合計値を送信する権限である送信権を現在要求中又は取得中であることを示す信号である送信権信号を前記他の第1計測指令装置に送信するとともに、前記他の第1計測指令装置から送られてくる前記送信権信号の受信を待機し、所定時間内に前記送信権信号を受信しない場合に、受信した前記発電量合計値に取得した前記自機現在出力を加算して発電量合計値を求め、求めた前記発電量合計値を前記他の第1計測指令装置に送信することとする。   Another aspect of the present invention is a method for controlling the power supply system, wherein the first measurement command device is currently requesting a transmission right that is an authority to transmit the total amount of power generation in the power system, or While transmitting a transmission right signal, which is a signal indicating that it is being acquired, to the other first measurement command device, and waiting for reception of the transmission right signal sent from the other first measurement command device, When the transmission right signal is not received within a predetermined time, the power generation amount total value is obtained by adding the acquired current output to the received power generation amount total value, and the obtained power generation amount total value is To the first measurement command device.

本発明によれば、第1計測指令装置は、自らが送信権を有することを確認した後に発電量合計値を他の計測指令装置に送信するので、複数の計測指令装置からの発電量合計値の送信が競合するのを確実に防ぐことができる。またこれにより不必要に発電量合計値が送信されなくなり、計測指令装置間を結ぶ通信ネットワークの輻輳を防ぐことができる。   According to the present invention, the first measurement command device transmits the total power generation value to the other measurement command devices after confirming that the first measurement command device has the right to transmit, so the total power generation value from the plurality of measurement command devices. Can be surely prevented from competing. In addition, the power generation amount total value is not transmitted unnecessarily, and congestion of the communication network connecting the measurement command devices can be prevented.

本発明の他の一つは、上記電力供給システムの制御方法であって、前記配分条件が、前記地域要求量を前記分散型電源の夫々に均等に配分するという条件、前記地域要求量を前記分散型電源の夫々の出力の変化速度に応じて配分するという条件、及び、前記地域要求量を前記分散型電源の夫々の経済性に応じて配分するという条件、のうちのいずれかであることとする。   Another aspect of the present invention is a control method for the power supply system, wherein the distribution condition is a condition that the regional requirement amount is evenly distributed to each of the distributed power sources, and the regional requirement amount is Any one of a condition of allocating according to a change speed of each output of the distributed power supply and a condition of allocating the regional requirement amount according to the economic efficiency of each of the distributed power supplies. And

本発明によれば、分散型電源の台数、出力の変化速度、経済性といった、電力供給システムの性能、構成、経済性に基づき地域要求量を適切に各分散型電源に分配することができる。   According to the present invention, it is possible to appropriately distribute regional demands to each distributed power source based on the performance, configuration, and economics of the power supply system such as the number of distributed power sources, the rate of change in output, and the economy.

本発明の他の一つは、上記電力供給システムの制御方法であって、前記電力系統には、出力制御を行うことができない分散型電源が接続しており、出力制御を行うことができない前記分散型電源に、演算装置と、前記分散型電源の出力を計測する計測装置とを備える第2計測指令装置を付設し、前記第2計測指令装置を、他の前記第2計測指令装置及び前記第1計測指令装置と互いに通信可能に接続し、前記第2計測指令装置が、前記電力系統における前記分散型電源の出力の合計である発電量合計値を他の前記第2計測指令装置及び前記第1計測指令装置から受信し、自身が担当する前記分散型電源の現在の出力である自機現在出力を随時取得し、受信した前記発電量合計値に取得した前記自機現在出力を加算して発電量合計値を求め、求めた前記発電量合計値を前記他の第2計測指令装置及び前記第1計測指令装置に送信することとする。   Another aspect of the present invention is a method for controlling the power supply system, wherein a distributed power source that cannot perform output control is connected to the power system, and the power control cannot be performed. The distributed power supply is provided with a second measurement command device including an arithmetic device and a measurement device for measuring the output of the distributed power supply, and the second measurement command device is connected to the other second measurement command device and the The second measurement command device is connected to the first measurement command device so that they can communicate with each other, and the second measurement command device sets the total power generation amount that is the total output of the distributed power source in the power system to the other second measurement command devices and the Received from the first measurement command device, obtains the current output of the own device, which is the current output of the distributed power source that it is responsible for, and adds the obtained current output of the own device to the received power generation total value. To obtain the total power generation value. And the power generation amount total value is to be transmitted to the other second measurement instruction device and the first measurement instruction unit.

本発明によれば、出力制御ができないタイプの分散型電源と出力制御ができるタイプの分散型電源とが電力系統に混在しているような場合でも、計測指令装置の夫々が電力系統の現在の周波数や自機現在出力については自ら計測して取得し、電力系統における分散型電源の出力の合計である発電量合計値は他の計測指令装置から取得して自身が担当する分散型電源の指令値を生成するという構成を実現することができ、そのような構成である場合であっても、計測指令装置間の通信量を抑えつつ分散型電源の自律制御を行う構成を実現することができる。   According to the present invention, even when a distributed power source of a type that cannot perform output control and a distributed power source of a type that can perform output control are mixed in the power system, each of the measurement command devices is connected to the current power system. The frequency and current output of the machine itself are measured and acquired, and the total amount of power generation, which is the total output of the distributed power supply in the power system, is obtained from other measurement command devices and the command of the distributed power supply that is in charge of itself. A configuration for generating a value can be realized, and even in such a configuration, a configuration for performing autonomous control of a distributed power source while suppressing the amount of communication between measurement command devices can be realized. .

その他、本願が開示する課題、及びその解決方法は、発明を実施するための形態の欄、及び図面により明らかにされる。   In addition, the subject which this application discloses, and its solution method are clarified by the column of the form for inventing, and drawing.

本発明によれば、電力系統に接続されている分散型電源を効率よく確実に制御することができる。   ADVANTAGE OF THE INVENTION According to this invention, the distributed power supply connected to the electric power grid | system can be controlled efficiently and reliably.

電力供給システム1の概略的な構成図である。1 is a schematic configuration diagram of a power supply system 1. FIG. 計測指令装置10の構成を示す図である。1 is a diagram illustrating a configuration of a measurement command device 10. FIG. 演算装置11のハードウエア構成を示す図である。2 is a diagram illustrating a hardware configuration of an arithmetic device 11. FIG. 計測装置12のハードウエア構成を示す図である。2 is a diagram illustrating a hardware configuration of a measuring device 12. FIG. 制御装置13のハードウエア構成を示す図である。2 is a diagram illustrating a hardware configuration of a control device 13. FIG. 演算装置11の機能を示す図である。3 is a diagram illustrating functions of the arithmetic device 11. FIG. 計測値データベース431に格納されるレコードの構成を示す図である。It is a figure which shows the structure of the record stored in the measured value database. 発電機制御処理S600を説明するフローチャートである。It is a flowchart explaining generator control processing S600. S614における指令値を生成する処理を説明する図である。It is a figure explaining the process which produces | generates the command value in S614. 出力制御ができないタイプの分散型電源3に付設される計測指令装置10の構成を示す図である。It is a figure which shows the structure of the measurement instruction | command apparatus 10 attached to the distributed power supply 3 of the type which cannot perform output control. 図8に示した演算装置11が備える機能を示している。The function with which the arithmetic unit 11 shown in FIG. 8 is provided is shown. 発電量合計値送信処理S1000の詳細を示すフローチャートである。It is a flowchart which shows the detail of electric power generation amount total value transmission process S1000.

以下、実施形態につき図面を参照しつつ詳細に説明する。
図1に実施形態として説明する電力供給システム1の概略的な構成を示している。同図に示すように、電力供給システム1は、マイクログリッドなどの小規模な電力系統2に接続する複数の分散型電源3(G1,G2,G3・・・)、分散型電源3の夫々に併設されている計測指令装置10(第1計測指令装置)、及び電力系統2に接続する一つ以上の負荷4を含んで構成されている。
Hereinafter, embodiments will be described in detail with reference to the drawings.
FIG. 1 shows a schematic configuration of a power supply system 1 described as an embodiment. As shown in the figure, the power supply system 1 includes a plurality of distributed power sources 3 (G1, G2, G3...) And a distributed power source 3 connected to a small power system 2 such as a microgrid. It is configured to include a measurement command device 10 (first measurement command device) provided in parallel and one or more loads 4 connected to the power system 2.

分散型電源3は、例えば、コージェネレーション発電機(ディーゼル発電機、ガスタービン発電機、ガスエンジン発電機等)、自然エネルギーや未利用エネルギーを利用した発電機(風力発電機、太陽光発電機、小型水力発電機、廃棄物発電機、バイオマス発電機等)等である。   The distributed power source 3 includes, for example, a cogeneration generator (diesel generator, gas turbine generator, gas engine generator, etc.), a generator using natural energy or unused energy (wind generator, solar generator, Small hydroelectric generators, waste generators, biomass generators, etc.).

各計測指令装置10は、通信ネットワーク50を介して互いに通信可能に接続している。通信ネットワーク50は、例えば、インターネットや専用線(電力系統制御用情報伝送システム(CDT:Cyclic Digital data Transmission equipment)、メタル線、光ファイバ等)等である。   Each measurement command device 10 is connected to be communicable with each other via a communication network 50. The communication network 50 is, for example, the Internet or a dedicated line (power system control information transmission system (CDT: Cyclic Digital data Transmission equipment), metal line, optical fiber, or the like).

図2に計測指令装置10の構成を示している。同図に示すように、各計測指令装置10は、演算装置11、計測装置12、及び制御装置13を備える。このうち計測装置12は、電力系統2の現在の周波数、及び分散型電源3の現在の出力(以下、発電機出力と称する。)を取得し、取得した周波数及び発電機出力を演算装置11に入力する。   FIG. 2 shows the configuration of the measurement command device 10. As shown in FIG. 1, each measurement command device 10 includes a calculation device 11, a measurement device 12, and a control device 13. Among these, the measuring device 12 acquires the current frequency of the power system 2 and the current output of the distributed power source 3 (hereinafter referred to as “generator output”), and the acquired frequency and generator output to the arithmetic device 11. input.

演算装置11は、計測装置12から入力される周波数及び発電機出力と、通信ネットワーク50を介して取得される、電力系統2における分散型電源3の出力の合計(以下、発電量合計値と称する。)とに基づき分散型電源3の出力を制御するための指令値を生成し、生成した指令値を制御装置13に入力する。   The computing device 11 is the sum of the frequency and generator output input from the measuring device 12 and the output of the distributed power source 3 in the power system 2 acquired via the communication network 50 (hereinafter referred to as the total amount of power generation). And a command value for controlling the output of the distributed power source 3 is generated, and the generated command value is input to the control device 13.

制御装置13は、演算装置11から入力される指令値に従って分散型電源3の出力を制御する。   The control device 13 controls the output of the distributed power source 3 according to the command value input from the arithmetic device 11.

図3Aに演算装置11のハードウエア構成(ブロック図)を示している。同図に示すように、演算装置11は、CPU111、RAM・ROM等のメモリ112、ハードディスク等の記憶装置113、キーボードやマウス等の入力装置114、計測値や制御値、指令値などが表示される液晶ディスプレイ等の表示装置115、通信ネットワーク50を介して他の計測指令装置10との間で通信を行うとともに、計測装置12及び制御装置13との間で通信を行う通信装置116、及びRTC(Real Time Clock)等を用いて構成され、現在日時等の日時情報(タイムスタンプ)を生成する計時装置117(電波時計等)を備えている。尚、演算装置11は、例えば、パーソナルコンピュータ等の情報処理装置を用いて実現される。   FIG. 3A shows a hardware configuration (block diagram) of the arithmetic unit 11. As shown in the figure, the arithmetic unit 11 displays a CPU 111, a memory 112 such as a RAM / ROM, a storage device 113 such as a hard disk, an input device 114 such as a keyboard and a mouse, measurement values, control values, command values, and the like. A display device 115 such as a liquid crystal display, a communication device 116 that communicates with another measurement command device 10 via the communication network 50, and communicates with the measurement device 12 and the control device 13, and an RTC. It is configured using (Real Time Clock) or the like, and includes a time measuring device 117 (radio clock or the like) that generates date and time information (time stamp) such as the current date and time. Note that the computing device 11 is realized by using an information processing device such as a personal computer, for example.

図3Bに計測装置12のハードウエア構成(ブロック図)を示している。同図に示すように、計測装置12は、CPU121、メモリ122、演算装置11との間で通信を行う通信装置123、及び小規模電力系統2の周波数及び分散型電源3の出力を取得する計測回路124を備える。   FIG. 3B shows a hardware configuration (block diagram) of the measuring device 12. As shown in the figure, the measurement device 12 is a CPU 121, a memory 122, a communication device 123 that communicates with the arithmetic device 11, and a measurement that acquires the frequency of the small-scale power system 2 and the output of the distributed power source 3. A circuit 124 is provided.

図3Cに制御装置13のハードウエア構成(ブロック図)を示している。同図に示すように、制御装置13は、CPU131、メモリ132、演算装置11との間で通信を行う通信装置133、演算装置11から入力される指令値に従って分散型電源3の出力を制御する制御回路134を備える。   FIG. 3C shows a hardware configuration (block diagram) of the control device 13. As shown in the figure, the control device 13 controls the output of the distributed power supply 3 in accordance with a command value input from the CPU 131, the memory 132, the communication device 133 that communicates with the arithmetic device 11, and the arithmetic device 11. A control circuit 134 is provided.

図4に演算装置11が備える機能を示している。同図に示すように、演算装置11は、周波数取得部411、自機出力取得部412、発電量合計値受信部413、地域要求量算出部416、フィルタ処理部417、配分処理部418、指令値入力部419、発電量合計値送信部421、送信時自機現在出力記憶部422、出力変化量判断部423、発電量合計値送信権信号送信部424、及び発電量合計値送信権信号受信部425の各機能を備える。これらの機能は、演算装置11のハードウエアによって、もしくは、CPU111がメモリ112や記憶装置113に格納されているプログラムを実行することにより実現される。   FIG. 4 shows functions included in the arithmetic device 11. As shown in the figure, the calculation device 11 includes a frequency acquisition unit 411, a self-machine output acquisition unit 412, a power generation total value reception unit 413, a regional request amount calculation unit 416, a filter processing unit 417, a distribution processing unit 418, a command Value input unit 419, power generation amount total value transmission unit 421, transmission own device current output storage unit 422, output change amount determination unit 423, power generation amount total value transmission right signal transmission unit 424, and power generation amount total value transmission right signal reception Each function of the unit 425 is provided. These functions are realized by the hardware of the arithmetic device 11 or when the CPU 111 executes a program stored in the memory 112 or the storage device 113.

また演算装置11は、計測値データベース431を備える。計測値データベース431は、演算装置11において動作するDBMS(Data Base Management System)等によって実現される。   The arithmetic device 11 includes a measurement value database 431. The measurement value database 431 is realized by a DBMS (Data Base Management System) or the like that operates in the arithmetic device 11.

図4に示す機能のうち、周波数取得部411は、計測装置12から随時入力される周波数(電力系統2の周波数)を取得し、取得した周波数を取得日時(タイムスタンプ)に対応づけて計測値データベース431に格納する。   Among the functions shown in FIG. 4, the frequency acquisition unit 411 acquires a frequency (frequency of the power system 2) that is input from the measurement device 12 as needed, and associates the acquired frequency with an acquisition date (time stamp) to obtain a measurement value. Store in the database 431.

自機出力取得部412は、計測装置12から随時入力される、当該計測指令装置10の計測装置12が担当する分散型電源3(以下、自機と称する。)の現在の発電機出力を計測し、計測した発電機出力(以下、自機現在出力と称する。)を、計測時刻(タイムスタンプ)に対応づけて計測値データベース431に格納する。   The own device output acquisition unit 412 measures the current generator output of the distributed power source 3 (hereinafter referred to as “own device”), which is input from time to time by the measuring device 12 and is handled by the measuring device 12 of the measurement commanding device 10. Then, the measured generator output (hereinafter referred to as “own machine current output”) is stored in the measurement value database 431 in association with the measurement time (time stamp).

発電量合計値受信部415は、他の計測指令装置10から送られてくる発電量合計値を受信して記憶する。   The power generation amount total value receiving unit 415 receives and stores the power generation amount total value sent from the other measurement command device 10.

地域要求量算出部416は、周波数取得部411によって取得される周波数(以下、現在周波数と称する。)と、発電量合計値受信部413が受信した発電量合計値とに基づき、地域要求量AR(Area Requirement)を求める。ここで地域要求量ARは、電力系統2の需給差(需要と供給のアンバランス)を表す量であり、本実施形態では、現在周波数と基準周波数(例えば50Hz(関東)や60Hz(関西))との差(以下、周波数偏差ΔFと称する。)に系統周波数特性定数Kを乗算した値に、さらに発電量合計値を乗算した値を地域要求量ARとする。   The regional requirement amount calculation unit 416 is based on the frequency acquired by the frequency acquisition unit 411 (hereinafter referred to as the current frequency) and the power generation amount total value received by the power generation amount total value reception unit 413. (Area Requirement) Here, the regional requirement amount AR is an amount representing the supply-demand difference (demand and supply imbalance) of the power system 2, and in the present embodiment, the current frequency and the reference frequency (for example, 50 Hz (Kanto) or 60 Hz (Kansai)). The regional requirement amount AR is a value obtained by multiplying the value obtained by multiplying the difference between the two (hereinafter referred to as frequency deviation ΔF) by the system frequency characteristic constant K and the total power generation amount.

フィルタ処理部417は、地域要求量算出部416によって求められた地域要求量ARについて、地域要求量ARに含まれる極短周期成分を除去する平滑化処理、並びに微動成分を除去する不感帯処理を行う。   The filter processing unit 417 performs a smoothing process for removing an extremely short period component included in the area request quantity AR and a dead band process for removing a fine movement component for the area request quantity AR obtained by the area request quantity calculation unit 416. .

配分処理部418は、地域要求量算出部416によって求められた地域要求量ARを、所定の配分条件に従い電力系統2に接続している各分散型電源3に配分する。上記配分条件としては、例えば、各分散型電源3に地域要求量ARを均等に配分、即ち、地域要求量ARに、1/(電力系統2に接続している運転中の分散型電源3の台数合計)を乗算した値を各分散型電源3に配分するという条件(以下、第1条件と称する。)、各分散型電源3の発電機出力の変化速度に応じて地域要求量ARを各分散型電源3に配分、即ち、地域要求量ARに、(その分散型電源3の変化速度)/(電力系統2に接続している運転中の分散型電源3の変化速度の合計)を乗算した値を各分散型電源3に配分するという条件(以下、第2条件と称する。)、各分散型電源3の経済性(コスト的な有利さ)に応じて地域要求量ARを各分散型電源3に配分、即ち、地域要求量ARに、(その分散型電源3の経済係数)/(電力系統2に接続している運転中の分散型電源3の経済係数の合計))を乗算した値を各分散型電源3に配分するという条件(以下、第3条件と称する。)といったものがある。   The distribution processing unit 418 distributes the regional request amount AR obtained by the regional request amount calculation unit 416 to each distributed power source 3 connected to the power system 2 according to a predetermined distribution condition. As the distribution condition, for example, the regional requirement amount AR is evenly distributed to each distributed power source 3, that is, the regional requirement amount AR is divided into 1 / (the distributed power source 3 in operation connected to the power system 2). The regional requirement amount AR is set according to the condition (hereinafter referred to as the first condition) that the value obtained by multiplying the total number of units) is distributed to each distributed power source 3 (hereinafter referred to as the first condition) and the change rate of the generator output of each distributed power source 3. Distribute to distributed power source 3, that is, multiply regional demand AR by (change speed of distributed power source 3) / (total change speed of distributed power source 3 connected to power system 2) The regional demand AR is distributed to each distributed power source according to the condition that the distributed value is distributed to each distributed power source 3 (hereinafter referred to as the second condition) and the economics (cost advantage) of each distributed power source 3. Distribution to the power supply 3, that is, the regional requirement AR, (the economic factor of the distributed power supply 3) / (electricity There is a condition (hereinafter referred to as a third condition) in which a value obtained by multiplying the distributed power sources 3 connected to the grid 2 by a value obtained by multiplying the economic coefficients of the distributed power sources 3 in operation)) is multiplied. .

指令値入力部419は、配分処理部418によって当該計測指令装置10が担当する分散型電源3に配分された地域要求量ARに、自機現在出力を加算して当該計測指令装置10が担当する分散型電源3の出力を制御するための指令値(例えばPID演算(Proportional Integral Differential)によって求められるLFC制御量(LFC:Load Frequency Control(負荷周波数制御))を生成し、生成した指令値を制御装置13に入力する。   The command value input unit 419 is in charge of the measurement command device 10 by adding the current output of the own device to the regional request amount AR distributed to the distributed power source 3 that is handled by the measurement command device 10 by the distribution processing unit 418. A command value for controlling the output of the distributed power source 3 (for example, an LFC control amount (LFC: Load Frequency Control) obtained by PID calculation (Proportional Integral Differential)) is generated, and the generated command value is controlled. Input to the device 13.

発電量合計値送信部421は、発電量合計値受信部413が受信した発電量合計値に、自機出力取得部412が取得した自機現在出力を加算して最新の発電量合計値を求め、求めた発電量合計値を他の計測指令装置10に送信する。   The power generation amount total value transmission unit 421 adds the current power output acquired by the own device output acquisition unit 412 to the power generation amount total value received by the power generation amount total value reception unit 413 to obtain the latest power generation amount total value. Then, the obtained power generation amount total value is transmitted to the other measurement command device 10.

送信時自機現在出力記憶部422は、発電量合計値送信部421が最新の発電量合計値を送信した時点における自機現在出力(以下、送信時自機現在出力Poと称する。)を記憶する。   The transmission-time own-machine current output storage unit 422 stores the own-machine current output (hereinafter referred to as a transmission-time own-machine current output Po) at the time point when the power generation amount total value transmission unit 421 transmits the latest power generation amount total value. To do.

出力変化量判断部423は、新たに取得した自機現在出力と、送信時自機現在出力記憶部422が記憶している送信時自機現在出力との差の絶対値が閾値を超えているか否かを判断する。   The output change amount determination unit 423 determines whether the absolute value of the difference between the newly acquired own device current output and the transmission own device current output stored in the transmission own device current output storage unit 422 exceeds a threshold value. Judge whether or not.

発電量合計値送信権信号送信部424は、電力系統2において発電量合計値を送信する権限である送信権を現在要求中又は取得中であることを示す信号である送信権信号を他の計測指令装置10に送信する。   The power generation amount total value transmission right signal transmission unit 424 performs another measurement on a transmission right signal that is a signal indicating that a transmission right that is an authority to transmit the power generation total value in the power system 2 is currently being requested or acquired. Transmit to command device 10.

発電量合計値送信権信号受信部425は、他の計測指令装置10から送られてくる送信権信号を受信する。   The power generation amount total value transmission right signal receiving unit 425 receives a transmission right signal transmitted from another measurement instruction device 10.

図5に計測値データベース431に格納されるレコードの構成を示している。同図に示すように、計測値データベース431に格納されるレコードは、計測値種別4311、計測値4313、及び取得日時4314の各項目を含む。   FIG. 5 shows a configuration of records stored in the measurement value database 431. As shown in the figure, the record stored in the measurement value database 431 includes items of a measurement value type 4311, a measurement value 4313, and an acquisition date 4314.

このうち計測値種別4311には、当該レコードに設定されている計測値が、電力系統2の周波数であるのか、分散型電源3の出力(発電機出力)であるのかを示す値が設定される。計測値4313には、計測値(周波数又は発電機出力)が設定される。取得日時4314には、その計測値の計測日時(タイムスタンプ)が設定される。   Among these, the measurement value type 4311 is set to a value indicating whether the measurement value set in the record is the frequency of the power system 2 or the output of the distributed power source 3 (generator output). . In the measurement value 4313, a measurement value (frequency or generator output) is set. In the acquisition date 4314, the measurement date (time stamp) of the measurement value is set.

図6に計測指令装置10が行う処理(以下、発電機制御処理S600と称する。)の詳細を示している。以下、同図とともに発電機制御処理S600について説明する。   FIG. 6 shows details of a process (hereinafter referred to as a generator control process S600) performed by the measurement command device 10. Hereinafter, the generator control process S600 will be described with reference to FIG.

まず計測指令装置10は、電力系統2の現在の周波数及び自機現在出力を取得する(S611)。   First, the measurement command device 10 acquires the current frequency of the power system 2 and the current output of the own device (S611).

次に計測指令装置10は、他の計測指令装置10から発電量合計値Ptを新たに受信したか否かを判断し(S612)、新たな発電量合計値Ptを受信した場合は(S612:YES)受信した新たな発電量合計値Ptを記憶する(S613)。   Next, the measurement command device 10 determines whether or not a new power generation amount total value Pt has been newly received from another measurement command device 10 (S612). If a new power generation amount total value Pt has been received (S612: YES) The received new power generation amount total value Pt is stored (S613).

次に計測指令装置10は、記憶した新たな発電量合計値Ptを用いて自機を制御するための指令値を生成し(S614)、生成した指令値に従って自機を制御する(S615)。S614の処理の詳細については後述する。   Next, the measurement command device 10 generates a command value for controlling the own device using the stored new power generation total value Pt (S614), and controls the own device according to the generated command value (S615). Details of the processing of S614 will be described later.

次に計測指令装置10は、自機現在出力Pnを取得し(S621)、取得した自機現在出力Pnと、送信時自機現在出力記憶部422が記憶している送信時自機現在出力Poとの差分の絶対値ΔP=|Po−Pn|を求める(S622)。   Next, the measurement command device 10 acquires the own device current output Pn (S621), the acquired own device current output Pn, and the transmission own device current output Po stored in the transmission own device current output storage unit 422. The absolute value ΔP = | Po−Pn | of the difference between the two is obtained (S622).

次に計測指令装置10は、求めたΔPが、予め設定されている閾値bを超えているか否かを判断する(S623)。ΔPが予め設定されている閾値bを超えている場合は(S623:YES)S631に進み、超えていない場合は(S623:NO)S632に進む。   Next, the measurement command device 10 determines whether or not the obtained ΔP exceeds a preset threshold value b (S623). When ΔP exceeds a preset threshold value b (S623: YES), the process proceeds to S631, and when it does not exceed (S623: NO), the process proceeds to S632.

S631では、計測指令装置10は、他の計測指令装置10から現在、送信権信号を受信しているか否かを判断する。現在、送信権信号を受信している場合は(S631:YES)S635に進み、送信権信号を受信していない場合は(S631:NO)S632に進む。   In S <b> 631, the measurement command device 10 determines whether or not a transmission right signal is currently received from another measurement command device 10. If the transmission right signal is currently received (S631: YES), the process proceeds to S635. If the transmission right signal is not received (S631: NO), the process proceeds to S632.

S635では、計測指令装置10は、所定時間待機した後、S611に戻る。   In S635, the measurement instruction device 10 waits for a predetermined time, and then returns to S611.

S632では、計測指令装置10は、他の全ての計測指令装置10に送信権信号を送信する。   In S632, the measurement command device 10 transmits a transmission right signal to all other measurement command devices 10.

送信権信号の送信後、計測指令装置10は、他の計測指令装置10との間での送信権の競合(複数の計測指令装置10からの発電量合計値の送信の競合)を避けるため、他の計測指令装置10からの送信権信号の受信を所定時間待機する(S633)。他の計測指令装置10から送信権信号を受信した場合は(S634:YES)S635に進む。   After transmitting the transmission right signal, the measurement command device 10 avoids contention of transmission rights with other measurement command devices 10 (contention of transmission of the total amount of power generation from the plurality of measurement command devices 10). Reception of a transmission right signal from another measurement commanding apparatus 10 is waited for a predetermined time (S633). If a transmission right signal is received from another measurement commanding apparatus 10 (S634: YES), the process proceeds to S635.

所定時間内に他の計測指令装置10から送信権信号を受信しない場合は(S634:NO)S641に進む。   When a transmission right signal is not received from another measurement commanding apparatus 10 within a predetermined time (S634: NO), the process proceeds to S641.

S641では、計測指令装置10は、受信して記憶している発電量合計値Ptに、S621にて取得した自機現在出力Pnを加算して最新の発電量合計値Ptを求める。尚、計測指令装置10が他の計測指令装置10に送信した発電量合計値(後述のS643にて前回送信した発電量合計値)には自機の発電機出力が含まれているため、S613にて記憶した他の計測指令装置10から送られてくる発電量合計値Ptにも自機の発電機出力が含まれている。このため、上記加算に際しては、最新の発電量合計値Ptから送信時自機現在出力Poを差し引く必要があり、計測指令装置10はS641における最新の発電量合計値PtをPt=Pt+Pn−Poとして求める。   In S641, the measurement command device 10 obtains the latest power generation amount total value Pt by adding the current power output Pn acquired in S621 to the power generation amount total value Pt received and stored. In addition, since the power generation amount total value (the power generation amount total value transmitted last time in S643 described later) transmitted from the measurement command device 10 to another measurement command device 10 includes the generator output of the own device, S613. The power generation total value Pt sent from the other measurement commanding device 10 stored in the above includes the generator output of the own machine. Therefore, at the time of the addition, it is necessary to subtract the current output Po at the time of transmission from the latest total power generation value Pt, and the measurement command device 10 sets the latest total power generation value Pt at S641 as Pt = Pt + Pn−Po. Ask.

次に計測指令装置10は、送信時自機現在出力記憶部422が記憶している送信時自機現在出力Poの値を、S621で取得した自機現在出力Pnに更新する(S642)。   Next, the measurement commanding apparatus 10 updates the value of the transmission own machine current output Po stored in the transmission own machine current output storage unit 422 to the own machine current output Pn acquired in S621 (S642).

次に計測指令装置10は、S641で求めた発電量合計値Ptを他の計測指令装置10に送信する(S643)。   Next, the measurement command device 10 transmits the power generation amount total value Pt obtained in S641 to the other measurement command device 10 (S643).

図7は、図6のS614における指令値を生成する処理を説明する図である。以下、同図とともに説明する。   FIG. 7 is a diagram illustrating the process of generating the command value in S614 of FIG. Hereinafter, it will be described with reference to FIG.

まず計測指令装置10は、図6のS611にて取得した周波数と、S613にて記憶した発電量合計値Ptとに基づき、地域要求量AR(Area Requirement)を求める(S711〜S714)。   First, the measurement command device 10 obtains an area requirement AR (Area Requirement) based on the frequency acquired in S611 of FIG. 6 and the total power generation value Pt stored in S613 (S711 to S714).

次に計測指令装置10は、求めた地域要求量ARについて、フィルタ処理、即ち、地域要求量ARに含まれる極短周期成分を除去する平滑化処理、並びに微動成分を除去する不感帯処理を行う(S715)。   Next, the measurement command device 10 performs filtering processing, that is, smoothing processing for removing an extremely short period component included in the regional request amount AR, and dead zone processing for removing a fine movement component for the obtained regional request amount AR ( S715).

次に計測指令装置10は、フィルタ処理を行った後の地域要求量ARを、前述した所定の配分条件に従い、電力系統2に接続している各分散型電源3に配分する(S716)。   Next, the measurement command device 10 distributes the regional request amount AR after the filtering process to each distributed power source 3 connected to the power system 2 in accordance with the predetermined distribution condition described above (S716).

次に計測指令装置10は、当該計測指令装置10が担当する分散型電源3に配分された地域要求量ARに自機現在出力を加算して当該計測指令装置10が担当する分散型電源3の出力を制御するための指令値を生成し、生成した指令値を制御装置13に入力する(S717)。   Next, the measurement command device 10 adds its current output to the regional request amount AR distributed to the distributed power source 3 that the measurement command device 10 is in charge of and the distributed command power source 3 that is in charge of the measurement command device 10. A command value for controlling the output is generated, and the generated command value is input to the control device 13 (S717).

以上に説明したように、本実施形態の電力供給システム1によれば、計測指令装置10は、電力系統2の現在の周波数や自機現在出力については自ら計測して取得し、電力系統2における分散型電源3の出力の合計である発電量合計値は他の計測指令装置10から取得して自身が担当する分散型電源3の指令値を生成する。これによれば、計測指令装置10間を結ぶ通信ネットワークの輻輳を防ぐことができ、計測指令装置10の処理速度の低下や通信時のデータの欠落などを防ぐことができる。これによれば、計測指令装置10間で行われる通信トラフィックを抑えつつ、分散型電源3の自律制御を適切に行うことができ、分散型電源3を効率よく確実に制御することができる。   As described above, according to the power supply system 1 of the present embodiment, the measurement command device 10 measures and acquires the current frequency of the power system 2 and the current output of the own device by itself. The total amount of power generation that is the total output of the distributed power source 3 is obtained from another measurement command device 10 and generates a command value for the distributed power source 3 that it is responsible for. According to this, congestion of the communication network connecting the measurement command devices 10 can be prevented, and a decrease in the processing speed of the measurement command devices 10 and loss of data during communication can be prevented. According to this, the autonomous control of the distributed power source 3 can be appropriately performed while suppressing communication traffic performed between the measurement command devices 10, and the distributed power source 3 can be controlled efficiently and reliably.

また、計測指令装置10は、自機現在出力の変化量が所定の閾値を超えている場合にのみ発電量合計値を求めて他の計測指令装置10に送信する。このため、発電量合計値の送信が不必要に行われるのを防ぐことができ、各計測指令装置10間の通信量を必要最小限に抑えることができる。   Moreover, the measurement command apparatus 10 calculates | requires a power generation amount total value, and transmits to another measurement command apparatus 10, only when the variation | change_quantity of an own apparatus present output exceeds the predetermined threshold value. For this reason, it is possible to prevent the transmission of the total power generation amount from being performed unnecessarily, and it is possible to minimize the communication amount between the measurement command devices 10.

また、計測指令装置10は、自らが送信権を有することを確認してから発電量合計値を他の計測指令装置10に送信するので、複数の計測指令装置10から同時に発電量合計値が送信されてしまうのを確実に防ぐことができる。   Moreover, since the measurement command device 10 confirms that it has the right to transmit, the power generation amount total value is transmitted to the other measurement command devices 10, so that the power generation amount total value is simultaneously transmitted from the plurality of measurement command devices 10. Can be surely prevented.

ところで、電力系統2には、例えば自然エネルギーを利用した発電機のように、出力制御ができないタイプの分散型電源3が接続している場合もある。そこでそのような分散型電源3については、以下に説明する構成を備えた計測指令装置10を付設して、他の計測指令装置10との間で発電量合計値を授受するようにする。   By the way, there may be a case where a distributed power source 3 of a type incapable of output control is connected to the electric power system 2 such as a generator using natural energy. Therefore, such a distributed power source 3 is provided with a measurement command device 10 having a configuration described below so that the total amount of power generation is exchanged with other measurement command devices 10.

図8に出力制御ができないタイプの分散型電源3に付設される計測指令装置10(第2計測指令装置)の構成を示している。同図に示すように、この計測指令装置10は、出力制御を行わないので制御装置13を備えていない。また計測装置12は電力系統2の周波数を取得しない。   FIG. 8 shows the configuration of a measurement command device 10 (second measurement command device) attached to a distributed power source 3 of a type that cannot perform output control. As shown in the figure, the measurement command device 10 does not perform output control, and therefore does not include the control device 13. Moreover, the measuring device 12 does not acquire the frequency of the power system 2.

図9に図8に示した演算装置11が備える機能を示している。同図に示すように、演算装置11は、自機出力取得部412、発電量合計値受信部413、発電量合計値送信部421、送信時自機現在出力記憶部422、出力変化量判断部423、発電量合計値送信権信号送信部424、及び発電量合計値送信権信号受信部425の各機能を備える。また演算装置11は、計測値データベース431を備える。   FIG. 9 shows the functions of the arithmetic device 11 shown in FIG. As shown in the figure, the calculation device 11 includes a self-machine output acquisition unit 412, a total power generation value reception unit 413, a total power generation value transmission unit 421, a self-machine current output storage unit 422 at the time of transmission, and an output change amount determination unit. 423, the power generation amount total value transmission right signal transmission unit 424, and the power generation amount total value transmission right signal reception unit 425 are provided. The arithmetic device 11 includes a measurement value database 431.

図10は、図8に示した計測指令装置10が行う処理(以下、発電量合計値送信処理S1000と称する。)の詳細を示している。同図に示すように、図6の発電機制御処理S600と異なり、発電量合計値送信処理S1000は、分散型電源3の制御に関する処理を含まず、それ以外の処理は共通している。即ち、同図におけるS1012〜S1013の処理は、図6のS612〜S613と同様である。またS1021〜S1043の処理は、図6のS621〜S643と同様である。   FIG. 10 shows details of a process performed by the measurement command device 10 shown in FIG. 8 (hereinafter referred to as a total power generation value transmission process S1000). As shown in the figure, unlike the generator control process S600 of FIG. 6, the total power generation value transmission process S1000 does not include processes related to the control of the distributed power supply 3, and other processes are common. That is, the processing of S1012 to S1013 in the figure is the same as S612 to S613 of FIG. The processing of S1021 to S1043 is the same as S621 to S643 of FIG.

このように、本実施形態の電力供給システム1では、電力系統2に出力制御ができないタイプの分散型電源3と出力制御ができるタイプの分散型電源3とが混在する場合であっても、計測指令装置10の夫々が電力系統2の現在の周波数や自機現在出力については自ら計測して取得し、電力系統2における分散型電源3の出力の合計である発電量合計値は他の計測指令装置10から取得して自身が担当する分散型電源3の指令値を生成するという構成を実現することができる。このため、電力系統2に出力制御ができないタイプの分散型電源3と出力制御ができるタイプの分散型電源3とが混在する場合でも、計測指令装置10間の通信量を抑えつつ分散型電源3の自律制御を行う構成を実現することができる。   As described above, in the power supply system 1 of the present embodiment, even when the power system 2 includes a distributed power source 3 that cannot perform output control and a distributed power source 3 that can perform output control. Each of the commanding devices 10 measures and acquires the current frequency of the power system 2 and the current output of the own device by itself, and the total amount of power generation that is the total output of the distributed power source 3 in the power system 2 is the other measurement command. It is possible to realize a configuration in which a command value of the distributed power source 3 that is acquired from the device 10 and is in charge of the device 10 is generated. For this reason, even when a distributed power source 3 that cannot perform output control and a distributed power source 3 that can perform output control coexist in the power system 2, the distributed power source 3 while suppressing the amount of communication between the measurement command devices 10. The structure which performs autonomous control of can be implement | achieved.

以上に説明した実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることは勿論である。   Embodiment described above is for making an understanding of this invention easy, and does not limit this invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes the equivalents thereof.

1 電力供給システム
2 電力系統
3 分散型電源
4 負荷
10 計測指令装置
11 演算装置
12 計測装置
13 制御装置
50 通信ネットワーク
411 周波数取得部
412 自機出力取得部
413 発電量合計値受信部
416 地域要求量算出部
417 フィルタ処理部
418 配分処理部
419 指令値入力部
421 発電量合計値送信部
422 送信時自機現在出力記憶部
423 出力変化量判断部
424 発電量合計値送信権信号送信部
425 発電量合計値送信権信号受信部
431 計測値データベース
S600 発電機制御処理
S1000 発電量合計値送信処理
DESCRIPTION OF SYMBOLS 1 Electric power supply system 2 Electric power system 3 Distributed type power supply 4 Load 10 Measurement command apparatus 11 Arithmetic apparatus 12 Measuring apparatus 13 Control apparatus 50 Communication network 411 Frequency acquisition part 412 Self-machine output acquisition part 413 Power generation amount total value reception part 416 Area requirement amount Calculation unit 417 Filter processing unit 418 Distribution processing unit 419 Command value input unit 421 Power generation amount total value transmission unit 422 Transmitting device current output storage unit 423 Output change amount determination unit 424 Power generation amount total value transmission right signal transmission unit 425 Power generation amount Total value transmission right signal receiving unit 431 Measurement value database S600 Generator control processing S1000 Power generation amount total value transmission processing

Claims (6)

複数の分散型電源を含んで構成される電力供給システムの制御方法であって、
前記分散型電源の夫々に、夫々の計測及び制御を担当する第1計測指令装置を設け、
前記第1計測指令装置は、演算装置と、分散型電源が接続している電力系統の周波数及び夫々が担当する前記分散型電源の出力を計測する計測装置と、夫々が担当する前記分散型電源の出力を制御する制御装置とを備え、
前記第1計測指令装置の夫々を互いに通信可能に接続し、
前記第1計測指令装置は、
前記電力系統における前記分散型電源の出力の合計である発電量合計値を他の前記第1計測指令装置から受信し、
前記電力系統の現在の周波数を取得し、
自身が担当する前記分散型電源の現在の出力である自機現在出力を随時取得し、
取得した前記周波数と前記電力系統における基準周波数とに基づき現在の周波数偏差を求め、
前記周波数偏差に系統周波数特性定数を乗算した値と前記発電量合計値とを乗算することにより地域要求量を求め、
求めた前記地域要求量を所定の配分条件に従い前記各分散型電源に配分し、
前記地域要求量のうち自身が担当する前記分散型電源の配分値と、取得した前記自機現在出力とに基づき、自身が担当する前記分散型電源の出力を制御するための指令値を生成し、
生成した前記指令値に従い自身が担当する前記分散型電源の出力を制御し、
受信した前記発電量合計値に取得した前記自機現在出力を加算して発電量合計値を求め、求めた前記発電量合計値を前記他の第1計測指令装置に送信し、
前記電力系統において前記発電量合計値を送信する権限である送信権を現在要求中又は取得中であることを示す信号である送信権信号を前記他の第1計測指令装置に送信するとともに、前記他の第1計測指令装置から送られてくる前記送信権信号の受信を待機し、所定時間内に前記送信権信号を受信しない場合に、受信した前記発電量合計値に取得した前記自機現在出力を加算して発電量合計値を求め、求めた前記発電量合計値を前記他の第1計測指令装置に送信する
ことを特徴とする電力供給システムの制御方法。
A method for controlling a power supply system including a plurality of distributed power sources,
Each of the distributed power sources is provided with a first measurement command device that takes charge of each measurement and control,
The first measurement commanding device includes an arithmetic device, a frequency measuring system connected to a distributed power source, and a measuring device that measures the output of the distributed power source that each takes charge of, and the distributed power source that each takes charge of. And a control device for controlling the output of
Each of the first measurement command devices is connected to be communicable with each other,
The first measurement command device includes:
Receiving the total amount of power generation that is the sum of the outputs of the distributed power source in the power system from the other first measurement command device;
Obtaining the current frequency of the power grid;
Acquires the current output of the machine itself, which is the current output of the distributed power source that it is in charge of,
Find the current frequency deviation based on the acquired frequency and the reference frequency in the power system,
By multiplying the frequency deviation by a value obtained by multiplying the frequency deviation by a system frequency characteristic constant and the total power generation value, a regional requirement amount is obtained.
Distributing the obtained regional demand to each distributed power source according to a predetermined distribution condition,
Generates a command value for controlling the output of the distributed power source that is in charge of itself based on the distribution value of the distributed power source that is in charge of the regional demand and the acquired current output of the own device. ,
Control the output of the distributed power source that it is responsible for according to the generated command value,
Adding the acquired current output to the received power generation total value to obtain a power generation total value, and transmitting the calculated power generation total value to the other first measurement command device ;
While transmitting a transmission right signal, which is a signal indicating that the right to transmit the power generation total value in the power system is currently requested or being acquired, to the other first measurement command device, and Waiting for reception of the transmission right signal sent from the other first measurement commanding device, and not receiving the transmission right signal within a predetermined time, the own device current acquired in the received power generation amount total value A power supply system control method , comprising: adding power to determine a total power generation value, and transmitting the calculated total power generation value to the other first measurement command device .
請求項1に記載の電力供給システムの制御方法であって、
前記第1計測指令装置は、
前記発電量合計値の前記送信に際して前記取得した自機現在出力を保持し、
新たに取得した前記自機現在出力と前記発電量合計値の前回送信時に記憶しておいた前記自機現在出力との差の絶対値が所定の閾値を超えている場合に、前記他の第1計測指令装置から受信した前記発電量合計値に前記新たに取得した自機現在出力を加算して発電量合計値を求め、求めた前記発電量合計値を前記他の第1計測指令装置に送信する
ことを特徴とする電力供給システムの制御方法。
It is a control method of the electric power supply system according to claim 1,
The first measurement command device includes:
Holding the acquired current output of the own device at the time of the transmission of the total power generation value,
When the absolute value of the difference between the newly acquired current output and the current output stored in the previous transmission of the total power generation value exceeds a predetermined threshold, the other The power generation amount total value is obtained by adding the newly acquired current output to the power generation amount total value received from one measurement command device, and the obtained power generation amount total value is sent to the other first measurement command device. A method for controlling a power supply system, comprising: transmitting.
請求項1に記載の電力供給システムの制御方法であって、
前記配分条件が、
前記地域要求量を前記分散型電源の夫々に均等に配分するという条件、
前記地域要求量を前記分散型電源の夫々の出力の変化速度に応じて配分するという条件、
及び、
前記地域要求量を前記分散型電源の夫々の経済性に応じて配分するという条件、
のうちのいずれかである
ことを特徴とする電力供給システムの制御方法。
It is a control method of the electric power supply system according to claim 1,
The allocation condition is
A condition for equally distributing the regional demand to each of the distributed power sources;
A condition that the regional demand is distributed according to the rate of change of the output of each of the distributed power sources;
as well as,
A condition of allocating the regional demand according to the economics of each of the distributed power sources;
A method for controlling a power supply system, wherein the power supply system is any one of the above.
請求項1に記載の電力供給システムの制御方法であって、
前記電力系統には、出力制御を行うことができない分散型電源が接続しており、
出力制御を行うことができない前記分散型電源に、演算装置と、前記分散型電源の出力を計測する計測装置とを備える第2計測指令装置を付設し、
前記第2計測指令装置を、他の前記第2計測指令装置及び前記第1計測指令装置と互いに通信可能に接続し、
前記第2計測指令装置が、
前記電力系統における前記分散型電源の出力の合計である発電量合計値を他の前記第2計測指令装置及び前記第1計測指令装置から受信し、
自身が担当する前記分散型電源の現在の出力である自機現在出力を随時取得し、
受信した前記発電量合計値に取得した前記自機現在出力を加算して発電量合計値を求め、求めた前記発電量合計値を前記他の第2計測指令装置及び前記第1計測指令装置に送信する
ことを特徴とする電力供給システムの制御方法。
It is a control method of the electric power supply system according to claim 1,
A distributed power source that cannot perform output control is connected to the power system,
A second measurement command device including an arithmetic device and a measurement device that measures the output of the distributed power source is attached to the distributed power source that cannot perform output control,
The second measurement command device is connected to the other second measurement command device and the first measurement command device so that they can communicate with each other.
The second measurement command device is
Received from the other second measurement command device and the first measurement command device a power generation amount total value that is the total output of the distributed power source in the power system,
Acquires the current output of the machine itself, which is the current output of the distributed power source that it is in charge of,
The acquired current output is added to the received power generation total value to obtain a power generation total value, and the calculated power generation total value is sent to the other second measurement command device and the first measurement command device. A method for controlling a power supply system, comprising: transmitting.
複数の分散型電源を含んで構成される電力供給システムであって、
前記分散型電源の夫々に設けられ、夫々の計測及び制御を担当する第1計測指令装置を備え、
前記第1計測指令装置は、演算装置と、分散型電源が接続している電力系統の周波数及び夫々が担当する前記分散型電源の出力を計測する計測装置と、夫々が担当する前記分散型電源の出力を制御する制御装置とを有し、
前記第1計測指令装置の夫々は互いに通信可能に接続されており、
前記第1計測指令装置が、
前記電力系統における前記分散型電源の出力の合計である発電量合計値を他の前記第1計測指令装置から受信し、
前記電力系統の現在の周波数を取得し、
自身が担当する前記分散型電源の現在の出力である自機現在出力を随時取得し、
取得した前記周波数と前記電力系統における基準周波数とに基づき現在の周波数偏差を求め、
前記周波数偏差に系統周波数特性定数を乗算した値と前記発電量合計値とを乗算することにより地域要求量を求め、
求めた前記地域要求量を所定の配分条件に従い前記各分散型電源に配分し、
前記地域要求量のうち自身が担当する前記分散型電源の配分値と、取得した前記自機現在出力とに基づき、自身が担当する前記分散型電源の出力を制御するための指令値を生成し、
生成した前記指令値に従い自身が担当する前記分散型電源の出力を制御し、
受信した前記発電量合計値に取得した前記自機現在出力を加算して発電量合計値を求め、求めた前記発電量合計値を前記他の第1計測指令装置に送信し、
前記電力系統において前記発電量合計値を送信する権限である送信権を現在要求中又は取得中であることを示す信号である送信権信号を前記他の第1計測指令装置に送信するとともに、前記他の第1計測指令装置から送られてくる前記送信権信号の受信を待機し、所定時間内に前記送信権信号を受信しない場合に、受信した前記発電量合計値に取得した前記自機現在出力を加算して発電量合計値を求め、求めた前記発電量合計値を前記他の第1計測指令装置に送信する
ことを特徴とする電力供給システム。
A power supply system configured to include a plurality of distributed power sources,
Provided in each of the distributed type power supply, comprising a first measurement command device in charge of each measurement and control,
The first measurement commanding device includes an arithmetic device, a frequency measuring system connected to a distributed power source, and a measuring device that measures the output of the distributed power source that each takes charge of, and the distributed power source that each takes charge of. A control device for controlling the output of
Each of the first measurement command devices is connected to be communicable with each other,
The first measurement command device is
Receiving the total amount of power generation that is the sum of the outputs of the distributed power source in the power system from the other first measurement command device;
Obtaining the current frequency of the power grid;
Acquires the current output of the machine itself, which is the current output of the distributed power source that it is responsible for
Find the current frequency deviation based on the acquired frequency and the reference frequency in the power system,
By multiplying the frequency deviation by a value obtained by multiplying the frequency deviation by a system frequency characteristic constant and the total power generation value, a regional requirement amount is obtained.
Distributing the obtained regional demand to each distributed power source according to a predetermined distribution condition,
Generates a command value for controlling the output of the distributed power source that is in charge of itself based on the distribution value of the distributed power source that is in charge of the regional demand and the acquired current output of the own device. ,
Control the output of the distributed power source that it is responsible for according to the generated command value,
Adding the acquired current output to the received power generation total value to obtain a power generation total value, and transmitting the calculated power generation total value to the other first measurement command device ;
While transmitting a transmission right signal, which is a signal indicating that the right to transmit the power generation total value in the power system is currently requested or being acquired, to the other first measurement command device, and Waiting for reception of the transmission right signal sent from the other first measurement commanding device, and not receiving the transmission right signal within a predetermined time, the own device current acquired in the received power generation amount total value A power supply system characterized in that an output is added to determine a total power generation value, and the calculated total power generation value is transmitted to the other first measurement command device .
請求項5に記載の電力供給システムであって、
前記第1計測指令装置は、
前記発電量合計値の前記送信に際して前記取得した自機現在出力を保持し、
新たに取得した前記自機現在出力と前記発電量合計値の前回送信時に記憶しておいた前記自機現在出力との差の絶対値が所定の閾値を超えている場合に、前記他の第1計測指令装置から受信した前記発電量合計値に前記新たに取得した自機現在出力を加算して発電量合計値を求め、求めた前記発電量合計値を前記他の第1計測指令装置に送信する
ことを特徴とする電力供給システム。
The power supply system according to claim 5,
The first measurement command device includes:
Holding the acquired current output of the own device at the time of the transmission of the total power generation value,
When the absolute value of the difference between the newly acquired current output and the current output stored in the previous transmission of the total power generation value exceeds a predetermined threshold, the other The power generation amount total value is obtained by adding the newly acquired current output to the power generation amount total value received from one measurement command device, and the obtained power generation amount total value is sent to the other first measurement command device. A power supply system characterized by transmitting.
JP2010134204A 2010-06-11 2010-06-11 Power supply system control method and power supply system Expired - Fee Related JP5306286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010134204A JP5306286B2 (en) 2010-06-11 2010-06-11 Power supply system control method and power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010134204A JP5306286B2 (en) 2010-06-11 2010-06-11 Power supply system control method and power supply system

Publications (2)

Publication Number Publication Date
JP2011259667A JP2011259667A (en) 2011-12-22
JP5306286B2 true JP5306286B2 (en) 2013-10-02

Family

ID=45475202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010134204A Expired - Fee Related JP5306286B2 (en) 2010-06-11 2010-06-11 Power supply system control method and power supply system

Country Status (1)

Country Link
JP (1) JP5306286B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101728205B1 (en) 2014-02-06 2017-04-18 한국전자통신연구원 System and Method for Decentralized Energy Resource based Active Virtual Power Energy Management
JP6262011B2 (en) * 2014-02-17 2018-01-17 株式会社東芝 Power supply system and program thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4860960B2 (en) * 2005-08-22 2012-01-25 株式会社東芝 Power network control system
JP2008042961A (en) * 2006-08-01 2008-02-21 Toshiba Corp Power system load frequency control system
JP4812803B2 (en) * 2008-05-16 2011-11-09 中国電力株式会社 Power supply system control method and power supply system

Also Published As

Publication number Publication date
JP2011259667A (en) 2011-12-22

Similar Documents

Publication Publication Date Title
JP6187463B2 (en) Grid integrated control device, grid control system, grid control device, program, and control method
CN103527406B (en) Wind park control system
JP6168060B2 (en) Power management method, power management apparatus and program
JP2012517207A (en) Distributed power production system and control method thereof
JP2022173296A (en) System, control device, control method of mining unit, and program
JP6892349B2 (en) Power supply and demand control device, power supply and demand control system, computer program for power supply and demand control, and power supply and demand control method
JP2011114899A (en) Method and apparatus for controlling load frequency
JP2012191840A (en) Generator reserve capacity control system and network
CN104156886B (en) Method of evaluating flexibility of power supply with renewable energy power system
KR101545143B1 (en) Auto Generation Control Method based on maximum power transmission
Hou et al. Determination of transient stability constrained interface real power flow limit using trajectory sensitivity approach
WO2017149618A1 (en) Control device, power generation control device, control method, system, and program
JP5268961B2 (en) Power supply system control method and power supply system
JP2019161845A (en) Processor, control device for power storage system, power storage system, processing method and program
JP5306286B2 (en) Power supply system control method and power supply system
CN110994646B (en) Method, system and storage medium for evaluating running effect of AGC (automatic gain control) adjustment of power grid
JP6154767B2 (en) Automatic frequency control device and automatic frequency control method
JP2008099431A (en) Method and apparatus for information processing
JP5295155B2 (en) Power supply system control method and power supply system
JP2012230461A (en) Scheduling device and scheduling method
US20070055636A1 (en) Cellular minigrid
JP2015204020A (en) Energy management system, energy management method, and program
KR20130074187A (en) System and method of demand response resource management of controlling frequency for building energy management
CN110518578B (en) Bus load prediction method and device, terminal equipment and storage medium
JP5627554B2 (en) Energy usage limit value setting device, energy usage limit value setting method, and program

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130625

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5306286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees