JP3658296B2 - Ground improvement structure and construction method to control surrounding ground displacement - Google Patents

Ground improvement structure and construction method to control surrounding ground displacement Download PDF

Info

Publication number
JP3658296B2
JP3658296B2 JP2000243618A JP2000243618A JP3658296B2 JP 3658296 B2 JP3658296 B2 JP 3658296B2 JP 2000243618 A JP2000243618 A JP 2000243618A JP 2000243618 A JP2000243618 A JP 2000243618A JP 3658296 B2 JP3658296 B2 JP 3658296B2
Authority
JP
Japan
Prior art keywords
ground
displacement
drain
sheet material
improvement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000243618A
Other languages
Japanese (ja)
Other versions
JP2002054131A (en
Inventor
哲泱 古賀
睦雄 大野
公明 石原
博保 島
和義 中熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruyama Kogyo KK
Original Assignee
Maruyama Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruyama Kogyo KK filed Critical Maruyama Kogyo KK
Priority to JP2000243618A priority Critical patent/JP3658296B2/en
Publication of JP2002054131A publication Critical patent/JP2002054131A/en
Application granted granted Critical
Publication of JP3658296B2 publication Critical patent/JP3658296B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軟弱地盤に含まれる水を排出することで硬質地盤へ改良する地盤改良構造及び工法に関し、特に、周辺地盤変位を制御しながら地盤改良を行なう工法及び構造に関する。
【0002】
【従来の技術】
軟弱な粘性土地盤を改良するための経済的な工法として真空圧密工法が知られている。かかる真空圧密工法は、複数のドレーン材を改良対象地盤に打設して頭部を地上まで延ばし、これらドレーン材頭部に接触するようにサンドマットやドレーン材などの通水材を敷設し、通水材の下に有孔管を配設してこれに真空ポンプを接続し、ドレーン材頭部と通水材と有孔管とを気密に被覆するように改良対象地盤の全領域に気密性シート材を敷設する。そして、真空ポンプを稼働することにより、シート材で被覆した地盤上に真空圧が作用し、この真空圧は有孔管から通水材を介してドレーン材に伝達し、さらに地盤内に伝わる。かようにして地盤内に真空圧が作用すると、地盤内の水は真空圧により吸引されて、ドレーン材から通水材を介して有孔管に流れて地上に排出される。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来の真空圧密工法では、真空圧密の進行にしたがって周辺地盤の沈下が進むと共に、周辺地盤が改良対象域の中央に向かって水平変位を生じることがあるため、周囲に住宅などの構造物が存在する改良対象域には適用が難しい。
【0004】
本発明は上記従来技術の問題点に着目し、これを解決せんとしたものであり、その課題は、改良対象域の周辺地盤に発生する水平変位や地盤沈下を抑制・制御することができる地盤改良工法および構造を提供することにある。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明では、複数のドレーン材をほぼ鉛直に改良対象地盤中に打設して頭部を地表面まで延設し、該複数のドレーン材の頭部に通水材及び有孔管を配して、その上部をシート材により気密に被覆し、前記シート材で被覆された内部を真空ポンプを用いて減圧し前記改良対象地盤を圧密して改良する工法において、前記改良対象地盤周辺の水平方向の変位を計測しながら、前記変位の増減に応じて前記シート材の上に載荷盛土を積載することにより、前記変位を抑制するように制御することを特徴とする地盤改良工法が提供される。上記地盤改良工法において、水平方向の変位計測は、周辺地盤中の複数の深さごとに計測することが好ましい。
【0006】
また本発明では、複数のドレーン材をほぼ鉛直に改良対象地盤中に打設して頭部を地表面まで延設し、該複数のドレーン材の頭部に通水材及び有孔管を配して、その上部をシート材により気密に被覆し、前記シート材で被覆された内部を真空ポンプを用いて減圧し前記改良対象地盤を圧密して改良する工法において、前記改良対象地盤の周辺地盤において前記ドレーン材に沿って壁体または溝を構築すると共に、該周辺地盤に水平方向の変位を計測する測点を設定し、前記測点における変位を計測しながら、前記ドレーン材から前記通水材及び前記有孔管を介して水を導いて排水し、前記変位の増減に応じて前記シート材の上に載荷盛土を積載することにより、前記変位を抑制するように制御することを特徴とする地盤改良工法が提供される。
上記地盤改良工法において、水平方向の変位計測は、周辺地盤における一箇所以上の地表面で水平方向の変位を計測すれば良く、必ずしも、地盤中の複数の深さごとに計測する必要はない。
【0007】
さらに本発明では、改良対象域において地表面から地中にほぼ鉛直に複数のドレーン材を打設して頭部を地表面まで延設し、該複数のドレーン材の頭部に通水材及び有孔管を配してその上部をシート材により気密に被覆し、前記シート材で被覆された内部を真空ポンプを用いて減圧し、前記改良対象地盤を圧密して改良するための地盤改良構造において、前記ドレーン材に沿って構築された壁体または溝と、前記改良対象域の周辺地盤における水平方向の変位を計測するために設けられた水平変位計測手段と、該水平変位計測手段からの変位に応じてこれを抑制・制御するように前記シート材の上に積載される載荷盛土とを備えることを特徴とする地盤改良構造が提供される。
上記地盤改良構造において、水平変位計測手段は、壁体、溝または周辺地盤のいずれかにおける一箇所以上の地表面に設置すれば良く、必ずしも地盤中の複数の深さごとに設置する必要はない。
【0008】
本発明において、前記ドレーン材は、地盤内に含まれる水分を上方の通水材及び有孔管まで導くことができるものであれば良く、例えば、カードボード系ドレーン材や、サンドドレーンなどを使用することができるが、前記カードボード系ドレーン材は取り扱いや打設が比較的容易で、かつ経済性に優れているので最適である。
【0009】
本発明において、前記壁体及び前記溝は、改良対象域の周辺地盤に沈下や水平変位の影響が及ぶことを抑制するものである。ここで、前記壁体は、SMW工法や深層混合処理工法等によりセメントと現地土とを混合して形成した柱列壁や、鋼矢板を連設した地中壁が使用可能であるが、改良対象域の地盤が軟弱であることを考慮した場合、施工用の大型重機が最小限で済む鋼矢板による地中壁を適用することが好ましい。
なお、鋼矢板を連設した地中壁では、ドレーン材を介して改良対象域に作用させている真空圧が鋼矢板の継手部分から改良対象域外に漏れることを防止するための封止手段を設ける必要がある。また本発明において、前記溝は、溝壁の崩壊を防止するために内部に安定液を充填して形成し、この安定液としては、ベントナイト安定液、泥水または流動化ソイルを使用することができる。
また前記溝の構築には、ソイルセメント壁施工用の多軸攪拌翼オーガ機や水平移動型ソイルセメント壁施工機、アースオーガ掘削機、水ジェット式溝堀り機、チェーンソー式溝堀り機などを使用することができる。
前記壁体及び前記溝の深さはドレーン材と同等とすることが原則であるが、軽減する地盤変位の程度、地盤条件などによって異なるので一義的に規定することは難しい。
【0010】
本発明において、前記載荷盛土は、地中水平方向の変位あるいは地表水平方向の変位に応じて、該変位を抑制・制御する必要がある箇所にのみ設ければ良いものであって、例えば、住宅に近接する場合には近接区域のシート材上にのみ載荷盛土を設ければ良い。
【0011】
【実施例】
以下、添付図面に基づいて実施例を説明するが、本発明はこれに限定されるものではない。
図1は地盤改良工法の一工程を示した断面図である。
図1において、地盤改良構造10は、改良対象域13で地表面からほぼ垂直方向に概ね1m程度の間隔で打設された複数のドレーン材16と、これらドレーン材16の頭部に接触するように敷設した通水材(図示せず)と有孔管(図示せず)からなる水平排水材12と、これら水平排水材12とドレーン材16とが気密に被覆されるように地表面に敷設したシート材11と、水平排水材12の有孔管に連結管(図示せず)を介して連通された真空ポンプ15と、改良対象域の周辺地盤の地中水平変位を計測するために改良深さより深くまで延設した傾斜計18と、周辺地盤の地中水平変位の増減に応じて該変位を制御するようにシート材11の上に積載された載荷盛土14とを備える。
【0012】
前記傾斜計18は、改良対象域13と周辺地盤の両方における地中水平変位の計測箇所において、改良深さより深くまでボーリングを行ない、各ボーリング孔内に傾斜計を入れて深さごとに計測点18aの傾斜角度を測定し、各深さにおける傾斜角度から水平変位を算出するものである。傾斜計18は複数のものをボーリング孔内の複数箇所に多段に配置するか、あるいは、一台の傾斜計を計測のたびにボーリング孔内で上昇・下降させて各計測点18aに設置することができる。いずれの場合にも、測定最深部は不動点と仮定して深度毎の水平変位を算出するので、測定最深部は改良深さよりも深くなるようにする。
また沈下計(図示せず)は、改良対象域と周辺の地表面に適宜に配置する。
【0013】
前記排水ドレーン材16は、例えば、カードボード系ドレーン材、サンドドレーンなどを使用することができるが、取扱いの容易さ、経済性および集水効果から考慮すると、カードボード系ドレーン材が最適である。
【0014】
前記水平通水材12としての通水材は帯状に形成されたものを使用し、地表面に突出したドレーン材16の頭部に接触するように所定間隔で敷設する。また、水平通水材12としての有孔管は塩化ビニールパイプなどの管体に複数の孔を穿設したものを使用し、複数の通水材に交差するように延設する。
また前記シート材11は、端部をシート埋込み用溝17に埋設し、これらの端部から内部に外気が流入しないようにする。
【0015】
次に、図1を参照して地盤改良工法とその作用について説明する。
最初に、改良対象域13を真空圧密するための準備工程と、改良対象域13周辺の地中水平変位を計測するための傾斜計18の設置を行なう。
真空圧密の準備工程では、複数のドレーン材16を改良対象域13に約1m間隔でほぼ鉛直にそれぞれ打設し、これらドレーン材16の頭部に連通するように水平排水材12を敷設し、複数のドレーン材16と水平排水材12をシート材11により気密に被覆し、シート材11の端部はシート埋込溝17に埋設し、所定の水平排水材12には連結管を介して真空ポンプ15を連通させる。
また傾斜計18はボーリング孔内の複数箇所に多段に配置し、測定最深部が改良深さよりも深くなるように設置し、さらに、沈下計も設置する。
【0016】
上記準備工程と傾斜計18の設置が終了したら、改良対象域と周辺地盤の両方で水平変位や沈下量の基準となる施工前の初期値を測定し、次いで、真空ポンプ15を稼働して改良対象域13の真空圧密工程を開始する。
【0017】
真空圧密工程を行ないながら、少なくとも1日に1度は水平変位や沈下量を計測すると、改良対象域13では真空圧密の進行にしたがって、地盤沈下が進むとともに、周辺地盤は改良対象域13の中心に向かうように水平変位する。
すなわち、真空圧密工程において、ドレーン材16や水平排水材12を介して、改良対象域13の全体を減圧することにより地盤は収縮する。この地盤の収縮に伴ない地盤沈下と、改良対象域13の中心に向かう地盤の水平変位が発生し、この水平変位は、通常、地表面付近で最大になり、周辺地盤にはひび割れが発生するものである。
図5及び図6は、真空圧密開始35日後における地表面の沈下量と水平変位量の実測例をそれぞれ示したものであり、これらの図からも、周辺地盤に生じる沈下と水平変位の影響が少なくないことが判る。
【0018】
真空圧密開始後、改良対象域13の表面地盤強度が所定の重機作業が行なえる程度まで増加したと判断される時点で、載荷盛土を開始する。通常、真空圧密開始後1週間程度で載荷盛土の盛り立てが可能になる。このとき、載荷盛土14の盛り立てに伴ない、地盤の支持力不足や滑り変形によって、地盤は改良対象域13から周辺地盤に向かい水平変位を生じる。この水平変位の最大値は地中部分で発生することが多いため、載荷盛土の場合は、地表面変位量のみならず地中の水平変位量も計測する必要がある。
【0019】
載荷盛土により発生する水平変位と、真空圧密により発生する水平変位とを、図示により比較すると図3のようになる。図示のように、真空圧密では多くの場合に地表面付近で水平変位量が最大となり、載荷盛土の場合には最大水平変位量は地中部に生じることが多く、両者による地中水平変位量は相殺するように作用する。したがって、地中水平変位の方向や変位量を監視しながら、ほぼ10〜30cm/日の範囲で載荷盛土の盛り立て速度や高さを調整すれば、周辺地盤の水平変位量を許容範囲である±1〜5cm程度になるように制御することも可能である。
なお、改良対象域13の中心に向かう変位が卓越した場合には、更に盛土を行うことになるが、周辺への影響が大きくなる恐れがある場合には、状況に応じて、一時的に真空ポンプ15を停止することで変位の増加を抑制することもできる。
また載荷盛土を盛り立てる領域は、必ずしも、改良対象域13の全域に行なう必要はなく、例えば、図7に示したように住宅22に面した側のシート材11の端部に重点的に載荷盛土を配置すれば、住宅22への影響を抑制するという点からは効果的である。
【0020】
図2は、図1とは異なる地盤改良工法の一工程を示した断面図である。
図2の地盤改良構造では、図1の実施例と異なる構成として、緩衝溝20と、改良対象域13及び周辺地盤25における地表面の水平変位を計測するための計測装置(図示せず)とを備えており、図1のような傾斜計18は設けられておらず、これら以外は図1と同様な構成になっている。
【0021】
ここで、緩衝溝20は、改良対象域13と周辺地盤25との間に形成された溝内にベントナイト安定液などが充填されたものであり、改良対象域13の真空圧密による地盤沈下や水平変位が周辺地盤に伝わることを軽減する。
【0022】
なお、緩衝溝20以外にも、例えば、鋼矢板を連設して地中壁を構築すれば良く、図4は、この鋼矢板からなる地中壁の真空圧密時における変位低減効果を図示したものであり、この例からは、鋼矢板を打設することにより、地表面水平変位量を、地中壁のない場合の15%程度に軽減できたことが判る。
【0023】
緩衝溝20または鋼矢板の地中壁などを設けることにより、真空圧密時における地中の水平変位の分布は平均化し、多くの場合に地表面変位が最大となり、したがって、地表面変位を監視すれば真空圧密時の周辺地盤への沈下や水平変位の影響は把握することができる。したがって、図2の実施例において、地中水平変位の計測は必要条件とはならない。
また緩衝溝20または鋼矢板などの地中壁は、水平変位の伝達防止効果のみならず、止水壁としての効果も果たすので、仮に、図2のように改良対象域に透水層21がある場合にも真空圧密工法を障害無く適用することできる。
【0024】
なお、図2のように緩衝溝20または鋼矢板などの地中壁を設ける場合にも、図1の地盤改良工法と同様な工程により地盤改良は為される。
すなわち、図2の地盤改良工法においては、傾斜計18に代えて、地表面の水平変位を計測するための装置を設置し、この装置により、真空圧密と載荷盛土による地表面水平変位量を監視しながら、両者による地中水平変位量は相殺するように、載荷盛土の盛り立て速度や高さの調整、及び真空ポンプ15の停止・再開によって周辺地盤の地表面水平変位量を許容範囲である±1〜5cm程度になるように制御するものである。
【0025】
【発明の効果】
本発明では、真空圧密を行ないながら、周辺地盤の地中水平変位の計測データに基づいて載荷盛土を行うことにより、周辺地盤の水平変位を大幅に軽減することができて、例えば、改良対象域の周囲に住宅が密集したような場所においても、真空圧密工法の適用が可能になった。
【0026】
また本発明では、地中の水平変位を計測する装置を用いるので、地盤が複雑な場合でも、正確な地中水平変位に基づいて、載荷盛土の盛り立て速度や高さ及び真空運転の停止・再開を確実に制御することができる。
本発明では、壁体や緩衝溝を設けたので、その遮断効果や変位吸収効果により、周辺地盤の水平変位をさらに低減することができる。また壁体や緩衝溝の止水効果により、周辺地盤の地下水低下を防止したり遮断したりできるので、周辺地盤の沈下を大幅に軽減できる。さらに、改良対象域に透水性の地盤がある場合には、漏気により真空圧密工法の適用が困難であったが、壁体や緩衝溝を設けることにより漏気を防止することができて、真空圧密工法の適用が可能になった。また壁体を設けることにより、地中水平変位が平均化されるので、地表面変位を基準とした変位制御が行なえるようになった。
【図面の簡単な説明】
【図1】本発明に係る地盤改良工法の一工程を示す断面図である。
【図2】図1とは異なる地盤改良工法の一工程を示した断面図である。
【図3】真空圧密と載荷盛土による地中変位を比較して説明するための図である。
【図4】鋼矢板からなる壁体による水平変位の軽減効果を説明するための図である。
【図5】真空圧密による地盤の沈下形状を示した図である。
【図6】真空圧密による地盤の水平変位を示した図である。
【図7】改良対象域における載荷盛土の配置を示した断面図である。
【符号の説明】
10 地盤改良構造
11 シート材
12 水平排水材(通水材および有孔管)
13 改良対象地盤
14 載荷盛土
15 真空ポンプ
16 ドレーン材
18 傾斜計
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ground improvement structure and method for improving hard ground by discharging water contained in soft ground, and more particularly to a method and structure for improving ground while controlling peripheral ground displacement.
[0002]
[Prior art]
A vacuum consolidation method is known as an economical method for improving soft and viscous ground. In this vacuum consolidation method, a plurality of drain materials are placed on the ground to be improved, the head is extended to the ground, and a water-permeable material such as a sand mat or drain material is laid so as to come into contact with the drain material head, A perforated pipe is placed under the water-permeable material and a vacuum pump is connected to it, and the drain material head, water-permeable material, and perforated pipe are covered in an airtight manner over the entire area of the ground to be improved. Lay the sheet material. Then, by operating the vacuum pump, a vacuum pressure acts on the ground covered with the sheet material, and this vacuum pressure is transmitted from the perforated pipe to the drain material via the water-permeable material and further transmitted into the ground. When the vacuum pressure acts in the ground in this way, the water in the ground is sucked by the vacuum pressure, flows from the drain material to the perforated tube through the water flow material, and is discharged to the ground.
[0003]
[Problems to be solved by the invention]
However, in the above conventional vacuum consolidation method, the subsidence of the surrounding ground progresses as the vacuum consolidation progresses, and the surrounding ground may cause horizontal displacement toward the center of the area to be improved. It is difficult to apply to areas subject to improvement where objects exist.
[0004]
The present invention focuses on the above-mentioned problems of the prior art and solves this problem. The problem is that the ground can suppress and control horizontal displacement and ground subsidence occurring in the surrounding ground in the improvement target area. It is to provide an improved construction method and structure.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the present invention, a plurality of drain materials are placed almost vertically in the ground to be improved, the head is extended to the ground surface, and water is passed through the heads of the plurality of drain materials. In the construction method of arranging a material and a perforated tube, hermetically covering the upper part with a sheet material , reducing the inside covered with the sheet material using a vacuum pump, and consolidating the improvement target ground, While measuring the horizontal displacement around the improvement target ground, it is controlled to suppress the displacement by loading a loading embankment on the sheet material in accordance with the increase or decrease of the displacement. A ground improvement method is provided. In the ground improvement method, the horizontal displacement measurement is preferably performed for each of a plurality of depths in the surrounding ground.
[0006]
In the present invention, and Da設in a substantially vertical improved target ground a plurality of drain material is extended the head to the ground surface, distribution of water flow material and perforated pipe to the head of the drain member of said plurality of Then, in the construction method in which the upper part is covered with a sheet material in an airtight manner , and the inside covered with the sheet material is decompressed using a vacuum pump and the improvement target ground is consolidated and improved , the surrounding ground of the improvement target ground together to build a wall or a groove along the drain material in, set the stations for measuring the horizontal displacement into the surrounding ground, while measuring the displacement of the measurement point, the from the drain over down member The water is guided and drained through the water- permeable material and the perforated pipe, and the loading is loaded on the sheet material according to the increase or decrease of the displacement, thereby controlling the displacement. Features ground improvement method
In the ground improvement method, the horizontal displacement measurement may be performed by measuring the horizontal displacement at one or more ground surfaces in the surrounding ground, and does not necessarily need to be measured for each of a plurality of depths in the ground.
[0007]
Further, in the present invention, to extend from the ground surface in the improved target region to the ground surface of the head by pouring a plurality of drain material substantially vertically into the ground, said plurality of water passing member and the head portion of the drain member of A ground improvement structure for arranging a perforated tube and hermetically covering the upper part with a sheet material, depressurizing the interior covered with the sheet material using a vacuum pump, and consolidating and improving the ground to be improved In the above, a wall body or a groove constructed along the drain material, a horizontal displacement measuring means provided for measuring a horizontal displacement in the surrounding ground of the area to be improved, and from the horizontal displacement measuring means There is provided a ground improvement structure comprising a loading embankment loaded on the sheet material so as to suppress and control the displacement according to displacement.
In the above ground improvement structure, the horizontal displacement measuring means may be installed on one or more ground surfaces in any one of the wall body, the groove or the surrounding ground, and does not necessarily need to be installed at a plurality of depths in the ground. .
[0008]
In the present invention, the drain material may be any material as long as it can guide moisture contained in the ground to the upper water flow material and the perforated pipe. For example, a cardboard drain material or a sand drain is used. However, the cardboard drain material is optimal because it is relatively easy to handle and place and is economical.
[0009]
In this invention, the said wall body and the said groove | channel suppress that the influence of subsidence or a horizontal displacement reaches the surrounding ground of an improvement object area. Here, the wall body can be a column wall formed by mixing cement and local soil by an SMW method or a deep mixing method, or an underground wall in which steel sheet piles are continuously provided. Considering that the ground in the target area is soft, it is preferable to apply a ground wall made of steel sheet piles that requires a minimum of large heavy machinery for construction.
In addition, in the underground wall where the steel sheet piles are arranged continuously, a sealing means for preventing the vacuum pressure applied to the improvement target area via the drain material from leaking out of the improvement target area from the joint portion of the steel sheet pile. It is necessary to provide it. Further, in the present invention, the groove is formed by filling the inside with a stabilizing liquid in order to prevent the collapse of the groove wall, and bentonite stabilizing liquid, mud water or fluidized soil can be used as the stabilizing liquid. .
For the construction of the groove, multi-axis agitating blade auger machine for soil cement wall construction, horizontal moving type soil cement wall construction machine, earth auger excavator, water jet type groove drilling machine, chain saw type groove drilling machine, etc. Can be used.
In principle, the depth of the wall body and the groove is the same as that of the drain material. However, it is difficult to uniquely define the depth because it varies depending on the degree of ground displacement to be reduced and ground conditions.
[0010]
In the present invention, the loading embankment described above may be provided only at a location where it is necessary to suppress and control the displacement in accordance with the horizontal displacement in the ground or the horizontal displacement on the ground surface. If it is close to, the loading embankment should be provided only on the sheet material in the proximity area.
[0011]
【Example】
Hereinafter, although an example is described based on an accompanying drawing, the present invention is not limited to this.
FIG. 1 is a sectional view showing one step of the ground improvement method.
In FIG. 1, the ground improvement structure 10 is in contact with a plurality of drain materials 16 placed at an interval of about 1 m in the vertical direction from the ground surface in the improvement target region 13 and the heads of these drain materials 16. A horizontal drainage material 12 comprising a water-permeable material (not shown) and a perforated pipe (not shown), and the horizontal drainage material 12 and the drain material 16 are laid on the ground surface so as to be airtightly covered. Improved to measure the horizontal horizontal displacement of the surrounding ground in the area to be improved, and the vacuum pump 15 communicated to the perforated pipe of the horizontal drainage material 12 through a connecting pipe (not shown). An inclinometer 18 extending deeper than the depth and a loading embankment 14 loaded on the sheet material 11 so as to control the displacement according to the increase or decrease of the horizontal horizontal displacement of the surrounding ground are provided.
[0012]
The inclinometer 18 performs boring deeper than the improved depth at the measurement site of the horizontal horizontal displacement in both the area to be improved 13 and the surrounding ground, and puts an inclinometer into each borehole to measure each depth. The inclination angle of 18a is measured, and the horizontal displacement is calculated from the inclination angle at each depth. A plurality of inclinometers 18 are arranged in a plurality of stages at a plurality of locations in the borehole, or a single inclinometer is moved up and down in the borehole each time it is measured and installed at each measurement point 18a. Can do. In either case, since the measurement deepest portion is assumed to be a fixed point and the horizontal displacement for each depth is calculated, the measurement deepest portion is made deeper than the improved depth.
In addition, a subsidence meter (not shown) is appropriately arranged on the improvement target area and the surrounding ground surface.
[0013]
For example, a cardboard drain material, a sand drain, or the like can be used as the drainage drain material 16, but the cardboard drain material is optimal in consideration of ease of handling, economy, and water collection effect. .
[0014]
The water-permeable material as the horizontal water-permeable material 12 is a belt-shaped material, and is laid at predetermined intervals so as to come into contact with the head of the drain material 16 protruding from the ground surface. Moreover, the perforated pipe | tube as the horizontal water-permeable material 12 uses what bored a some hole in pipe bodies, such as a vinyl chloride pipe, and is extended so that a some water-permeable material may be cross | intersected.
Further, the sheet material 11 is embedded in the sheet embedding groove 17 so that the outside air does not flow into the inside from these ends.
[0015]
Next, the ground improvement method and its operation will be described with reference to FIG.
First, a preparation step for vacuum-consolidating the improvement target area 13 and an inclinometer 18 for measuring the horizontal horizontal displacement around the improvement target area 13 are performed.
In the vacuum consolidation preparation step, a plurality of drain materials 16 are respectively placed almost vertically at an improvement target area 13 at intervals of about 1 m, and horizontal drainage materials 12 are laid so as to communicate with the heads of these drain materials 16. A plurality of drain members 16 and the horizontal drainage material 12 are hermetically covered with the sheet material 11, the end of the sheet material 11 is embedded in the sheet embedding groove 17, and the predetermined horizontal drainage material 12 is vacuumed via a connecting pipe. The pump 15 is connected.
Inclinometers 18 are arranged in multiple stages in the borehole, installed so that the deepest measurement part is deeper than the improved depth, and a settlement gauge is also installed.
[0016]
After the above preparation process and the installation of the inclinometer 18 are completed, the initial values before construction, which serve as a reference for horizontal displacement and subsidence, are measured in both the improvement target area and the surrounding ground, and then the vacuum pump 15 is operated to improve. The vacuum consolidation process of the target area 13 is started.
[0017]
When the horizontal displacement and the amount of settlement are measured at least once a day while performing the vacuum consolidation process, the subsidence proceeds in the improvement target area 13 as the vacuum consolidation progresses, and the surrounding ground is the center of the improvement target area 13. Displace horizontally to head toward.
That is, in the vacuum consolidation process, the ground contracts by reducing the pressure of the entire improvement target area 13 through the drain material 16 and the horizontal drainage material 12. As the ground contracts, ground subsidence and horizontal displacement of the ground toward the center of the area to be improved 13 occur. This horizontal displacement is usually the maximum near the ground surface and cracks occur in the surrounding ground. Is.
FIGS. 5 and 6 show examples of actual measurements of the amount of ground subsidence and horizontal displacement 35 days after the start of vacuum consolidation, and these figures also show the effects of subsidence and horizontal displacement occurring on the surrounding ground. I understand that there are not many.
[0018]
After starting the vacuum consolidation, the loading embankment is started when it is determined that the surface ground strength of the improvement target area 13 has increased to such an extent that a predetermined heavy machinery operation can be performed. Usually, loading embankment becomes possible in about one week after the start of vacuum consolidation. At this time, accompanying the embankment of the loading embankment 14, the ground is horizontally displaced from the improvement target area 13 toward the surrounding ground due to insufficient support force of the ground or sliding deformation. Since the maximum value of this horizontal displacement often occurs in the underground part, in the case of a loaded embankment, it is necessary to measure not only the ground surface displacement amount but also the underground horizontal displacement amount.
[0019]
FIG. 3 shows a comparison between the horizontal displacement generated by the loading embankment and the horizontal displacement generated by vacuum compaction. As shown in the figure, in the case of vacuum consolidation, in many cases, the amount of horizontal displacement is the maximum near the ground surface, and in the case of loaded embankments, the maximum amount of horizontal displacement often occurs in the ground. Acts to offset. Therefore, the horizontal displacement amount of the surrounding ground is within the allowable range if the embankment speed and height of the loaded embankment are adjusted within a range of about 10 to 30 cm / day while monitoring the direction and displacement amount of the underground horizontal displacement. It is also possible to control to be about ± 1 to 5 cm.
In addition, when the displacement toward the center of the improvement target area 13 is prominent, further embankment is performed. However, if there is a possibility that the influence on the surrounding area may be increased, a vacuum is temporarily used depending on the situation. An increase in displacement can be suppressed by stopping the pump 15.
Further, the area where the loading embankment is raised does not necessarily need to be performed in the entire area to be improved 13. For example, as shown in FIG. 7, the loading emphasis is placed on the end of the sheet material 11 facing the house 22. If the embankment is arranged, it is effective in terms of suppressing the influence on the house 22.
[0020]
FIG. 2 is a cross-sectional view showing one step of the ground improvement method different from FIG.
In the ground improvement structure of FIG. 2, as a configuration different from the embodiment of FIG. 1, a buffer groove 20 and a measuring device (not shown) for measuring the horizontal displacement of the ground surface in the improvement target region 13 and the surrounding ground 25. Inclinometer 18 as shown in FIG. 1 is not provided, and the configuration other than these is the same as that of FIG.
[0021]
Here, the buffer groove 20 is a groove formed between the improvement target region 13 and the surrounding ground 25 and filled with bentonite stabilizing liquid or the like. Reduce the transmission of displacement to the surrounding ground.
[0022]
In addition to the buffer groove 20, for example, a steel sheet pile may be connected to construct the underground wall, and FIG. 4 illustrates the displacement reduction effect during vacuum consolidation of the underground wall made of this steel sheet pile. From this example, it can be seen that by placing a steel sheet pile, the horizontal displacement of the ground surface could be reduced to about 15% of the case without the underground wall.
[0023]
By providing the buffer groove 20 or the underground wall of the steel sheet pile, the distribution of horizontal displacement in the ground during vacuum consolidation is averaged, and in many cases the ground surface displacement is maximized, so the ground surface displacement can be monitored. For example, the impact of subsidence on the surrounding ground and horizontal displacement during vacuum consolidation can be grasped. Therefore, in the embodiment of FIG. 2, the measurement of underground horizontal displacement is not a necessary condition.
In addition, the underground wall such as the buffer groove 20 or the steel sheet pile not only prevents the horizontal displacement from being transmitted but also serves as a water blocking wall. Therefore, there is a water permeable layer 21 in the improvement target area as shown in FIG. Even in this case, the vacuum consolidation method can be applied without hindrance.
[0024]
In addition, also when providing underground walls, such as the buffer groove | channel 20 or a steel sheet pile like FIG. 2, ground improvement is made | formed by the process similar to the ground improvement construction method of FIG.
That is, in the ground improvement method shown in FIG. 2, a device for measuring the horizontal displacement of the ground surface is installed in place of the inclinometer 18, and the horizontal displacement of the ground surface due to vacuum compaction and loading embankment is monitored by this device. However, the horizontal displacement amount of the surrounding ground is within the allowable range by adjusting the embankment speed and height of the loading embankment and stopping / resuming the vacuum pump 15 so that the horizontal displacement amount by the both cancels out. It is controlled to be about ± 1 to 5 cm.
[0025]
【The invention's effect】
In the present invention, the horizontal displacement of the surrounding ground can be greatly reduced by performing the loading embankment based on the measurement data of the horizontal displacement of the surrounding ground while performing vacuum consolidation. Even in places where houses are densely packed around, the vacuum consolidation method can be applied.
[0026]
Further, in the present invention, since a device for measuring the horizontal displacement in the ground is used, even when the ground is complicated, the embankment speed and height of the loading embankment and the stop / vacuum operation of the vacuum operation are based on the accurate horizontal displacement in the ground. The restart can be controlled reliably.
In the present invention, since the wall body and the buffer groove are provided, the horizontal displacement of the surrounding ground can be further reduced by the blocking effect and the displacement absorbing effect. In addition, due to the water-stopping effect of the walls and buffer grooves, it is possible to prevent or block the groundwater drop in the surrounding ground, so that the settlement of the surrounding ground can be greatly reduced. Furthermore, when there is a water-permeable ground in the area to be improved, it was difficult to apply the vacuum consolidation method due to air leakage, but it was possible to prevent air leakage by providing walls and buffer grooves, Application of vacuum consolidation method became possible. Moreover, since the ground horizontal displacement is averaged by providing the wall, displacement control based on the ground surface displacement can be performed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing one step of a ground improvement method according to the present invention.
FIG. 2 is a cross-sectional view showing one step of a ground improvement method different from FIG.
FIG. 3 is a diagram for comparing and explaining underground displacement due to vacuum consolidation and loaded embankment.
FIG. 4 is a view for explaining an effect of reducing horizontal displacement by a wall made of steel sheet piles.
FIG. 5 is a diagram showing a shape of ground subsidence caused by vacuum consolidation.
FIG. 6 is a diagram showing horizontal displacement of the ground due to vacuum consolidation.
FIG. 7 is a cross-sectional view showing the arrangement of the loading embankment in the improvement target area.
[Explanation of symbols]
10 Ground improvement structure 11 Sheet material 12 Horizontal drainage material (water flow material and perforated pipe)
13 Improvement target ground 14 Loading embankment 15 Vacuum pump 16 Drain material 18 Inclinometer

Claims (3)

複数のドレーン材をほぼ鉛直に改良対象地盤中に打設して頭部を地表面まで延設し、該複数のドレーン材の頭部に通水材及び有孔管を配して、その上部をシート材により気密に被覆し、前記シート材で被覆された内部を真空ポンプを用いて減圧し前記改良対象地盤を圧密して改良する工法において、
前記改良対象地盤周辺の水平方向の変位を計測しながら、前記変位の増減に応じて前記シート材の上に載荷盛土を積載することにより、前記変位を抑制するように制御することを特徴とする地盤改良工法。
A plurality of drain materials are placed almost vertically in the ground to be improved, the head is extended to the ground surface, a water-permeable material and a perforated pipe are arranged on the heads of the plurality of drain materials, In the construction method of airtightly covering with the sheet material, reducing the inside covered with the sheet material by using a vacuum pump and consolidating the improvement target ground,
While measuring the horizontal displacement around the improvement target ground, it is controlled to suppress the displacement by loading a loading embankment on the sheet material in accordance with the increase or decrease of the displacement. Ground improvement method.
複数のドレーン材をほぼ鉛直に改良対象地盤中に打設して頭部を地表面まで延設し、該複数のドレーン材の頭部に通水材及び有孔管を配して、その上部をシート材により気密に被覆し、前記シート材で被覆された内部を真空ポンプを用いて減圧し前記改良対象地盤を圧密して改良する工法において、
前記改良対象地盤の周辺地盤において前記ドレーン材に沿って壁体または溝を構築すると共に、該周辺地盤に水平方向の変位を計測する測点を設定し、前記測点における変位を計測しながら、前記ドレーン材から前記通水材及び前記有孔管を介して水を導いて排水し、前記変位の増減に応じて前記シート材の上に載荷盛土を積載することにより、前記変位を抑制するように制御することを特徴とする地盤改良工法。
A plurality of drain materials are placed almost vertically in the ground to be improved, the head is extended to the ground surface , a water-permeable material and a perforated pipe are arranged on the heads of the plurality of drain materials, In the construction method of airtightly covering with the sheet material, reducing the inside covered with the sheet material by using a vacuum pump and consolidating the improvement target ground,
While constructing a wall or a groove along the drain material in the surrounding ground of the improvement target ground, setting a measuring point for measuring the horizontal displacement in the surrounding ground, while measuring the displacement at the measuring point , by the from drain over emission material via the water passage material and the perforated tube to drain leading the water, loading the loading embankment on the sheet material in accordance with the increase or decrease of the displacement, suppressing the displacement The ground improvement construction method characterized by controlling to do.
改良対象域において地表面から地中にほぼ鉛直に複数のドレーン材を打設して頭部を地表面まで延設し、該複数のドレーン材の頭部に通水材及び有孔管を配してその上部をシート材により気密に被覆し、前記シート材で被覆された内部を真空ポンプを用いて減圧し、前記改良対象地盤を圧密して改良するための地盤改良構造において、
前記ドレーン材に沿って構築された壁体または溝と、前記改良対象域の周辺地盤における水平方向の変位を計測するために設けられた水平変位計測手段と、該水平変位計測手段からの変位に応じてこれを抑制・制御するように前記シート材の上に積載される載荷盛土とを備えることを特徴とする地盤改良構造。
By pouring a plurality of drain material substantially vertically into the ground from the ground surface in the improved target range by extending the head to the ground surface, distribution of water flow material and perforated tube head portion of the drain member of said plurality of In the ground improvement structure for airtightly covering the upper portion with a sheet material, depressurizing the interior covered with the sheet material using a vacuum pump, and consolidating and improving the improvement target ground,
A wall or a groove built along the drain member, and a horizontal displacement measurement means provided for measuring the horizontal displacement of the surrounding ground of the improvement target zone, the displacement from the horizontal displacement measuring means A ground improvement structure comprising a loading embankment loaded on the sheet material so as to suppress and control this accordingly.
JP2000243618A 2000-08-11 2000-08-11 Ground improvement structure and construction method to control surrounding ground displacement Expired - Lifetime JP3658296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000243618A JP3658296B2 (en) 2000-08-11 2000-08-11 Ground improvement structure and construction method to control surrounding ground displacement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000243618A JP3658296B2 (en) 2000-08-11 2000-08-11 Ground improvement structure and construction method to control surrounding ground displacement

Publications (2)

Publication Number Publication Date
JP2002054131A JP2002054131A (en) 2002-02-20
JP3658296B2 true JP3658296B2 (en) 2005-06-08

Family

ID=18734438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000243618A Expired - Lifetime JP3658296B2 (en) 2000-08-11 2000-08-11 Ground improvement structure and construction method to control surrounding ground displacement

Country Status (1)

Country Link
JP (1) JP3658296B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102312424A (en) * 2011-07-04 2012-01-11 绍兴文理学院 Soft soil foundation long-concrete short-gravel (LCSG) pile and preloading combined treatment method and device thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005113901A1 (en) * 2004-05-20 2005-12-01 Maruyama Kougyo Kabushikikaisha Method of improving soft ground
JP5083563B2 (en) * 2008-08-06 2012-11-28 五洋建設株式会社 Ground improvement method
JP5306121B2 (en) * 2009-09-09 2013-10-02 五洋建設株式会社 Consolidation ground improvement method
JP5385115B2 (en) * 2009-12-15 2014-01-08 五洋建設株式会社 Ground improvement method
CN101806056B (en) * 2010-04-28 2011-07-20 郭艳景 Soft-soil foundation treatment method for controlling secondary consolidation settlement
CN102304913A (en) * 2011-07-04 2012-01-04 绍兴文理学院 LCSG (Long-Concrete Short-Gravel) pile and vacuum prepressing combined processing method and device for soft soil foundation
JP6632792B2 (en) * 2014-05-21 2020-01-22 株式会社P・V・C Ground improvement method
JP6391150B2 (en) * 2014-07-02 2018-09-19 五洋建設株式会社 Vacuum consolidation method combined with embankment
JP6826914B2 (en) * 2017-03-03 2021-02-10 鹿島建設株式会社 Inclination suppression method when caisson is sunk
JP7314773B2 (en) * 2019-11-15 2023-07-26 株式会社大林組 Soil drainage device
JP7235927B1 (en) 2022-10-14 2023-03-08 五洋建設株式会社 TILT MEASURING DEVICE AND TILT ANGLE MEASUREMENT METHOD FOR STEEL CYLINDRICAL BODY
CN117871267A (en) * 2024-03-12 2024-04-12 西南交通大学 Consolidation apparatus and implementation method for non-confined condition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102312424A (en) * 2011-07-04 2012-01-11 绍兴文理学院 Soft soil foundation long-concrete short-gravel (LCSG) pile and preloading combined treatment method and device thereof

Also Published As

Publication number Publication date
JP2002054131A (en) 2002-02-20

Similar Documents

Publication Publication Date Title
JP3658296B2 (en) Ground improvement structure and construction method to control surrounding ground displacement
CN109594564A (en) A kind of anti-collapse construction method of Metro Deep Excavation open cut
CN101949153B (en) Foundation drainage control method
CN206090653U (en) Anchor rod static pressure pile slip casting structure
CN104499479A (en) Dig-hole pile construction method based on penetration of sand gravel backfilling layer
CN110486019B (en) Underground excavation construction method for additionally arranging underground communication channels between new buildings and old buildings
US20090269146A1 (en) Method for Construction of Piles and Caissons and Soil Improvement by Using Rubber Hoses
CN113174958A (en) Construction method for foundation pit of adjacent road under poor ground condition
CN110397050A (en) A kind of light-duty draining barricade of novel beam anchor formula and its construction method
CN112761166A (en) Construction method for shallow foundation pit of combined support of piles and pre-grouting steel pipes based on SMW (soil mixing wall) construction method
CN104074195B (en) A kind of method controlling the outer surface subsidence of foundation ditch by horizontal grouting
CN104727295B (en) Preexisting hole filler displacement hammer flattener heavy-tamping method
JP2018035506A (en) Construction method for underground structure
CN108277815A (en) The cofferdam structure and its construction method constructed for water intaking header structure in river
CN101586341B (en) Water sealing method for civil engineering groundwork
JP3681902B2 (en) Seismic ground reinforcement method
CN214832589U (en) Combined pile structure for treating insufficient bearing capacity of deep foundation pit construction pile
JP3760343B2 (en) Drilling bottom stabilization method and construction method of underground building
JP4915037B2 (en) Method for controlling the amount of deformation of the mountain wall
CN107386276A (en) A kind of construction method of soft layer super-long and large-diameter bored piles
JPH0819667B2 (en) Excavation method for clay ground
CN110284506A (en) A kind of foundation pit enclosure method for the expansion construction that deep basal pit is cheated to shallow foundation
JP4033561B2 (en) Airtight structure in vacuum consolidation method
CN206512700U (en) Pile foundation aperture reinforces layout structure
CN107100216A (en) The unilateral basic pile foundation of monolithic wall is encorbelmented underpinning construction method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3658296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term