JP5304608B2 - Electric wire manufacturing method - Google Patents

Electric wire manufacturing method Download PDF

Info

Publication number
JP5304608B2
JP5304608B2 JP2009262299A JP2009262299A JP5304608B2 JP 5304608 B2 JP5304608 B2 JP 5304608B2 JP 2009262299 A JP2009262299 A JP 2009262299A JP 2009262299 A JP2009262299 A JP 2009262299A JP 5304608 B2 JP5304608 B2 JP 5304608B2
Authority
JP
Japan
Prior art keywords
electric wire
resin
diameter
outer diameter
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009262299A
Other languages
Japanese (ja)
Other versions
JP2011108492A (en
Inventor
正道 庭田
裕之 大塚
達則 林下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009262299A priority Critical patent/JP5304608B2/en
Publication of JP2011108492A publication Critical patent/JP2011108492A/en
Application granted granted Critical
Publication of JP5304608B2 publication Critical patent/JP5304608B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an electric wire which is made in a narrow diameter without having uneven thickness of an outer cover while securing excellent wear resistance. <P>SOLUTION: In the method for manufacturing an electric wire 1 where the outer cover 7 made of a resin R is coated on a shield core 8 while the resin R is pulled out from a resin passage 13 between a point 12 and a die 13 and an outer diameter of the outer cover 7 is 0.25 mm or below and a ratio of an outer diameter of the shield core 8 to the outer diameter of the outer cover 7 is 1.15 or below, a difference between an inner diameter of the die and an outer diameter of the point is set at 0.5 mm or more, a melt-flow rate of the resin R is set at 50g/10 minutes or more, and a pulling-out balance is set at 0.99-1.10. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、外周が外被によって覆われた電線の製造方法に関する。   The present invention relates to a method for manufacturing an electric wire whose outer periphery is covered with a jacket.

外被をETFE(テトラフルオロエチレン−エチレン共重合体)で形成した絶縁電線や同軸電線が知られている。例えば、AWG(American Wire Gauge)の規格による#28の銀めっき銅線にピッチ3.0mm、うねり高さ0.65mmの連続する正弦波状うねりを形成した中心導体上に、厚さ0.13mm×幅0.8mmの気孔率75%の第1の気孔性PTFEテープをピッチ3.0mmで螺旋状に間隔巻きし、この上に更に厚さ0.13mm×幅2mmの気孔率75%の第2の気孔性PTFEテープをピッチ5.5mmで第1のテープと巻回方向を逆方向にして螺旋状に一重巻回して気孔性テープ巻回絶縁層を形成し、この外周に外部導体として外径0.06mmのすずめっき銅線40本の横巻きシールドを施し、更にその外周にETFE押出し被覆層を施したものが知られている(例えば、特許文献1参照)。   Insulated electric wires and coaxial electric wires having an outer sheath formed of ETFE (tetrafluoroethylene-ethylene copolymer) are known. For example, on a central conductor in which a continuous sinusoidal wave having a pitch of 3.0 mm and a wave height of 0.65 mm is formed on a # 28 silver-plated copper wire according to the AWG (American Wire Gauge) standard, a thickness of 0.13 mm × A first porous PTFE tape having a porosity of 0.8% having a width of 0.8 mm is spirally wound at a pitch of 3.0 mm, and a second porosity having a porosity of 0.13 mm and a width of 2 mm and having a porosity of 75% is further provided thereon. The porous PTFE tape is wound in a spiral manner with a pitch of 5.5 mm and the winding direction opposite to that of the first tape to form a porous tape wound insulating layer. It is known that a 40% 0.06 mm tin-plated copper wire horizontal winding shield is applied and an ETFE extrusion coating layer is applied to the outer periphery thereof (see, for example, Patent Document 1).

また、導体芯線と、この導体芯線の周りに樹脂を押し出して被覆した被覆層とを有する極細絶縁電線において、被覆層の樹脂として、ETFEなどの樹脂が使用可能であることが示されている(例えば、特許文献2参照)。
また、成形条件である引き落とし比を100として樹脂を押し出して被覆することも知られている(非特許文献1参照)。
Further, it has been shown that a resin such as ETFE can be used as a resin for a coating layer in an ultrafine insulated wire having a conductor core wire and a coating layer coated by extruding a resin around the conductor core wire ( For example, see Patent Document 2).
It is also known to extrude and coat a resin with a draw ratio as a molding condition of 100 (see Non-Patent Document 1).

特開平9−259657号公報JP-A-9-259657 特開2004−56302号公報JP 2004-56302 A

ポリフロン ハンドブック ダイキン工業株式会社 1983年12月再訂版Polyflon Handbook Daikin Industries, Ltd. Revised December 1983

携帯端末や小型ビデオカメラ、医療用機器等の電子機器において、機器のさらなる小型化や薄型化を図るため、相対移動される筐体や部品間を電気的に接続し、屈曲、捻回または摺動する電線のさらなる細径化が望まれており、電線の外被を薄肉化することが考えられる。   In electronic devices such as portable terminals, small video cameras, and medical devices, in order to further reduce the size and thickness of the devices, the casings and components that are moved relative to each other are electrically connected to each other to bend, twist, or slide. It is desired to further reduce the diameter of the moving electric wire, and it is conceivable to reduce the thickness of the outer sheath of the electric wire.

特許文献1,2にはETFEを電線の外被の樹脂材料として用いることが開示されているが、一般的な成形条件による押出被覆では薄肉に被覆することが困難であった。
また、外被を薄肉で被覆すると、外被に肉厚の偏りが発生することがあり、このような場合、肉薄部分での耐圧不良が生じてしまう。また、樹脂に顔料を混入させて着色する場合、肉厚の偏りによって薄い部分で内部の電線の色が浮き出るなどにより、色相不良を引き起こしてしまう。
Patent Documents 1 and 2 disclose that ETFE is used as a resin material for the outer sheath of an electric wire, but it has been difficult to coat thinly by extrusion coating under general molding conditions.
In addition, when the outer cover is covered with a thin wall, uneven thickness may occur in the outer cover. In such a case, a withstand voltage failure occurs in the thin part. Further, when the resin is colored by mixing a pigment, the color of the internal electric wire emerges in a thin portion due to the uneven thickness, which causes a hue failure.

本発明の目的は、外被の偏肉なく細径化された電線の製造方法を提供することにある。   An object of the present invention is to provide a method of manufacturing an electric wire having a small diameter without uneven thickness of the outer jacket.

上記課題を解決することのできる本発明の電線の製造方法は、ポイントとダイスとの間の樹脂流路から樹脂を引き落としながらコア部に前記樹脂からなる外被を被覆し、前記外被の外径が0.25mm以下であり、前記コア部の外径に対する前記外被の外径の比が1.15以下である電線を製造する製造方法であって、
前記ダイスの内径と前記ポイントの外径との差を0.5mm以上とし、前記樹脂のメルトフローレートを50g/10分(温度372℃、荷重5kg)以上とし、引き落としバランスを0.99以上1.10以下とすることを特徴とする。
The method of manufacturing an electric wire according to the present invention that can solve the above-described problem is to coat the outer cover made of the resin on the core portion while drawing the resin from the resin flow path between the point and the die. A manufacturing method for manufacturing an electric wire having a diameter of 0.25 mm or less and a ratio of an outer diameter of the jacket to an outer diameter of the core portion of 1.15 or less,
The difference between the inner diameter of the die and the outer diameter of the point is 0.5 mm or more, the melt flow rate of the resin is 50 g / 10 min (temperature 372 ° C., load 5 kg) or more, and the draw-down balance is 0.99 or more 1 10 or less.

また、本発明の電線の製造方法において、前記外被に使用する樹脂は、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、パーフルオロメチルビニルエーテル共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−エチレン共重合体、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリイミドの何れかであることが好ましい。   Further, in the method for producing an electric wire of the present invention, the resin used for the jacket is a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, a perfluoromethyl vinyl ether copolymer, a tetrafluoroethylene-hexafluoropropylene copolymer. , Tetrafluoroethylene-ethylene copolymer, polyether ether ketone, polyphenylene sulfide, and polyimide are preferable.

本発明の電線の製造方法によれば、ダイスとポイントとのずれの影響を極力抑えて外被を被覆することができ、外被の偏肉が極力抑えられ、偏肉による外被でのピンホールの発生のない細径化された電線を円滑に製造することができる。また、樹脂に顔料を混入させて外被を着色した場合においても、外被の偏肉による色相不良のない電線を製造することができる。   According to the method of manufacturing an electric wire of the present invention, it is possible to cover the outer cover while minimizing the influence of the deviation between the die and the point, the uneven thickness of the outer cover is suppressed as much as possible, and the pin on the outer cover due to the uneven thickness It is possible to smoothly manufacture a thinned electric wire that does not generate holes. In addition, even when a pigment is mixed into the resin and the outer jacket is colored, an electric wire free from a hue defect due to uneven thickness of the outer jacket can be manufactured.

本発明に係る電線の実施形態の例であり、電線の各部材を段階的に露出させた端部の斜視図である。It is an example of embodiment of the electric wire which concerns on this invention, and is the perspective view of the edge part which exposed each member of the electric wire in steps. 図1の電線の断面図である。It is sectional drawing of the electric wire of FIG. 図1の電線の外被を押出成形する様子を示す断面図である。It is sectional drawing which shows a mode that the outer sheath of the electric wire of FIG. 1 is extrusion-molded. (a)は図3におけるA−A断面図、(b)は図3におけるB−B断面図である。(A) is AA sectional drawing in FIG. 3, (b) is BB sectional drawing in FIG.

以下、本発明に係る電線の製造方法の実施の形態の例を、図面を参照して説明する。
図1及び図2に示すように、電線1は、中心導体2と外部導体6とを有する同軸電線である。
この電線1は、中央に中心導体2が配置され、この中心導体2の周囲に絶縁体4が形成され、さらに絶縁体4の周囲に外部導体6が配置されている。そして、この電線1は、中心導体2、絶縁体4及び外部導体6からなるシールドコア(コア部)8の周囲に、外被7が被覆されて構成されている。
Hereinafter, an example of an embodiment of a manufacturing method of an electric wire concerning the present invention is described with reference to drawings.
As shown in FIGS. 1 and 2, the electric wire 1 is a coaxial electric wire having a center conductor 2 and an outer conductor 6.
In the electric wire 1, a central conductor 2 is disposed at the center, an insulator 4 is formed around the central conductor 2, and an external conductor 6 is disposed around the insulator 4. The electric wire 1 is configured by covering a shield core (core portion) 8 including a center conductor 2, an insulator 4, and an outer conductor 6 with a jacket 7.

中心導体2は、導電性金属の細径線材を複数本用いて構成されている。本実施形態では、極細径の銅合金線3を7本用いて、1本の銅合金線3の周囲に6本の銅合金線3を撚り合わせたものが用いられている。
銅合金線3は、例えば、0.1重量%以上10重量%以下の銀を含有した銅合金から形成されたものであり、その線径は0.010mm以上0.025mm以下とされている。この銅合金線3は、表面に、錫、銀またはニッケルのめっき層が形成されている。
例えば、銀濃度0.1〜5重量%の銅合金線3を撚り合わせた中心導体2は、その引張強度が600MPa以上で、導電率が65%IACS以上となっている。
The center conductor 2 is constituted by using a plurality of thin conductive metal wires. In the present embodiment, seven ultrafine copper alloy wires 3 are used and six copper alloy wires 3 are twisted around one copper alloy wire 3.
The copper alloy wire 3 is formed from, for example, a copper alloy containing 0.1 wt% or more and 10 wt% or less of silver, and the wire diameter thereof is set to 0.010 mm or more and 0.025 mm or less. The copper alloy wire 3 has a plated layer of tin, silver or nickel formed on the surface.
For example, the center conductor 2 obtained by twisting copper alloy wires 3 having a silver concentration of 0.1 to 5% by weight has a tensile strength of 600 MPa or more and a conductivity of 65% IACS or more.

絶縁体4は、フッ素系樹脂であるPFA(テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体)から形成され、その外径は、約0.07〜0.20mmとされている。   The insulator 4 is made of PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer), which is a fluororesin, and has an outer diameter of about 0.07 to 0.20 mm.

外部導体6は、導電性金属の細径線材(例えば錫めっき銅合金線)を複数本用いて編組または横巻きされ、絶縁体4の周囲を覆うように設けられている。
なお、外部導体6としては、例えば、金属テープを絶縁体4の外周に縦添えまたは螺旋巻きしたものでも良い。
横巻や編組の場合、線材は銅線や銅合金線(錫銅合金)で太さ(直径)は0.01〜0.04mmである。
金属テープ(樹脂テープの上に金属層がある)を使用する場合は、樹脂テープの厚さが2〜20μm程度、金属層(銅やアルミニウム)が0.1〜20μmである。
The outer conductor 6 is braided or laterally wound using a plurality of conductive metal thin wire rods (for example, tin-plated copper alloy wires), and is provided so as to cover the periphery of the insulator 4.
The outer conductor 6 may be, for example, a metal tape vertically attached or spirally wound around the outer periphery of the insulator 4.
In the case of horizontal winding or braiding, the wire is a copper wire or a copper alloy wire (tin copper alloy), and the thickness (diameter) is 0.01 to 0.04 mm.
When using a metal tape (there is a metal layer on the resin tape), the thickness of the resin tape is about 2 to 20 μm and the metal layer (copper or aluminum) is 0.1 to 20 μm.

シールドコア8の周囲に設けられて電線1の最外層を形成する外被7となる樹脂としては、PFA(テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体)、MFA(パーフルオロメチルビニルエーテル共重合体)、FEP(テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体)、ETFE(テトラフルオロエチレン−エチレン共重合体)、PEEK(ポリエーテルエーテルケトン)、PPS(ポリフェニレンスルフィド)、PI(ポリイミド)の何れかが用いられている。これらの樹脂を用いることにより、回転や摺動など相対移動される筐体間を電気的に接続するために狭い収容スペースへの配線に適した電線1とすることができる。   Examples of the resin that is provided around the shield core 8 and forms the outermost layer 7 of the electric wire 1 are PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer), MFA (perfluoromethyl vinyl ether copolymer). ), FEP (tetrafluoroethylene-hexafluoropropylene copolymer), ETFE (tetrafluoroethylene-ethylene copolymer), PEEK (polyetheretherketone), PPS (polyphenylene sulfide), PI (polyimide) It is used. By using these resins, it is possible to provide an electric wire 1 suitable for wiring to a narrow accommodation space in order to electrically connect the casings that are relatively moved such as rotating and sliding.

電線1は、外被7の外径が0.25mm以下であり、また、シールドコア8の外径に対する外被7の外径の比が1.15以下である。外被7の外径が0.25mmであれば、外被7の厚さは0.016mm以下であり、外被7の外径が0.22mmであれば外被7の厚さは0.014mm以下である。   In the electric wire 1, the outer diameter of the outer sheath 7 is 0.25 mm or less, and the ratio of the outer diameter of the outer sheath 7 to the outer diameter of the shield core 8 is 1.15 or less. If the outer diameter of the outer cover 7 is 0.25 mm, the thickness of the outer cover 7 is 0.016 mm or less, and if the outer diameter of the outer cover 7 is 0.22 mm, the thickness of the outer cover 7 is 0. 014 mm or less.

上記構成の電線1は、携帯端末や小型ビデオカメラや医療用機器等の電子機器などに用いられ、屈曲、捻回または摺動する電線としても用いられる。   The electric wire 1 having the above configuration is used in an electronic device such as a portable terminal, a small video camera, or a medical device, and is also used as an electric wire that bends, twists, or slides.

上記電線1を接続するために端末処理する場合は、まず、電線1の外被7を、端部から所定距離離れた位置で切断し、端部側を引き抜いて除去する。
その後、外部導体6を外被7の切断位置より所定長さ端部に寄った位置で切断し、端部側の外部導体6を引き抜いて除去する。
その後、絶縁体4を、さらに端部寄りの位置で切断し、端部側の絶縁体4を引き抜いて除去する。
When terminal processing is performed to connect the electric wire 1, first, the outer sheath 7 of the electric wire 1 is cut at a position away from the end portion by a predetermined distance, and the end portion side is pulled out and removed.
Thereafter, the outer conductor 6 is cut at a position closer to the end portion by a predetermined length than the cutting position of the outer jacket 7, and the outer conductor 6 on the end side is pulled out and removed.
Thereafter, the insulator 4 is further cut at a position closer to the end, and the end-side insulator 4 is pulled out and removed.

次に、上記の電線1を製造する方法について説明する。
まず、0.1重量%以上10重量%以下の銀を含有した銅合金からなる極細径の7本の銅合金線3を撚り合わせて中心導体2とする。銅合金線3として、例えば銀濃度が0.6重量%の銀銅合金を使用する。この中心導体の引張強度は600MPa以上で、導電率が85%IACS以上である。銀濃度を5重量%とする場合は、中心導体2の引張強度は120MPa以上で、導電率が65%IACS以上80%IACS以下である。
そして、この中心導体2の外周に、絶縁体4となるPFAを押し出し被覆する。
なお、絶縁体4は、PTFE(ポリテトラフルオロエチレン)などのフッ素樹脂テープを巻き付けて構成しても良い。
Next, a method for manufacturing the electric wire 1 will be described.
First, seven copper alloy wires 3 having a very small diameter made of a copper alloy containing 0.1 wt% or more and 10 wt% or less of silver are twisted to form the center conductor 2. As the copper alloy wire 3, for example, a silver copper alloy having a silver concentration of 0.6% by weight is used. The tensile strength of the central conductor is 600 MPa or more, and the conductivity is 85% IACS or more. When the silver concentration is 5% by weight, the tensile strength of the center conductor 2 is 120 MPa or more, and the conductivity is 65% IACS or more and 80% IACS or less.
Then, the outer periphery of the central conductor 2 is extruded and covered with PFA serving as the insulator 4.
The insulator 4 may be configured by winding a fluororesin tape such as PTFE (polytetrafluoroethylene).

例えば、銀を0.1〜5重量%含む直径0.025mmの導体(銀銅合金線)を7本撚り合わせて、直径0.075mmの中心導体2とする。それにPFA(テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体)を押し出し被覆して、例えば外径0.22mmの絶縁体を形成する。導体の寸法や絶縁体の厚さをより小さくしてより細径にしたものでもよい。   For example, seven conductors (silver copper alloy wires) having a diameter of 0.1 to 5% by weight and having a diameter of 0.025 mm are twisted to form the center conductor 2 having a diameter of 0.075 mm. Then, PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer) is extruded and coated to form an insulator having an outer diameter of 0.22 mm, for example. A conductor having a smaller diameter and a smaller conductor thickness may be used.

次に、絶縁体4の外周に、導電性金属の複数本の細径線材を横巻きして外部導体6を設ける。
その後、外部導体6の外周に、外被7となる樹脂を押出被覆し、外被7を形成する。これにより、外径が0.25mm以下の電線1とする。
なお、外部導体6の外周に、PETなどの樹脂テープを押さえ巻きとして巻き付けてから外被7を形成しても良い。
Next, the outer conductor 6 is provided on the outer periphery of the insulator 4 by horizontally winding a plurality of thin conductive metal wires.
After that, the outer conductor 6 is coated on the outer periphery with a resin to be the outer cover 7 to form the outer cover 7. Thereby, it is set as the electric wire 1 whose outer diameter is 0.25 mm or less.
The outer jacket 7 may be formed after a resin tape such as PET is wound around the outer conductor 6 as a press roll.

樹脂を押出被覆してシールドコア8に対して外被7を形成するには、押出成形に用いるダイス及びポイントを選択することにより、成形条件を所定の条件として押出被覆する。   In order to form the outer cover 7 on the shield core 8 by extrusion-coating the resin, by selecting a die and a point used for extrusion molding, extrusion coating is performed with the molding conditions as predetermined conditions.

ここで、引き落としによる外被7の押出成形の様子を、図3及び図4に示す。
押し出し機を構成するダイス11とポイント12の間の樹脂流路13に樹脂Rを供給する。ダイス11の端とポイント12の端とはそれぞれが同一面にあるように組み合わされる。ポイント12の中心を貫通孔14に外部導体6が巻かれたシールドコア8を通過させる。ダイス11とポイント12の間の出口である吐出口15から押し出された樹脂Rは、すぐにはシールドコア8には接触せず、徐々に細くなって出口から離れた地点でシールドコア8に接触して被覆される。
Here, FIG. 3 and FIG. 4 show the state of extrusion molding of the outer cover 7 by pulling down.
Resin R is supplied to the resin flow path 13 between the die 11 and the point 12 constituting the extruder. The end of the die 11 and the end of the point 12 are combined so that they are on the same plane. The shield core 8 in which the outer conductor 6 is wound around the through hole 14 is passed through the center of the point 12. The resin R pushed out from the discharge port 15 which is the outlet between the die 11 and the point 12 does not immediately contact the shield core 8, but gradually becomes thinner and contacts the shield core 8 at a point away from the outlet. And coated.

上記の引き落としによる押出成形時に、ダイス11の内径とポイント12の外径との差を0.5mm以上とし、この状態で、メルトフローレート(MFR)を50g/10分(温度372℃、荷重5kg)とした樹脂Rを供給する。このとき、ダイス11とポイント12との間の形状と外被7の形状の相似度合いである引き落としバランスDRBを0.99以上1.10以下とする。引き落としバランスDRBは、「(ダイス内径×シールドコア径)/(電線仕上がり径×ポイント外径)」で求められる。図4に示すように、ポイント外径A,ダイス内径B,シールドコア径a,電線仕上がり外径bとした場合、A/Bと=a/bとの比率が引き落としバランスDRBであり、よって、引き落としバランスDRBは、「DRB=(B×a)/(b×A)」となる。   At the time of extrusion molding by pulling down, the difference between the inner diameter of the die 11 and the outer diameter of the point 12 is 0.5 mm or more, and in this state, the melt flow rate (MFR) is 50 g / 10 minutes (temperature 372 ° C., load 5 kg). ) Resin R is supplied. At this time, the withdrawal balance DRB that is the degree of similarity between the shape between the die 11 and the point 12 and the shape of the outer cover 7 is set to 0.99 or more and 1.10 or less. The withdrawal balance DRB is obtained by “(die inner diameter × shield core diameter) / (wire finished diameter × point outer diameter)”. As shown in FIG. 4, when the point outer diameter A, the die inner diameter B, the shield core diameter a, and the electric wire finished outer diameter b, the ratio of A / B and = a / b is the withdrawal balance DRB. The withdrawal balance DRB is “DRB = (B × a) / (b × A)”.

ここで、ダイス11とポイント12は、完全に同心状に組み合わせることは困難であり、僅かにずれが生じる。ダイス11とポイント12との間の樹脂流路13の吐出口15が大きい場合ではダイスとポイントの中心が僅かにずれたとしても偏肉が生じにくいが、樹脂流路13の吐出口15が小さいと、ダイス11とポイント12とのずれの影響によって外被7に偏肉が生じてしまう。   Here, it is difficult to combine the die 11 and the point 12 completely concentrically, and a slight deviation occurs. In the case where the discharge port 15 of the resin flow path 13 between the die 11 and the point 12 is large, even if the center of the die and the point is slightly shifted, uneven thickness hardly occurs, but the discharge port 15 of the resin flow path 13 is small. Then, the thickness of the outer cover 7 is uneven due to the influence of the deviation between the die 11 and the point 12.

本実施形態では、ダイス内径Bとポイント外径Aとの差を0.5mm以上とし、樹脂Rのメルトフローレートを50g/10分以上(温度372℃、荷重5kg)とし、引き落としバランスDRBを0.99以上1.10以下として外被7をシールドコア8に被覆するので、ダイス11とポイント12とのずれの影響を極力抑えることができる。   In this embodiment, the difference between the die inner diameter B and the point outer diameter A is 0.5 mm or more, the melt flow rate of the resin R is 50 g / 10 min or more (temperature 372 ° C., load 5 kg), and the withdrawal balance DRB is 0. Since the outer cover 7 is covered with the shield core 8 in the range of .99 to 1.10, the influence of the deviation between the die 11 and the point 12 can be suppressed as much as possible.

また、「(ダイス内径)−(ポイント外径)/(電線仕上がり径)−(シールドコア径)」で求められる引き落とし比DDRを高くすると、樹脂Rにかかるせん断応力が減少することで粘度が上がり、流動性が低下してシールドコア8への樹脂Rの追従安定性が悪化して良好な被覆が行えなくなる。したがって、引き落とし比DDRは通常50ないし100である。しかし、本発明ではダイス内径Bとポイント外径Aとの差を0.5mm以上とし、樹脂Rのメルトフローレートを50g/10分(温度372℃、荷重5kg)以上とし、引き落としバランスDRBを0.99以上1.10以下とすることにより、無理なく引き落とし比DDRを300以上とし、薄肉の外被7を実現することを可能とした。 Further, when the drawing ratio DDR required by “(die inner diameter) 2 − (point outer diameter) 2 / (wire finished diameter) 2 − (shield core diameter) 2 ” is increased, the shear stress applied to the resin R decreases. As a result, the viscosity increases, the fluidity decreases, the follow-up stability of the resin R to the shield core 8 deteriorates, and good coating cannot be performed. Therefore, the withdrawal ratio DDR is usually 50 to 100. However, in the present invention, the difference between the die inner diameter B and the point outer diameter A is 0.5 mm or more, the melt flow rate of the resin R is 50 g / 10 minutes (temperature 372 ° C., load 5 kg) or more, and the withdrawal balance DRB is 0. By setting the value to .99 or more and 1.10 or less, the drawing ratio DDR is set to 300 or more without difficulty, and a thin outer jacket 7 can be realized.

よって、外被7の外径が0.25mm以下であり、シールドコア8の外径に対する外被7の外径の比が1.15以下であり、また、外被7の偏肉が極力抑えられた電線1を製造することができる。したがって、偏肉による外被7でのピンホールの発生をなくし、外被7の破壊耐圧性能を向上させ、樹脂Rに顔料を混入させて外被7に着色した場合の偏肉による色相不良のない電線1を製造することができる。   Therefore, the outer diameter of the jacket 7 is 0.25 mm or less, the ratio of the outer diameter of the jacket 7 to the outer diameter of the shield core 8 is 1.15 or less, and the uneven thickness of the jacket 7 is suppressed as much as possible. The obtained electric wire 1 can be manufactured. Accordingly, the occurrence of pinholes in the outer cover 7 due to uneven thickness is eliminated, the breakdown pressure performance of the outer cover 7 is improved, and a hue failure due to uneven thickness when a pigment is mixed into the resin R and the outer cover 7 is colored. It is possible to manufacture a wire 1 that is not present.

上記の電線の製造方法によれば、外被7の偏肉なく細径化され、回転や摺動など相対移動される筐体間を電気的に接続するために狭い収容スペースへの配線に適した電線1を円滑に製造することができる。   According to the above-described wire manufacturing method, the outer diameter of the jacket 7 is reduced without unevenness, and it is suitable for wiring to a narrow housing space in order to electrically connect between relatively moved casings such as rotation and sliding. The electric wire 1 can be manufactured smoothly.

なお、上記実施形態では、中心導体2、絶縁体4、外部導体6及び外被7が同軸状に順次積層された構造を有する同軸電線からなる電線1を例示して説明したが、外周が樹脂によって覆われた電線であれば、同軸電線に限定されず、導体の周囲を外被で覆った絶縁電線にも適用可能である。   In the above-described embodiment, the electric wire 1 including the coaxial electric wire having the structure in which the center conductor 2, the insulator 4, the outer conductor 6, and the outer jacket 7 are sequentially laminated in a coaxial manner is described as an example. If it is an electric wire covered with, it is not limited to a coaxial electric wire, but can also be applied to an insulated electric wire in which the periphery of a conductor is covered with a jacket.

例えば、錫めっき銅合金などの素線を撚って線径0.217mmの導体を形成し、その外周に樹脂Rを押出被覆して外被7を形成し、外径0.25mm以下とした絶縁電線でも良い。   For example, a conductor having a wire diameter of 0.217 mm is formed by twisting an element wire such as a tin-plated copper alloy, and an outer sheath 7 is formed by extruding the outer periphery of the resin R to obtain an outer diameter of 0.25 mm or less. An insulated wire may be used.

各種の異なる成形条件で外被を被覆した実施例1〜3及び比較例1〜3の電線を製造し、それぞれの電線の外被の偏肉率を測定して評価した。その成形条件及び評価結果を表1に示す。なお、偏肉率は最小厚/最大厚である。   The electric wires of Examples 1 to 3 and Comparative Examples 1 to 3 in which the outer sheath was coated under various different molding conditions were manufactured, and the thickness deviation rate of the outer sheath of each electric wire was measured and evaluated. The molding conditions and evaluation results are shown in Table 1. The uneven thickness ratio is the minimum thickness / maximum thickness.

Figure 0005304608
Figure 0005304608

(評価結果)
ダイス内径とポイント外径との差を0.5mm以上とし、樹脂のメルトフローレートを50g/10分以上とし、引き落としバランスを0.94以上1.10以下とした実施例1〜3は、何れも外被の偏肉率が90%以上となり、シールドコアが均一な厚さの外被によって被覆された電線を製造することができた。
(Evaluation results)
Examples 1-3 in which the difference between the inner diameter of the die and the outer diameter of the point was 0.5 mm or more, the melt flow rate of the resin was 50 g / 10 min or more, and the draw-down balance was 0.94 or more and 1.10 or less In addition, the thickness ratio of the outer jacket became 90% or more, and it was possible to manufacture an electric wire in which the shield core was covered with the outer jacket having a uniform thickness.

これに対して、比較例1では、メルトフローレートを50g/10分より小さい45g/10分としたため、シールドコアに対して樹脂が円滑に供給されず、追従安定性が低下してシールドコアへの樹脂の塗布切れが生じてしまった。   On the other hand, in Comparative Example 1, since the melt flow rate was set to 45 g / 10 minutes which is smaller than 50 g / 10 minutes, the resin was not smoothly supplied to the shield core, and the follow-up stability was lowered to the shield core. The application of the resin was cut off.

また、比較例2では、ダイス内径とポイント外径との差を0.5mmよりも小さい0.3mm以上としたため、ダイスとポイントとの組み合わせ時のずれが大きく影響し、偏肉率が70%以下となり、外被に大きな偏肉が生じてしまった。   Further, in Comparative Example 2, the difference between the inner diameter of the die and the outer diameter of the point was set to 0.3 mm or less, which is smaller than 0.5 mm. As a result, a large thickness deviation occurred in the outer jacket.

また、比較例3では、引き落としバランスを0.99以上1.10以下の範囲から外れた1.14としたため、引き落としバランスが大きくなりすぎ、シールドコアに対して樹脂が円滑に追従せず、シールドコアへの樹脂の塗布切れが生じてしまった。   Further, in Comparative Example 3, the withdrawal balance was 1.14 that was out of the range of 0.99 or more and 1.10 or less, so the withdrawal balance was too large, and the resin did not smoothly follow the shield core, and the shield The application of resin to the core has been cut off.

1:電線、7:外被、8:シールドコア(コア部)、11:ダイス、12:ポイント、13:樹脂流路、R:樹脂 1: electric wire, 7: jacket, 8: shield core (core part), 11: die, 12: point, 13: resin flow path, R: resin

Claims (2)

ポイントとダイスとの間の樹脂流路から樹脂を引き落としながらコア部に前記樹脂からなる外被を被覆し、前記外被の外径が0.25mm以下であり、前記コア部の外径に対する前記外被の外径の比が1.15以下である電線を製造する製造方法であって、
前記ダイスの内径と前記ポイントの外径との差を0.5mm以上とし、前記樹脂のメルトフローレートを50g/10分以上とし、引き落としバランスを0.99以上1.10以下とすることを特徴とする電線の製造方法。
The core portion is coated with a jacket made of the resin while pulling the resin from the resin flow path between the point and the die, and the outer diameter of the jacket is 0.25 mm or less, and the outer diameter of the core portion is A manufacturing method for manufacturing an electric wire having an outer diameter ratio of a jacket of 1.15 or less,
The difference between the inner diameter of the die and the outer diameter of the point is 0.5 mm or more, the melt flow rate of the resin is 50 g / 10 min or more, and the draw-down balance is 0.99 or more and 1.10 or less. A method for manufacturing an electric wire.
請求項1に記載の電線の製造方法であって、
前記外被に使用する樹脂は、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、パーフルオロメチルビニルエーテル共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリイミドの何れかであることを特徴とする電線の製造方法。
It is a manufacturing method of the electric wire according to claim 1,
Resin used for the jacket is tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, perfluoromethyl vinyl ether copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, polyether ether ketone, polyphenylene sulfide, polyimide. A method for producing an electric wire, which is any one of the above.
JP2009262299A 2009-11-17 2009-11-17 Electric wire manufacturing method Expired - Fee Related JP5304608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009262299A JP5304608B2 (en) 2009-11-17 2009-11-17 Electric wire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009262299A JP5304608B2 (en) 2009-11-17 2009-11-17 Electric wire manufacturing method

Publications (2)

Publication Number Publication Date
JP2011108492A JP2011108492A (en) 2011-06-02
JP5304608B2 true JP5304608B2 (en) 2013-10-02

Family

ID=44231750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009262299A Expired - Fee Related JP5304608B2 (en) 2009-11-17 2009-11-17 Electric wire manufacturing method

Country Status (1)

Country Link
JP (1) JP5304608B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108463859A (en) * 2015-12-25 2018-08-28 古河电气工业株式会社 The manufacturing method of aluminium electric wire and aluminium electric wire

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031675A1 (en) * 2014-08-27 2016-03-03 旭硝子株式会社 Insulated wire and method for producing same
JP7195711B2 (en) * 2017-10-26 2022-12-26 古河電気工業株式会社 Carbon nanotube coated wire
EP3703081B1 (en) * 2017-10-26 2024-03-06 Furukawa Electric Co., Ltd. Coated carbon nanotube electric wire
WO2019124455A1 (en) 2017-12-20 2019-06-27 株式会社 潤工社 Cable

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2747832B1 (en) * 1996-04-23 1998-05-22 Filotex Sa METHOD AND DEVICE FOR MANUFACTURING A VENTILATED SHEATH IN AN INSULATING MATERIAL AROUND A CONDUCTOR, AND COAXIAL CABLE EQUIPPED WITH SUCH SHEATH
JP4757159B2 (en) * 2005-09-27 2011-08-24 宇部日東化成株式会社 Method for producing hollow core body for coaxial cable
JP4202368B2 (en) * 2006-03-29 2008-12-24 吉野川電線株式会社 Ultra-fine coaxial cable and manufacturing method thereof
JP5252821B2 (en) * 2007-03-28 2013-07-31 宇部日東化成株式会社 Method for producing hollow core body for coaxial cable
JP5297726B2 (en) * 2008-03-25 2013-09-25 宇部日東化成株式会社 Coaxial cable hollow core manufacturing method, coaxial cable hollow core, and coaxial cable
JP5259529B2 (en) * 2008-09-02 2013-08-07 宇部日東化成株式会社 Method for producing hollow core body for coaxial cable
JP5381281B2 (en) * 2009-04-24 2014-01-08 住友電気工業株式会社 Electric wire manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108463859A (en) * 2015-12-25 2018-08-28 古河电气工业株式会社 The manufacturing method of aluminium electric wire and aluminium electric wire
US10468154B2 (en) 2015-12-25 2019-11-05 Furukawa Electric Co., Ltd. Aluminum electrical wire and method for manufacturing aluminum electrical wire
US10714233B2 (en) 2015-12-25 2020-07-14 Furukawa Electric Co., Ltd. Aluminum electrical wire and method for manufacturing aluminum electrical wire
CN108463859B (en) * 2015-12-25 2021-01-26 古河电气工业株式会社 Aluminum electric wire and method for manufacturing aluminum electric wire

Also Published As

Publication number Publication date
JP2011108492A (en) 2011-06-02

Similar Documents

Publication Publication Date Title
JP5062200B2 (en) Coaxial cable manufacturing method
JP4493595B2 (en) Foamed coaxial cable and manufacturing method thereof
WO2010123105A1 (en) Electrical wire and method for producing same
JP5304608B2 (en) Electric wire manufacturing method
WO2010035762A1 (en) Coaxial cable and multicore coaxial cable
TW200405363A (en) Thin-diameter coaxial cable and method of producing the same
JP2003036740A (en) Double laterally wound two-core parallel extra-fine coaxial cable
JP6164844B2 (en) Insulated wire, coaxial cable and multi-core cable
JP3900864B2 (en) 2-core parallel micro coaxial cable
JP6750325B2 (en) Foam coaxial cable, manufacturing method thereof, and multicore cable
JP2007280762A (en) Non-halogen coaxial cable, and multicore cable using it
JP5381281B2 (en) Electric wire manufacturing method
JP5326775B2 (en) Coaxial wire and manufacturing method thereof
JP7340384B2 (en) Small diameter coaxial cable with excellent flexibility
JP4262555B2 (en) Thin coaxial cable and manufacturing method thereof
JP5779811B2 (en) Composite cable
JP7474590B2 (en) Multi-core communication cable
JP2003031046A (en) Two-core parallel extra-file coaxial cable with longitudinally added deposited tape
WO2022130801A1 (en) Multicore parallel cable and method for manufacturing same
JP7256519B2 (en) cable
JP2021190403A (en) coaxial cable
JP6939324B2 (en) Coaxial wire and multi-core cable
WO2019124455A1 (en) Cable
JP5387512B2 (en) Electric wire manufacturing method
JP2022138873A (en) signal transmission cable

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5304608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees