JP5306121B2 - Consolidation ground improvement method - Google Patents

Consolidation ground improvement method Download PDF

Info

Publication number
JP5306121B2
JP5306121B2 JP2009207990A JP2009207990A JP5306121B2 JP 5306121 B2 JP5306121 B2 JP 5306121B2 JP 2009207990 A JP2009207990 A JP 2009207990A JP 2009207990 A JP2009207990 A JP 2009207990A JP 5306121 B2 JP5306121 B2 JP 5306121B2
Authority
JP
Japan
Prior art keywords
embankment
consolidation
ground
ground improvement
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009207990A
Other languages
Japanese (ja)
Other versions
JP2011058236A (en
Inventor
隆宏 熊谷
貴彦 椎名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2009207990A priority Critical patent/JP5306121B2/en
Publication of JP2011058236A publication Critical patent/JP2011058236A/en
Application granted granted Critical
Publication of JP5306121B2 publication Critical patent/JP5306121B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soil improving method by consolidation that allows banking to be deformed following consolidation settlement shape even when using a hard material such as compacted snow, ice or solidified soil with high bending tensile strength compared with sandy soil, as a banking material. <P>SOLUTION: The soil improving method by consolidation adapted to place a load by the banking on the ground for soil improvement, uses the hard material with high bending tensile strength compared with sandy soil, for the banking 10, and lays isolating materials 1, 2 from the top end of the banking to the bottom face to divide the banking into a plurality of parts. The banking can thereby be deformed following the consolidation settlement of the ground. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、盛土による載荷重を用いる圧密地盤改良工法に関する。   The present invention relates to a consolidation ground improvement method using a load applied by embankment.

軟弱地盤の改良工法の1つとして、ドレーンの打設と盛土の載荷重とにより、軟弱地盤中の間隙水を排水する圧密地盤改良工法が知られている(特許文献1,2,3参照)。圧密地盤改良の目的として、間隙水の排水に伴う軟弱地盤の強度増加や地盤の圧密沈下による利用空間の拡大(例えば、最終処分場に処分した汚泥の減容化や河道面積の拡大)などが挙げられる。盛土による載荷重工法は、図9のように、軟弱地盤G上に盛土Mの荷重を直接載せるようにした圧密地盤改良工法であり、盛土材料として一般的には砂が用いられている。   As one of the improvement methods for soft ground, there is known a consolidation ground improvement method for draining pore water in soft ground by placing a drain and placing load of embankment (see Patent Documents 1, 2 and 3). . The purpose of the consolidation ground improvement is to increase the strength of the soft ground due to drainage of pore water and to expand the use space by consolidation settlement of the ground (for example, reducing the volume of sludge disposed at the final disposal site or expanding the river channel area). Can be mentioned. The loading method by embankment is a consolidation ground improvement method in which the load of the embankment M is directly placed on the soft ground G as shown in FIG. 9, and sand is generally used as the embankment material.

特開2000-328550号公報JP 2000-328550 A 特開2001-226951号公報JP 2001-226951 A 特開2002-138456号公報JP 2002-138456 JP

軟弱地盤改良の計画地域の地理的条件や採取条件等のために盛土材料としての砂の確保が困難な場合やコスト増となってしまう場合があるが、このような事態に対処するために、砂の代わりの盛土材料として、締め固めた雪や氷や固化処理土などの、砂質土よりも曲げ引張り強度のある剛質材料を使用することが考えられる。   In order to cope with such a situation, it may be difficult to secure sand as embankment material due to the geographical conditions and sampling conditions of the planned area for soft ground improvement, or it may increase costs. As the embankment material instead of sand, it is conceivable to use a rigid material having a bending tensile strength more than that of sandy soil, such as compacted snow, ice and solidified soil.

しかし、従来の盛土による載荷重工法によれば、図10のように、圧密の進行にともない、地盤表面Sが圧密沈下により凹んで窪地状に変形するとともに砂からなる盛土Mも地盤表面Sの変形に追随して容易に変形するが、盛土Mが剛質材料からなると、その曲げ引張り強度により盛土Mの変形が抑制され、砂の場合とは異なって、図の破線のように地盤改良中央部で沈下が大きく、窪地状に変形しようとする圧密沈下形状に追随できないため、地盤改良中央部に対する載荷荷重の伝達性が低くなって、計画改良域を効果的に圧密改良することができなくなる。   However, according to the conventional loading method using embankment, as shown in FIG. 10, as the consolidation progresses, the ground surface S is dented due to consolidation settlement and deformed into a concave shape, and the sand embankment M is also formed on the ground surface S. Deformation easily follows the deformation, but if the embankment M is made of a rigid material, the deformation of the embankment M is suppressed by its bending tensile strength, and unlike the case of sand, the ground improvement center Because the settlement is large and cannot follow the consolidation settlement shape that tends to deform into a depression, the load transferability to the ground improvement center part becomes low, and the planned improvement area cannot be effectively consolidated. .

特に、真空ポンプによる吸引装置を用い、負圧を作用させて地盤内を減圧することによって地盤の圧密を促進する真空圧密工法(特許文献1〜3参照)と載荷重工法とを併用する場合、盛土荷重とは別の外力(大気圧)によっても地盤改良中央部の圧密沈下が促進されるため、図10の地盤表面Sと盛土Mとの間に空洞ができることを防ぐよう盛土に変形追随性を持たせることが、効果的な圧密改良を行うための重要な課題である。   In particular, when using a vacuum compaction method (see Patent Documents 1 to 3) and a load-loading method that promotes consolidation of the ground by reducing the pressure inside the ground by applying a negative pressure using a suction device by a vacuum pump, Since external consolidation (atmospheric pressure) other than the embankment load promotes consolidation settlement in the center of the ground improvement, deformation conformity to the embankment is prevented so as to prevent the formation of a cavity between the soil surface S and the embankment M in FIG. It is an important issue for effective consolidation improvement.

本発明は、上述のような従来技術の問題に鑑み、締め固めた雪や氷や固化処理土などの、砂質土よりも曲げ引張り強度がある剛質材料を盛土材料として用いる場合でも、圧密沈下形状に盛土が追随して変形することができる圧密地盤改良工法を提供することを目的とする。   In view of the problems of the prior art as described above, the present invention provides compaction even when using a rigid material having a bending tensile strength as compared with sandy soil, such as compacted snow, ice, and solidified soil, as the embankment material. An object of the present invention is to provide a consolidation ground improvement method capable of deforming the embankment following the subsidence shape.

上記目的を達成するための第1の圧密地盤改良工法は、地盤改良対象の地盤に盛土による荷重を載せる圧密地盤改良工法であって、砂質土よりも曲げ引張り強度がある剛質材料を盛土に用い、前記盛土の天端から底面まで縁切り材料を敷設して前記盛土を複数に区分けすることにより、地盤改良中に前記区分けされた盛土が前記縁切り材料で滑り変形を起こして地盤の圧密沈下に追随して変形可能であることを特徴とする。   The first consolidation ground improvement method for achieving the above object is a consolidation ground improvement method in which a load by embankment is placed on the ground to be ground improvement, and a rigid material having a bending tensile strength than sandy soil is embanked. By laying an edge cutting material from the top to the bottom of the embankment and dividing the embankment into a plurality of sections, the divided embankment undergoes sliding deformation with the edge cutting material during ground improvement, and the consolidation of the ground It can be deformed following the above.

この圧密地盤改良工法によれば、剛質材料からなる盛土の天端から底面まで縁切り材料を敷設して盛土を複数に区分けすることで、地盤改良中に、区分けされた盛土が縁切り材料で滑り変形をして地盤の圧密沈下に追随して変形でき、このため、砂質土よりも曲げ引張り強度がある剛質材料を盛土材料として用いても、軟弱地盤の圧密沈下形状に対して盛土に変形追随性を与えることができ、盛土荷重を効果的に軟弱地盤に作用させることができる。   According to this consolidation ground improvement method, by laying the edge cutting material from the top to the bottom of the embankment made of rigid material and dividing the embankment into multiple sections, the sectioned embankment slides with the edge cutting material during the ground improvement. It can be deformed to follow the consolidation settlement of the ground, so even if a rigid material with bending tensile strength than sandy soil is used as the embankment material, it can be used for embankment against the consolidation settlement shape of soft ground Deformation followability can be given, and the embankment load can be effectively applied to the soft ground.

上記圧密地盤改良工法において前記縁切り材料は、板状部材、シート状部材、または、袋詰め材料であることが好ましい。また、前記剛質材料は、締め固めた雪、氷、または固化処理土であることが好ましい。   In the consolidation ground improvement method, the edge cutting material is preferably a plate-like member, a sheet-like member, or a bagging material. The rigid material is preferably compacted snow, ice, or solidified soil.

上記目的を達成するための第2の圧密地盤改良工法は、地盤改良対象の地盤に盛土による荷重を載せる圧密地盤改良工法であって、砂質土よりも曲げ引張り強度がある剛質材料を盛土に用い、前記盛土の法肩近傍において天端から底面近傍まで延びる空洞部を形成することにより、地盤改良中に前記盛土が前記空洞部で変形をして地盤の圧密沈下に追随して変形可能であることを特徴とする。   The second consolidation ground improvement method to achieve the above purpose is a consolidation ground improvement method in which a load by embankment is placed on the ground to be ground improvement, and a rigid material having a bending tensile strength than sandy soil is embanked. By forming a cavity that extends from the top to the bottom near the shoulder of the embankment, the embankment deforms in the cavity during ground improvement and can follow the consolidation settlement of the ground. It is characterized by being.

この圧密地盤改良工法によれば、剛質材料からなる盛土の天端から底面近傍まで延びる空洞部を形成しておくことで、地盤改良中に、盛土が空洞部で倒れ込んで大きく変形できるため地盤の圧密沈下に追随して変形でき、このため、砂質土よりも曲げ引張り強度がある剛質材料を盛土材料として用いても、軟弱地盤の圧密沈下形状に対して盛土に変形追随性を与えることができ、盛土荷重を効果的に軟弱地盤に作用させることができる。   According to this consolidation ground improvement method, by forming a cavity that extends from the top of the embankment made of a rigid material to the vicinity of the bottom, the embankment can collapse and greatly deform in the cavity during ground improvement. Therefore, even if a rigid material that has a bending tensile strength than sandy soil is used as the embankment material, it gives deformation conformability to the embankment shape of the soft ground. The embankment load can be effectively applied to the soft ground.

上記圧密地盤改良工法において前記剛質材料は、締め固めた雪、氷、または固化処理土であることが好ましい。   In the consolidation ground improvement method, the rigid material is preferably compacted snow, ice, or solidified soil.

また、上記第1,第2の圧密地盤改良工法において前記盛土の設置前に地盤中にドレーン材を打設することが好ましく、この場合、真空ポンプを用いた真空圧密地盤改良工法を併用することが好ましい。なお、真空圧密を併用する場合は、ドレーン材の打設後、盛土の設置前に真空圧密改良工程を開始する。   In the first and second consolidation ground improvement methods, it is preferable to place a drain material in the ground before the embankment is installed. In this case, a vacuum consolidation ground improvement method using a vacuum pump is used in combination. Is preferred. When vacuum consolidation is used together, the vacuum consolidation improvement process is started after the drain material is placed and before the bank is installed.

さらに、前記真空圧密地盤改良工法により圧密度50%程度を達成した後に前記盛土を設置することが好ましい。このように、真空圧密による地盤改良が50%完了した後に盛土を設置することにより、盛土後の軟弱地盤の変形が小さくなり、盛土の変形追随性を保ちやすくなり、このため、圧密地盤改良を効率的に行うことができる。   Furthermore, it is preferable to install the embankment after achieving a pressure density of about 50% by the vacuum consolidation ground improvement method. In this way, by installing the embankment after 50% of the ground improvement by vacuum consolidation is completed, the deformation of the soft ground after the embankment becomes smaller and it becomes easier to keep the deformation followability of the embankment. Can be done efficiently.

本発明の圧密地盤改良工法によれば、締め固めた雪や氷や固化処理土などの、砂質土よりも曲げ引張り強度がある剛質材料を盛土材料として用いる場合でも、圧密沈下形状に盛土が追随して変形することができるため、従来の砂を用いた場合と同様に、計画地盤改良域に目標の荷重を作用させることができる。また、重点的に計画改良域に盛土荷重を作用させることができるため、計画改良範囲外の周辺域に対する圧密沈下の影響を極力抑制することができる。   According to the consolidation ground improvement method of the present invention, even when using a rigid material having a bending tensile strength as compared with sandy soil, such as compacted snow, ice, or solidified soil, the embankment is formed into a consolidated settlement shape. Therefore, the target load can be applied to the planned ground improvement area as in the case of using conventional sand. Further, since the embankment load can be applied to the planned improvement area, the influence of consolidation settlement on the surrounding area outside the planned improvement area can be suppressed as much as possible.

第1の実施形態の圧密地盤改良工法を説明するために初期時の盛土を概略的に示す側面図(a)及び同じく圧密地盤改良後の盛土を概略的に示す側面図(b)である。In order to explain the consolidation ground improvement construction method of a 1st embodiment, it is a side view (a) showing roughly embankment at the initial stage, and a side view (b) showing roughly embankment after consolidation ground improvement. 図1の変形例の圧密地盤改良工法を説明するために初期時の盛土を概略的に示す側面図(a)及び同じく圧密地盤改良後の盛土を概略的に示す側面図(b)である。In order to explain the consolidation ground improvement method of the modified example of FIG. 1, a side view (a) schematically showing the initial embankment and a side view (b) schematically showing the embankment after the consolidation ground improvement. 本実施形態において縁切り材料の設置位置と地盤改良深度とを示す図1(a)と同様の側面図である。It is a side view similar to Fig.1 (a) which shows the installation position and edge improvement depth of edge cutting material in this embodiment. 図3と同じく図2(a)と同様の側面図である。FIG. 4 is a side view similar to FIG. 3 but similar to FIG. 第2の実施形態の圧密地盤改良工法を説明するために初期時の盛土を概略的に示す側面図(a)及び同じく圧密地盤改良後の盛土を概略的に示す側面図(b)である。In order to explain the consolidation ground improvement construction method of the second embodiment, a side view (a) schematically showing the initial embankment and a side view (b) schematically showing the embankment after the consolidation ground improvement. 図3(a)の盛土を上面からみた上面図である。It is the top view which looked at the embankment of Drawing 3 (a) from the upper surface. 第3の実施形態の圧密地盤改良工法を説明するために初期時の盛土を概略的に示す側面図(a)及び同じく圧密地盤改良後の盛土を概略的に示す側面図(b)である。In order to explain the consolidation ground improvement method of the third embodiment, a side view (a) schematically showing the initial embankment and a side view (b) schematically showing the embankment after the consolidation ground improvement. 本各実施形態の剛質材料として適用可能な締め固め雪の引張り曲げ強度を得るための曲げ引張り強度試験の実験装置を概略的に示す図である。It is a figure which shows roughly the experimental apparatus of the bending tensile strength test for obtaining the tensile bending strength of the compacted snow applicable as a rigid material of each embodiment. 従来の盛土による載荷重工法を説明するための盛土の概略的な側面図である。It is a schematic side view of the embankment for demonstrating the conventional loading method by embankment. 従来の載荷重工法において盛土材料として剛質材料を用いた場合の問題を説明するための図9と同様の側面図である。It is a side view similar to FIG. 9 for demonstrating the problem at the time of using a rigid material as a banking material in the conventional loading method. 図2の変形例の圧密地盤改良工法を説明するために初期時の盛土を概略的に示す側面図である。It is a side view which shows roughly the embankment of the initial stage in order to demonstrate the consolidation ground improvement construction method of the modification of FIG.

以下、本発明を実施するための形態について図面を用いて説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

〈第1の実施形態〉
図1は第1の実施形態の圧密地盤改良工法を説明するために初期時の盛土を概略的に示す側面図(a)及び同じく圧密地盤改良後の盛土を概略的に示す側面図(b)である。
<First Embodiment>
FIG. 1 is a side view schematically showing an embankment at the initial stage in order to explain the consolidation ground improvement method of the first embodiment, and a side view schematically showing the embankment after the consolidation ground improvement (b). It is.

図1(a)のように、軟弱地盤Gの上に台形状の盛土10を形成し、盛土10は、シート1,2によって複数の盛土部分11,12,13に区分けされている。盛土材料は、砂質土よりも曲げ引張り強度が高く、曲げ剛性のある材料であり、例えば、締め固めた雪であるが、氷やセメント等による固化処理土等であってもよい。また、シート1,2は、ビニールシートであってよいが、他の材料からなるシート材であってもよく、また、板材や土のうなどの袋詰め材料等であってもよく、剛質材料が固着せずに剛質材料に対し滑りやすい材料が好ましい。   As shown in FIG. 1A, a trapezoidal embankment 10 is formed on a soft ground G, and the embankment 10 is divided into a plurality of embankment portions 11, 12, and 13 by sheets 1 and 2. The embankment material is a material having higher bending tensile strength and higher bending rigidity than sandy soil, and is, for example, compacted snow, but may be solidified soil such as ice or cement. In addition, the sheets 1 and 2 may be vinyl sheets, but may be sheet materials made of other materials, and may be bagging materials such as plate materials and sandbags. A material that does not stick and is slippery with respect to the rigid material is preferable.

まず、図1(a)の中央の盛土部分12を台形状に形成する。盛土部分12の傾斜面に縁切り材料としてシート1,2を敷設してから、その両脇にシート1,2に接するように盛土部分11,13を形成することで、シート1,2により区分けされた複数の盛土部分11,12,13からなる計画形状の盛土10を軟弱地盤Gの上に設置することができる。このとき、シート1,2は盛土10の天端から底面まで延びている。盛土部分11,12はそれらの間にシート1が介在しているため相対的にすべり易くなっており、圧密沈下によって容易に滑り変形する。盛土部分12,13も同様に相対的にすべり易くなっており、圧密沈下によって容易に滑り変形する。なお、シート1,2は、中央の台形状の盛土部分12の両端部に敷設してよいが、盛土部分12を包囲するように敷設してもよい。   First, the central embankment portion 12 in FIG. 1A is formed in a trapezoidal shape. After the sheets 1 and 2 are laid as the edge cutting material on the inclined surface of the embankment portion 12, the embankment portions 11 and 13 are formed so as to contact the sheets 1 and 2 on both sides thereof, thereby being separated by the sheets 1 and 2. Moreover, the embankment 10 having a planned shape composed of a plurality of embankment portions 11, 12, and 13 can be installed on the soft ground G. At this time, the sheets 1 and 2 extend from the top edge of the embankment 10 to the bottom surface. The embankment portions 11 and 12 are relatively slippery because the sheet 1 is interposed therebetween, and easily slip and deform due to consolidation settlement. Similarly, the embankment portions 12 and 13 are relatively easy to slide, and easily slip and deform due to consolidation settlement. The sheets 1 and 2 may be laid at both ends of the central trapezoidal embankment portion 12, but may be laid so as to surround the embankment portion 12.

上述のように、軟弱地盤G上の盛土10の載荷重により軟弱地盤Gの圧密が進行し、図1(b)のように、地盤改良中央部Cを中心にして圧密沈下が生じ、その地盤表面Sが窪地状に変形する。そして、その圧密沈下による地盤表面Sの変形に対応して、中央の盛土部分12が両脇の盛土部分11,13に対しシート1,2で滑るようにして相対的にスムーズに変形しながら沈下し、その結果、図1(b)のように、各盛土部分11,12,13が、変形した窪地状の圧密沈下形状に沿うようにして地盤表面Sに載り続けることができる。   As described above, the consolidation of the soft ground G progresses due to the loading load of the embankment 10 on the soft ground G, and as shown in FIG. 1B, consolidation settlement occurs around the ground improvement center C. The surface S is deformed into a depression shape. Corresponding to the deformation of the ground surface S due to the consolidation settlement, the central embankment portion 12 slides with the sheets 1 and 2 with respect to the embankment portions 11 and 13 on both sides, and the subsidence is deformed relatively smoothly. As a result, as shown in FIG. 1 (b), the embankment portions 11, 12, and 13 can continue to be placed on the ground surface S so as to follow the deformed depression-like consolidated settlement shape.

次に、図1の変形例について図2を参照して説明する。図2は、図1の変形例の圧密地盤改良工法を説明するために初期時の盛土を概略的に示す側面図(a)及び同じく圧密地盤改良後の盛土を概略的に示す側面図(b)である。   Next, a modification of FIG. 1 will be described with reference to FIG. FIG. 2 is a side view (a) schematically showing the initial embankment and a side view (b) schematically showing the embankment after improvement of the consolidation ground in order to explain the consolidation ground improvement method of the modified example of FIG. ).

本例は、図2(a)のように、軟弱地盤Gの上に台形状の盛土20を形成し、盛土20は、シート3,4によって複数の盛土部分21,22,23に区分けされているものである。なお、盛土材料、シート3,4は、図1と同様のものであってよい。   In this example, as shown in FIG. 2A, a trapezoidal embankment 20 is formed on a soft ground G, and the embankment 20 is divided into a plurality of embankment portions 21, 22, 23 by sheets 3, 4. It is what. The embankment material and the sheets 3 and 4 may be the same as those in FIG.

まず、図2(a)の両脇の盛土部分21,23をそれぞれ台形状に形成する。盛土部分21,23の内側の互いに対向する各傾斜面に縁切り材料としてシート3,4を敷設してから、その間にシート3,4に接するように中央の盛土部分22を形成することで、シート3,4により区分けされた複数の盛土部分21,22,23からなる計画形状の盛土20を軟弱地盤Gの上に設置することができる。このとき、シート3,4は盛土20の天端から底面まで延びている。   First, the embankment portions 21 and 23 on both sides of FIG. 2A are each formed in a trapezoidal shape. By laying sheets 3 and 4 as edge-cutting materials on the inclined surfaces facing each other inside the embankment portions 21 and 23, the center embankment portion 22 is formed so as to be in contact with the sheets 3 and 4 therebetween. The embankment 20 having a planned shape composed of a plurality of embankment parts 21, 22, 23 divided by 3, 4 can be installed on the soft ground G. At this time, the sheets 3 and 4 extend from the top edge of the embankment 20 to the bottom surface.

上述のようにして軟弱地盤G上の盛土20の載荷重により軟弱地盤Gの圧密が進行し、図2(b)のように、地盤改良中央部Cを中心にして圧密沈下が生じ、その地盤表面Sが窪地状に変形する。そして、その圧密沈下による地盤表面Sの変形に対応して、中央の盛土部分22が両脇の盛土部分21,23に対しシート3,4で滑るようにして相対的にスムーズに変形しながら沈下し、その結果、図2(b)のように、各盛土部分21,22,23が、変形した窪地状の圧密沈下形状に沿うようにして地盤表面Sに載り続けることができる。   As described above, the consolidation of the soft ground G progresses due to the loading load of the embankment 20 on the soft ground G, and as shown in FIG. 2B, consolidation subsidence occurs around the ground improvement center C, and the ground. The surface S is deformed into a depression shape. Then, in response to the deformation of the ground surface S due to the consolidation settlement, the central embankment portion 22 slides with the sheets 3 and 4 with respect to the embankment portions 21 and 23 on both sides, and the subsidence is deformed relatively smoothly. As a result, as shown in FIG. 2B, each embankment portion 21, 22, 23 can continue to be placed on the ground surface S so as to follow the deformed depression-like consolidated settlement shape.

以上のように、本実施形態の圧密地盤改良工法によれば、複数に区分けされた盛土部分からなる盛土は、各盛土部分がシートにより区分けされ、シートで滑り変形を起こすため、圧密の進行により生じる地盤表面Sの圧密沈下に追随して変形することができる。したがって、砂質土よりも曲げ引張り強度が高い剛質材料を盛土材料として用いた場合でも、従来の砂を用いた場合と同様に、計画地盤改良域に目標の荷重を確実に作用させることができる。また、重点的に計画改良域に盛土荷重を作用させることができるため、計画改良範囲外の周辺域に対する圧密沈下の影響を極力抑制することができる。   As described above, according to the consolidation ground improvement method of the present embodiment, the embankment made up of a plurality of embankment portions is divided by the sheet, causing slip deformation in the sheet, and therefore, as the consolidation progresses, The resulting ground surface S can be deformed following the consolidation settlement. Therefore, even when a rigid material having a higher bending tensile strength than sandy soil is used as the embankment material, the target load can be reliably applied to the planned ground improvement area as in the case of using conventional sand. it can. Further, since the embankment load can be applied to the planned improvement area, the influence of consolidation settlement on the surrounding area outside the planned improvement area can be suppressed as much as possible.

次に、図1,図2において、縁切り材料(シート)の好ましい設置位置について図3,図4を参照して説明する。図3は本実施形態において縁切り材料の設置位置と地盤改良深度とを示す図1(a)と同様の側面図である。図4は同じく図2(a)と同様の側面図である。   Next, referring to FIGS. 3 and 4, a preferred installation position of the edge cutting material (sheet) in FIGS. 1 and 2 will be described. FIG. 3 is a side view similar to FIG. 1A showing the installation position of the edge cutting material and the ground improvement depth in the present embodiment. FIG. 4 is a side view similar to FIG.

図3のように、シート1,2を設置した図1(a)の盛土10の場合、盛土10の底面におけるシート1,2の位置6から盛土10の端部7までの距離B1(両側の盛土部分11,13の底面における幅)は、改良対象域の地盤改良深度Hよりも短い(B1<H)ことが好ましい。   As shown in FIG. 3, in the case of the embankment 10 in FIG. 1A in which the sheets 1 and 2 are installed, a distance B <b> 1 (on the both sides The width at the bottom of the embankment portions 11 and 13 is preferably shorter than the ground improvement depth H of the improvement target area (B1 <H).

また、図4のように、シート3,4を設置した図2(a)の盛土20の場合、盛土20の底面におけるシート3,4の位置8から盛土20の端部9までの距離B2(両側の盛土部分21,23の底面における幅)は、改良対象域の地盤改良深度Hよりも短い(B2<H)ことが好ましい。   Further, as shown in FIG. 4, in the case of the embankment 20 in FIG. 2A in which the sheets 3 and 4 are installed, a distance B <b> 2 (from the position 8 of the sheets 3 and 4 on the bottom surface of the embankment 20 to the end 9 of the embankment 20 ( The width at the bottom of the embankment portions 21 and 23 on both sides is preferably shorter than the ground improvement depth H in the improvement target area (B2 <H).

〈第2の実施形態〉
図5は第2の実施形態の圧密地盤改良工法を説明するために初期時の盛土を概略的に示す側面図(a)及び同じく圧密地盤改良後の盛土を概略的に示す側面図(b)である。
<Second Embodiment>
FIG. 5 is a side view (a) schematically showing the embankment at the initial stage in order to explain the consolidation ground improvement method of the second embodiment, and a side view (b) schematically showing the embankment after the consolidation ground improvement. It is.

本実施形態の圧密地盤改良工法は、図1,図2のシートの代わりに、剛質材料からなる盛土に空洞部を設けるものである。すなわち、図5(a)のように、軟弱地盤Gの上に台形状の盛土30を形成し、盛土30には、天端30aから底面近傍まで延びるように空洞部として溝状部31,32が形成されている。なお、盛土材料は、図1と同様のものであってよい。   In the consolidation ground improvement method of this embodiment, a hollow portion is provided in an embankment made of a rigid material instead of the sheets shown in FIGS. That is, as shown in FIG. 5A, a trapezoidal embankment 30 is formed on the soft ground G, and the embankment 30 has groove-shaped portions 31 and 32 as hollow portions so as to extend from the top end 30a to the vicinity of the bottom surface. Is formed. The embankment material may be the same as that shown in FIG.

軟弱地盤G中に公知のドレーン材(図示省略)を打設してから、計画形状の盛土30を軟弱地盤Gの上に形成する。盛土30の天端30aの法肩部近傍において天端30aから底面近傍まで掘削し、複数の溝状部31,32を形成する。   A known drain material (not shown) is placed in the soft ground G, and then the planned-shaped embankment 30 is formed on the soft ground G. Excavation is carried out from the top end 30a to the vicinity of the bottom surface in the vicinity of the shoulder portion of the top end 30a of the embankment 30 to form a plurality of groove portions 31 and 32.

上述のようにして軟弱地盤G上の盛土30の載荷重により軟弱地盤Gの圧密が進行し、図5(b)のように、地盤改良中央部Cを中心にして圧密沈下が生じ、その地盤表面Sが窪地状に変形する。そして、その圧密沈下による地盤表面Sの変形に対応して、図5(b)のように、盛土30の外側部34,35が空洞の溝状部31,32側に倒れ込みながら容易に変形し、盛土30の中央部33が外側部34,35に対し相対的に変形しながら沈下し、その結果、盛土30の中央部33及び外側部34,35が、変形した窪地状の圧密沈下形状に沿うようにして地盤表面Sに載り続けることができる。   As described above, the consolidation of the soft ground G proceeds due to the loading of the embankment 30 on the soft ground G, and as shown in FIG. 5B, consolidation settlement occurs around the ground improvement center C, and the ground. The surface S is deformed into a depression shape. Corresponding to the deformation of the ground surface S due to the consolidation settlement, the outer portions 34 and 35 of the embankment 30 are easily deformed while falling toward the hollow groove-shaped portions 31 and 32 as shown in FIG. The central portion 33 of the embankment 30 sinks while being deformed relative to the outer portions 34 and 35, and as a result, the central portion 33 and the outer portions 34 and 35 of the embankment 30 are deformed into a depressed depression-like consolidated subsidence shape. It can continue on the ground surface S so that it may follow.

以上のように、本実施形態の圧密地盤改良工法によれば、盛土に天端から底面近傍まで延びる空洞部である溝状部を形成することで、盛土は、圧密の進行により生じる地盤表面Sの圧密沈下に追随して変形することができる。したがって、砂質土よりも曲げ引張り強度が高い剛質材料を盛土材料として用いた場合でも、従来の砂を用いた場合と同様に、計画地盤改良域に目標の荷重を確実に作用させることができる。また、重点的に計画改良域に盛土荷重を作用させることができるため、計画改良範囲外の周辺域に対する圧密沈下の影響を極力抑制することができる。   As described above, according to the consolidation ground improvement method of the present embodiment, the embankment is formed with a groove-like portion that is a hollow portion extending from the top to the vicinity of the bottom surface. It can be deformed following the consolidation settlement. Therefore, even when a rigid material having a higher bending tensile strength than sandy soil is used as the embankment material, the target load can be reliably applied to the planned ground improvement area as in the case of using conventional sand. it can. Further, since the embankment load can be applied to the planned improvement area, the influence of consolidation settlement on the surrounding area outside the planned improvement area can be suppressed as much as possible.

なお、図5(a)の溝状部31,32は、図6の上面図のように、盛土30の両端部に形成してよいが、破線で示す溝状部31a、32aを加えて、一周するように形成してもよく、また、連続的に形成してよいが、断続的に形成してもよく、例えば、溝状部31,32を破線の断続部31b,32bを設け、断続的に形成してもよい。また、溝状部31,32は、天端から底面まで鉛直方向に形成してよいが、傾斜して形成してもよく、さらに、溝状部31,32の縦方向断面は、図5(a)のように略長方形状であるが、これに限定されず、地盤の安定性や施工性を考慮して、例えば、天端30a側が広く底部側が狭くなる逆三角形状に形成してもよい。   In addition, although the groove-shaped parts 31 and 32 of Fig.5 (a) may be formed in the both ends of the embankment 30 like the top view of FIG. 6, in addition to the groove-shaped parts 31a and 32a shown with a broken line, It may be formed so as to make a round, or may be formed continuously, but may be formed intermittently. For example, the groove portions 31 and 32 are provided with broken intermittent portions 31b and 32b, and intermittently formed. It may be formed automatically. Moreover, although the groove-like parts 31 and 32 may be formed in the vertical direction from the top to the bottom, they may be formed to be inclined, and the longitudinal section of the groove-like parts 31 and 32 is shown in FIG. Although it is a substantially rectangular shape as in a), it is not limited to this, and may be formed in an inverted triangular shape in which the top end 30a side is wide and the bottom side side is narrow in consideration of the stability and workability of the ground, for example. .

〈第3の実施形態〉
図7は第3の実施形態の圧密地盤改良工法を説明するために初期時の盛土を概略的に示す側面図(a)及び同じく圧密地盤改良後の盛土を概略的に示す側面図(b)である。
<Third Embodiment>
FIG. 7: is a side view (a) which shows the embankment of the initial stage schematically in order to explain the consolidation ground improvement construction method of 3rd Embodiment, and a side view (b) which also shows the embankment after consolidation ground improvement similarly It is.

本実施形態の圧密地盤改良工法は、図1または図2の圧密地盤改良工法に真空ポンプを用いた真空圧密地盤改良工法を併用するものである。すなわち、図7(a)のように、図1(a)または図2(a)の盛土10,20を設置する前に、軟弱地盤G中に透水性を有する複数本のドレーン材41を所定間隔で打設する。ドレーン材41には気密性キャップ42を介して排水ホース43が連結される。ドレーン材41が軟弱地盤G中に気密性キャップ42が地盤表面とほぼ同一高さとなるように挿入される。排水ホース43は集水管44に連結され、集水管44が真空ポンプPに連通する。なお、ドレーン材41や気密性キャップ42は、例えば、本出願人による上記特許文献2,3で開示されたものを用いることができる。   The consolidation ground improvement method of the present embodiment is a combination of the consolidation ground improvement method of FIG. 1 or FIG. 2 and the vacuum consolidation ground improvement method using a vacuum pump. That is, as shown in FIG. 7 (a), before installing the embankments 10 and 20 of FIG. 1 (a) or 2 (a), a plurality of drain materials 41 having water permeability in the soft ground G are predetermined. Place at intervals. A drain hose 43 is connected to the drain material 41 via an airtight cap 42. The drain material 41 is inserted into the soft ground G so that the airtight cap 42 is almost at the same height as the ground surface. The drain hose 43 is connected to the water collection pipe 44, and the water collection pipe 44 communicates with the vacuum pump P. In addition, the drain material 41 and the airtight cap 42 can use what was disclosed by the said patent documents 2 and 3 by this applicant, for example.

図7(a)の真空ポンプPを作動させると、負圧作用により地盤表面Sから大気圧が外力として加わることで真空圧密が進行し地盤改良を行う。この真空圧密工法を前もって実行し、地盤表面Sがある程度沈下してから、図7(b)のように、例えば、図1(a)と同様にしてシート1,2とともに盛土10を設置する。盛土材料としては例えば雪を用いて地盤表面Sに盛って、盛土10として締め固める。真空ポンプPの作動を続けることで真空圧密工程を引き続き行う。   When the vacuum pump P shown in FIG. 7A is operated, vacuum compaction progresses by applying atmospheric pressure as an external force from the ground surface S due to negative pressure action, thereby improving the ground. After this vacuum consolidation method is executed in advance and the ground surface S has settled to some extent, the embankment 10 is installed together with the sheets 1 and 2 as shown in FIG. As the embankment material, for example, snow is used to fill the ground surface S, and the embedding material 10 is compacted. By continuing the operation of the vacuum pump P, the vacuum compaction process is continued.

本実施形態では、軟弱地盤Gに対し盛土10による載荷重に加えて真空圧密による大気圧が外力として加わることで圧密地盤改良をより効率的に実行することができる。   In this embodiment, in addition to the loading load by the embankment 10 with respect to the soft ground G, the atmospheric pressure by vacuum consolidation is added as an external force, and consolidation ground improvement can be performed more efficiently.

また、盛土の設置前に真空圧密をある程度実行し、真空圧密による地盤沈下がある程度生じてから盛土を設置することで、盛土設置後の軟弱地盤の変形の程度が小さくなり、盛土の変形追随性を保ちやすくなる。このため、例えば、真空圧密の工程を圧密度が50%に達するまで行い、その後、盛土を設置することが好ましい。   In addition, vacuum consolidation is performed to some extent before the embankment is installed, and the embankment is installed after a certain amount of ground subsidence has occurred due to vacuum consolidation. It becomes easy to keep. For this reason, for example, it is preferable to perform a vacuum consolidation process until the compaction density reaches 50%, and then install embankment.

本実施形態の真空圧密工法と載荷重工法との併用によれば、複数に区分けされた盛土部分からなる盛土は各盛土部分がシートにより区分けされ、シートで滑り変形を起こすため、圧密の進行により生じる地盤表面Sの圧密沈下に追随して変形することができる。したがって、砂質土よりも曲げ引張り強度が高い剛質材料を盛土材料として用いた場合でも、従来の砂を用いた場合と同様に、計画地盤改良域に目標の荷重を確実に作用させることができる。特に、真空圧密工法を併用する場合、真空圧密による沈下の進行に盛土が変形追随できるため、軟弱地盤と盛土との間に空洞を生じることがなく、圧密改良を効率的に行うことができる。また、重点的に計画改良域に盛土荷重を作用させることができるため、計画改良範囲外の周辺域に対する圧密沈下の影響を極力抑制することができる。   According to the combined use of the vacuum consolidation method and the load-loading method of this embodiment, the embankment composed of a plurality of embankment parts is divided by the sheet, and each sheet part is slid by the sheet. The resulting ground surface S can be deformed following the consolidation settlement. Therefore, even when a rigid material having a higher bending tensile strength than sandy soil is used as the embankment material, the target load can be reliably applied to the planned ground improvement area as in the case of using conventional sand. it can. In particular, when the vacuum consolidation method is used in combination, the embankment can follow the progress of subsidence due to vacuum consolidation, so that no cavity is formed between the soft ground and the embankment, and consolidation can be improved efficiently. Further, since the embankment load can be applied to the planned improvement area, the influence of consolidation settlement on the surrounding area outside the planned improvement area can be suppressed as much as possible.

次に、本実施形態において盛土材料として使用可能な剛質材料の例として雪、氷について検討する。載荷重工法では盛土材料として高い密度を持つ材料が好適であり、雪を載荷重として用いる場合、雪の限界密度を考慮しながら必要に応じて締め固めを行い、密度を0.4〜0.6g/cm3程度に調整して用いることが望ましい。ただし、このような高密度の雪は高い曲げ引張り強度を持つため、軟弱地盤の圧密地盤改良時において窪地状の圧密沈下形状や局所的な地形変化に雪の変形が追随できず、荷重が地盤に効果的に伝わらない問題があるが、図1,図2,図7の本実施形態によれば、かかる問題を解決することができる。 Next, snow and ice will be considered as examples of rigid materials that can be used as embankment materials in the present embodiment. In the loading method, a material with high density is suitable as the embankment material, and when snow is used as the loading load, it is compacted as necessary while considering the limit density of snow, and the density is 0.4 to 0.6 g / cm. It is desirable to adjust to about 3 for use. However, since such high-density snow has a high bending tensile strength, when the soft ground is improved, the deformation of the snow cannot follow the depression-like consolidated settlement shape or local topographical changes, and the load is applied to the ground. However, according to the present embodiment shown in FIGS. 1, 2, and 7, such a problem can be solved.

ここで、雪の密度は、雪質によって異なり、新雪では0.05〜0.1g/cm3程度、しまり雪やざらめ雪では0.3〜0.5 g/cm3程度となる。また、氷は0.8〜0.9g/cm3程度の密度を持つ(渡辺興亜(1982) 講座「土質工学における雪と氷」4.積雪の分布とその性質、土と基礎、30-8(295)、77〜85頁参照)。 Here, the density of the snow depends snow quality, 0.05 to 0.1 / cm 3 approximately in the fresh snow, is about 0.3 to 0.5 g / cm 3 in the tightening snow and coarse snow. Ice has a density of about 0.8 to 0.9 g / cm 3 (Kobe Watanabe (1982), “Snow and ice in geotechnical engineering”) 4. Distribution and properties of snow, soil and foundation, 30-8 (295) 77-85).

荷重の作用下で雪は圧縮に伴って密度が増加する性質を持つが、いくら大きな荷重をかけて密度変化が生じても、ある一定の値を超えない限界密度があり、限界密度は、かわき新雪では、0.35g/cm3、かわき結合雪では、0.6g/cm3となる(上記渡辺興亜の文献参照)。すなわち、雪を締め固めて盛土材に用いる場合、締め固めによって期待できる最大密度はその雪の限界密度に一致する。 Snow has the property that the density increases with compression under the action of a load, but there is a limit density that does not exceed a certain value no matter how large the load changes and the density change occurs. In fresh snow, it is 0.35 g / cm 3 , and in snow-bound snow, it is 0.6 g / cm 3 (see Watanabe Koa's reference). That is, when the snow is compacted and used as a banking material, the maximum density that can be expected by compaction matches the limit density of the snow.

雪・氷・固化処理土の曲げ引張り強度に関し、次の表1に、しまり雪、締固め雪、セメント固化処理土の各曲げ引張強度を砂質土と比較して示す。   Regarding the bending tensile strength of snow / ice / solidified soil, the following Table 1 shows the bending tensile strength of hard snow, compacted snow, and cement solidified soil in comparison with sandy soil.

Figure 0005306121
Figure 0005306121

上記表1から雪及びセメント固化処理土は、比較的高い大きな曲げ引張強度を有し、砂質土よりも高いことがわかり、砂質土よりも曲げ剛性のある剛質材料であることがわかる。   From Table 1 above, it can be seen that the snow and cement-solidified soil has a relatively high bending tensile strength, is higher than sandy soil, and is a rigid material having bending rigidity than sandy soil. .

上記表1の締め固め雪の曲げ引張り強度試験は以下の手順で行った。
(1)室温を10°以下に保った実験室内で、かき氷器を用いて氷を細かく削り、雪に見立てられるような材料を作成する。
(2)材料の密度が0.55g/cm3程度となるように締め固めながら,10cm角×長さ40cmの鉄製の型枠に雪を詰める。
(3)図8に示すように、型枠から取り外した締め固めた雪を支点間に単純梁状に設置してから、梁状の締め固めた雪の中央部に、載荷を少しずつ増やしながら与え、破壊時の荷量および梁の形状より雪の曲げ引張り強度を求め、実験結果を得る。
The bending tensile strength test of the compacted snow shown in Table 1 was performed according to the following procedure.
(1) In a laboratory where the room temperature is kept at 10 ° or less, use a shaved ice machine to cut the ice finely and create a material that can be likened to snow.
(2) While compacting the material so that the density is about 0.55 g / cm 3 , snow is packed into a 10 cm square × 40 cm long iron formwork.
(3) As shown in Fig. 8, install the compacted snow removed from the formwork in a simple beam shape between the fulcrums, and gradually increase the load to the central part of the beam-shaped compacted snow. Given, the bending tensile strength of snow is obtained from the load at the time of fracture and the shape of the beam, and the experimental results are obtained.

以上のように本発明を実施するための形態について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。例えば、図1では盛土10を盛土部分11,12,13に区分けし、図2では盛土20を盛土部分21,22,23に区分けしたが、さらにシートを追加して区分けの数を増やしてもよいことはもちろんである。例えば、図11のように、図2(a)に盛土部分を追加してもよい。   As described above, the modes for carrying out the present invention have been described. However, the present invention is not limited to these, and various modifications can be made within the scope of the technical idea of the present invention. For example, in FIG. 1, the bank 10 is divided into the bank parts 11, 12, and 13, and in FIG. 2, the bank 20 is partitioned into the bank parts 21, 22, and 23. Of course it is good. For example, as shown in FIG. 11, a banking portion may be added to FIG.

すなわち、図11の軟弱地盤G上の盛土50は、シート5,6,7,8によって複数の盛土部分51,52,53,54,55に区分けされており、圧密沈下による地盤表面の変形に対応して、内側の盛土部分52,53,54が両脇の盛土部分に対しシート5〜8で滑るようにして相対的にスムーズに変形しながら沈下し、各盛土部分51〜55が、変形した窪地状の圧密沈下形状に沿うようにして地盤表面に載り続けることができる。なお、盛土材料、シート5〜8は、図1と同様のものであってよい。   That is, the embankment 50 on the soft ground G in FIG. 11 is divided into a plurality of embankment portions 51, 52, 53, 54, and 55 by the sheets 5, 6, 7, and 8, and the deformation of the ground surface due to consolidation settlement is caused. Correspondingly, the inner embankment portions 52, 53, 54 sink relative to the embankment portions on both sides with the sheets 5 to 8 while being deformed relatively smoothly, and the embankment portions 51 to 55 are deformed. It is possible to continue to be placed on the ground surface so as to follow the depressed depression-like consolidation shape. The embankment material and sheets 5 to 8 may be the same as those shown in FIG.

また、縁切り材料として、土のうなどの袋詰め材料を用いる場合、図1(a)の中央部の盛土部分12と縁切り部と端部の盛土部分11,13との天端高を一定に保ちながら、多段階に盛土を層状に積み上げるような施工方法であってもよい。   Further, when using a bag filling material such as a sandbag as the edge cutting material, the top edge height of the embankment portion 12 at the center of FIG. 1A and the edge cut portions 11 and 13 at the end portions is kept constant. The construction method may be to pile up the embankment in multiple stages.

なお、本明細書において、砂質土とは、粘性土に対し、非粘性土の意味で用いており、その曲げ引張り強度は、上記表1のように、ほぼ0である。   In this specification, sandy soil is used in the meaning of non-viscous soil with respect to viscous soil, and its bending tensile strength is almost 0 as shown in Table 1 above.

また、圧密度とは、荷重によって地盤内に生じる過剰間隙水圧が完全に消散した状態を圧密度100%とし、任意の時点における圧密の進行の程度を百分比で表した指標である。   The compaction is an index that expresses the degree of consolidation at a given time as a percentage, with 100% being the state in which excess pore water pressure generated in the ground is completely dissipated by the load.

また、図1、図2、図7、図11において、圧密による地盤改良工程が終了すると、盛土及びシートや板材や袋詰め材料等の縁切り材料は除去される。なお、例えば、廃棄物処分場では、廃棄物の搬入量に従って一部をシートで覆って区分けする場合があるが、この場合は、本発明ではシートで区分けされた盛土部分を滑り変形させ、シートが後に除去されるのに対し、廃棄物の漏洩防止のため半永久的にシートで覆うものである点で本発明と相違する。また、道路等の盛土材料として軽量固化処理土(気泡やプラスチックビーズ混入など)を袋詰めにして用いる場合があるが、本発明では袋詰め材料で区分けされた盛土部分を滑り変形させ、袋詰め材料が後に除去されるのに対し、この場合の袋詰め材料は道路盛土の一部として半永久的に使用される点で本発明と相違する。   Moreover, in FIG.1, FIG.2, FIG.7, FIG. 11, when the ground improvement process by consolidation is complete | finished, embankment and edge cutting materials, such as a sheet | seat, a board | plate material, and a bagging material, are removed. For example, in a waste disposal site, there is a case where a part is covered with a sheet according to the amount of waste carried, and in this case, in the present invention, the embankment part divided by the sheet is slid and deformed, and the sheet Is removed later, but it is semi-permanently covered with a sheet to prevent waste leakage, which is different from the present invention. In some cases, lightweight solidified soil (such as air bubbles or plastic beads) is used as a filling material for roads, etc., in a bag, but in the present invention, the embankment section divided by the bagging material is slid and deformed. The material is later removed, whereas the bagging material in this case differs from the present invention in that it is used semi-permanently as part of the road embankment.

本発明によれば、盛土による載荷重工法によって軟弱地盤の圧密改良を行う場合、盛土材料として一般的な砂に代わる材料として、例えば、締め固めた雪や氷セメント固化処理土等の、砂質土よりも高い曲げ引張り強度を持つ剛質材料を用いることができ、かかる剛質材料を圧密地盤改良に利用できる。特に、真空圧密工法と載荷重工法とを併用する場合、真空圧密による沈下の進行に盛土が変形追随できるため、圧密地盤改良を効率的に行うことができる。   According to the present invention, when consolidation of soft ground is performed by a load-loading method using embankment, as an alternative to general sand as embankment material, for example, sandy material such as compacted snow or ice cement solidified soil A rigid material having a bending tensile strength higher than that of the soil can be used, and such a rigid material can be used for the consolidation ground improvement. In particular, when the vacuum consolidation method and the loading method are used in combination, the embankment can follow the progress of settlement due to vacuum consolidation, so that the consolidation ground can be improved efficiently.

1,2,3,4 シート(縁切り材料)
10,20,30 盛土
11,12,13 盛土部分
21,22,23 盛土部分
31,32 溝状部(空洞部)
41 ドレーン材
G 軟弱地盤
S 地盤表面
1,2,3,4 sheets (edge cutting material)
10, 20, 30 Embankment 11, 12, 13 Embankment part 21, 22, 23 Embankment part 31, 32 Groove part (hollow part)
41 Drain material G Soft ground S Ground surface

Claims (7)

地盤改良対象の地盤に盛土による荷重を載せる圧密地盤改良工法であって、
砂質土よりも曲げ引張り強度がある剛質材料を盛土に用い、
前記盛土の天端から底面まで縁切り材料を敷設して前記盛土を複数に区分けすることにより、地盤改良中に前記区分けされた盛土が前記縁切り材料で滑り変形を起こして地盤の圧密沈下に追随して変形可能であることを特徴とする圧密地盤改良工法。
A consolidation ground improvement construction method in which a load due to embankment is placed on the ground to be ground improved,
A rigid material that has a bending tensile strength than sandy soil is used for embankment,
By laying edge cutting material from the top to the bottom of the embankment and dividing the embankment into a plurality of sections, the sectioned embankment undergoes sliding deformation with the edge cutting material and follows the consolidation settlement of the ground. A compact ground improvement method characterized by being deformable.
前記縁切り材料は、板状部材、シート状部材、または、袋詰め材料である請求項1に記載の圧密地盤改良工法。   The consolidation ground improvement method according to claim 1, wherein the edge cutting material is a plate-shaped member, a sheet-shaped member, or a bagging material. 地盤改良対象の地盤に盛土による荷重を載せる圧密地盤改良工法であって、
砂質土よりも曲げ引張り強度がある剛質材料を盛土に用い、
前記盛土の法肩近傍において天端から底面近傍まで延びる空洞部を形成することにより、地盤改良中に前記盛土が前記空洞部で変形をして地盤の圧密沈下に追随して変形可能であることを特徴とする圧密地盤改良工法。
A consolidation ground improvement construction method in which a load due to embankment is placed on the ground to be ground improved,
A rigid material that has a bending tensile strength than sandy soil is used for embankment,
By forming a cavity that extends from the top edge to the bottom near the top shoulder of the embankment, the embankment can be deformed in the cavity during ground improvement to follow the consolidation settlement of the ground. Consolidation ground improvement method characterized by
前記剛質材料は、締め固めた雪、氷、または固化処理土である請求項1乃至3のいずれか1項に記載の圧密地盤改良工法。   The consolidation ground improvement method according to any one of claims 1 to 3, wherein the rigid material is compacted snow, ice, or solidified soil. 前記盛土の設置前に地盤中にドレーン材を打設する請求項1乃至4のいずれか1項に記載の圧密地盤改良工法。   The consolidation ground improvement construction method according to any one of claims 1 to 4, wherein a drain material is placed in the ground before the embankment is installed. 真空ポンプを用いた真空圧密地盤改良工法を併用する請求項5に記載の圧密地盤改良工法。   The consolidation ground improvement method according to claim 5, wherein a vacuum consolidation ground improvement method using a vacuum pump is used in combination. 前記真空圧密地盤改良工法により圧密度50%程度を達成した後に前記盛土を設置する請求項6に記載の圧密地盤改良工法。   The consolidation ground improvement construction method according to claim 6, wherein the embankment is installed after achieving a compaction density of about 50% by the vacuum consolidation ground improvement construction method.
JP2009207990A 2009-09-09 2009-09-09 Consolidation ground improvement method Expired - Fee Related JP5306121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009207990A JP5306121B2 (en) 2009-09-09 2009-09-09 Consolidation ground improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009207990A JP5306121B2 (en) 2009-09-09 2009-09-09 Consolidation ground improvement method

Publications (2)

Publication Number Publication Date
JP2011058236A JP2011058236A (en) 2011-03-24
JP5306121B2 true JP5306121B2 (en) 2013-10-02

Family

ID=43946164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009207990A Expired - Fee Related JP5306121B2 (en) 2009-09-09 2009-09-09 Consolidation ground improvement method

Country Status (1)

Country Link
JP (1) JP5306121B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657731A (en) * 1992-08-11 1994-03-01 Fudo Constr Co Ltd Method of preloading construction utilizing ice and snow in cold district
JPH07292650A (en) * 1994-04-27 1995-11-07 Bridgestone Corp Collapse prevention structure of hose-like water bag by ground compaction method
JP3658296B2 (en) * 2000-08-11 2005-06-08 株式会社間組 Ground improvement structure and construction method to control surrounding ground displacement

Also Published As

Publication number Publication date
JP2011058236A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
Otsubo et al. Shaking table tests on liquefaction mitigation of embedded lifelines by backfilling with recycled materials
US10513831B2 (en) Open-end extensible shells and related methods for constructing a support pier
US20130279992A1 (en) Extensible shells and related methods for constructing a support pier
CN106884433A (en) Control vibrations pile pulling causes the structure of underground structure depression and control depression method
CN102425173A (en) Deep foundation pit earthwork digging method
JP2021161785A (en) Ground improvement method and improvement ground structure
US12012715B2 (en) Extensible shells and related methods for constructing a ductile support pier
CN102296591A (en) Rapid drainage solidifying treatment method of soft soil foundation
JP5306121B2 (en) Consolidation ground improvement method
KR101041264B1 (en) Displacement control tunnelling reinforcing structure using pressurizing support
JP6632792B2 (en) Ground improvement method
CN110984216A (en) Horizontal T-shaped reinforced concrete retaining wall and construction method thereof
JP2010037831A (en) Construction method for soil improvement
CA3067544A1 (en) Extensible shells and related methods for constructing a ductile support pier
TWI558887B (en) Construction methods and filling methods for weak sites and sites with liquefaction concerns, as well as structural bags
CN102966089A (en) Plate plug method capable of realizing vibratory compaction
JP6586342B2 (en) Underwater compaction method
KR101342180B1 (en) Hybrid shoe member for extracting pile and extracting method using thereof
Du et al. Study on the Laws of Soil Pressures on Buttressed Retaining Walls of Foamed Lightweight Soil Embankments
KR200424972Y1 (en) Board protecting landslide and construction structure thereof
KR200167842Y1 (en) Pile extracting supporter
Kádár et al. Comparison of deep foundation solutions for embankments with sensitivity analysis using finite element method
CA2993469C (en) Open-bottom extensible shells and related methods for constructing a support pier
JP2007239276A (en) Method of reinforcing banking for filling existing valley and wetland
CN115726344A (en) Construction method for treating soft soil foundation by combining bagged gravel piles with supercharged vacuum preloading

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130625

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5306121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees