JP5304285B2 - Scroll compressor - Google Patents
Scroll compressor Download PDFInfo
- Publication number
- JP5304285B2 JP5304285B2 JP2009022135A JP2009022135A JP5304285B2 JP 5304285 B2 JP5304285 B2 JP 5304285B2 JP 2009022135 A JP2009022135 A JP 2009022135A JP 2009022135 A JP2009022135 A JP 2009022135A JP 5304285 B2 JP5304285 B2 JP 5304285B2
- Authority
- JP
- Japan
- Prior art keywords
- compression chamber
- scroll
- chamber
- side opening
- path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Rotary Pumps (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Description
本発明は、例えば冷暖房空調装置や冷蔵庫等の冷却装置、あるいはヒートポンプ式の給湯装置等において冷媒ガスを圧縮するためのスクロール圧縮機に関する。 The present invention relates to a scroll compressor for compressing refrigerant gas in a cooling device such as a cooling / heating air conditioner or a refrigerator, or a heat pump type hot water supply device.
従来、冷凍空調機や冷凍機に用いられるスクロール圧縮機は、一般に、鏡板から渦巻き状のラップが立ち上がる固定スクロール及び旋回スクロールを噛み合わせて双方間に圧縮室を形成し、旋回スクロールを自転拘束機構による自転の拘束のもとに円軌道に沿って旋回させたとき、圧縮室が容積を変えながら移動することで作動流体の吸入、圧縮、吐出を行うものである。 Conventionally, scroll compressors used in refrigeration air conditioners and refrigerators generally have fixed scrolls and swirl scrolls, in which spiral wraps rise from end plates, form compression chambers between the two, and orbiting scrolls are constrained by rotation. When rotating along a circular orbit under the restraint of rotation due to, the working fluid is sucked, compressed and discharged by moving while changing its volume.
作動流体は旋回スクロールの旋回運動に伴い徐々に圧縮され、中心部に向かうに従い高圧状態となるため、旋回スクロールには固定スクロールから引き離される方向に離反力が働く。その結果、旋回スクロールと固定スクロールには隙間が生じるため、圧縮途中の漏れが発生し、性能悪化を引き起こしてしまう。この対策として、旋回スクロールの背面に設けた背圧室に中間圧力を印加させ、固定スクロールからの離反を防止している。 The working fluid is gradually compressed with the turning motion of the orbiting scroll, and becomes a high pressure state toward the center portion. Therefore, a separation force acts on the orbiting scroll in a direction away from the fixed scroll. As a result, a gap is generated between the orbiting scroll and the fixed scroll, so that leakage occurs during compression, resulting in performance deterioration. As a countermeasure, an intermediate pressure is applied to a back pressure chamber provided on the back surface of the orbiting scroll to prevent separation from the fixed scroll.
さらに、背圧室に開口する背圧室側開口端から圧縮室に開口する圧縮室側開口端へ連通する経路を備え、旋回スクロールの端板に設けられた圧縮室側開口端が旋回スクロールの旋回運動に伴い、固定スクロールのスラスト面と吸入口に連通する圧縮室を周期的に移動することで、吸入口に連通せず、かつ旋回スクロールの外側に形成される圧縮室に間欠的に給油可能であり、給油されたオイルがこの圧縮室のシールの役割を果たし、作動流体の漏れが抑えられ、圧縮効率の低下を抑制している(例えば、特許文献1参照)。
しかし、上記従来技術では、背圧室と圧縮室を連通させる経路の圧縮室側開口端を、旋回スクロールの内側に形成される圧縮室には開口させていなかったため、この圧縮室には十分なシールオイルが供給されにくく、作動流体の漏れによる圧縮効率の低下が発生する場合があった。 However, in the above prior art, the compression chamber side opening end of the path connecting the back pressure chamber and the compression chamber is not opened in the compression chamber formed inside the orbiting scroll. It is difficult to supply the seal oil, and the compression efficiency may be reduced due to leakage of the working fluid.
特に、上記従来技術に示すような、旋回スクロールの渦巻き状のラップの外壁側に形成される外側圧縮室と内壁側に形成される内側圧縮室の吸入容積が異なる渦巻き状のラップを有するスクロール圧縮機(以後、非対称スクロール圧縮機と称する)においては、渦巻きラップ側面を介した漏れに関して言えば、内側圧縮室から一つ低圧側の内側圧縮室への漏れは、外側圧縮室から一つ低圧側の外側圧縮室への漏れよりも多くなる。 In particular, as shown in the above prior art, scroll compression having spiral wraps with different suction volumes of the outer compression chamber formed on the outer wall side of the spiral wrap of the orbiting scroll and the inner compression chamber formed on the inner wall side. In the compressor (hereinafter referred to as an asymmetric scroll compressor), the leakage from the inner compression chamber to the inner compression chamber on the one low pressure side is from the outer compression chamber on the lower pressure side. More than leakage into the outer compression chamber.
外側圧縮室の吸入容積が内側圧縮室の吸入容積よりも大きい非対称スクロール圧縮機では、吸入容積の小さい内側圧縮室の方がその吸入容積差によってクランク回転角に対する圧力上昇速度が大きい特徴を有する。一方、外側および内側圧縮室のいずれにおいても各圧縮室閉じ込み完了時から旋回スクロールが一回転した時点において次の圧縮室を形成することは、対称スクロールと同様である。 In an asymmetric scroll compressor in which the suction volume of the outer compression chamber is larger than the suction volume of the inner compression chamber, the inner compression chamber having a smaller suction volume has a feature that the pressure increase rate with respect to the crank rotation angle is larger due to the suction volume difference. On the other hand, in both the outer and inner compression chambers, the formation of the next compression chamber at the time when the orbiting scroll makes one revolution from the completion of closing of each compression chamber is the same as in the symmetric scroll.
以上の説明をさらに、図面を用いて説明する。図18および図19において、第2の圧縮室15b−1とその後に形成された第2の圧縮室15b−2を仕切る渦巻きラップ側面隙間D2、第1の圧縮室15a−1とその後に形成される第1の圧縮室15a−2を仕切
る渦巻きラップ側面隙間D1が存在する。図19において、第1の圧縮室15aと第2の圧縮室15bの圧力上昇速度を比較した場合、吸入容積の小さい第2圧縮室15bの方が圧力変化が大きくなる。よって、第2の圧縮室15b間を仕切る渦巻きラップ側面隙間D2では、第1の圧縮室15b間を仕切る渦巻きラップ側面隙間D1よりも漏れが発生しやすくなる。渦巻きラップ側面を介した漏れは冷媒の再圧縮を引き起こすため、結果として無駄な仕事による圧縮性能低下を生じていた。
The above description will be further described with reference to the drawings. 18 and 19, the spiral wrap side surface gap D2 that partitions the second compression chamber 15b-1 and the second compression chamber 15b-2 formed thereafter, the first compression chamber 15a-1, and the subsequent compression chamber 15b-1. There is a spiral wrap side surface gap D1 that partitions the first compression chamber 15a-2. In FIG. 19, when the pressure increase speeds of the first compression chamber 15a and the second compression chamber 15b are compared, the pressure change is larger in the second compression chamber 15b having a smaller suction volume. Therefore, the spiral wrap side surface gap D2 that partitions the second compression chambers 15b is more likely to leak than the spiral wrap side surface gap D1 that partitions the first compression chambers 15b. Leakage through the spiral wrap side surface causes recompression of the refrigerant, resulting in a decrease in compression performance due to useless work.
本発明は、前記従来の課題を解決するもので、非対称スクロール圧縮機の圧縮室圧力分布と漏れ経路を考慮した給油経路と給油量制御により、圧縮機効率の向上を実現するスクロール圧縮機を提供することを目的とする。 The present invention solves the above-mentioned conventional problems, and provides a scroll compressor that realizes an improvement in compressor efficiency by an oil supply path and an oil supply amount control in consideration of a compression chamber pressure distribution and a leakage path of an asymmetric scroll compressor. The purpose is to do.
上記課題を解決するために、本発明のスクロール圧縮機は、鏡板から渦巻き状のラップが立ち上がる固定スクロール、及び旋回スクロールを噛み合わせて双方間に圧縮室を備え、圧縮室は旋回スクロールのラップ外側に形成される外側圧縮室と旋回スクロールの内側に形成される内側圧縮室を有し、外側圧縮室の吸入容積が内側圧縮室の吸入容積より大きく、旋回スクロールの背面には高圧領域と背圧室を形成し、旋回スクロールが円軌道に沿って所定の旋回半径で旋回することで、圧縮室が容積を変えながら中心に向かって移動し、固定スクロールに形成された吸入口から作動流体を吸入し、圧縮室に閉じ込めた後、圧縮、吐出の一連の動作を行うスクロール圧縮機であって、高圧領域と背圧室を結ぶ第1の経路と、背圧室と吸入口に連通しない圧縮室を結ぶ第2の経路を設け、第2の経路の圧縮室側開口端が、外側圧縮室と、内側圧縮室に間欠的に開口し、内側圧縮室への総給油量が外側圧縮室への総給油量より多くするものである。 In order to solve the above-described problems, a scroll compressor according to the present invention includes a fixed scroll in which a spiral wrap rises from an end plate and a revolving scroll, and a compression chamber is provided between the both. And the inner compression chamber formed inside the orbiting scroll. The suction volume of the outer compression chamber is larger than the suction volume of the inner compression chamber. A chamber is formed, and the orbiting scroll revolves with a predetermined orbiting radius along a circular orbit, so that the compression chamber moves toward the center while changing the volume, and sucks the working fluid from the suction port formed in the fixed scroll. The scroll compressor performs a series of operations of compression and discharge after being confined in the compression chamber, and communicates with the first path connecting the high pressure region and the back pressure chamber, and the back pressure chamber and the suction port. A second path connecting the compression chambers not provided, the compression chamber side opening end of the second path intermittently opens to the outer compression chamber and the inner compression chamber, and the total amount of oil supplied to the inner compression chamber is compressed outside Increase the total amount of oil supplied to the room.
本発明のスクロール圧縮機は、吸入口に連通しない内側圧縮室、および外側圧縮室へオイルを給油しつつ、外側圧縮室への総給油量より内側圧縮室への総給油量を多くすることにより、同じ圧縮室間における渦巻き状のラップ側面隙間からの作動流体の漏れを効果的に抑制でき、圧縮効率を向上できる。同時に、これらの圧縮室へ間欠的に給油を行うことで、給油量を絞る方向へ給油量制御の幅を広げることができ、給油量過多による粘性損失の増大を抑制できるため、高効率なスクロール圧縮機を提供できる。 The scroll compressor according to the present invention increases the total oil supply amount to the inner compression chamber from the total oil supply amount to the outer compression chamber while supplying oil to the inner compression chamber and the outer compression chamber that do not communicate with the suction port. The leakage of the working fluid from the spiral wrap side surface gap between the same compression chambers can be effectively suppressed, and the compression efficiency can be improved. At the same time, by intermittently supplying oil to these compression chambers, it is possible to widen the range of oil supply control in the direction of reducing the amount of oil supply, and it is possible to suppress an increase in viscosity loss due to excessive oil supply, so highly efficient scrolling A compressor can be provided.
第1の発明は、鏡板から渦巻き状のラップが立ち上がる固定スクロール、及び旋回スクロールを噛み合わせて双方間に圧縮室を備え、圧縮室は旋回スクロールのラップ外側に形成される外側圧縮室と旋回スクロールの内側に形成される内側圧縮室を有し、外側圧縮室の吸入容積が内側圧縮室の吸入容積より大きく、旋回スクロールの背面には高圧領域と背圧室を形成し、旋回スクロールが円軌道に沿って所定の旋回半径で旋回することで、圧縮室が容積を変えながら中心に向かって移動し、固定スクロールに形成された吸入口から作動流体を吸入し、圧縮室に閉じ込めた後、圧縮、吐出の一連の動作を行うスクロール圧縮機であって、高圧領域と背圧室を結ぶ第1の経路と、背圧室と吸入口に連通しない圧縮室を結ぶ第2の経路を設け、第2の経路の圧縮室側開口端が、外側圧縮室と、内側圧縮室に間欠的に開口し、内側圧縮室への総給油量が外側圧縮室への総給油量より多くするものである。この構成によれば、内側圧縮室においても、外側圧縮室においても、ひとつ前に作動流体を閉じ込んだ圧縮室と次に作動流体を閉じ込んだ圧縮室間の、渦巻き状のラップ側面隙間からの作動流体の漏れを効果的に抑制でき、かつ給油量過多による粘性損失の増大を抑制できる。 According to a first aspect of the present invention, there is provided a fixed scroll in which a spiral wrap rises from an end plate and a revolving scroll, and a compression chamber is provided between the two, and the compression chamber is formed on the outer side of the revolving scroll wrap and the revolving scroll. The inner compression chamber is formed inside, the suction volume of the outer compression chamber is larger than the suction volume of the inner compression chamber, a high pressure region and a back pressure chamber are formed on the back of the orbiting scroll, and the orbiting scroll is a circular orbit. , The compression chamber moves toward the center while changing the volume, sucks the working fluid from the suction port formed in the fixed scroll, confines it in the compression chamber, and then compresses it. A scroll compressor that performs a series of discharge operations, and includes a first path connecting the high pressure region and the back pressure chamber, and a second path connecting the back pressure chamber and the compression chamber not communicating with the suction port, 2 The compression chamber side opening end of the path, the outer compression chamber intermittently opened inside the compression chamber, in which the total amount of oil to the inner compression chamber is more than the total amount of oil to the outer compression chambers. According to this configuration, in both the inner compression chamber and the outer compression chamber, the spiral wrap side surface gap between the compression chamber that previously closed the working fluid and the compression chamber that next closed the working fluid. The leakage of the working fluid can be effectively suppressed, and an increase in viscosity loss due to excessive oil supply can be suppressed.
第2の発明は、特に第1の発明のスクロール圧縮機において、第2の経路の圧縮室側開口端を旋回スクロールのラップ上面に設け、開口端が、旋回スクロールの旋回運動に伴い
、固定スクロールのラップ鏡板面に設けた凹部に、間欠的に開口するものである。この構成によれば、第2の経路の径や長さや、凹部の形状によって、オイル供給量を連通時間で制御できるため、圧縮室内へのオイル供給量の調整範囲や、背圧室の圧力調整範囲が広がり、圧縮機の効率と背圧の安定性を更に向上できる。
According to a second aspect of the present invention, in particular, in the scroll compressor of the first aspect, the compression chamber side opening end of the second path is provided on the upper surface of the orbiting scroll wrap, and the opening end is fixed scroll in accordance with the orbiting movement of the orbiting scroll. It opens intermittently in a recess provided on the surface of the lap end plate. According to this configuration, since the oil supply amount can be controlled by the communication time depending on the diameter and length of the second path and the shape of the recess, the adjustment range of the oil supply amount into the compression chamber and the pressure adjustment of the back pressure chamber The range is expanded and the compressor efficiency and back pressure stability can be further improved.
第3の発明は、特に第1の発明のスクロール圧縮機において、第2の経路の圧縮室側開口端を旋回スクロールのラップ鏡板面に複数設け、旋回スクロールの旋回運動に伴い、開口端が、圧縮室と固定スクロールのラップ上面、及び圧縮室と固定スクロールのスラスト面を周期的に移動することで、前記圧縮室に間欠的に開口するものである。この構成によれば、発明2の効果に加えて、鏡板への孔加工のみで第2の経路が形成できるため、加工工数が低減できる。 According to a third aspect of the invention, in the scroll compressor of the first aspect of the invention, in particular, a plurality of compression chamber side opening ends of the second path are provided on the wrap end plate surface of the orbiting scroll. By periodically moving the upper surface of the compression chamber and the wrap of the fixed scroll and the thrust surface of the compression chamber and the fixed scroll, the compression chamber is intermittently opened. According to this configuration, in addition to the effect of the second aspect, the second path can be formed only by drilling the end plate, so that the number of processing steps can be reduced.
第4の発明は、特に第1から第3のいずれか1つの発明のスクロール圧縮機において、第1の経路の背圧室側開口端が、旋回スクロールの背面に設けられた高圧領域と背圧室を仕切るシール部材を往来するものである。この構成によれば、圧縮室への給油量を更に絞ることが出来るため、圧縮室内へのオイル供給量の調整範囲や、背圧室の圧力調整範囲がより広がり、圧縮機の効率と背圧の安定性を更に向上できる。また、第2の経路が背圧室と圧縮室を連通しない場合がクランク軸1回転中に存在しても、第1の経路を間欠的に連通させることで、過剰な背圧上昇を抑制できる。さらに、高圧領域から背圧室へ流入するオイル量を連通時間で制御できるため、第1の経路に油量調節のための絞り部を設ける必要がなくなり、絞り部に異物が噛み込むトラブルを回避でき、信頼性も向上できる。 In a fourth aspect of the invention, in particular, in the scroll compressor according to any one of the first to third aspects of the invention, the back pressure chamber side opening end of the first path is provided with a high pressure region and a back pressure provided on the back of the orbiting scroll. A seal member for partitioning the chamber is passed. According to this configuration, since the amount of oil supplied to the compression chamber can be further reduced, the adjustment range of the oil supply amount to the compression chamber and the pressure adjustment range of the back pressure chamber are further expanded, and the efficiency and back pressure of the compressor are increased. Can be further improved. Further, even if the second path does not communicate with the back pressure chamber and the compression chamber, even if the crankshaft is rotating once, excessive back pressure rise can be suppressed by intermittently communicating the first path. . Furthermore, since the amount of oil flowing from the high pressure region into the back pressure chamber can be controlled by the communication time, there is no need to provide a throttle for adjusting the amount of oil in the first path, and the trouble of foreign matter getting caught in the throttle is avoided. And reliability can be improved.
第5の発明は、特に第1から第4のいずれか1つに記載のスクロール圧縮機において、背圧室と吸入口に連通する圧縮室を結ぶ第3の経路を設けたものである。この構成によれば、背圧室から供給されるオイルが、吸入に連通する圧縮室のシールの役割を果たし、吸入行程における作動流体の漏れを抑制でき、体積効率を向上でき、圧縮機の効率をさらに向上できる。 According to a fifth aspect of the invention, in particular, in the scroll compressor according to any one of the first to fourth aspects, a third path connecting the back pressure chamber and the compression chamber communicating with the suction port is provided. According to this configuration, the oil supplied from the back pressure chamber serves as a seal for the compression chamber communicating with the suction, can suppress the leakage of the working fluid in the suction stroke, can improve the volumetric efficiency, and the compressor efficiency Can be further improved.
第6の発明は、特に第1から第4のいずれか1つに記載のスクロール圧縮機において、高圧領域と吸入口に連通する圧縮室を結ぶ第4の経路を設けたものである。この構成によれば、高圧のオイルが吸入に連通する圧縮室に供給されるため、差圧の大きい高負荷運転時の潤滑性能が向上し、ラップの異常磨耗が抑制でき、信頼性を向上できる。 According to a sixth aspect of the present invention, in the scroll compressor according to any one of the first to fourth aspects, a fourth path is provided to connect the high pressure region and the compression chamber communicating with the suction port. According to this configuration, since high-pressure oil is supplied to the compression chamber that communicates with suction, the lubrication performance during high-load operation with a large differential pressure can be improved, abnormal wear of the lap can be suppressed, and reliability can be improved. .
第7の発明は、特に第5から第6のいずれか1つに記載のスクロール圧縮機において、第3、及び第4の経路の圧縮室側開口端を、旋回スクロールのラップ上面に設けたものである。この構成によれば、給油経路の開閉によるウォーターハンマ現象が発生せず、作動流体に起因する騒音を低減できる。 A seventh aspect of the present invention is the scroll compressor according to any one of the fifth to sixth aspects, wherein the compression chamber side opening ends of the third and fourth paths are provided on the upper surface of the orbiting scroll wrap. It is. According to this configuration, the water hammer phenomenon due to opening and closing of the oil supply path does not occur, and noise caused by the working fluid can be reduced.
第8の発明は、特に第5または第6に記載のスクロール圧縮機において、第3、及び第4の経路の圧縮室側開口端を前記旋回スクロールのラップ上面に設け、開口端が、旋回スクロールの旋回運動に伴い、固定スクロールのラップ鏡板面に設けた凹部に、間欠的に開口するものである。この構成によれば、第3、および第4の経路の径や長さや、凹部の形状によって、オイル供給量を連通時間で制御できるため、圧縮室内へのオイル供給量の調整範囲が広がり、吸入加熱による体積効率の悪化を抑制でき、圧縮機の効率を向上できる。 According to an eighth aspect of the present invention, in the scroll compressor according to the fifth or sixth aspect, the compression chamber side opening ends of the third and fourth paths are provided on the wrap upper surface of the orbiting scroll, and the opening end is the orbiting scroll. As a result of the swiveling motion, the opening is intermittently opened in a recess provided on the lap end plate surface of the fixed scroll. According to this configuration, the oil supply amount can be controlled by the communication time depending on the diameters and lengths of the third and fourth paths and the shape of the recesses. Deterioration of volumetric efficiency due to heating can be suppressed, and the efficiency of the compressor can be improved.
第9の発明は、特に第5または第6に記載のスクロール圧縮機において、第3、及び第4の経路の圧縮室側開口端を旋回スクロールのラップ鏡板面に複数設け、旋回スクロールの旋回運動に伴い、開口端が、圧縮室と固定スクロールのラップ上面、及び圧縮室と固定スクロールのスラスト面を周期的に移動することで、圧縮室に間欠的に開口するものであ
る。この構成によれば、発明8の効果に加えて、鏡板への孔加工のみで第3、および第4の経路が形成できるため、加工工数が低減できる。
According to a ninth aspect of the present invention, in the scroll compressor described in the fifth or sixth aspect, a plurality of compression chamber side opening ends of the third and fourth paths are provided on the wrap end plate surface of the orbiting scroll, and the orbiting scroll orbits. Accordingly, the opening end periodically opens in the compression chamber by periodically moving on the wrap upper surface of the compression chamber and the fixed scroll and the thrust surface of the compression chamber and the fixed scroll. According to this configuration, in addition to the effect of the eighth aspect, the third and fourth paths can be formed only by drilling the end plate, so that the number of processing steps can be reduced.
第10の発明は、特に第1から第9のいずれか1つに記載のスクロール圧縮機において、作動流体を高圧流体、例えば二酸化炭素とするものである。この構成によれば、作動流体の作動圧力が高い場合においても、圧縮室間の渦巻き状のラップ側面隙間からの作動流体の漏れの漏れを効果的に抑制しつつ、安定した背圧を印加することができる。 According to a tenth aspect of the invention, in particular, in the scroll compressor according to any one of the first to ninth aspects, the working fluid is a high-pressure fluid, for example, carbon dioxide. According to this configuration, even when the working pressure of the working fluid is high, a stable back pressure is applied while effectively suppressing leakage of the working fluid from the spiral wrap side surface gap between the compression chambers. be able to.
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
(実施の形態1)
図1は、本発明の第1の実施の形態に係るスクロール圧縮機の縦断面図である。図2と図3は、図1の圧縮機構部の要部拡大断面図であり、図2は内連通を示し、図3は外連通を示す。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of a scroll compressor according to the first embodiment of the present invention. 2 and 3 are enlarged cross-sectional views of the main part of the compression mechanism of FIG. 1, FIG. 2 shows internal communication, and FIG. 3 shows external communication.
以下、本実施の形態1のスクロール圧縮機について、その構成、動作、作用を説明する。 Hereinafter, the configuration, operation, and action of the scroll compressor according to the first embodiment will be described.
図1に示すように本発明のスクロール圧縮機は、密閉容器1と、その内部に圧縮機構2、モータ部3、貯油部20を備えて構成されている。図2と図3を用いて圧縮機構部の詳細を説明すると、密閉容器1内に溶接や焼き嵌めなどして固定したシャフト4の主軸受部材11と、この主軸受部材11上にボルト止めした固定スクロール12との間に、固定スクロール12と噛み合う旋回スクロール13を挟み込んでスクロール式の圧縮機構2を構成している。旋回スクロール13と主軸受部材11との間には、旋回スクロール13の自転を防止して円軌道運動するように案内するオルダムリングなどによる自転拘束機構14を設け、シャフト4の上端にある偏心軸部4aにて旋回スクロール13を偏心駆動することにより、旋回スクロール13を円軌道運動させる。これにより固定スクロール12と旋回スクロール13との間に形成している圧縮室15が、外周側から中央部に向かって容積を縮めながら移動することを利用して、密閉容器1外に通じた吸入パイプ16及び固定スクロール12の外周部の吸入口17から作動流体を吸入して、圧縮室15に閉じ込んだのち圧縮を行う。所定の圧力に到達した作動流体は、固定スクロール12の中央部の吐出口18からリード弁19を押し開いて、密閉容器1内に吐出される。 As shown in FIG. 1, the scroll compressor of the present invention is configured to include a hermetic container 1 and a compression mechanism 2, a motor unit 3, and an oil storage unit 20 therein. The details of the compression mechanism will be described with reference to FIGS. 2 and 3. The main bearing member 11 of the shaft 4 fixed by welding or shrink fitting in the sealed container 1, and bolted on the main bearing member 11. A scroll-type compression mechanism 2 is configured by sandwiching a turning scroll 13 meshing with the fixed scroll 12 between the fixed scroll 12. Between the orbiting scroll 13 and the main bearing member 11, there is provided a rotation restraining mechanism 14 such as an Oldham ring that guides the orbiting scroll 13 so as to prevent the rotation of the orbiting scroll and move in a circular orbit, and an eccentric shaft at the upper end of the shaft 4. The orbiting scroll 13 is moved in a circular orbit by driving the orbiting scroll 13 eccentrically by the portion 4a. By using the fact that the compression chamber 15 formed between the fixed scroll 12 and the orbiting scroll 13 moves while shrinking the volume from the outer peripheral side toward the center portion, the suction communicated outside the sealed container 1. The working fluid is sucked from the suction port 17 in the outer peripheral portion of the pipe 16 and the fixed scroll 12 and is compressed in the compression chamber 15 after being closed. The working fluid that has reached a predetermined pressure pushes the reed valve 19 through the discharge port 18 at the center of the fixed scroll 12 and is discharged into the sealed container 1.
またシャフト4の一端にはポンプ25が設けられ、ポンプ25の吸い込み口が貯油部20内に存在するように配置する。ポンプ25はスクロール圧縮機と同時に駆動されるため、ポンプ25は密閉容器1の底部に設けられた貯油部20にあるオイル6を、圧力条件や運転速度に関係なく、確実に吸い上げることができ、オイル切れの心配も解消される。ポンプ25で吸い上げたオイル6は、シャフト4内を通縦しているオイル供給穴26を通じて圧縮機構2に供給される。なお、オイル6をポンプ25で吸い上げる前、もしくは吸い上げた後に、オイルフィルタ等でオイル6から異物を除去すると、圧縮機構2への異物混入が防止でき、更なる信頼性向上を図ることができる。 Further, a pump 25 is provided at one end of the shaft 4, and the suction port of the pump 25 is disposed in the oil storage unit 20. Since the pump 25 is driven simultaneously with the scroll compressor, the pump 25 can reliably suck up the oil 6 in the oil storage unit 20 provided at the bottom of the hermetic container 1 regardless of the pressure condition and the operation speed. The worry of running out of oil is also eliminated. The oil 6 sucked up by the pump 25 is supplied to the compression mechanism 2 through an oil supply hole 26 running vertically through the shaft 4. If foreign matter is removed from the oil 6 with an oil filter or the like before or after the oil 25 is sucked up by the pump 25, foreign matter can be prevented from entering the compression mechanism 2 and further reliability can be improved.
圧縮機構2に導かれたオイル6は、スクロール圧縮機の吐出圧力とほぼ同等であり、旋回スクロール13に対する背圧源ともなる。これにより、旋回スクロール13は固定スクロール12から離れたり片当たりしたりするようなことはなく、所定の圧縮機能を安定して発揮する。さらにオイル6の一部は、供給圧や自重によって、逃げ場を求めるようにして偏心軸部4aと旋回スクロール13との嵌合部、シャフト4と主軸受部材11との間の軸受部66に進入してそれぞれの部分を潤滑した後落下し、貯油部20へ戻る。 The oil 6 guided to the compression mechanism 2 is substantially equal to the discharge pressure of the scroll compressor and also serves as a back pressure source for the orbiting scroll 13. As a result, the orbiting scroll 13 does not move away from the fixed scroll 12 and does not come into contact with each other, and the predetermined compression function is stably exhibited. Further, a part of the oil 6 enters the bearing portion 66 between the shaft 4 and the main bearing member 11, the fitting portion between the eccentric shaft portion 4 a and the orbiting scroll 13 so as to obtain a clearance by the supply pressure and the own weight. Then, the respective parts are lubricated and then dropped and returned to the oil storage unit 20.
固定スクロール12と旋回スクロール13により形成される圧縮室15には、旋回スクロール13のラップ外壁側に形成される外側圧縮室15aと、ラップ内壁側に形成される内側圧縮室15bがあり、外側圧縮室15aの吸入容積の方が、内側圧縮室15bの吸入容積より大きい。このことにより、図19に示したように、クランク回転角に対する内側圧縮室15bの圧力上昇速度は外側圧縮室15aの圧力上昇速度よりも速くなり、結果として、図18に示した渦巻きラップ側面D2で仕切られる内側圧縮室15b−1と低圧側に形成される内側圧縮室15b−2の圧力差が大きくなることから、外側圧縮室15aと比較し内側圧縮室15bの渦巻きラップ側面D2を介して作動流体が漏れやすいことになる。 The compression chamber 15 formed by the fixed scroll 12 and the orbiting scroll 13 includes an outer compression chamber 15a formed on the wrap outer wall side of the orbiting scroll 13 and an inner compression chamber 15b formed on the wrap inner wall side. The suction volume of the chamber 15a is larger than the suction volume of the inner compression chamber 15b. As a result, as shown in FIG. 19, the pressure increase rate of the inner compression chamber 15b with respect to the crank rotation angle becomes faster than the pressure increase rate of the outer compression chamber 15a. As a result, the spiral wrap side surface D2 shown in FIG. Since the pressure difference between the inner compression chamber 15b-1 partitioned by the inner compression chamber 15b-2 formed on the low pressure side and the inner compression chamber 15b-2 is larger than that of the outer compression chamber 15a, the spiral compression wrap side surface D2 of the inner compression chamber 15b is used. The working fluid is likely to leak.
そこで、本実施の形態のスクロール圧縮機では、貯油部20から内側圧縮室15bに導く給油量制御経路55を第1の経路55−1と第2の経路55−2で構成し、内側圧縮室連通凹部84の断面積を外側圧縮室連通凹部85の断面積より大きく設定することによって、圧力上昇速度の大きい外側圧縮室15bへ積極的にオイル供給することで、1つ前に形成された内側圧縮室15b−1から、次に形成された内側圧縮室15b−2への作動流体の漏れを抑制することができる。 Therefore, in the scroll compressor of the present embodiment, the oil supply amount control path 55 that leads from the oil storage unit 20 to the inner compression chamber 15b is configured by the first path 55-1 and the second path 55-2, and the inner compression chamber. By setting the cross-sectional area of the communication recess 84 to be larger than the cross-sectional area of the outer compression chamber communication recess 85, the oil is positively supplied to the outer compression chamber 15b having a high pressure increase rate, thereby forming the inner side formed immediately before. The leakage of the working fluid from the compression chamber 15b-1 to the inner compression chamber 15b-2 formed next can be suppressed.
オイル供給穴26から流出したオイル6は、第1の経路55−1の高圧領域側開口端55−1aから第1の経路55−1に流入し、第1の経路55−1の背圧室側開口端55−1bから流出する。また、高圧領域30と背圧室29は、シール部材78によって密接に区画されているため、高圧領域30と背圧室29の間のオイル6の漏れ出しは無い。 The oil 6 flowing out from the oil supply hole 26 flows into the first path 55-1 from the high-pressure region side opening end 55-1 a of the first path 55-1, and the back pressure chamber of the first path 55-1. It flows out from the side opening end 55-1b. Further, since the high pressure region 30 and the back pressure chamber 29 are closely separated by the seal member 78, the oil 6 does not leak between the high pressure region 30 and the back pressure chamber 29.
図2に示すクランク角(図4(A)のクランク角)においては、第1の経路55−1の背圧室側開口端55−1bが高圧領域30に開口している。よって、第1の経路55−1の高圧領域側開口端55−1aと背圧室側開口端55−1bの圧力差がなくなるので、第1の経路55−1内でのオイル6の移動はない。 At the crank angle shown in FIG. 2 (the crank angle in FIG. 4A), the back pressure chamber side opening end 55-1b of the first path 55-1 is open to the high pressure region 30. Therefore, since there is no pressure difference between the high pressure region side opening end 55-1a and the back pressure chamber side opening end 55-1b of the first path 55-1, the movement of the oil 6 in the first path 55-1 is Absent.
対して、図3に示すクランク角(図4(B)、(C)、(D)のクランク角)においては、第1の経路55−1の背圧室側開口端55−1bがシール部材78を跨いで背圧室29に開口している。よって、高圧室30より圧力の低い(=背圧室29は、高圧と吸入圧の中間の圧力に保たれている)背圧室29に圧力差によってオイル6が流出される。 On the other hand, at the crank angle shown in FIG. 3 (the crank angles in FIGS. 4B, 4C, and 4D), the back pressure chamber side opening end 55-1b of the first path 55-1 is the seal member. The back pressure chamber 29 is opened across 78. Therefore, the oil 6 flows out into the back pressure chamber 29 having a pressure lower than that of the high pressure chamber 30 (= the back pressure chamber 29 is maintained at an intermediate pressure between the high pressure and the suction pressure) due to the pressure difference.
すなわち、クランク角によって、第1の経路55−1の背圧室側開口端55−1bが、シール部材78を往来することにより、高圧領域30と背圧室29の非連通状態と連通状態を繰り返す。よって、背圧室29、ひいては内側圧縮室15bへのオイル6の給油量を絞ることが出来るため、内側圧縮室15b内へのオイル供給量の調整範囲を広げることが可能となるため、内側圧縮室15b内への過剰なオイル6の供給による粘性損失の増大を抑制でき、圧縮機の効率を向上できる。また、背圧室29に流入するオイル6の調整範囲も広がり、背圧を下げることが出来るため、旋回スクロール13の固定スクロール12への押付力を緩和でき、旋回スクロール13のスラスト面13dや旋回スクロール13のラップ先端13cでの摺動損失を緩和でき、圧縮機の効率を向上できる。また、第2の経路55−2が背圧室29と内側圧縮室15bを連通しない場合がクランク軸1回転中に存在しても、第1の経路55−1を間欠的に連通させることで、過剰な背圧上昇を抑制でき、圧縮機構2の信頼性が向上できる。さらに、高圧領域30から背圧室29へ流入するオイル量を連通時間で制御できるため、第1の経路55−1に油量調節のための絞り部を設ける必要がなくなり、絞り部に異物が噛み込むトラブルを回避でき、圧縮機構2の信頼性が向上できる。 That is, the back pressure chamber side opening end 55-1b of the first path 55-1 travels through the seal member 78 depending on the crank angle, so that the non-communication state and the communication state of the high pressure region 30 and the back pressure chamber 29 are changed. repeat. Therefore, since the amount of oil 6 supplied to the back pressure chamber 29 and thus to the inner compression chamber 15b can be reduced, the adjustment range of the oil supply amount to the inner compression chamber 15b can be widened. An increase in viscosity loss due to the excessive supply of oil 6 into the chamber 15b can be suppressed, and the efficiency of the compressor can be improved. In addition, since the adjustment range of the oil 6 flowing into the back pressure chamber 29 is widened and the back pressure can be reduced, the pressing force of the orbiting scroll 13 against the fixed scroll 12 can be reduced, and the thrust surface 13d of the orbiting scroll 13 and the orbiting can be reduced. The sliding loss at the wrap tip 13c of the scroll 13 can be alleviated, and the efficiency of the compressor can be improved. Further, even when the second path 55-2 does not communicate with the back pressure chamber 29 and the inner compression chamber 15b during the one rotation of the crankshaft, the first path 55-1 is intermittently communicated. Thus, an excessive increase in back pressure can be suppressed, and the reliability of the compression mechanism 2 can be improved. Further, since the amount of oil flowing from the high pressure region 30 into the back pressure chamber 29 can be controlled by the communication time, it is not necessary to provide a throttle portion for adjusting the oil amount in the first path 55-1 and foreign matter is present in the throttle portion. The trouble of biting can be avoided and the reliability of the compression mechanism 2 can be improved.
次に、背圧室29に流入したオイル6は、第2の経路55−2の背圧室側開口端55−2aから第2の経路55−2を経て第2の経路55−2の圧縮室側開口端55−2bに至
る。さらに、固定スクロール12に設けられた内側圧縮室連通凹部84と外側圧縮室連通凹部85を経て、内側圧縮室15bと外側圧縮室15aに振り分けられて流入する。
Next, the oil 6 flowing into the back pressure chamber 29 is compressed in the second path 55-2 from the back pressure chamber side opening end 55-2a of the second path 55-2 through the second path 55-2. It reaches the chamber side opening end 55-2b. Further, the air flows through the inner compression chamber communication recess 84 and the outer compression chamber communication recess 85 provided in the fixed scroll 12 and flows into the inner compression chamber 15b and the outer compression chamber 15a.
図2に示すクランク角(図5(C)のクランク角)においては、第2の経路55−2の圧縮室側開口端55−2bが内側圧縮室連通凹部84と連通状態であり、内側圧縮室15bにオイル6が供給されている。 At the crank angle shown in FIG. 2 (the crank angle in FIG. 5C), the compression chamber side opening end 55-2b of the second path 55-2 is in communication with the inner compression chamber communication recess 84, and the inner compression is performed. Oil 6 is supplied to the chamber 15b.
対して、図3に示すクランク角(図5(A)のクランク角)においては、第2の経路55−2の圧縮室側開口端55−2bが外側圧縮室連通凹部85と連通状態にあり、外側圧縮室15aにオイル6が供給されている。 On the other hand, at the crank angle shown in FIG. 3 (the crank angle in FIG. 5A), the compression chamber side opening end 55-2b of the second path 55-2 is in communication with the outer compression chamber communication recess 85. The oil 6 is supplied to the outer compression chamber 15a.
内側圧縮室連通凹部84の断面積は、外側圧縮室連通凹部85の断面積より大きいため、旋回スクロール13の旋回に伴う、第2の経路55−2の圧縮室側開口端55−2bと内側圧縮室連通凹部84の開口時間は、外側圧縮室連通凹部85との開口時間より長くなる。よって、内側圧縮室15bへの給油量が外側圧縮室15aへの給油量より多くなり、圧力上昇速度の大きい外側圧縮室15bへ積極的にオイルが供給でき、1つ前に形成された内側圧縮室15b−1から、次に形成された内側圧縮室15b−2への作動流体の漏れを抑制することができる。 Since the cross-sectional area of the inner compression chamber communication recess 84 is larger than the cross-sectional area of the outer compression chamber communication recess 85, the compression chamber side opening end 55-2b and the inner side of the second path 55-2 accompanying the turning of the orbiting scroll 13 are included. The opening time of the compression chamber communication recess 84 is longer than the opening time of the outer compression chamber communication recess 85. Therefore, the amount of oil supplied to the inner compression chamber 15b is larger than the amount of oil supplied to the outer compression chamber 15a, and oil can be positively supplied to the outer compression chamber 15b having a large pressure increase rate. The leakage of the working fluid from the chamber 15b-1 to the inner compression chamber 15b-2 formed next can be suppressed.
よって、内側圧縮室15bにおいても、外側圧縮室15aにおいても、ひとつ前に作動流体を閉じ込んだ圧縮室15と次に作動流体を閉じ込んだ圧縮室15間の、渦巻き状のラップ側面隙間D2からの作動流体の漏れを効果的に抑制でき、再圧縮による圧縮効率の低下を抑制できる。 Therefore, in both the inner compression chamber 15b and the outer compression chamber 15a, the spiral wrap side surface gap D2 between the compression chamber 15 that previously closed the working fluid and the compression chamber 15 that next closed the working fluid. It is possible to effectively suppress the leakage of the working fluid from the cylinder, and to suppress a decrease in compression efficiency due to recompression.
高圧領域30から背圧室29への給油量は、第1の経路55−1の背圧室側開口端55−1bの断面積や開口位置を変化させて制御可能であるし、背圧室29から内側圧縮室15b、および外側圧縮室15aへの給油量は、第2の経路55−2の断面積や、第2の経路55−2の圧縮室側開口端55−2bの断面積を変化させて制御可能である。 The amount of oil supplied from the high pressure region 30 to the back pressure chamber 29 can be controlled by changing the cross-sectional area and the opening position of the back pressure chamber side opening end 55-1b of the first path 55-1, and the back pressure chamber. The amount of oil supply from 29 to the inner compression chamber 15b and the outer compression chamber 15a is the sectional area of the second path 55-2 and the sectional area of the compression chamber side opening end 55-2b of the second path 55-2. It can be controlled by changing.
また、図5(B)、(D)に示すクランク角では、第2の経路55−2の圧縮室側開口端55−2bは内側圧縮室連通凹部84とも外側圧縮室連通凹部85とも連通していないため、内側圧縮室15bへも外側圧縮室15aへも給油されない。よって、給油量過多による粘性損失の増大を抑制できるため、圧縮機の効率を向上できる。 5B and 5D, the compression chamber side opening end 55-2b of the second path 55-2 communicates with the inner compression chamber communication recess 84 and the outer compression chamber communication recess 85. Therefore, neither the inner compression chamber 15b nor the outer compression chamber 15a is refueled. Therefore, an increase in viscosity loss due to excessive oil supply can be suppressed, and the efficiency of the compressor can be improved.
なお、内側圧縮室15bと外側圧縮室15aの給油量の大小を、内側圧縮室連通凹部84と外側圧縮室連通凹部85の断面積の大小により制御していたが、内側圧縮室連通凹部84と外側圧縮室連通凹部85の深さや、位置を変化させて給油量の大小を制御しても良い。 The amount of oil supply in the inner compression chamber 15b and the outer compression chamber 15a is controlled by the size of the cross-sectional areas of the inner compression chamber communication recess 84 and the outer compression chamber communication recess 85. The amount of oil supply may be controlled by changing the depth and position of the outer compression chamber communication recess 85.
(実施の形態2)
図6と図7は、本発明の第2の実施の形態に係るスクロール圧縮機の圧縮機構部の拡大断面図である。なお、図6は内連通を示し、図7は外連通を示す。図6と図7において、圧縮室15へのオイル供給について、第2の経路55−2の圧縮室側開口端以外は前記実施の形態1と同様なので、図2と同じ構成要素については同じ符号を用い、第2の経路55−2の圧縮室側開口端に関する説明のみを行い、他は省略する。
(Embodiment 2)
6 and 7 are enlarged cross-sectional views of the compression mechanism portion of the scroll compressor according to the second embodiment of the present invention. 6 shows internal communication, and FIG. 7 shows external communication. 6 and 7, the oil supply to the compression chamber 15 is the same as that of the first embodiment except for the compression chamber side opening end of the second path 55-2, and therefore the same components as those in FIG. Only the description about the compression chamber side opening end of the second path 55-2 will be given, and the others will be omitted.
図6に示すように、本実施の形態では、第2の経路55−2の圧縮室側開口端が、内側圧縮室側開口端55−2cと外側圧縮室側開口端55−2dから構成されている。背圧室29に流入したオイル6は、第2の経路55−2の背圧室側開口端55−2aから第2の経路55−2を経て第2の経路55−2の内側圧縮室側開口端55−2cと外側圧縮室側
開口端55−2dに振り分けられる。
As shown in FIG. 6, in the present embodiment, the compression chamber side opening end of the second path 55-2 is constituted by an inner compression chamber side opening end 55-2c and an outer compression chamber side opening end 55-2d. ing. The oil 6 that has flowed into the back pressure chamber 29 passes through the second path 55-2 from the back pressure chamber side opening end 55-2a of the second path 55-2, and reaches the inner compression chamber side of the second path 55-2. It is distributed to the opening end 55-2c and the outer compression chamber side opening end 55-2d.
図6に示すクランク角(図8(C)のクランク角)においては、第2の経路55−2の内側圧縮室側開口端55−2cが内側圧縮室15bと連通状態であり、内側圧縮室15bにオイル6が供給されている。 At the crank angle shown in FIG. 6 (the crank angle in FIG. 8C), the inner compression chamber side opening end 55-2c of the second path 55-2 is in communication with the inner compression chamber 15b, and the inner compression chamber Oil 6 is supplied to 15b.
対して、図7示すクランク角(図8(A)のクランク角)においては、第2の経路55−2の外側圧縮室側開口端55−2dが外側圧縮室15aと連通状態にあり、外側圧縮室15aにオイル6が供給されている。 On the other hand, at the crank angle shown in FIG. 7 (the crank angle in FIG. 8A), the outer compression chamber side opening end 55-2d of the second path 55-2 is in communication with the outer compression chamber 15a, and the outer side Oil 6 is supplied to the compression chamber 15a.
内側圧縮室側開口端55−2cの断面積は、外側圧縮室側開口端55−2dの断面積より大きいため、内側圧縮室15bへの給油量が外側圧縮室15aへの給油量より多くなり、圧力上昇速度の大きい外側圧縮室15bへ積極的にオイルが供給でき、1つ前に形成された内側圧縮室15b−1から、次に形成された内側圧縮室15b−2への作動流体の漏れを抑制することができる。 Since the sectional area of the inner compression chamber side opening end 55-2c is larger than the sectional area of the outer compression chamber side opening end 55-2d, the amount of oil supplied to the inner compression chamber 15b becomes larger than the amount of oil supplied to the outer compression chamber 15a. The oil can be positively supplied to the outer compression chamber 15b having a large pressure increase speed, and the working fluid can be transferred from the inner compression chamber 15b-1 formed one before to the inner compression chamber 15b-2 formed next. Leakage can be suppressed.
よって、内側圧縮室15bにおいても、外側圧縮室15aにおいても、ひとつ前に作動流体を閉じ込んだ圧縮室15と次に作動流体を閉じ込んだ圧縮室15間の、渦巻き状のラップ側面隙間D2からの作動流体の漏れを効果的に抑制でき、再圧縮による圧縮効率の低下を抑制できる。 Therefore, in both the inner compression chamber 15b and the outer compression chamber 15a, the spiral wrap side surface gap D2 between the compression chamber 15 that previously closed the working fluid and the compression chamber 15 that next closed the working fluid. It is possible to effectively suppress the leakage of the working fluid from the cylinder, and to suppress a decrease in compression efficiency due to recompression.
背圧室29から内側圧縮室15b、および外側圧縮室15aへの給油量は、第2の経路55−2の断面積や、第2の経路55−2の内側圧縮室側開口端55−2cや外側圧縮室側開口端55−2dの断面積を変化させて制御可能である。 The amount of oil supplied from the back pressure chamber 29 to the inner compression chamber 15b and the outer compression chamber 15a depends on the cross-sectional area of the second path 55-2 and the inner compression chamber side opening end 55-2c of the second path 55-2. It is possible to control by changing the cross-sectional area of the outer compression chamber side opening end 55-2d.
また、図8(B)、(D)に示すクランク角では、第2の経路55−2の内側圧縮室側開口端55−2cや外側圧縮室側開口端55−2dが固定スクロール12のラップ先端によって閉塞されているため、内側圧縮室15bへも外側圧縮室15aへも連通していないので、内側圧縮室15bへも外側圧縮室15aへも給油されない。よって、給油量過多による粘性損失の増大を抑制できるため、圧縮機の効率を向上できる。 8B and 8D, the inner compression chamber side opening end 55-2c and the outer compression chamber side opening end 55-2d of the second path 55-2 are wrapped with the fixed scroll 12. Since it is blocked by the tip, it does not communicate with the inner compression chamber 15b or the outer compression chamber 15a, so that neither the inner compression chamber 15b nor the outer compression chamber 15a is refueled. Therefore, an increase in viscosity loss due to excessive oil supply can be suppressed, and the efficiency of the compressor can be improved.
(実施の形態3)
図9と図10は、本発明の第3の実施の形態に係るスクロール圧縮機の圧縮機構部の拡大断面図であり、図9は内連通を示し、図10は外連通を示す。図9と図10において、吸入室86へのオイル供給について、第3の経路55−3以外は前記実施の形態1と同様なので、図2と同じ構成要素については同じ符号を用い、第3の経路55−3に関する説明のみを行い、他は省略する。
(Embodiment 3)
9 and 10 are enlarged cross-sectional views of the compression mechanism portion of the scroll compressor according to the third embodiment of the present invention. FIG. 9 shows internal communication and FIG. 10 shows external communication. 9 and 10, the oil supply to the suction chamber 86 is the same as that of the first embodiment except for the third path 55-3. Therefore, the same reference numerals are used for the same components as in FIG. Only the route 55-3 will be described and the others will be omitted.
図9に示すように、本実施の形態では、第3の経路55−3を設けている。第3の経路55−3の一方の端は、背圧室側開口端55−3aであり、背圧室29に常時臨んでいる。他方の端は吸入室側開口端55−3bであり、旋回スクロール13のラップ上面に設けられており、ザグリ87を通じて常時吸入室86に臨んでいる。 As shown in FIG. 9, in the present embodiment, a third path 55-3 is provided. One end of the third path 55-3 is a back pressure chamber side opening end 55-3 a and always faces the back pressure chamber 29. The other end is a suction chamber side opening end 55-3b, which is provided on the upper surface of the orbiting scroll 13 and faces the suction chamber 86 through a counterbore 87 at all times.
背圧室29に流入したオイル6は、第3の経路55−3の背圧室側開口端55−3aから第3の経路55−3を経て、第3の経路55−3の吸入室側開口端55−3bから、ザグリ87を経て吸入室86に流入する。 The oil 6 that has flowed into the back pressure chamber 29 passes from the back pressure chamber side opening end 55-3a of the third path 55-3 through the third path 55-3, and then into the suction chamber side of the third path 55-3. It flows into the suction chamber 86 through the counterbore 87 from the open end 55-3b.
図9と図10においても、すなわち図11(A)から(D)に示す全てのクランク角において、第3の経路55−3の吸入室側開口端55−3bは吸入室86と常時連通状態であり、常時吸入室86にオイル6が供給されている。よって、吸入室86に常時オイル6
が供給されることにより、オイル6がシールの役割を果たし、吸入に連通する圧縮室(=吸入室86)の吸入行程における作動流体の漏れが低減でき、体積効率を向上できるため、圧縮機の効率向上が可能である。
Also in FIGS. 9 and 10, that is, at all crank angles shown in FIGS. 11A to 11D, the suction chamber side open end 55-3b of the third path 55-3 is always in communication with the suction chamber 86. The oil 6 is always supplied to the suction chamber 86. Therefore, the oil 6 is always in the suction chamber 86.
Since the oil 6 serves as a seal and the leakage of the working fluid in the suction stroke of the compression chamber (= suction chamber 86) communicating with the suction can be reduced and the volumetric efficiency can be improved, Efficiency can be improved.
背圧室29から吸入室86への給油量は、第3の経路55−3の断面積や、背圧室側開口端55−3aの断面積、吸入室側開口端55−3bの断面積や開口位置、ザグリ87の断面積や深さを変化させることで制御可能である。なお、ザグリ87をなくしても良い。 The amount of oil supplied from the back pressure chamber 29 to the suction chamber 86 depends on the cross-sectional area of the third path 55-3, the cross-sectional area of the back pressure chamber-side opening end 55-3a, and the cross-sectional area of the suction chamber-side opening end 55-3b. Further, it can be controlled by changing the opening position and the cross-sectional area and depth of the counterbore 87. The counterbore 87 may be eliminated.
さらに、図12および図13に示すように、第3の経路の吸入室側開口端55−3bを外側吸入室連通凹部88−2と内側吸入室連通凹部88−1を経て、吸入室86に開口させる構成としても良い。この場合、吸入室側開口端55−3bが、外側吸入室連通凹部88−2か内側吸入室連通凹部88−1に臨んでいるクランク角においてのみ外側吸入室86−2もしくは内側吸入室86−1にオイル6が給油されるので、間欠的な給油が可能となる。 Further, as shown in FIG. 12 and FIG. 13, the suction chamber side opening end 55-3b of the third path passes through the outer suction chamber communication recess 88-2 and the inner suction chamber communication recess 88-1, and enters the suction chamber 86. It is good also as a structure made to open. In this case, the outer suction chamber 86-2 or the inner suction chamber 86- only at the crank angle at which the suction chamber side open end 55-3b faces the outer suction chamber communication recess 88-2 or the inner suction chamber communication recess 88-1. Since oil 6 is supplied to 1, intermittent oil supply is possible.
よって、第3の経路55−3の径や長さや、吸入室側開口端55−3bの断面積や開口位置、外側吸入室連通凹部88−2や内側吸入室連通凹部88−1凹部の形状によって、吸入室86へのオイル供給量を連通時間で制御できるため、吸入室86内へのオイル6の供給量の調整範囲が広がり、吸入加熱による体積効率の悪化を抑制でき、圧縮機の効率を向上できる。 Therefore, the diameter and length of the third path 55-3, the cross-sectional area and opening position of the suction chamber side opening end 55-3b, and the shape of the outer suction chamber communication recess 88-2 and the inner suction chamber communication recess 88-1 recess. Therefore, the amount of oil supplied to the suction chamber 86 can be controlled by the communication time, so that the adjustment range of the amount of oil 6 supplied to the suction chamber 86 can be expanded, and deterioration of volumetric efficiency due to suction heating can be suppressed. Can be improved.
なお、間欠的な給油経路は図6から図8を用いて説明した実施の形態2に示す方法で構成してもよい。 In addition, you may comprise an intermittent oil supply path | route by the method shown in Embodiment 2 demonstrated using FIGS.
(実施の形態4)
図14と図15は、本発明の第4の実施の形態に係るスクロール圧縮機の圧縮機構部の拡大断面図であり、図14は内連通を示し、図15は外連通を示す。図14と図15において、吸入室86へのオイル供給について、第4の経路55−4以外は前記実施の形態1と同様なので、図2と同じ構成要素については同じ符号を用い、第4の経路55−4に関する説明のみを行い、他は省略する。
(Embodiment 4)
14 and 15 are enlarged cross-sectional views of the compression mechanism portion of the scroll compressor according to the fourth embodiment of the present invention. FIG. 14 shows internal communication and FIG. 15 shows external communication. 14 and 15, the oil supply to the suction chamber 86 is the same as that of the first embodiment except for the fourth path 55-4. Therefore, the same reference numerals are used for the same components as in FIG. Only the route 55-4 will be described, and the others will be omitted.
図14に示すように、本実施の形態では、第4の経路55−4を設けている。第4の経路55−4の一方の端は、高圧領域側開口端55−4aであり、高圧領域30に常時臨んでいる。他方の端は吸入室側開口端55−4bであり、旋回スクロール13のラップ上面に設けられており、ザグリ87を通じて常時吸入室86に臨んでいる。 As shown in FIG. 14, in the present embodiment, a fourth path 55-4 is provided. One end of the fourth path 55-4 is a high-pressure region side opening end 55-4 a and always faces the high-pressure region 30. The other end is the suction chamber side opening end 55-4 b, which is provided on the upper surface of the orbiting scroll 13 and faces the suction chamber 86 through the counterbore 87.
高圧領域30に流入したオイル6は、第4の経路55−4の高圧領域側開口端55−4aから第4の経路55−4を経て、第4の経路55−4の吸入室側開口端55−4bから、ザグリ87を経て吸入室86に流入する。 The oil 6 that has flowed into the high pressure region 30 passes through the fourth route 55-4 from the high pressure region side open end 55-4a of the fourth route 55-4 and passes through the suction chamber side open end of the fourth route 55-4. From 55-4b, it flows into the suction chamber 86 through the counterbore 87.
図14と図15においても、すなわち図11(A)から(D)に示す全てのクランク角において、第4の経路55−4の吸入室側開口端55−4bは吸入室86と常時連通状態であり、常時吸入室86に高圧のオイル6が供給される。 14 and 15, that is, at all crank angles shown in FIGS. 11A to 11D, the suction chamber side opening end 55-4 b of the fourth path 55-4 is always in communication with the suction chamber 86. The high-pressure oil 6 is always supplied to the suction chamber 86.
よって、吸入室86に常時高圧のオイル6が供給されることにより、差圧の大きい高負荷運転時の潤滑性能が向上し、旋回スクロール13や固定スクロール12のラップ上面や側面の異常磨耗が抑制でき、圧縮機の信頼性が向上できる。 Therefore, by constantly supplying the high-pressure oil 6 to the suction chamber 86, the lubrication performance at the time of high load operation with a large differential pressure is improved, and abnormal wear on the upper surface and side surfaces of the orbiting scroll 13 and the fixed scroll 12 is suppressed. And the reliability of the compressor can be improved.
高圧領域30から吸入室86への給油量は、第4の経路55−4の断面積や、高圧領域側開口端55−4aの断面積、吸入室側開口端55−4bの断面積や開口位置、ザグリ8
7の断面積や深さを変化させることで制御可能である。なお、ザグリ87をなくしても良い。
The amount of oil supplied from the high pressure region 30 to the suction chamber 86 is the cross sectional area of the fourth path 55-4, the cross sectional area of the high pressure region side opening end 55-4a, and the cross sectional area or opening of the suction chamber side opening end 55-4b. Position, counterbore 8
It is controllable by changing the cross-sectional area and depth of 7. The counterbore 87 may be eliminated.
さらに、図16および図17に示すように、第4の経路の吸入室側開口端55−4bを外側吸入室連通凹部88−2と内側吸入室連通凹部88−1を経て、吸入室86に開口させる構成としても良い。この場合、吸入室側開口端55−4bが、外側吸入室連通凹部88−2か内側吸入室連通凹部88−1に臨んでいるクランク角においてのみ外側吸入室86−2もしくは内側吸入室86−1にオイル6が給油されるので、間欠的な給油が可能となる。 Further, as shown in FIGS. 16 and 17, the suction chamber side opening end 55-4 b of the fourth path passes through the outer suction chamber communication recess 88-2 and the inner suction chamber communication recess 88-1 to the suction chamber 86. It is good also as a structure made to open. In this case, the outer suction chamber 86-2 or the inner suction chamber 86- is only at the crank angle at which the suction chamber side opening end 55-4b faces the outer suction chamber communication recess 88-2 or the inner suction chamber communication recess 88-1. Since oil 6 is supplied to 1, intermittent oil supply is possible.
よって、第4の経路55−4の径や長さや、吸入室側開口端55−4bの断面積や開口位置、外側吸入室連通凹部88−2や内側吸入室連通凹部88−1凹部の形状によって、吸入室86へのオイル供給量を連通時間で制御できるため、吸入室86内へのオイル6の供給量の調整範囲が広がり、吸入加熱による体積効率の悪化を抑制でき、圧縮機の効率を向上できる。 Therefore, the diameter and length of the fourth path 55-4, the cross-sectional area and opening position of the suction chamber side opening end 55-4b, the shape of the outer suction chamber communication recess 88-2 and the inner suction chamber communication recess 88-1 recess. Therefore, the amount of oil supplied to the suction chamber 86 can be controlled by the communication time, so that the adjustment range of the amount of oil 6 supplied to the suction chamber 86 can be expanded, and deterioration of volumetric efficiency due to suction heating can be suppressed. Can be improved.
なお、間欠的な給油経路は図6から図8を用いて説明した実施の形態2に示す方法で構成してもよい。 In addition, you may comprise an intermittent oil supply path | route by the method shown in Embodiment 2 demonstrated using FIGS.
最後に作動流体を、高圧冷媒、例えば二酸化炭素とした場合、特に動作圧力が高いため、運転時の差圧も大きくなり、渦巻き状ラップの側面隙間から作動流体がより漏れやすくなる。すなわち本発明の効果が顕著に現れ、高効率かつ高信頼性を実現するスクロール圧縮機を提供することができる。 Finally, when the working fluid is a high-pressure refrigerant, such as carbon dioxide, the operating pressure is particularly high, so the differential pressure during operation also increases, and the working fluid is more likely to leak from the side gaps of the spiral wrap. That is, it is possible to provide a scroll compressor in which the effect of the present invention appears remarkably and achieves high efficiency and high reliability.
以上のように、本発明にかかるスクロール圧縮機は、圧縮室間の漏れ経路を考慮して、渦巻きラップ側面およびラップ先端それぞれの漏れ経路に対し、効果的かつ必要最低限のオイル供給を行うことで、シール性を確保しつつ、オイル噛み込みを抑制した高効率運転を可能とするもので、作動流体を冷媒と限ることなく、空気スクロール圧縮機、真空ポンプ、スクロール型膨張機等のスクロール流体機械の用途にも適用できる。 As described above, the scroll compressor according to the present invention effectively and minimally supplies oil to each of the spiral wrap side surface and the wrap tip leakage path in consideration of the leakage path between the compression chambers. Therefore, it is possible to achieve high-efficiency operation with oil sealing suppressed while ensuring sealing performance. Scroll fluid such as air scroll compressor, vacuum pump, scroll type expander, etc. is not limited to refrigerant. It can also be applied to machine applications.
1 密閉容器
2 圧縮機構
3 モータ部
4 シャフト
4a 偏心軸部
6 オイル
11 主軸受部材
12 固定スクロール
13 旋回スクロール
13c 旋回スクロールのラップ先端
13d 旋回スクロールのスラスト面
13e 旋回スクロール背面
14 自転拘束機構
15 圧縮室
15a 外側圧縮室
15b 内側圧縮室
16 吸入パイプ
17 吸入口
18 吐出口
19 リード弁
20 貯油部
25 ポンプ
26 オイル供給穴
29 背圧室
30 高圧領域
55−1 第1の経路
55−1a 第1の経路の高圧領域側開口端
55−1b 第1の経路の背圧室側開口端
55−2 第2の経路
55−2a 第2の経路の背圧室側開口端
55−2b 第2の経路の圧縮室側開口端
55−2c 内側圧縮室側開口端
55−2d 外側圧縮室側開口端
55−3 第3の経路
55−3a 背圧室側開口端
55−3b 吸入室側開口端
55−4 第4の経路
55−4a 高圧領域側開口端
55−4b 吸入室側開口端
66 軸受部
78 シール部材
84 内側圧縮室連通凹部
85 外側圧縮室連通凹部
86 吸入室
87 ザグリ
88−1 内側吸入室連通凹部
88−2 外側吸入室連通凹部
DESCRIPTION OF SYMBOLS 1 Airtight container 2 Compression mechanism 3 Motor part 4 Shaft 4a Eccentric shaft part 6 Oil 11 Main bearing member 12 Fixed scroll 13 Orbiting scroll 13c Orbiting scroll lap tip 13d Orbiting scroll thrust surface 13e Orbiting scroll back surface 14 Rotation restraint mechanism 15 Compression chamber 15a Outer compression chamber 15b Inner compression chamber 16 Suction pipe 17 Suction port 18 Discharge port 19 Reed valve 20 Oil reservoir 25 Pump 26 Oil supply hole 29 Back pressure chamber 30 High pressure region 55-1 First path 55-1a First path High pressure region side open end 55-1b Back pressure chamber side open end of first path 55-2 Second path 55-2a Back pressure chamber side open end of second path 55-2b Compression of second path Chamber side opening end 55-2c Inner compression chamber side opening end 55-2d Outer compression chamber side opening end 55-3 Third path 55 3a Back pressure chamber side opening end 55-3b Suction chamber side opening end 55-4 Fourth path 55-4a High pressure region side opening end 55-4b Suction chamber side opening end 66 Bearing portion 78 Seal member 84 Inner compression chamber communication recess 85 Outer compression chamber communication recess 86 Suction chamber 87 Counterbore 88-1 Inner suction chamber communication recess 88-2 Outer suction chamber communication recess
Claims (10)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009022135A JP5304285B2 (en) | 2009-02-03 | 2009-02-03 | Scroll compressor |
PCT/JP2009/001799 WO2009130878A1 (en) | 2008-04-22 | 2009-04-20 | Scroll compressor |
AU2009239310A AU2009239310A1 (en) | 2008-04-22 | 2009-04-20 | Scroll compressor |
CN200980114359.9A CN102016319B (en) | 2008-04-22 | 2009-04-20 | Scroll compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009022135A JP5304285B2 (en) | 2009-02-03 | 2009-02-03 | Scroll compressor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010180703A JP2010180703A (en) | 2010-08-19 |
JP5304285B2 true JP5304285B2 (en) | 2013-10-02 |
Family
ID=42762404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009022135A Active JP5304285B2 (en) | 2008-04-22 | 2009-02-03 | Scroll compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5304285B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103154521A (en) * | 2010-09-27 | 2013-06-12 | 松下电器产业株式会社 | Rotary compressor |
JP5548586B2 (en) * | 2010-10-28 | 2014-07-16 | 日立アプライアンス株式会社 | Scroll compressor |
JP5701230B2 (en) * | 2012-02-14 | 2015-04-15 | 日立アプライアンス株式会社 | Scroll compressor |
CN103089620A (en) * | 2012-11-14 | 2013-05-08 | 柳州易舟汽车空调有限公司 | Scroll compressor |
JP7373939B2 (en) * | 2019-08-08 | 2023-11-06 | 日立ジョンソンコントロールズ空調株式会社 | scroll compressor |
DE102020210452A1 (en) * | 2020-05-14 | 2021-11-18 | Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg | Scroll compressor of an electric refrigerant drive |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2785807B2 (en) * | 1996-06-14 | 1998-08-13 | 松下電器産業株式会社 | Scroll gas compressor |
JP4075979B2 (en) * | 2001-12-03 | 2008-04-16 | 株式会社日立製作所 | Scroll fluid machinery |
JP2005147101A (en) * | 2003-11-20 | 2005-06-09 | Mitsubishi Electric Corp | Scroll compressor and refrigerating air conditioner |
JP2007270697A (en) * | 2006-03-31 | 2007-10-18 | Hitachi Ltd | Scroll fluid machine |
-
2009
- 2009-02-03 JP JP2009022135A patent/JP5304285B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010180703A (en) | 2010-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101480464B1 (en) | Scoroll compressor and refrigerator having the same | |
EP2689137B1 (en) | Scroll compressor | |
JPWO2005038254A1 (en) | Scroll compressor | |
JP5304285B2 (en) | Scroll compressor | |
JP2011027076A (en) | Scroll compressor | |
JP5345636B2 (en) | Scroll compressor | |
KR101484538B1 (en) | Scoroll compressor and refrigsrator having the same | |
JP4941480B2 (en) | Scroll compressor | |
KR101587171B1 (en) | Scoroll compressor and refrigerator having the same | |
KR101553953B1 (en) | Scoroll compressor and refrigerator having the same | |
JP5428522B2 (en) | Scroll compressor | |
JP2011085038A (en) | Scroll compressor | |
JP5061584B2 (en) | Scroll compressor | |
JP5304178B2 (en) | Scroll compressor | |
JP5786130B2 (en) | Scroll compressor | |
KR101442547B1 (en) | Scoroll compressor | |
JP2009052464A (en) | Scroll compressor | |
JP2006307753A (en) | Scroll expander | |
JP2010261353A (en) | Scroll compressor | |
JP4807056B2 (en) | Scroll expander | |
JP2012052494A (en) | Hermetically sealed compressor | |
JP5141432B2 (en) | Scroll compressor | |
JP2005163745A (en) | Scroll compressor | |
JP2009052463A (en) | Scroll compressor | |
JP2008121445A (en) | Scroll compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110304 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20110413 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121023 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20121214 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121220 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130528 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130610 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5304285 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |