JP5303126B2 - Axle spring for rolling stock - Google Patents

Axle spring for rolling stock Download PDF

Info

Publication number
JP5303126B2
JP5303126B2 JP2007198917A JP2007198917A JP5303126B2 JP 5303126 B2 JP5303126 B2 JP 5303126B2 JP 2007198917 A JP2007198917 A JP 2007198917A JP 2007198917 A JP2007198917 A JP 2007198917A JP 5303126 B2 JP5303126 B2 JP 5303126B2
Authority
JP
Japan
Prior art keywords
hard partition
partition walls
spring
shaft
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007198917A
Other languages
Japanese (ja)
Other versions
JP2009036236A (en
Inventor
博 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2007198917A priority Critical patent/JP5303126B2/en
Publication of JP2009036236A publication Critical patent/JP2009036236A/en
Application granted granted Critical
Publication of JP5303126B2 publication Critical patent/JP5303126B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Springs (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an axle spring for a vehicle having necessary and sufficient strength and rigidity and enabling weight reduction although a material of hard partition walls is changed from iron to a light material such as aluminum alloy by reexamining and considering a structure, or an axle spring for a vehicle having further enhanced strength and rigidity to improve strength and durability although hard partition walls made of iron are used without change. <P>SOLUTION: In the axle spring, an elastic part 3 having a laminated rubber structure in which a plurality of elastic layers 4A-4D and the hard partition walls 5A-5C are laminated alternately in radial inner and outer directions in the concentric or approximately concentric state with an axial center P is interposed between a spindle 1 and an outer cylinder 2 having the same or approximately the same axial center P as that of the spindle 1. The hard partition wall 5 is formed of a corrugated aluminum alloy plate material or synthetic resin plate projected/recessed or rising/falling in the radial direction. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、鉄道車両の台車に使用される鉄道車両用軸ばねに関するものである。   The present invention relates to a railcar shaft spring used for a railcar bogie.

この種の鉄道車両用軸ばねは、主軸とこれと互いに同一又はほぼ同一の軸心を有する外筒との間に、複数の弾性層と硬質隔壁とを軸心と同心又はほぼ同心状態で径内外方向で交互に積層する積層ゴム構造の弾性部を介装することで構成されており、例えば特許文献1において開示された鉄道車両用軸ばねが知られている。   This type of railcar shaft spring has a plurality of elastic layers and hard partition walls concentrically or substantially concentric with the shaft between the main shaft and an outer cylinder having the same or substantially the same axis. It is configured by interposing an elastic portion of a laminated rubber structure that is alternately laminated in the inner and outer directions. For example, a railcar shaft spring disclosed in Patent Document 1 is known.

上記の鉄道車両用軸ばねにおいては、通常、弾性層はゴムから成り、主軸、硬質隔壁、及び外筒は、いずれも強度が必要となることから鋼板等の鉄製とされているが、昨今の走行速度の高速化に伴う軽量化のために、鉄材に代えてアルミ合金を用いることが検討されてきている。そこで、鉄道車両用軸ばねにおいては、主軸や外筒に比べて強度条件の緩い硬質隔壁をアルミ合金化することが比較的容易であると考えられる。   In the above railway vehicle shaft spring, the elastic layer is usually made of rubber, and the main shaft, the hard partition wall, and the outer cylinder are all made of iron such as a steel plate because strength is required. In order to reduce the weight accompanying an increase in traveling speed, it has been studied to use an aluminum alloy instead of the iron material. In view of this, it is considered that, in a railway vehicle shaft spring, it is relatively easy to make an aluminum alloy of a hard partition wall having a loose strength condition as compared with a main shaft or an outer cylinder.

硬質隔壁は、その内外の弾性層に挟まれており、主軸と外筒との相対移動する懸架動によって比較的大きく動きうる部材であり、主軸や外筒に比べて肉厚が薄く設定されることが多いので、単純にそのままアルミ合金化すると種々の問題が生じ易い。即ち、寸法、形状が鉄製の場合と同じであると絶対的な強度や剛性が不足気味になるとか、局部的な力が作用したときの応力集中によって早期に疲労現象が起る可能性が高いといった不都合である。   The hard partition wall is sandwiched between the inner and outer elastic layers, and is a member that can move relatively large due to the suspension movement of the main shaft and the outer cylinder relative to each other, and is set to be thinner than the main shaft and the outer cylinder. In many cases, simply forming an aluminum alloy as it is is likely to cause various problems. In other words, if the dimensions and shape are the same as when made of iron, the absolute strength and rigidity will be insufficient, or there is a high possibility that fatigue will occur early due to stress concentration when local force is applied. It is inconvenient.

製造時について考えると、金型に硬質隔壁をセットして弾性層用のゴムを流し込むようになるが、硬質隔壁の剛性が低いとゴムの注入圧によって硬質隔壁が変形するおそれがある。この場合、硬質隔壁に圧力調整用の孔を設けて変形を防ぐ手段が考えられるが、そうすると、製造後の製品(軸ばね)としての使用時にその圧力調整用孔が疲労亀裂の起点になり易いという問題が残る。このように、硬質隔壁をアルミ合金化するのは簡単ではなく、更なる工夫や改善が必要である。
特開平6−24336号公報
Considering the manufacturing process, a hard partition wall is set in a mold and rubber for the elastic layer is poured. However, if the rigidity of the hard partition wall is low, the hard partition wall may be deformed by the injection pressure of the rubber. In this case, a means for preventing deformation by providing a pressure adjusting hole in the hard partition wall is conceivable. However, when used as a product (shaft spring) after manufacture, the pressure adjusting hole tends to become a starting point of fatigue cracks. The problem remains. Thus, it is not easy to make the hard partition into an aluminum alloy, and further improvements and improvements are required.
JP-A-6-24336

本発明の目的は、構造を見直して検討及び考察することにより、硬質隔壁を鉄製からアルミ合金等の比重の軽い素材で形成しながらも、必要となる強度や剛性が十分に備わったものとして軽量化が可能となる鉄道車両用軸ばね、或いは、硬質隔壁を鉄製のままとしながらも、その強度や剛性をさらに強化できて強度や耐久性が向上する鉄道車両用軸ばねを提供する点にある。   The purpose of the present invention is to review and consider the structure, and to form a hard partition with a material with a low specific gravity, such as iron or aluminum alloy. The present invention is to provide a railcar shaft spring that can be made into a rail, or a railcar shaft spring that can be further strengthened in strength and rigidity while the hard partition is made of iron, and the strength and durability are improved. .

請求項1に係る発明は、主軸1とこれと互いに同一又はほぼ同一の軸心Pを有する外筒2との間に、複数の弾性層4と硬質隔壁5とを前記軸心Pと同心又はほぼ同心状態で径内外方向で交互に積層する積層ゴム構造の弾性部3が介装されて成る鉄道車両用軸ばねにおいて、
前記硬質隔壁5が、前記径方向に凹凸又は起伏する板材によって形成され、
前記凹凸又は起伏が、前記軸心P方向にうねる波形に設定されて径内外に複数設けられ、
径内外で隣合う前記硬質隔壁5における各山部y及び各谷部tが前記軸心Pに直交する径方向線m上に揃えられていることを特徴とするものである。
In the invention according to claim 1, a plurality of elastic layers 4 and hard partition walls 5 are concentric with the shaft center P or between the main shaft 1 and the outer cylinder 2 having the same or substantially the same shaft center P. In a railcar shaft spring comprising an elastic portion 3 of a laminated rubber structure that is alternately laminated in the radially inner and outer directions in a substantially concentric state,
The hard partition wall 5 is formed of a plate material that is uneven or undulate in the radial direction,
A plurality of the irregularities or undulations are set in a waveform that undulates in the direction of the axis P, and a plurality thereof are provided inside and outside the diameter,
The crests y and the troughs t in the hard partition walls 5 adjacent to each other inside and outside the diameter are aligned on a radial line m orthogonal to the axis P.

請求項2に係る発明は、に請求項1に記載の鉄道車両用軸ばねにおいて、前記硬質隔壁5が複数設けられており、それら各硬質隔壁5A〜5Cにおける波形状の山部y及び谷部tが前記軸心P方向において合致されていることを特徴とするものである。   According to a second aspect of the present invention, there is provided the railcar shaft spring according to the first aspect, wherein a plurality of the hard bulkheads 5 are provided, and the corrugated peaks y and troughs in each of the hard bulkheads 5A to 5C. The t is matched in the direction of the axis P.

請求項3に係る発明は、請求項1又は2に記載の鉄道車両用軸ばねにおいて、前記硬質隔壁5が、前記軸心Pに対する周方向で不連続なものに形成されていることを特徴とするものである。   The invention according to claim 3 is the shaft spring for a railway vehicle according to claim 1 or 2, characterized in that the hard partition wall 5 is formed discontinuously in the circumferential direction with respect to the axis P. To do.

請求項4に係る発明は、請求項1〜3の何れか一項に記載の鉄道車両用軸ばねにおいて、前記硬質隔壁5がアルミ合金製又は合成樹脂製であることを特徴とするものである。   The invention according to claim 4 is the shaft spring for a railway vehicle according to any one of claims 1 to 3, wherein the hard partition wall 5 is made of an aluminum alloy or a synthetic resin. .

請求項1の発明によれば、弾性部に介在される硬質隔壁を径方向に凹凸又は起伏する板材によって形成してあるので、単なる筒状や円弧状のものに比べて強度や剛性が向上する。故に、従来と同じ材料(金属製)を採用した場合には強度や耐久性が改善される鉄道車両用軸ばねとすることができ、アルミ合金や合成樹脂等の軽い材料を採用した場合には、強度や剛性を確保しながら軽量化が図れる鉄道車両用軸ばねとすることができる。その結果、構造を見直して検討及び考察することにより、硬質隔壁を鉄製からアルミ合金や合成樹脂(請求項4)等の軽比重の素材で形成しながらも、必要となる強度や剛性が十分に備わったものとして軽量化が可能となる鉄道車両用軸ばね、或いは、硬質隔壁を鉄製のままとしながらも、その強度や剛性をさらに強化できて強度や耐久性が向上する鉄道車両用軸ばねを提供することができる。   According to the first aspect of the present invention, since the hard partition wall interposed in the elastic portion is formed by a plate material that is uneven or undulated in the radial direction, the strength and rigidity are improved as compared with a simple cylindrical or arcuate shape. . Therefore, when the same material (made of metal) as before is used, it can be used as a railcar shaft spring with improved strength and durability, and when light materials such as aluminum alloy and synthetic resin are used. Thus, the railcar shaft spring can be reduced in weight while ensuring strength and rigidity. As a result, by reviewing and considering the structure, the required strength and rigidity are sufficient while the hard partition is made of light specific gravity such as aluminum alloy or synthetic resin (Claim 4). A railcar shaft spring that can be reduced in weight as a built-in railcar shaft spring or a railcar shaft spring that can be further strengthened and improved in strength and durability while the hard bulkhead remains made of iron. Can be provided.

請求項1の発明によれば、硬質隔壁の凹凸又は起伏が軸心方向にうねる波形とされているから、軸心に対する周方向での強度、剛性を大きく改善することができる。特に軸心に対する周方向での強度、剛性のアップを大きくでき、軸心に沿う方向視において周方向の曲げ強さが大きく改善される利点(軸心方向視で楕円に変形するといったことが生じ難く、保形性に優れている)がある。   According to the first aspect of the present invention, since the unevenness or undulation of the hard partition wall has a waveform that undulates in the axial direction, the strength and rigidity in the circumferential direction with respect to the axial center can be greatly improved. In particular, the strength and rigidity in the circumferential direction with respect to the axial center can be increased, and the bending strength in the circumferential direction can be greatly improved when viewed in the direction along the axial center (such as deformation into an ellipse when viewed in the axial direction) It is difficult and has excellent shape retention).

請求項2の発明では、弾性層の厚み変化を少なくしてその耐久性、即ち鉄道車両用軸ばねとしての耐久性を向上可能となる利点が追加される。   In the invention of claim 2, the advantage that the durability of the elastic layer can be improved by reducing the thickness change of the elastic layer, that is, the durability as a railcar shaft spring is added.

請求項3の発明によれば、硬質隔壁が周方向に不連続であるから、弾性部を主軸と外筒との間に組み込む際に、予め弾性部を径内側に所定量圧縮した状態で組付けること、即ち、予圧縮組付が可能になる。従って、その圧縮量の調節設定により、初期設定荷重を任意に選択して組付けることが可能であって、設計自由度の高い鉄道車両用軸ばねを提供することができる。   According to the invention of claim 3, since the hard partition wall is discontinuous in the circumferential direction, when the elastic part is assembled between the main shaft and the outer cylinder, the elastic part is assembled in a state in which the elastic part is compressed inward by a predetermined amount in advance. In other words, pre-compression assembly is possible. Therefore, an initial set load can be arbitrarily selected and assembled by adjusting the compression amount, and a railcar shaft spring having a high degree of design freedom can be provided.

以下に、本発明による鉄道車両用軸ばねの実施の形態を、図面を参照しながら説明する。図1,2は参考実施例による鉄道車両用軸ばねの底面図と一部切欠き側面図、図3,4は鉄道台車への使用例を示す要部の側面図と全体斜視図、図5,6は硬質隔壁の波形の別参考形状を示す部分図、図7,8は実施例1による車両用軸ばねの一部切欠き側面図と平面図である。   Embodiments of a railcar shaft spring according to the present invention will be described below with reference to the drawings. 1 and 2 are a bottom view and a partially cutaway side view of a shaft spring for a railway vehicle according to a reference embodiment, and FIGS. 3 and 4 are a side view and an overall perspective view of an essential part showing an example of use in a railway carriage. FIGS. 7 and 8 are a partially cutaway side view and a plan view of a vehicle shaft spring according to the first embodiment.

鉄道車両用軸ばね(以下、単に「軸ばね」と略称する)Aは、例えば、図3,図4に示すように、ボルスタレス台車Dにおける車軸6を支える車軸箱7の両端と台車枠8との間のそれぞれに上下向きの縦軸心Pを有する状態で組付けられている。台車枠8は、左右の主枠部材8A,8Aと、それらを繋ぐ一対の連結枠部材8B,8Bとを備えて構成され、主枠部材8Aの前後に車軸箱7が懸架装置Kを用いて支持されている。軸ばねAは、懸架装置Kの一構成部品として組み込まれている。尚、15は牽引装置、16は空気ばねである。   For example, as shown in FIGS. 3 and 4, the railway vehicle shaft spring (hereinafter simply referred to as “shaft spring”) A includes both ends of the axle box 7 that supports the axle 6 in the bolsterless carriage D and the carriage frame 8. Are assembled in a state having a vertical axis P which is directed vertically. The bogie frame 8 includes left and right main frame members 8A and 8A and a pair of connecting frame members 8B and 8B that connect them, and the axle box 7 is attached to the front and rear of the main frame member 8A using the suspension device K. It is supported. The shaft spring A is incorporated as a component of the suspension device K. In addition, 15 is a traction device and 16 is an air spring.

懸架装置Kは、車軸箱7を支える支持アーム9と、主枠部材8Aとに亘る前後一対のクッション機構10,10を設けて構成されており、クッション機構10は、コイルばね11と、その内側に配置される軸ばねAとから成っている。即ち、支持アーム9におけるコイルばね11の下側の受台である下フランジ13に軸ばねAの外筒2が内嵌連結され、主枠部材8Aにおけるコイルばね11の上側の受台である上フランジ14の軸部14Aが筒状の主軸1に内嵌連結されている。上下の荷重は主にコイルばね11が受け持ち、前後左右には軸ばねAが弾性支持する構造となっている。   The suspension device K includes a support arm 9 that supports the axle box 7 and a pair of front and rear cushion mechanisms 10 and 10 that extend over the main frame member 8A. The cushion mechanism 10 includes a coil spring 11 and an inner side thereof. And a shaft spring A disposed on the surface. That is, the outer cylinder 2 of the shaft spring A is fitted and connected to a lower flange 13 which is a lower pedestal of the coil spring 11 in the support arm 9, and an upper cradle of the main frame member 8A which is the upper side of the coil spring 11 is connected. A shaft portion 14 </ b> A of the flange 14 is internally fitted and connected to the cylindrical main shaft 1. The upper and lower loads are mainly handled by the coil spring 11, and the shaft spring A is elastically supported on the front, rear, left and right.

参考実施例による軸ばねAは、図1,図2に示すように、主軸1と、これと互いに同一(又はほぼ同一)の縦軸心Pを有する外筒2と、複数(四層)の弾性層4A〜4Dと複数(三層)の硬質隔壁5A〜5Cとを縦軸心Pと同心(又はほぼ同心)状態で径内外方向で交互に積層されて主軸1と外筒2との間に介装される積層ゴム構造の弾性部3と、を有して構成されている。この軸ばねAは、図3,4に示す鉄道台車用のものであるが、図3,4に描かれたものとは、主軸1と外筒2との軸方向の相対位置がやや異なるタイプのものとして描いてある。   As shown in FIGS. 1 and 2, the shaft spring A according to the reference embodiment includes a main shaft 1, an outer cylinder 2 having the same (or substantially the same) longitudinal axis P as the main shaft 1, and a plurality (four layers). Between the main shaft 1 and the outer cylinder 2, the elastic layers 4 </ b> A to 4 </ b> D and a plurality (three layers) of hard partition walls 5 </ b> A to 5 </ b> C are alternately stacked in the inner and outer directions concentrically (or substantially concentrically) with the longitudinal axis P. And an elastic portion 3 having a laminated rubber structure interposed between the two. This shaft spring A is for the railway bogie shown in FIGS. 3 and 4, but is different from the one depicted in FIGS. 3 and 4 in that the relative position in the axial direction of the main shaft 1 and the outer cylinder 2 is slightly different. It is drawn as a thing.

筒状の主軸1と外筒2とは金属製であるに対して、各硬質隔壁5A〜5Cはアルミ合金製であり、内側から外側に向かって第1〜第4の各弾性層4A〜4Dはゴム製である。硬質隔壁5A〜5Cの縦軸心P方向の長さは、最内側の第1硬質隔壁5Aが最も長く(主軸1よりは短い)、外側に行くに従って短くなり、最外側の第3硬質隔壁5Cは最も短い(外筒2よりも短い)。各硬質隔壁5A〜5Cは、径方向に凹凸又は起伏するアルミ合金製の板材によって形成されており、具体的には、凹凸又は起伏は縦軸心Pに対する周方向の波形に設定されている。   The cylindrical main shaft 1 and the outer cylinder 2 are made of metal, whereas the hard partition walls 5A to 5C are made of an aluminum alloy, and the first to fourth elastic layers 4A to 4D from the inside toward the outside. Is made of rubber. The length of the hard partition walls 5A to 5C in the direction of the vertical axis P is the longest in the innermost first hard partition wall 5A (shorter than the main shaft 1), and becomes shorter toward the outer side, and the outermost third hard partition wall 5C. Is the shortest (shorter than the outer cylinder 2). Each of the hard partition walls 5 </ b> A to 5 </ b> C is formed of a plate material made of an aluminum alloy that is uneven or undulated in the radial direction. Specifically, the unevenness or undulation is set to a waveform in the circumferential direction with respect to the vertical axis P.

そして、各硬質隔壁5A〜5Cの波ピッチp1〜p3が外側のものほどその絶対長さを長く(内側のものほど短く)なるように差を付ける(p1<p2,p2<p3)ことにより、各硬質隔壁5A〜5Cにおける波形状の山部y及び谷部tが縦軸心Pに対する放射線hの方向において合致するように構成されている。尚、各ピッチp1,p2,p3は、軸心Pを中心とする角度としては互いに同じである。この場合、径外側に膨らむ箇所が「山部y」で、径内側に膨らむ箇所が「谷部t」であると定義する。波形状は各硬質隔壁5A〜5Cの全体に亘って形成されているが、部分的に波形を有さない形状(単なる円弧板状)でも良い。   And, the wave pitches p1 to p3 of the respective hard partition walls 5A to 5C are made to be different so that the outer one has a longer absolute length (the inner one has a shorter length) (p1 <p2, p2 <p3), The wavy peaks y and valleys t in each of the hard partition walls 5 </ b> A to 5 </ b> C are configured to match in the direction of the radiation h with respect to the vertical axis P. In addition, each pitch p1, p2, p3 is mutually the same as an angle centering on the axis P. In this case, it is defined that the portion that swells radially outward is “mountain y” and the portion that swells radially inside is “valley t”. The wave shape is formed over the entire hard partition walls 5A to 5C, but may be a shape that does not have a partial waveform (simple arc plate shape).

図1に示すように、各弾性層4A〜4Dは円筒形ではなく、半円よりやや角度の小なる円弧状弾性部4a〜4dの一対を縦軸心Pに関する点対称に配置して構成される周方向で不連続なものである。同様に、各硬質隔壁5A〜5Cも、半円よりやや角度の小なる円弧状隔壁部5a〜5cの一対を縦軸心Pに関する点対称に配置して構成される周方向で不連続なものである。その結果、主軸1と外筒2とに亘る2箇所の肉抜き部12,12が形成されている。台車Dへの組付け方としては、一対の肉抜き部12,12がレール方向を前後方向とした場合の左右方向である矢印イ方向に向く状態とする。つまり、前後方向(レール方向又は車両進行方向)である矢印ロ方向には弾性層も硬質隔壁も詰まった状態となっている。   As shown in FIG. 1, the elastic layers 4A to 4D are not cylindrical, and are configured by arranging a pair of arc-shaped elastic portions 4a to 4d having a slightly smaller angle than a semicircle symmetrically with respect to the longitudinal axis P. It is discontinuous in the circumferential direction. Similarly, each of the hard partition walls 5A to 5C is also discontinuous in the circumferential direction configured by arranging a pair of arc-shaped partition wall portions 5a to 5c having a slightly smaller angle than the semicircle in a point-symmetric manner with respect to the longitudinal axis P. It is. As a result, two thinned portions 12, 12 extending between the main shaft 1 and the outer cylinder 2 are formed. As a method of assembling to the carriage D, the pair of lightening portions 12 and 12 are in a state of being directed in the direction of the arrow A which is the left and right direction when the rail direction is the front and rear direction. That is, both the elastic layer and the hard partition wall are clogged in the direction of the arrow B which is the front-rear direction (rail direction or vehicle traveling direction).

各硬質隔壁5A〜5Cが、一対の周方向にうねる波形で円弧状の円弧状隔壁部5a〜5cで形成されていて、単なる円弧状のものに比べて強度や剛性が改善されるので、従来の鉄製のものと寸法(基準径、板厚)を同じとしても、十分な強度及び剛性を得ることができており、従って、必要な機能は維持しながら軽量化が可能となるより高性能に改善された軸ばねAが実現できている。硬質隔壁5A〜5Cの波形状が、周方向でうねるものであるから、特に縦軸心Pに沿う方向での強度、剛性のアップを大きくでき、縦軸心Pに交差する方向視(図2の断面図の部分を参照)において径方向の曲げ強さが大きく改善される利点がある。   Each of the hard partition walls 5A to 5C is formed by a pair of circumferentially undulating waveforms having arc-shaped arc-shaped partition wall portions 5a to 5c, and the strength and rigidity are improved compared to a simple arc-shaped one. Even if the dimensions (reference diameter, plate thickness) are the same as those made of steel, sufficient strength and rigidity can be obtained, so that it is possible to reduce the weight while maintaining the necessary functions. An improved shaft spring A can be realized. Since the corrugations of the hard partition walls 5A to 5C are wavy in the circumferential direction, the strength and rigidity can be increased particularly in the direction along the vertical axis P, and the direction of view intersecting the vertical axis P (FIG. 2). (See the section of the cross-sectional view), there is an advantage that the radial bending strength is greatly improved.

そして、各円弧状隔壁部5a〜5cの山部yと谷部tとが放射線h方向で一致されているので、例えば、内外で隣合う円弧状隔壁部の山部yと谷部tとが放射線方向で対向して極端に幅の狭いゴム層部分ができるといったことがなく、各弾性層4A〜4Dを極力周方向で一定した厚みの状態とすることができ、幅の急変による応力集中やそれによる亀裂が生じ難い(特に、第2,3弾性層4B,4Cにおいて生じ難い)好ましいものとなっている。   And since the peak part y and trough part t of each arc-shaped partition part 5a-5c are corresponded in the radiation h direction, for example, the peak part y and trough part t of the arc-shaped partition part adjacent inside and outside are included. The elastic layers 4A to 4D can be made to have a constant thickness in the circumferential direction as much as possible without forming an extremely narrow rubber layer portion facing each other in the radiation direction. Therefore, it is preferable that cracks do not easily occur (particularly, in the second and third elastic layers 4B and 4C).

図1に示すように、弾性部3には一対の肉抜き部12,12を設けて、各弾性層4A〜4D及び各硬質隔壁5A〜5Cが周方向に不連続な形状としてあるので、弾性部3を主軸1と外筒2との間に組み込む際に、予め弾性部3を径内側に所定量圧縮した状態で組付けること、即ち、予圧縮組付が可能な軸ばねAとされている。従って、その圧縮量の調節設定により、初期設定荷重を任意に選択して組付けることが可能であって、設計自由度の高い軸ばねAとなっている。   As shown in FIG. 1, the elastic portion 3 is provided with a pair of thinned portions 12 and 12, and the elastic layers 4 </ b> A to 4 </ b> D and the hard partition walls 5 </ b> A to 5 </ b> C are discontinuous in the circumferential direction. When the part 3 is assembled between the main shaft 1 and the outer cylinder 2, the elastic part 3 is assembled in a state compressed in a predetermined amount inside the diameter in advance, that is, a shaft spring A capable of pre-compression assembly. Yes. Therefore, the initial set load can be arbitrarily selected and assembled by adjusting the compression amount, and the shaft spring A has a high degree of design freedom.

また、肉抜き部12,12が左右方向に位置しているので、急ブレーキ等の急な加減速が起こり得る前後方向(車両進行方向)のバネ定数に比べて、左右方向のバネ定数が幾分低いものとなっており、特性に見合ったバランスの良い横方向の弾性機能が発揮できる軸ばねAともなっている。さらに、縦軸心P方向で見た場合は、弾性層4と硬質隔壁5とはねじのように噛み合わされているので、加硫接着による一体強度がより強固なものとなる付随効果を奏する点も好ましい。   Further, since the thinned portions 12 and 12 are positioned in the left-right direction, the spring constant in the left-right direction is larger than the spring constant in the front-rear direction (vehicle traveling direction) where sudden acceleration / deceleration such as sudden braking can occur. The shaft spring A is also low and can provide a well-balanced lateral elastic function commensurate with the characteristics. Further, when viewed in the direction of the vertical axis P, the elastic layer 4 and the hard partition wall 5 are engaged like a screw, so that there is an accompanying effect that the integrated strength by vulcanization adhesion becomes stronger. Is also preferable.

尚、各硬質隔壁5A〜5Cの凹凸又は起伏の形状としては、図5に示すように、段階的(階段状)にうねる略波形のものや、図6に示すように、台形状が反転しながら繰り返される角ネジ状の波形としても良い。   In addition, as the unevenness | corrugation or undulation shape of each hard partition wall 5A-5C, as shown in FIG. 5, the thing of the substantially waveform which undulates in steps (step shape), or as shown in FIG. 6, a trapezoid shape is reversed. However, it may be a square screw-like waveform that is repeated.

〔実施例1〕
実施例1による軸ばねAは、図7,図8に示すように、角硬質隔壁5A〜5Cの凹凸又は起伏が、縦軸心P方向にうねる波形に設定されている。この場合でも、隣合う硬質隔壁5A,5B,5Cにおける山部yと谷部tとが縦軸心P方向において合致されており(軸心Pに直交する径方向線m上に各山部や谷部tが揃っている)、内外が硬質隔壁5A,5B,5Cで囲まれる第2及び第3弾性層4B,4Cの径方向の幅寸法が縦軸心P方向で極力変化しないように構成されている。
[Example 1]
As shown in FIGS. 7 and 8, the shaft spring A according to the first embodiment is set to have a waveform in which the irregularities or undulations of the square hard partition walls 5 </ b> A to 5 </ b> C swell in the direction of the vertical axis P. Even in this case, the crests y and the troughs t in the adjacent hard partition walls 5A, 5B, and 5C are aligned in the direction of the vertical axis P (each crest or each peak on the radial line m orthogonal to the axis P). The valley t is aligned), and the width dimension in the radial direction of the second and third elastic layers 4B, 4C surrounded by the hard partition walls 5A, 5B, 5C is configured so as not to change as much as possible in the direction of the longitudinal axis P. Has been.

各硬質隔壁5A〜5Cが、一対の縦軸心P方向にうねる波形で円弧状の円弧状隔壁部5a〜5cで形成されていて、単なる円弧状のものに比べて強度や剛性が改善されるので、従来の鉄製のものと寸法(基準径、板厚)を同じとしても、十分な強度及び剛性を得ることができており、従って、必要な機能は維持しながら軽量化が可能となるより高性能に改善された軸ばねAが実現できている。そして、硬質隔壁5A〜5Cの波形状が、軸心P方向にうねるものであるから、特に縦軸心Pに対する周方向での強度、剛性のアップを大きくでき、縦軸心Pに沿う方向視(図1を参照)において周方向の曲げ強さが大きく改善される利点(縦軸心P方向視で楕円に変形するといったことが生じ難く、保形性に優れている)がある。   Each of the hard partition walls 5A to 5C is formed of arcuate arc-shaped partition wall portions 5a to 5c having a waveform that undulates in the direction of the pair of longitudinal axes P, and the strength and rigidity are improved as compared with a simple arc-shaped partition wall. Therefore, even if the dimensions (reference diameter, plate thickness) are the same as those of conventional iron ones, sufficient strength and rigidity can be obtained, and therefore it is possible to reduce the weight while maintaining the necessary functions. A shaft spring A improved in high performance can be realized. And since the waveform of the hard partition walls 5A-5C undulates in the direction of the axis P, it is possible to increase the strength and rigidity in the circumferential direction with respect to the vertical axis P in particular. (See FIG. 1), there is an advantage that the bending strength in the circumferential direction is greatly improved (it is unlikely to be deformed into an ellipse when viewed in the direction of the vertical axis P and is excellent in shape retention).

〔別実施例〕
弾性層4や硬質隔壁5は、円筒形等の周方向に連続する単一の部品から成る構造としても良い。主軸1や外筒2は十分厚みを厚くできるので、主軸1、硬質隔壁5、及び外筒2を全てアルミ合金や合成樹脂、或いはFRP等の複合材料から構成しても良い。肉抜き部12を3箇所以上設けて、硬質隔壁5が周方向に3つ以上に分割される構成でも良い。
[Another Example]
The elastic layer 4 and the hard partition wall 5 may have a structure formed of a single component that is continuous in the circumferential direction, such as a cylindrical shape. Since the main shaft 1 and the outer cylinder 2 can be made sufficiently thick, the main shaft 1, the hard partition wall 5, and the outer cylinder 2 may all be made of a composite material such as aluminum alloy, synthetic resin, or FRP. There may be a configuration in which three or more lightening portions 12 are provided and the hard partition wall 5 is divided into three or more in the circumferential direction.

以上説明したように、本発明の軸ばね(実施例1)によれば、硬質隔壁5を波形等の凹凸又は起伏が施された形状としてあるので、下記1.〜5.のような利点が得られる。1.単なる筒状や円弧状のものに比べて剛性が増し、製品としての使用時の局部変形が抑制されて強度向上、耐久性向上が可能になる。2.弾性層4の加硫時における硬質隔壁5の変形を防止すべく、硬質隔壁5に調整孔を開けた場合、その孔が製品としての使用時における応力集中点となり、製品強度の低下をもたらし易くなるが、波形形状の採用により、加硫時の硬質隔壁5の変形が防止されるので調整孔を省略可能になり、従って、前述の製品強度低下が起きず、実質的に強度向上に寄与できるものとなる。3.硬質隔壁5の波形により、加硫時における弾性層との接着面積が増加し、接着強度が向上するようになる。4.硬質隔壁5の波形により、硬質隔壁と弾性層とが恰もねじのように噛み合い、構造的により強固に一体化される。   As described above, according to the shaft spring (Example 1) of the present invention, the hard partition wall 5 has a shape with corrugations or undulations such as corrugations, so that the following 1. ~ 5. The following advantages are obtained. 1. Rigidity increases compared to a simple cylindrical or arcuate shape, and local deformation during use as a product is suppressed, and strength and durability can be improved. 2. In order to prevent deformation of the hard partition wall 5 during vulcanization of the elastic layer 4, when the adjustment hole is formed in the hard partition wall 5, the hole becomes a stress concentration point when used as a product, and the strength of the product is likely to be lowered. However, by adopting the corrugated shape, the deformation of the hard partition walls 5 during vulcanization can be prevented, so that the adjustment hole can be omitted. Therefore, the above-described product strength reduction does not occur, and the strength can be substantially improved. It will be a thing. 3. The corrugation of the hard partition walls 5 increases the adhesion area with the elastic layer at the time of vulcanization and improves the adhesion strength. 4). Due to the corrugation of the hard partition walls 5, the hard partition walls and the elastic layer are meshed like a screw and are more firmly integrated structurally.

5.硬質隔壁の強度や剛性の向上により、アルミ合金、複合樹脂等の鉄より軽量な材料の使用が可能になり、軽量化が図れる(軽量化)。硬質隔壁の材料を合成樹脂に、かつ、弾性層をゴムとした場合には、両者共に高分子材料であって相性が良く、安定した接着力が得られる(接着性)。硬質隔壁を合成樹脂製とした場合には、金属のように腐食のおそれが無いので、鉄道車両等の洗浄時における酸やアルカリに対して安定した状態を得ることが可能になる(耐蝕性)。硬質隔壁を合成樹脂製とした場合は、弾性層が合成樹脂で仕切られることになるから、絶縁性を有する合成樹脂を用いることで弾性層(ゴム層)に絶縁性を求めなくても済むものとなり、ゴム配合自由度が増す等、弾性層の材料の点からの自由度が向上するとか、強度向上を図ることができる(電気絶縁性)。 5. By improving the strength and rigidity of the hard partition walls, it becomes possible to use materials that are lighter than iron, such as aluminum alloys and composite resins, and the weight can be reduced (weight reduction). When the material of the hard partition walls is made of synthetic resin and the elastic layer is made of rubber, both are polymer materials and have good compatibility, and a stable adhesive force can be obtained (adhesiveness). When hard partition walls are made of synthetic resin, there is no risk of corrosion unlike metal, so it is possible to obtain a stable state against acids and alkalis when washing railway vehicles (corrosion resistance). . When the hard partition is made of synthetic resin, the elastic layer is partitioned by the synthetic resin, so that it is not necessary to require insulation for the elastic layer (rubber layer) by using an insulating synthetic resin. Thus, the degree of freedom in terms of the material of the elastic layer is improved, such as an increase in the degree of freedom of rubber compounding, and the strength can be improved (electrical insulation).

参考実施例による鉄道車両用軸ばねの底面図Bottom view of a railcar shaft spring according to a reference embodiment 図1の軸ばねの半断面図Half sectional view of the shaft spring of FIG. 軸ばねの使用例を示す鉄道台車要部の一部切欠き側面図Partially cutaway side view of the main part of a railway carriage showing an example of the use of a shaft spring 鉄道台車の概略構成を示す見下ろしの全体斜視図Overall perspective view of the overhead view showing the schematic configuration of the railway carriage 図1の硬質隔壁の別参考形状例その1を示す要部の平面図The top view of the principal part which shows another reference shape example 1 of the hard partition of FIG. 図1の硬質隔壁の別参考形状例その2を示す要部の平面図The top view of the principal part which shows another reference shape example 2 of the hard partition of FIG. 実施例1による鉄道車両用軸ばねの半断面図Half sectional view of a railway vehicle shaft spring according to Example 1 図7の軸ばねの半底面図Half bottom view of the shaft spring of FIG.

1 主軸
2 外筒
3 弾性部
4 弾性層
5 硬質隔壁
5A〜5C 第1〜第3硬質隔壁
A 鉄道車両用軸ばね
P 軸心
h 放射線
m 径方向線
t 谷部
y 山部
DESCRIPTION OF SYMBOLS 1 Main axis | shaft 2 Outer cylinder 3 Elastic part 4 Elastic layer 5 Hard partition 5A-5C 1st-3rd hard partition A Axle spring for railway vehicles P Axis h Radiation
m radial line t valley part y mountain part

Claims (4)

主軸とこれと互いに同一又はほぼ同一の軸心を有する外筒との間に、複数の弾性層と硬質隔壁とを前記軸心と同心又はほぼ同心状態で径内外方向で交互に積層する積層ゴム構造の弾性部が介装されて成る鉄道車両用軸ばねであって、
前記硬質隔壁が、前記径方向に凹凸又は起伏する板材によって形成され、
前記凹凸又は起伏が、前記軸心方向にうねる波形に設定されて径内外に複数設けられ、
径内外で隣合う前記硬質隔壁における各山部及び各谷部が前記軸心に直交する径方向線上に揃えられている鉄道車両用軸ばね。
Laminated rubber in which a plurality of elastic layers and hard partition walls are alternately laminated in the inner and outer directions concentrically or substantially concentrically with the shaft center between the main shaft and the outer cylinder having the same or substantially the same shaft center. A rail spring for a railway vehicle in which an elastic part of the structure is interposed,
The hard partition is formed by a plate material that is uneven or undulate in the radial direction,
A plurality of the irregularities or undulations are set inside and outside the diameter set in a waveform that undulates in the axial direction ,
An axial spring for a railway vehicle in which each crest and each trough in the hard partition adjacent to each other inside and outside the diameter are aligned on a radial line perpendicular to the axis.
前記硬質隔壁が複数設けられており、それら各硬質隔壁における波形状の山部及び谷部が前記軸心方向において合致されている請求項1に記載の鉄道車両用軸ばね。   The shaft spring for a railway vehicle according to claim 1, wherein a plurality of the hard partition walls are provided, and a wave-shaped peak portion and a valley portion in each of the hard partition walls are aligned in the axial direction. 前記硬質隔壁が、前記軸心に対する周方向で不連続なものに形成されている請求項1又は2に記載の鉄道車両用軸ばね。   The shaft spring for a railway vehicle according to claim 1 or 2, wherein the hard partition is formed to be discontinuous in the circumferential direction with respect to the shaft center. 前記硬質隔壁がアルミ合金製又は合成樹脂製である請求項1〜3の何れか一項に記載の鉄道車両用軸ばね。   The shaft spring for a railway vehicle according to any one of claims 1 to 3, wherein the hard partition wall is made of an aluminum alloy or a synthetic resin.
JP2007198917A 2007-07-31 2007-07-31 Axle spring for rolling stock Active JP5303126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007198917A JP5303126B2 (en) 2007-07-31 2007-07-31 Axle spring for rolling stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007198917A JP5303126B2 (en) 2007-07-31 2007-07-31 Axle spring for rolling stock

Publications (2)

Publication Number Publication Date
JP2009036236A JP2009036236A (en) 2009-02-19
JP5303126B2 true JP5303126B2 (en) 2013-10-02

Family

ID=40438334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007198917A Active JP5303126B2 (en) 2007-07-31 2007-07-31 Axle spring for rolling stock

Country Status (1)

Country Link
JP (1) JP5303126B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5256162B2 (en) 2009-10-03 2013-08-07 東海ゴム工業株式会社 Axle spring rubber for axle box support device for railway vehicle and method for manufacturing the same
JP5373584B2 (en) * 2009-12-17 2013-12-18 株式会社ブリヂストン Elastic bush
RU2442916C1 (en) * 2010-10-21 2012-02-20 Общество с ограниченной ответственностью "АТР-ХОЛДИНГ" Rubber-metal damper with power armature changing geometry
DE102014105419B4 (en) * 2014-04-16 2016-03-24 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Disc brake for a commercial vehicle
KR101638852B1 (en) * 2014-11-26 2016-07-25 한국철도기술연구원 Suspention structure for rayroad
CN107387628B (en) * 2017-09-01 2023-04-18 株洲时代瑞唯减振装备有限公司 Motor node for motor car bogie and manufacturing method thereof
CN109927747A (en) * 2017-12-15 2019-06-25 株洲飞马橡胶实业有限公司 A kind of monoblock type buffer element on coupler draft gear
CN109927749A (en) * 2017-12-15 2019-06-25 株洲飞马橡胶实业有限公司 A kind of split type buffer component on coupler draft gear
CN109927751A (en) * 2017-12-15 2019-06-25 株洲飞马橡胶实业有限公司 A kind of split type buffer gear on coupler draft gear
CN109927757A (en) * 2017-12-15 2019-06-25 株洲飞马橡胶实业有限公司 A kind of monoblock type buffer component on coupler draft gear
CN109927756A (en) * 2017-12-15 2019-06-25 株洲飞马橡胶实业有限公司 A kind of coupler draft gear
CN109927755A (en) * 2017-12-15 2019-06-25 株洲飞马橡胶实业有限公司 A kind of buffer unit on coupler draft gear
CN109927752A (en) * 2017-12-15 2019-06-25 株洲飞马橡胶实业有限公司 A kind of split type buffer element on coupler draft gear
CN109927754B (en) * 2017-12-15 2020-12-01 株洲飞马橡胶实业有限公司 Integral type buffering mechanism used on car coupler buffer
JP2020063761A (en) * 2018-10-16 2020-04-23 ニッタ化工品株式会社 Shaft spring

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850129Y2 (en) * 1980-12-06 1983-11-15 日産自動車株式会社 rubber stamp
JPH0338512Y2 (en) * 1985-04-17 1991-08-14
JPS6255749U (en) * 1985-09-27 1987-04-07
JPH0550860A (en) * 1991-08-19 1993-03-02 Showa Alum Corp Bracket for mounting engine or the like
JPH0633964A (en) * 1992-07-20 1994-02-08 Toyoda Gosei Co Ltd Vibration control device
JP3696580B2 (en) * 2002-08-23 2005-09-21 東洋ゴム工業株式会社 Vibration isolator
JP2005282701A (en) * 2004-03-29 2005-10-13 Tokai Rubber Ind Ltd Vibration absorbing rubber bush and its manufacturing method

Also Published As

Publication number Publication date
JP2009036236A (en) 2009-02-19

Similar Documents

Publication Publication Date Title
JP5303126B2 (en) Axle spring for rolling stock
US20120326369A1 (en) Tank rubber cushion
JP5924413B2 (en) Brake disc for railway vehicles
JP2008544186A (en) High elasticity leaf spring
JP4941126B2 (en) Sound insulation cover
JP2008132951A (en) Non-pneumatic tire
TWI586556B (en) Elastic wheel for railway vehicles
US20150226280A1 (en) Damping rubber spring for an automobile suspension
US8485312B2 (en) Exhaust pipe
JP7156384B2 (en) Mounting structure of brake disc for railway vehicle, and brake disc unit using the same
EP0679541A2 (en) Rim for use with tire assembly
JP7042379B2 (en) Non-pneumatic tires
JP5412455B2 (en) Press molded product
JP2020063761A (en) Shaft spring
CN109941067B (en) New energy automobile air conditioner compressor support
CN112046192A (en) Wheel noise reduction method and composite damping noise reduction device
CN113753091A (en) Brake hanging seat and bogie
US20210381562A1 (en) Brake pad backing plate
JP4926350B2 (en) Soundproof surface member
CN112901718A (en) Novel rubber ball pivot, bogie and rail vehicle
KR101232538B1 (en) Railway floor structure
JP5207186B2 (en) Elastic support
JP2009228855A (en) Laminated layer rubber for seismic isolation
CN101603449B (en) Vibration isolating device of vehicle exhaust system and manufacturing method thereof
CN103619652B (en) For the reinforcing burr installed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130226

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130624

R150 Certificate of patent or registration of utility model

Ref document number: 5303126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350