JP5302068B2 - Boiling cooler - Google Patents

Boiling cooler Download PDF

Info

Publication number
JP5302068B2
JP5302068B2 JP2009080029A JP2009080029A JP5302068B2 JP 5302068 B2 JP5302068 B2 JP 5302068B2 JP 2009080029 A JP2009080029 A JP 2009080029A JP 2009080029 A JP2009080029 A JP 2009080029A JP 5302068 B2 JP5302068 B2 JP 5302068B2
Authority
JP
Japan
Prior art keywords
phase refrigerant
temperature
cooling water
pressure
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009080029A
Other languages
Japanese (ja)
Other versions
JP2010230276A (en
Inventor
良雄 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2009080029A priority Critical patent/JP5302068B2/en
Publication of JP2010230276A publication Critical patent/JP2010230276A/en
Application granted granted Critical
Publication of JP5302068B2 publication Critical patent/JP5302068B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Description

本発明は、液相冷媒通路の上部に設けられている調圧室の内圧を変化させて、液相冷媒の飽和温度を目標飽和温度範囲に収めるようにした沸騰冷却装置に関する。   The present invention relates to a boiling cooling device in which an internal pressure of a pressure regulating chamber provided in an upper portion of a liquid phase refrigerant passage is changed so that a saturation temperature of the liquid phase refrigerant falls within a target saturation temperature range.

従来、冷媒の気化熱を利用して発熱体の冷却を行う沸騰冷却装置が知られている。この沸騰冷却装置では、冷媒が蒸発する際の気化潜熱を利用して発熱体からの熱を吸収するものであるため、冷媒を液相のまま循環させる一般的な冷却方式に比べて高い冷却効果を得ることができる。   2. Description of the Related Art Conventionally, a boiling cooling device that cools a heating element using heat of vaporization of a refrigerant is known. This boiling cooling device absorbs heat from the heating element using the latent heat of vaporization when the refrigerant evaporates, so it has a higher cooling effect than a general cooling system that circulates the refrigerant in the liquid phase. Can be obtained.

例えば特許文献1(特開2001-349681号公報)には、蒸発器と凝縮器(コンデンサ)との底部を下側連通管で連通し、上部を上側連通管で連通すると共に、この上側連通管に圧力調整弁を介装した技術が開示されている。すなわち、同文献に開示されている技術では、蒸発器に貯留されている液相冷媒が、発熱体の熱を吸収して沸騰することで、発熱体が冷却される。又、発熱体からの吸熱により沸騰して気化され冷媒(気相冷媒)は、上側連通管を通り、凝縮器へ流れ、ここで冷却されて液化される。一方、下側連通管には冷却水ポンプが介装されており、この冷却水ポンプの駆動により蒸発器の液面が一定となるように制御される。   For example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2001-349881), the bottom part of the evaporator and the condenser (condenser) is communicated with a lower communication pipe, and the upper part is communicated with an upper communication pipe. Discloses a technique including a pressure regulating valve. That is, in the technique disclosed in this document, the liquid refrigerant stored in the evaporator absorbs the heat of the heating element and boils, thereby cooling the heating element. Further, the refrigerant (gas phase refrigerant) is boiled and vaporized by the heat absorption from the heating element, passes through the upper communication pipe, flows to the condenser, and is cooled and liquefied there. On the other hand, a cooling water pump is interposed in the lower communication pipe, and the liquid level of the evaporator is controlled to be constant by driving the cooling water pump.

更に、この文献では、上側連通管圧力調整弁の開度により蒸発器の内圧を調整して、冷媒の沸点(飽和温度)を可変させることで、発熱体の温度をほぼ一定に保つようにしている。すなわち、発熱体の温度が目標温度よりも高い場合は、圧力調整弁を大きく開いて蒸発器の内圧を低くし、沸点を下げることで、冷媒の気化を促進させて発熱体の温度を下げる。一方、発熱体の温度が目標温度よりも低い場合は、圧力調整弁を絞り、蒸発器の内圧を高くし、沸点を上げることで、冷媒の気化を抑制し発熱体の温度を上昇させる。   Furthermore, in this document, the temperature of the heating element is kept substantially constant by adjusting the internal pressure of the evaporator according to the opening degree of the upper communication pipe pressure adjusting valve and varying the boiling point (saturation temperature) of the refrigerant. Yes. That is, when the temperature of the heating element is higher than the target temperature, the pressure regulating valve is opened widely to lower the internal pressure of the evaporator and lower the boiling point, thereby promoting the vaporization of the refrigerant and lowering the temperature of the heating element. On the other hand, when the temperature of the heating element is lower than the target temperature, the pressure regulating valve is throttled to increase the internal pressure of the evaporator and raise the boiling point, thereby suppressing the vaporization of the refrigerant and raising the temperature of the heating element.

上述した文献に開示されている技術では、蒸発器と凝縮器との上部を連通する上部連通管の気化冷媒の流量を圧力調整弁で制御することで、冷媒の飽和温度を可変させて、発熱体の温度を一定に保つようにしている。   In the technique disclosed in the above-mentioned document, the saturation temperature of the refrigerant is varied by controlling the flow rate of the vaporized refrigerant in the upper communication pipe communicating with the upper part of the evaporator and the condenser by the pressure regulating valve, thereby generating heat. I try to keep my body temperature constant.

しかし、この気相冷媒の流れは蒸発器と凝縮器との差圧で行われるに過ぎず、例えば発熱体の発熱量が少なく、目標温度が低い場合は、上部連通管を流れる気相冷媒の流量が少ないため、圧力調整弁を開いても蒸発器の内圧を大きく下げることはできず、発熱体の温度を制御することが困難となる。   However, the flow of the gas-phase refrigerant is only performed by the differential pressure between the evaporator and the condenser. For example, when the heat generation amount of the heating element is small and the target temperature is low, the gas-phase refrigerant flowing through the upper communication pipe Since the flow rate is small, the internal pressure of the evaporator cannot be lowered greatly even if the pressure regulating valve is opened, and it becomes difficult to control the temperature of the heating element.

本発明は、上記事情に鑑み、発熱体の発熱量が少なく、この発熱体の温度を一定範囲に保持するめの目標温度が低く設定されていても、発熱体を所定温度範囲で冷却させることのできる沸騰冷却装置を提供することを目的とする。   In view of the above circumstances, the present invention is capable of cooling a heating element within a predetermined temperature range even if the heating value of the heating element is small and the target temperature for keeping the temperature of the heating element within a certain range is set low. An object of the present invention is to provide a boiling cooling device that can be used.

上記目的を達成するため本発明は、発熱体を冷却する液相冷媒が流通する液相冷媒通路と、前記液相冷媒通路内での沸騰により発生した気相冷媒を前記液相冷媒通路へ還流させると共に、該液相冷媒通路に連通されて密閉された循環路が形成される冷媒還流通路と、前記液相冷媒通路の上部に設けられて前記液相冷媒を滞留させる調圧室と、該調圧室の上部に連通されている前記気相冷媒通路に設けられて前記調圧室から該気相冷媒通路側への前記気相冷媒の流通のみを許容する逆止手段と、前記液相冷媒通路に設けられて前記液相冷媒を流動させるポンプユニットと、前記ポンプユニットの動作を制御する制御手段と
を備える沸騰冷却装置において、前記ポンプユニットは前記液相冷媒を前記液相冷媒通路内で双方向に流動可能であり、前記制御手段は、前記調圧室に貯留されている液相冷媒の温度と予め設定されている目標飽和温度とを比較し、該液相冷媒の温度が該目標飽和温度範囲に収まるように前記ポンプユニットを駆動させて前記調圧室の空間圧力を減圧させ、前記液相冷媒の温度を前記目標飽和温度範囲に収めた後、前記調圧室の前記液位と予め設定されている下限液位とを比較し、該液位が該下限液位よりも低い場合は、前記液相冷媒通路の前記調圧室とは前記ポンプユニットを挟んで反対側の液相冷媒の温度と予め設定した目標規定温度とを比較し、 該液相冷媒の温度が該目標規定温度よりも高い場合は速い送り速度で、該液相冷媒の温度が該目標規定温度よりも低い場合は遅い送り速度で前記ポンプユニットを駆動させて前記調圧室の前記液位が予め設定した上限水位になるまで前記液相冷媒を送ることを特徴とする。
In order to achieve the above object, the present invention provides a liquid-phase refrigerant passage through which a liquid-phase refrigerant for cooling a heating element flows, and a gas-phase refrigerant generated by boiling in the liquid-phase refrigerant passage to the liquid-phase refrigerant passage. And a refrigerant recirculation passage that forms a closed circulation path that communicates with the liquid phase refrigerant passage, a pressure adjusting chamber that is provided in an upper portion of the liquid phase refrigerant passage and retains the liquid phase refrigerant, and A non-return means provided in the gas phase refrigerant passage communicating with the upper portion of the pressure regulating chamber and allowing only the gas phase refrigerant to flow from the pressure regulating chamber to the gas phase refrigerant passage side; and the liquid phase In a boiling cooling apparatus including a pump unit provided in a refrigerant passage for causing the liquid phase refrigerant to flow and a control unit for controlling the operation of the pump unit, the pump unit passes the liquid phase refrigerant into the liquid phase refrigerant passage. Can flow in both directions and before The control means compares the temperature of the liquid refrigerant stored in the pressure regulating chamber with a preset target saturation temperature, and the pump so that the temperature of the liquid refrigerant falls within the target saturation temperature range. After the unit is driven to reduce the space pressure in the pressure regulating chamber and the temperature of the liquid-phase refrigerant falls within the target saturation temperature range, the liquid level in the pressure regulating chamber and a preset lower limit liquid level When the liquid level is lower than the lower limit liquid level, the temperature of the liquid-phase refrigerant on the opposite side of the pump unit from the pressure regulating chamber of the liquid-phase refrigerant passage and a preset target The pump is compared with a specified temperature, and when the temperature of the liquid phase refrigerant is higher than the target specified temperature, the pump has a high feed rate, and when the temperature of the liquid phase refrigerant is lower than the target specified temperature, the pump has a low feed rate. The liquid level in the pressure regulating chamber was preset by driving the unit. Until limit water level, characterized in that sending the liquid refrigerant.

本発明によれば、ポンプユニットの動作により液相冷媒を流動させて、この液相冷媒の温度を予め設定した飽和温度に収束するように制御しているので、液相冷媒の飽和温度をより積極的に制御することができる。従って、発熱体の発熱量が少なく、この発熱体の温度を一定範囲に保持するめの目標温度が低く設定されている場合であっても、発熱体を所定温度範囲で冷却させることができる。   According to the present invention, the liquid phase refrigerant is caused to flow by the operation of the pump unit, and the temperature of the liquid phase refrigerant is controlled to converge to a preset saturation temperature. It can be actively controlled. Therefore, even when the heat generation amount of the heat generating element is small and the target temperature for keeping the temperature of the heat generating element within a certain range is set low, the heat generating element can be cooled in the predetermined temperature range.

第1実施形態による沸騰冷却装置の概略構成図1 is a schematic configuration diagram of a boiling cooling device according to a first embodiment. 同、沸騰冷却装置の制御系を示す構成図The same configuration diagram showing the control system of the boiling cooling device 同、冷却水温制御ルーチンを示すフローチャート(その1)Flowchart showing the cooling water temperature control routine (No. 1) 同、冷却水温制御ルーチンを示すフローチャート(その2)Flowchart showing the cooling water temperature control routine (part 2) 同、冷却ファン制御ルーチンを示すフローチャートThe flowchart showing the cooling fan control routine 同、外気温と冷却水温度と発熱体温度との変化を示すタイムチャートSame as above, time chart showing changes in outside air temperature, cooling water temperature and heating element temperature 第2実施形態による沸騰冷却装置の概略構成図Schematic configuration diagram of a boiling cooling device according to a second embodiment 同、流路切換弁の動作を示し、(a)は冷却水ポンプが正転時の冷却水の流れを示す概略図、(b)は冷却水ポンプが逆転時の冷却水の流れを示す概略図The operation of the flow path switching valve is shown, (a) is a schematic diagram showing the flow of cooling water when the cooling water pump is rotating forward, and (b) is the schematic showing the flow of cooling water when the cooling water pump is rotating in reverse. Figure 同、沸騰冷却装置の制御系を示す構成図The same configuration diagram showing the control system of the boiling cooling device 同、冷却水温制御ルーチンを示すフローチャート(その1)Flowchart showing the cooling water temperature control routine (No. 1) 同、冷却水温制御ルーチンを示すフローチャート(その2)Flowchart showing the cooling water temperature control routine (part 2)

以下、図面に基づいて本発明の一実施形態を説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

[第1実施形態]
図1〜図6に本発明の第1実施形態を示す。尚、本実施形態では、沸騰冷却装置を電気自動車に搭載した場合を例示して説明する。この場合、電気自動車には、ハイブリッド電気自動車車、燃料電池車も含まれる。
[First Embodiment]
1 to 6 show a first embodiment of the present invention. In the present embodiment, a case where the boiling cooling device is mounted on an electric vehicle will be described as an example. In this case, the electric vehicle includes a hybrid electric vehicle and a fuel cell vehicle.

図1に示すように、電気自動車には、走行用モータジェネレータ1、この走行用モータジェネレータ1に供給する電力を制御し、或いは走行用モータジェネレータ1からの回生電力を、後述するバッテリ3に供給するインバータ2、インバータ2を介して走行用モータジェネレータ1に電力を供給し、或いは走行用モータジェネレータ1からの回生電力を充電するバッテリ3等が設けられている。走行用モータジェネレータ1、インバータ2は通電時に発熱する発熱体であり、バッテリ3は充放電時に発熱する発熱体である。これら発熱体は発熱温度がエンジンのように高くはなく、従って、冷却温度も50〜60[℃]程度と比較的低い。   As shown in FIG. 1, an electric vehicle controls a traveling motor generator 1, electric power supplied to the traveling motor generator 1, or supplies regenerative electric power from the traveling motor generator 1 to a battery 3 to be described later. There are provided an inverter 2, a battery 3 for supplying electric power to the traveling motor generator 1 through the inverter 2, or charging regenerative electric power from the traveling motor generator 1. The traveling motor generator 1 and the inverter 2 are heating elements that generate heat when energized, and the battery 3 is a heating element that generates heat when charging and discharging. These heat generating elements do not have a high heat generation temperature like an engine. Therefore, the cooling temperature is also relatively low at about 50 to 60 [° C.].

本実施形態では、これら低温発熱体である走行用モータジェネレータ1、インバータ2、バッテリ3を沸騰冷却装置11に設けられている密閉された循環路を流れる冷媒にて冷却するものである。尚、本実施形態では、冷媒として冷却水を採用しているがエタノールであっても良い。又、以下においては、液相冷媒の一例である液相化された冷却水を「冷却水」と称し、気相冷媒の一例である気相化された冷却水を「水蒸気」と称する。又、液相冷媒の液位は、冷却水においては水位と称する。   In the present embodiment, the low-temperature heating element, that is, the traveling motor generator 1, the inverter 2, and the battery 3 are cooled by a refrigerant flowing in a closed circulation path provided in the boiling cooling device 11. In the present embodiment, cooling water is used as the refrigerant, but ethanol may be used. In the following, liquid-phase cooling water that is an example of a liquid-phase refrigerant is referred to as “cooling water”, and gas-phase cooling water that is an example of a gas-phase refrigerant is referred to as “water vapor”. Further, the liquid level of the liquid phase refrigerant is referred to as a water level in the cooling water.

この沸騰冷却装置11の密閉された循環路には、コンデンサ12と調圧室13とが介装されている。又、この密閉された循環路に下部冷却水通路14が設けられており、この下部冷却水通路14の一方の端部がコンデンサ12の底部に連通され、他方の端部が調圧室13の底部に連通されている。尚、この調圧室13は発熱体よりも高い位置に配設されており、又、コンデンサ12の背面に、コンデンサ12に対して冷却風を積極的に流通させる電動式冷却ファン12aが対設されている。   A condenser 12 and a pressure regulating chamber 13 are interposed in the closed circulation path of the boiling cooling device 11. In addition, a lower cooling water passage 14 is provided in the sealed circulation path, one end of the lower cooling water passage 14 communicates with the bottom of the condenser 12, and the other end of the pressure regulating chamber 13. It communicates with the bottom. The pressure adjusting chamber 13 is disposed at a position higher than the heating element, and an electric cooling fan 12a that actively circulates cooling air to the capacitor 12 is provided on the back surface of the capacitor 12. Has been.

更に、密閉された循環路は、調圧室13の上部とリザーバ室16の上部とが上部還流通路17を介して連通され、更に、リザーバ室16の上部とコンデンサ12の上部とが水蒸気還流通路18を介して連通されている。   Further, in the closed circulation path, the upper part of the pressure regulating chamber 13 and the upper part of the reservoir chamber 16 are communicated with each other via an upper reflux passage 17, and further, the upper part of the reservoir chamber 16 and the upper part of the condenser 12 are connected to the water vapor reflux passage. 18 to communicate with each other.

下部冷却水通路14は、コンデンサ12の底部と下部溜り室19の上部とを連通する第1冷却水通路14aと、下部溜り室19の底部に連通する第2冷却水通路14bと、この第2冷却水通路14bに分岐接続されている第3冷却水通路14c及び第4冷却水通路14dとを備えている。   The lower cooling water passage 14 includes a first cooling water passage 14 a that communicates the bottom of the condenser 12 and the upper portion of the lower reservoir chamber 19, a second cooling water passage 14 b that communicates with the bottom of the lower reservoir chamber 19, and the second cooling water passage 14 b. A third cooling water passage 14c and a fourth cooling water passage 14d that are branched and connected to the cooling water passage 14b are provided.

第3冷却水通路14cは走行用モータジェネレータ1の外周を通り、調圧室13の底部に連通されている。又、第4冷却水通路14dはインバータ2、バッテリ3の外周を通り、調圧室13の底部に連通されている。又、第2冷却水通路14bには冷却水ポンプ20が介装されている。この冷却水ポンプ20は冷却水を積極的に流動させるもので、スクリュー式、トロコイド式、ギヤ式等、双方向回転可能な定容量の回転式ポンプであり、以下においては、調圧室13側へ冷却水を送水する運転を正転、この調圧室13側から冷却水を抜水する運転を逆転と称する。尚、この冷却水ポンプ20は双方向回転可能であり、冷却水ポンプ20単体で、本発明のポンプユニットを構成している。   The third coolant passage 14 c passes through the outer periphery of the traveling motor generator 1 and communicates with the bottom of the pressure regulating chamber 13. The fourth cooling water passage 14 d passes through the outer periphery of the inverter 2 and the battery 3 and communicates with the bottom of the pressure regulating chamber 13. A cooling water pump 20 is interposed in the second cooling water passage 14b. This cooling water pump 20 actively flows cooling water, and is a constant capacity rotary pump that can rotate bidirectionally such as a screw type, a trochoid type, a gear type, etc. The operation of supplying the cooling water to the normal direction is referred to as normal rotation, and the operation of extracting the cooling water from the pressure regulating chamber 13 side is referred to as reverse rotation. The cooling water pump 20 can rotate in both directions, and the cooling water pump 20 alone constitutes the pump unit of the present invention.

又、調圧室13の底部は下部冷却水通路14よりも高い位置にあり、更に、リザーバ室16の底部が下部溜り室19よりも上方に配設されている。又、このリザーバ室16の底部と下部溜り室19の上部とが冷却水還流通路21を介して連通されている。   The bottom of the pressure regulating chamber 13 is located higher than the lower cooling water passage 14, and the bottom of the reservoir chamber 16 is disposed above the lower reservoir chamber 19. The bottom of the reservoir chamber 16 and the upper portion of the lower reservoir chamber 19 are communicated with each other via a cooling water recirculation passage 21.

又、調圧室13に、この調圧室13に貯留される冷却水の水位(液位)WLを計測する水位センサ22と上部の空間内圧PTを検出する内圧センサ23と冷却水温(上部冷却水温)TW1を検出する水温センサ24とが設けられている。尚、本実施形態では、水位センサ22としてフロート式水位計を採用している。   Further, the pressure regulating chamber 13 includes a water level sensor 22 that measures the water level (liquid level) WL stored in the pressure regulating chamber 13, an internal pressure sensor 23 that detects the upper space internal pressure PT, and a cooling water temperature (upper cooling). A water temperature sensor 24 for detecting (water temperature) TW1 is provided. In the present embodiment, a float type water level gauge is employed as the water level sensor 22.

又、上部還流通路17の調圧室13に開口するポート近傍に逆止手段としての逆止弁25が設けられている。この逆止弁25は調圧室13とリザーバ室16との差圧により、調圧室13の内圧がリザーバ室16の内圧よりも高い場合に開弁して、調圧室13の水蒸気をリザーバ室16へ送るものであり、リザーバ室16の内圧が調圧室13の内圧よりも高い場合は閉弁して通路が遮断される。更に、この上部還流通路17のリザーバ室16側近傍に真空引き弁26が連通されている。この真空引き弁26は通常は密閉されており、この真空引き弁26に真空ポンプ(図示せず)を接続し、真空ポンプを作動させると開弁して、沸騰冷却装置11内が減圧される。又、このリザーバ室16に注水口27が設けられている。この注水口27は冷却水を注入するもので、この注水口27はキャップ27aにて密閉されている。   Further, a check valve 25 as a check means is provided in the vicinity of the port opened to the pressure regulating chamber 13 of the upper reflux passage 17. The check valve 25 opens when the internal pressure of the pressure adjusting chamber 13 is higher than the internal pressure of the reservoir chamber 16 due to the differential pressure between the pressure adjusting chamber 13 and the reservoir chamber 16, and the water vapor in the pressure adjusting chamber 13 is stored in the reservoir. When the internal pressure of the reservoir chamber 16 is higher than the internal pressure of the pressure regulating chamber 13, the valve is closed and the passage is blocked. Further, a vacuum pulling valve 26 is communicated with the upper reflux passage 17 in the vicinity of the reservoir chamber 16 side. This vacuum pulling valve 26 is normally sealed. When a vacuum pump (not shown) is connected to the vacuum pulling valve 26 and the vacuum pump is operated, the valve is opened and the inside of the boiling cooling device 11 is depressurized. . In addition, a water inlet 27 is provided in the reservoir chamber 16. The water injection port 27 is for injecting cooling water, and the water injection port 27 is sealed with a cap 27a.

更に、このリザーバ室16に、その内圧PAを検出する内圧センサ28が設けられている。又、下部溜り室19に、この下部溜り室19に貯留される冷却水の温度(下部冷却水温)TW2を検出する水温センサ29が配設されている。   Further, an internal pressure sensor 28 for detecting the internal pressure PA is provided in the reservoir chamber 16. Further, a water temperature sensor 29 for detecting the temperature (lower cooling water temperature) TW2 of the cooling water stored in the lower reservoir chamber 19 is disposed in the lower reservoir chamber 19.

これら各センサ22,23,24,28,29で検出したパラメータが制御手段としての制御装置30に入力される。又、この制御装置30の出力側に冷却水ポンプ20、冷却ファン12aが接続されている。   Parameters detected by these sensors 22, 23, 24, 28, 29 are input to the control device 30 as control means. Further, a cooling water pump 20 and a cooling fan 12 a are connected to the output side of the control device 30.

制御装置30は、マイクロコンピュータを主体に構成されており、内蔵メモリには、入力される各バラメータに基づき、冷却水ポンプ20、及び冷却ファン12aを制御するプログラムが記憶されている。   The control device 30 is mainly composed of a microcomputer, and a program for controlling the cooling water pump 20 and the cooling fan 12a is stored in the built-in memory based on each input parameter.

制御装置30は、調圧室13に貯留される冷却水の水位WLと空間内圧PTとに基づき冷却水ポンプ20の吐出流量及び回転方向を制御し、更に、リザーバ室16の内圧PAと下部溜り室19に貯留されている冷却水の温度(下部冷却水温)TW2に基づき、冷却ファン12aのON/OFF、及び風量を制御して、冷却水の温度がほぼ一定範囲に収まるように制御する。   The control device 30 controls the discharge flow rate and rotation direction of the cooling water pump 20 based on the water level WL of the cooling water stored in the pressure adjusting chamber 13 and the space internal pressure PT, and further, the internal pressure PA of the reservoir chamber 16 and the lower reservoir. Based on the temperature (lower cooling water temperature) TW2 of the cooling water stored in the chamber 19, the ON / OFF of the cooling fan 12a and the air volume are controlled so that the temperature of the cooling water falls within a substantially constant range.

制御装置30では、冷却水ポンプ20の制御を、図3、図4に示すポンプ駆動制御ルーチンに従って行い、又、冷却ファン12aの制御を、図5に示す冷却ファン制御ルーチンに従って行う。   In the control device 30, the cooling water pump 20 is controlled according to the pump drive control routine shown in FIGS. 3 and 4, and the cooling fan 12a is controlled according to the cooling fan control routine shown in FIG.

ところで、工場においては、組立が完了した沸騰冷却装置11に対して冷却水を注入する。この冷却水は、リザーバ室16の注水口27から規定量だけ注入し、注入完了後、キャップ27aで注水口27を密閉する。冷却水を注水している間、冷却水はリザーバ室16と冷却水ポンプ20との間に滞留する。尚、本実施形態では、下部冷却水通路14の容積と下部溜り室19の容積とを加算した値よりもやや多い量を規定量として設定している。   By the way, in the factory, cooling water is injected into the boiling cooling device 11 that has been assembled. The cooling water is injected by a specified amount from the water injection port 27 of the reservoir chamber 16, and after the injection is completed, the water injection port 27 is sealed with a cap 27a. While the cooling water is being poured, the cooling water stays between the reservoir chamber 16 and the cooling water pump 20. In the present embodiment, an amount slightly larger than the sum of the volume of the lower cooling water passage 14 and the volume of the lower reservoir chamber 19 is set as the specified amount.

次いで、リザーバ室16に連通する上部還流通路17に介装されている真空引き弁26に図示しない真空ポンプを取付け吸引する。すると、リザーバ室16の内圧が減圧されるばかりでなく、上部還流通路17に設けられている逆止弁25が開弁して、調圧室13、第2、第3冷却水通路14b,14cの内圧が減圧される。そして、規定圧力(例えば、3〜5[kPa])まで真空引きしたところで、或いは予め設定した真空引き時間が経過したところで、真空引き弁26を閉じ、真空引きを停止する。次いで、冷却水ポンプ20を所定時間正転させて、下部溜り室19に滞留している冷却水を冷却水通路14を経て調圧室13側へ送る。   Next, a vacuum pump (not shown) is attached to the vacuum pulling valve 26 interposed in the upper reflux passage 17 communicating with the reservoir chamber 16 and sucked. Then, not only the internal pressure of the reservoir chamber 16 is reduced, but the check valve 25 provided in the upper reflux passage 17 is opened, and the pressure regulating chamber 13, the second and third cooling water passages 14b and 14c are opened. The internal pressure of is reduced. Then, when evacuation is performed to a specified pressure (for example, 3 to 5 [kPa]) or when a preset evacuation time has elapsed, the evacuation valve 26 is closed to stop evacuation. Next, the cooling water pump 20 is rotated forward for a predetermined time, and the cooling water staying in the lower reservoir chamber 19 is sent to the pressure regulating chamber 13 side through the cooling water passage 14.

その後、通常運転を行う。通常運転において、走行用モータジェネレータ1が駆動すると、この走行用モータジェネレータ1、及びインバータ2、バッテリ3等の発熱体が発熱する。これら走行用モータジェネレータ1を含む発熱体が発熱すると、これらを冷却する冷却水が加熱され昇温される。そして、この冷却水が飽和温度に達すると沸騰し、調圧室13の上部空間の水蒸気の圧力(空間内圧PT)が次第に高くなる。走行用モータジェネレータ1を含む発熱体の発熱温度は比較的低く、本実施形態では、これらを冷却する目標冷却温度を約50〜60[℃]に設定している。   Thereafter, normal operation is performed. In the normal operation, when the traveling motor generator 1 is driven, the traveling motor generator 1 and the heating elements such as the inverter 2 and the battery 3 generate heat. When the heating elements including these traveling motor generators 1 generate heat, the cooling water for cooling them is heated to raise the temperature. And when this cooling water reaches saturation temperature, it boils, and the pressure (water pressure PT) of the water vapor | steam of the upper space of the pressure regulation chamber 13 becomes high gradually. The heat generating temperature of the heating element including the traveling motor generator 1 is relatively low, and in this embodiment, the target cooling temperature for cooling them is set to about 50 to 60 [° C.].

次に、制御装置30で実行される冷却水ポンプ20の制御ルーチン、及び冷却ファン12aの制御ルーチンについて説明する。   Next, a control routine for the cooling water pump 20 and a control routine for the cooling fan 12a executed by the control device 30 will be described.

通常運転において、図3、図4に示すポンプ駆動制御ルーチンが起動されると、先ず、ステップS1で調圧室13に設けられている水位センサ22で検出した水位WLを読込み、ステップS2で水位WLと予め設定されている上限水位Hwとを比較する。この上限水位Hwは、冷却水ポンプ20で調圧室13に冷却水を注水することのできる許容値であり、沸騰冷却装置11に注入されている冷却水量、冷却水ポンプ20から下部溜り室19側に貯留される冷却水の最小残量等に基づいて設定される。   In the normal operation, when the pump drive control routine shown in FIGS. 3 and 4 is started, first, the water level WL detected by the water level sensor 22 provided in the pressure regulating chamber 13 is read in step S1, and the water level is read in step S2. WL is compared with a preset upper limit water level Hw. This upper limit water level Hw is an allowable value at which cooling water can be poured into the pressure regulating chamber 13 by the cooling water pump 20, and the amount of cooling water injected into the boiling cooling device 11 and the lower reservoir chamber 19 from the cooling water pump 20. It is set based on the minimum remaining amount of the cooling water stored on the side.

そして、水位WLが上限水位Hw未満の場合は(WL<Hw)、ステップS3へ進み、冷却水ポンプ20を高速(H)で正転させ(高送水運転)、ステップS1へ戻る。その結果、比較的速い速度で調圧室13の水位WLが上昇する。尚、調圧室13の水位WLが上昇すると、上部還流通路17内の圧力よりも調圧室13の圧力が高くなるため、逆止弁25が開弁して、内圧が逃がされるので、上部の空間内圧PTは大きく上昇することはない。   If the water level WL is less than the upper limit water level Hw (WL <Hw), the process proceeds to step S3, the cooling water pump 20 is rotated forward at high speed (H) (high water supply operation), and the process returns to step S1. As a result, the water level WL in the pressure regulating chamber 13 rises at a relatively high speed. When the water level WL in the pressure regulating chamber 13 rises, the pressure in the pressure regulating chamber 13 becomes higher than the pressure in the upper reflux passage 17, so that the check valve 25 is opened and the internal pressure is released. The space internal pressure PT does not increase greatly.

そして、調圧室13の水位WLが上限水位Hwに達した場合(WL≧Hw)、ステップS4へ進み、調圧室13に設けられている内圧センサ23で検出した、調圧室13の上部の空間内圧PTを読込み、ステップS5へ進む。   When the water level WL in the pressure regulating chamber 13 reaches the upper limit water level Hw (WL ≧ Hw), the process proceeds to step S4 and the upper part of the pressure regulating chamber 13 detected by the internal pressure sensor 23 provided in the pressure regulating chamber 13 is reached. Is read, and the process proceeds to step S5.

ステップS5では、空間内圧PTと予め設定した1次規定圧Mpt(例えば10〜15[kPa])とを比較する。そして、PT>Mptの場合、すなわち、水位WLが上限水位Hwに達した直後で空間内圧PTが比較的高い場合は、ステップS6へ進む。ステップS6へ進むと、冷却水ポンプ20を高速(H)で逆転させて(高抜水運転)、ステップS4へ戻る。冷却水ポンプ20を逆転させると、調圧室13に貯留されている冷却水が抜水されるため水位WLが低下して、上部還流通路17の内圧よりも空間内圧PTが低くなる。そのため、逆止弁25が閉弁し、調圧室13の上部空間が密閉状態となる。調圧室13の上部空間が密閉状態のままで水位WLが高速で低下すると、空間内圧PTが比較的速い速度で減少する。   In step S5, the internal pressure PT is compared with a preset primary specified pressure Mpt (for example, 10 to 15 [kPa]). If PT> Mpt, that is, if the spatial pressure PT is relatively high immediately after the water level WL reaches the upper limit water level Hw, the process proceeds to step S6. If it progresses to step S6, the cooling water pump 20 will be reversed at high speed (H) (high drainage operation), and it will return to step S4. When the cooling water pump 20 is reversed, the cooling water stored in the pressure regulating chamber 13 is drained, so that the water level WL is lowered and the internal pressure PT becomes lower than the internal pressure of the upper recirculation passage 17. Therefore, the check valve 25 is closed and the upper space of the pressure regulating chamber 13 is in a sealed state. When the water level WL decreases at a high speed while the upper space of the pressure regulating chamber 13 remains sealed, the internal pressure PT decreases at a relatively high speed.

そして、ステップS4〜S6のルーチンが繰り返し実行されて、空間内圧PTが1次規定圧Mpt以下まで低下した場合(PT≦Mpt)、ステップS7へ進み、冷却水ポンプ20を低速(L)で逆転させ(低抜水運転)、ステップS8へ進む。その結果、調圧室13の水位WLは、空間内圧PTが1次規定圧Mptに達するまでは比較的速い速度で低下し、従って、空間内圧PTも同様に比較的速い速度で低下する。そして、空間内圧PTが1次規定圧Mptに達した後は、ゆっくりと水位WLが低下するため、空間内圧PTも同様に比較的緩やかに減少する。   Then, when the routine of steps S4 to S6 is repeatedly executed and the internal space pressure PT decreases to the primary specified pressure Mpt or less (PT ≦ Mpt), the process proceeds to step S7, and the cooling water pump 20 is reversed at a low speed (L). (Low drainage operation), the process proceeds to step S8. As a result, the water level WL in the pressure adjusting chamber 13 decreases at a relatively high speed until the spatial pressure PT reaches the primary specified pressure Mpt. Therefore, the spatial pressure PT similarly decreases at a relatively high speed. Then, after the spatial pressure PT reaches the primary specified pressure Mpt, the water level WL is slowly lowered, so that the spatial pressure PT is also relatively moderately reduced.

ステップS8では、内圧センサ23で検出した空間内圧PTを読込み、ステップS9で、空間内圧PTと予め設定した目標規定圧Lpt(例えば15〜20[kPa])とを比較する。この目標規定圧Lptは、飽和温度に基づいて設定されている。尚、本実施形態では飽和温度を約50〜60[℃]に設定している。   In step S8, the space internal pressure PT detected by the internal pressure sensor 23 is read, and in step S9, the space internal pressure PT is compared with a preset target specified pressure Lpt (for example, 15 to 20 [kPa]). This target specified pressure Lpt is set based on the saturation temperature. In this embodiment, the saturation temperature is set to about 50 to 60 [° C.].

そして、空間内圧PTが目標規定圧Lptまで低下していない場合は、ステップS7へ戻り、空間内圧PTが目標規定圧Lpt以下となるまでルーチンを繰り返し実行する。   If the internal space pressure PT has not decreased to the target specified pressure Lpt, the process returns to step S7, and the routine is repeatedly executed until the internal space pressure PT becomes equal to or lower than the target specified pressure Lpt.

その後、空間内圧PTが目標規定圧Lpt以下まで低下した場合(PT≦Lpt)、ステップS10へ進む。空間内圧PTが1次規定圧Mpt以下の場合は、冷却水の水位WLが緩やかに低下するため、空間内圧PTを目標規定圧Lptまで精度良く減少させることができる。尚、調圧室13の上部空間の圧力が低下すると、冷却水の飽和温度が低下する。   Thereafter, when the internal pressure PT has decreased to the target specified pressure Lpt or less (PT ≦ Lpt), the process proceeds to step S10. When the space internal pressure PT is equal to or lower than the primary specified pressure Mpt, the coolant water level WL gradually decreases, so that the space internal pressure PT can be accurately reduced to the target specified pressure Lpt. Note that when the pressure in the upper space of the pressure regulating chamber 13 decreases, the saturation temperature of the cooling water decreases.

そして、ステップS10へ進むと、水温センサ24で検出した、調圧室13に貯留されている冷却水の水温(上部冷却水温)TW1を読込み、ステップS11で、上部冷却水温TW1と予め設定した目標飽和温度としての目標上部規定水温Ltw1(本実施形態では、約50〜60[℃])とを比較する。そして、上部冷却水温TW1が目標上部規定水温Ltw1を超過している場合(TW1>Ltw1)、ステップS12へ進み、冷却水ポンプ20の低抜水運転を継続させて、冷却水の飽和温度をゆっくりと低下させる。   Then, when proceeding to step S10, the coolant temperature (upper coolant temperature) TW1 detected by the water temperature sensor 24 and stored in the pressure adjusting chamber 13 is read, and in step S11, the upper coolant temperature TW1 and the target set in advance are read. The target upper specified water temperature Ltw1 (in this embodiment, about 50 to 60 [° C.]) as the saturation temperature is compared. If the upper cooling water temperature TW1 exceeds the target upper specified water temperature Ltw1 (TW1> Ltw1), the process proceeds to step S12, and the cooling water pump 20 continues the low drainage operation to slowly reduce the saturation temperature of the cooling water. And lower.

一方、上部冷却水温TW1が目標上部規定水温Ltw1未満の場合(TW1≦Ltw1)、冷却水の飽和温度を低下させる必要がないので、ステップS13へ進み、冷却水ポンプ20を停止させて、ステップS14へ進む。従って、例えば電気自動車を始動させた直後であって、走行用モータジェネレータ1、インバータ2、バッテリ3等、沸騰冷却装置11の冷却対象となる発熱体の温度が未だ昇温していない状態では、ステップS13へ進み、冷却水ポンプ20が停止される。   On the other hand, if the upper cooling water temperature TW1 is lower than the target upper specified water temperature Ltw1 (TW1 ≦ Ltw1), it is not necessary to lower the saturation temperature of the cooling water, so the process proceeds to step S13, the cooling water pump 20 is stopped, and step S14 is performed. Proceed to Therefore, for example, immediately after starting the electric vehicle, in the state where the temperature of the heating element that is the cooling target of the boiling cooling device 11 such as the traveling motor generator 1, the inverter 2, the battery 3, etc. has not been raised yet, Proceeding to step S13, the cooling water pump 20 is stopped.

ステップS14へ進むと、水位センサ22で検出した、調圧室13の冷却水の水位WLを読込み、ステップS15で水位WLと、予め設定した下限水位Lwとを比較する。この下限水位Lwは、調圧室13に貯留されている冷却水の許容下限水位であり、予め実験などに基づいて設定されている。発熱体からの熱を吸熱した冷却水は次第に昇温され、飽和温度に達すると沸騰して、調圧室13に発生する水蒸気量が増加する。水蒸気量が増加すると、相対的に冷却水の水位WLが低下する。又、調圧室13内の水蒸気量が増加すると、空間内圧PTが上昇し、逆止弁25が開弁して、水蒸気がリザーバ室16へ送られる。   In step S14, the coolant level WL of the cooling chamber 13 detected by the water level sensor 22 is read, and in step S15, the water level WL is compared with a preset lower limit water level Lw. This lower limit water level Lw is an allowable lower limit water level of the cooling water stored in the pressure regulating chamber 13, and is set in advance based on experiments or the like. The cooling water that has absorbed the heat from the heating element is gradually heated, and when it reaches the saturation temperature, it boils and the amount of water vapor generated in the pressure regulating chamber 13 increases. When the amount of water vapor increases, the coolant water level WL relatively decreases. Further, when the amount of water vapor in the pressure adjusting chamber 13 increases, the space internal pressure PT rises, the check valve 25 opens, and water vapor is sent to the reservoir chamber 16.

そして、水位WLが下限水位Lwに達するまで、冷却水ポンプ20の停止状態を継続させる。その後、水位WLが下限水位Lwに達した場合(WL≦Lw)、冷却水ポンプ20を正転させて調圧室13の水位WLを上昇させるべく、ステップS16へ進む。   Then, the cooling water pump 20 is stopped until the water level WL reaches the lower limit water level Lw. Thereafter, when the water level WL reaches the lower limit water level Lw (WL ≦ Lw), the process proceeds to step S16 in order to cause the cooling water pump 20 to rotate forward to raise the water level WL in the pressure regulating chamber 13.

ステップS16では、下部溜り室19に配設されている水温センサ29で検出した、下部溜り室19に貯留されている冷却水の水温(下部冷却水温)TW2を読込み、ステップS17で、予め設定されている目標規定温度としての目標下部規定水温Ltw2(本実施形態では、約50〜60[℃])とを比較する。   In step S16, the coolant temperature (lower coolant temperature) TW2 stored in the lower reservoir chamber 19 detected by the water temperature sensor 29 provided in the lower reservoir chamber 19 is read, and preset in step S17. The target lower specified water temperature Ltw2 (about 50 to 60 [° C.] in the present embodiment) as the target specified temperature is compared.

そして、下部冷却水温TW2が目標下部規定水温Ltw2よりも高い場合(TW2>Ltw2)、ステップS3へ戻り、冷却水ポンプ20を高送水運転させて、調圧室13の水位WLを比較的速い速度で上昇させる。一方、下部冷却水温TW2が目標下部規定水温Ltw2よりも低い場合(TW2≦Ltw2)、ステップS18へ進み、冷却水ポンプ20を低速(L)で正転させ(低送水運転)、調圧室13の水位WLを緩やかに上昇させて、ステップS1へ戻る。   When the lower cooling water temperature TW2 is higher than the target lower defined water temperature Ltw2 (TW2> Ltw2), the process returns to step S3, the cooling water pump 20 is operated to perform high water supply operation, and the water level WL in the pressure regulating chamber 13 is set at a relatively high speed. Raise with. On the other hand, when the lower cooling water temperature TW2 is lower than the target lower specified water temperature Ltw2 (TW2 ≦ Ltw2), the process proceeds to step S18, the cooling water pump 20 is rotated forward at a low speed (L) (low water supply operation), and the pressure regulating chamber 13 The water level WL is gradually raised, and the process returns to step S1.

ステップS18、或いはステップS3で冷却水ポンプ20を送水運転(正転)させると、調圧室13の水位WLが次第に上昇する。すると、調圧室13の上部空間に充満している水蒸気が、水位WLの上昇に従い、逆止弁25を開弁させ、上部還流通路17を通り、リザーバ室16へ送られる。リザーバ室16に送られた水蒸気の一部は液相化されて冷却水となり底部に滞留する。底部に滞留した冷却水は冷却水還流通路21を通り下部溜り室19に流れる。一方、リザーバ室16に滞留する水蒸気の一部は水蒸気還流通路18を介してコンデンサ12へ送られ、ここで冷却され液相化されて冷却水となり、底部に滞留する。そして、このコンデンサ12の底部に滞留した冷却水が、第1冷却水通路14aを通り、下部溜り室19へ送られる。   When the cooling water pump 20 is supplied with water (forward rotation) in step S18 or step S3, the water level WL in the pressure regulating chamber 13 gradually increases. Then, the water vapor filled in the upper space of the pressure regulating chamber 13 opens the check valve 25 as the water level WL rises, and is sent to the reservoir chamber 16 through the upper reflux passage 17. A part of the water vapor sent to the reservoir chamber 16 is converted into a liquid phase and becomes cooling water and stays at the bottom. The cooling water staying at the bottom flows through the cooling water recirculation passage 21 and flows into the lower reservoir chamber 19. On the other hand, a part of the water vapor staying in the reservoir chamber 16 is sent to the condenser 12 via the water vapor recirculation passage 18, where it is cooled and liquidified to become cooling water and stays at the bottom. Then, the cooling water staying at the bottom of the condenser 12 is sent to the lower reservoir 19 through the first cooling water passage 14a.

この冷却水、及び水蒸気の循環は、冷却水ポンプ20の正転動作(送水運転)によって行われている。すなわち、冷却水ポンプ20が送水運転を行うと、下部溜り室19に滞留している冷却水が第2〜第4冷却水通路14b〜14dを経て調圧室13に送られる。そして、調圧室13の水位WLの上昇に伴い、上部空間に滞留する水蒸気が上部還流通路17を経てリザーバ室16へ送られる。すると、リザーバ室16に滞留する水蒸気、及び冷却水は、調圧室13から送られてくる水蒸気の圧力にて下部溜り室19側へ送り出されて、還元される。   The cooling water and the water vapor are circulated by the forward rotation operation (water supply operation) of the cooling water pump 20. That is, when the cooling water pump 20 performs a water supply operation, the cooling water staying in the lower reservoir chamber 19 is sent to the pressure regulating chamber 13 through the second to fourth cooling water passages 14b to 14d. Then, as the water level WL in the pressure regulating chamber 13 rises, water vapor staying in the upper space is sent to the reservoir chamber 16 through the upper reflux passage 17. Then, the water vapor and cooling water staying in the reservoir chamber 16 are sent out to the lower reservoir chamber 19 side by the pressure of the water vapor sent from the pressure regulating chamber 13 and reduced.

その結果、例えば下部溜り室19に滞留する冷却水の温度(下部冷却水温)TW2が目標下部規定水温Ltw2よりも高い場合、冷却水ポンプ20を高送水運転させることで、冷却水が循環され、気相化された冷却水(水蒸気)が液相化されて還元されるので、下部溜り室19に滞留する冷却水の温度を低下させることができる。又、この場合、冷却水ポンプ20の送水運転により第2〜第4冷却水通路14b〜14dを流れる冷却水の温度が一時的に上昇する。しかし、水位WLが上限水位Hwに達した場合、冷却水ポンプ20が直ちに逆転して抜水運転へ移行し、調圧室13の内部空間の圧力を減圧して、冷却水の飽和温度を目標上部規定水温Ltw1(例えば50〜60[℃])まで低下されるので、冷却水温が大幅に上昇することはない。   As a result, for example, when the temperature (lower cooling water temperature) TW2 of the cooling water staying in the lower reservoir 19 is higher than the target lower specified water temperature Ltw2, the cooling water is circulated by operating the cooling water pump 20 at a high water supply operation, Since the vaporized cooling water (water vapor) is reduced to a liquid phase, the temperature of the cooling water staying in the lower reservoir chamber 19 can be lowered. In this case, the temperature of the cooling water flowing through the second to fourth cooling water passages 14b to 14d temporarily rises due to the water supply operation of the cooling water pump 20. However, when the water level WL reaches the upper limit water level Hw, the cooling water pump 20 immediately reverses and shifts to the drainage operation, the pressure in the internal space of the pressure regulating chamber 13 is reduced, and the saturation temperature of the cooling water is targeted. Since the temperature is lowered to the upper specified water temperature Ltw1 (for example, 50 to 60 [° C.]), the cooling water temperature does not increase significantly.

その結果、図6に実線で示すように、冷却水ポンプ20の送水運転、抜水運転、及びポンプ停止にて、上部冷却水温TW1を目標冷却水温である目標上部規定水温Ltw1に対して、ある飽和温度範囲(目標飽和温度範囲)で制御することが出来る。又、この場合、例えば目標規定圧Lptを3[kPA]程度にすると、外気温よりも低い飽和温度範囲で上部冷却水温TW1を制御することも可能となる。   As a result, as shown by a solid line in FIG. 6, the upper cooling water temperature TW1 is set to the target upper specified water temperature Ltw1 that is the target cooling water temperature in the water supply operation, the drainage operation, and the pump stop of the cooling water pump 20. It can be controlled in the saturation temperature range (target saturation temperature range). In this case, for example, when the target specified pressure Lpt is set to about 3 [kPA], it is possible to control the upper cooling water temperature TW1 in a saturation temperature range lower than the outside air temperature.

ところで、リザーバ室16の内圧が高い場合、コンデンサ12へ流れる水蒸気量も多くなる。同様に、下部溜り室19に滞留する冷却水の温度(下部冷却水温)TW2が目標下部規定水温Ltw2よりも高いと、発熱体を効率よく冷却することができなくなる。このような場合は、制御装置30において冷却ファン12aを、図5に示す冷却ファン制御ルーチンに従って制御し、コンデンサ12に滞留する水蒸気、及び冷却水を冷却する。   By the way, when the internal pressure of the reservoir chamber 16 is high, the amount of water vapor flowing to the condenser 12 also increases. Similarly, if the temperature (lower cooling water temperature) TW2 of the cooling water staying in the lower pool chamber 19 is higher than the target lower specified water temperature Ltw2, the heating element cannot be efficiently cooled. In such a case, the control device 30 controls the cooling fan 12a according to the cooling fan control routine shown in FIG. 5 to cool the water vapor and the cooling water staying in the condenser 12.

このルーチンでは、先ず、ステップS21で、内圧センサ28で検出したリザーバ室16の内圧PAを読込み、ステップS22で、内圧PAと予め設定した目標規定圧としての目標上部規定圧Hpa(例えば8〜10[kPa])とを比較する。そして、この内圧PAが目標上部規定圧Hpaよりも高い場合(PA>Hpa)、ステップS23へ進み、冷却ファン12aを高速回転させて、ステップS21へ戻る。冷却ファン12aが高速回転されると、コンデンサ12を通過する冷却風の風量が増加し、コンデンサ12内に滞留する水蒸気の液相化が促進され、リザーバ室16の内圧PAが低下する。   In this routine, first, in step S21, the internal pressure PA of the reservoir chamber 16 detected by the internal pressure sensor 28 is read. In step S22, the internal upper pressure PA and a target upper specified pressure Hpa as a preset target specified pressure Hpa (for example, 8 to 10). [kPa]). When the internal pressure PA is higher than the target upper specified pressure Hpa (PA> Hpa), the process proceeds to step S23, the cooling fan 12a is rotated at a high speed, and the process returns to step S21. When the cooling fan 12a is rotated at a high speed, the amount of cooling air passing through the condenser 12 is increased, the liquid phase of water vapor staying in the condenser 12 is promoted, and the internal pressure PA of the reservoir chamber 16 is lowered.

そして、リザーバ室16の内圧PAが目標上部規定圧Hpaに低下するまで、冷却ファン12aを連続的に高速回転させ、内圧PAが目標上部規定圧Hpaまで低下した場合(PA≦Hpa)、ステップS24へ進み、下部溜り室19に滞留する冷却水の温度(下部冷却水温)TW2を読込み、ステップS25で下部冷却水温TW2と予め設定した目標下部規定水温Ltw2とを比較する。   If the cooling fan 12a is continuously rotated at a high speed until the internal pressure PA of the reservoir chamber 16 decreases to the target upper specified pressure Hpa, and the internal pressure PA decreases to the target upper specified pressure Hpa (PA ≦ Hpa), step S24. The temperature of the cooling water staying in the lower reservoir chamber 19 (lower cooling water temperature) TW2 is read, and the lower cooling water temperature TW2 is compared with a preset target lower specified water temperature Ltw2 in step S25.

そして、下部冷却水温TW2が目標下部規定水温Ltw2よりも高い場合(TW2>Ltw2)、ステップS26へ進み、冷却ファン12aを低速回転させて、ステップS21へ戻る。その結果、コンデンサ12の下部に滞留する冷却水の気相化が抑制され、リザーバ室16の内圧上昇が抑制される。   When the lower cooling water temperature TW2 is higher than the target lower specified water temperature Ltw2 (TW2> Ltw2), the process proceeds to step S26, the cooling fan 12a is rotated at a low speed, and the process returns to step S21. As a result, the vaporization of the cooling water staying in the lower portion of the capacitor 12 is suppressed, and the increase in the internal pressure of the reservoir chamber 16 is suppressed.

一方、下部冷却水温TW2が目標下部規定水温Ltw2よりも低い場合は(TW2≦Ltw2)、ステップS27へ進み、冷却ファン12aを停止させてステップS21へ戻る。その結果、リザーバ室16の内圧PAを目標上部規定圧Hpaに対して、ある圧力範囲で制御することが出来る。   On the other hand, if the lower cooling water temperature TW2 is lower than the target lower specified water temperature Ltw2 (TW2 ≦ Ltw2), the process proceeds to step S27, the cooling fan 12a is stopped, and the process returns to step S21. As a result, the internal pressure PA of the reservoir chamber 16 can be controlled within a certain pressure range with respect to the target upper specified pressure Hpa.

このように、本実施形態では、発熱体を冷却する冷却水を、冷却水ポンプ20の正転動作により、水蒸気を冷却して復水させることで循環させ、又、冷却水ポンプ20を逆転させて、空間内圧PTを低下させることで飽和温度を積極的に目標上部規定水温Ltw1(本実施形態では50〜60[℃])まで低下させるようにしたので、発熱体の発熱量が少なく、この発熱体の温度を一定範囲に保持するめの目標温度が低く設定されていても、発熱体を効率よく冷却して、冷却水を目標飽和温度範囲に収めることができる。   As described above, in this embodiment, the cooling water for cooling the heating element is circulated by cooling and condensing the water vapor by the forward rotation operation of the cooling water pump 20, and the cooling water pump 20 is reversed. Since the saturation temperature is actively lowered to the target upper specified water temperature Ltw1 (in this embodiment, 50 to 60 [° C.]) by reducing the internal pressure PT, the heat generation amount of the heating element is small. Even if the target temperature for keeping the temperature of the heating element within a certain range is set low, the heating element can be efficiently cooled and the cooling water can be kept within the target saturation temperature range.

[第2実施形態]
図7〜図11に本発明の第2実施形態を示す。本実施形態は、上述した第1実施形態の変形例である。第1実施形態では、冷却水ポンプ20として定容量の双方向ポンプを採用したが、本実施形態では、単方向ポンプを採用し、冷却水の流動は、冷却水ポンプ20の上流側と下流側とに配設されている切換弁31,32の切換えで行うようにしたものである。従って、本実施形態では、冷却水ポンプ20と両切換弁31,32とで、本発明のポンプユニットが構成されている。尚、第1実施形態と同一の構成部分については同一の符号を付して説明を省略する。
[Second Embodiment]
7 to 11 show a second embodiment of the present invention. This embodiment is a modification of the first embodiment described above. In the first embodiment, a constant-capacity bidirectional pump is adopted as the cooling water pump 20, but in this embodiment, a unidirectional pump is adopted, and the cooling water flows on the upstream side and the downstream side of the cooling water pump 20. This is performed by switching the switching valves 31 and 32 arranged in the above. Accordingly, in the present embodiment, the cooling water pump 20 and the two switching valves 31 and 32 constitute the pump unit of the present invention. In addition, about the component same as 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図7に示すように、下部溜り室19に接続されている第2冷却水通路14bが二股に分岐され、又、第3冷却水通路14cと第4冷却水通路14dとの合流部に、第5冷却水通路14fと第6冷却水通路14gとが接続されている。二股に分岐された第2冷却水通路14bの一方の端部と第5冷却水通路14fの端部とが上流切換弁31を介して冷却水ポンプ20の上流側に接続されている。又、第2冷却水通路14bの他方の端部と第6冷却水通路14gの端部とが下流切換弁32を介して冷却水ポンプ20の下流側に接続されている。   As shown in FIG. 7, the second cooling water passage 14b connected to the lower reservoir chamber 19 is branched into two branches, and the second cooling water passage 14c and the fourth cooling water passage 14d are joined at the joining portion of the third cooling water passage 14c and the fourth cooling water passage 14d. The fifth cooling water passage 14f and the sixth cooling water passage 14g are connected. One end of the second cooling water passage 14 b branched into two branches and the end of the fifth cooling water passage 14 f are connected to the upstream side of the cooling water pump 20 via the upstream switching valve 31. The other end of the second cooling water passage 14 b and the end of the sixth cooling water passage 14 g are connected to the downstream side of the cooling water pump 20 via the downstream switching valve 32.

本実施形態で採用する冷却水ポンプ20は、ダイヤフラムポンプであり、図示しないが上流側と下流側とには、ポンプ動作時における冷却水の逆流を防止するための逆止弁がそれぞれ介装されている。又、冷却水ポンプ(ダイヤフラムポンプ)20に設けられているダイヤフラムは電磁石をON/OFFさせることでポンプ動作される。   The cooling water pump 20 employed in the present embodiment is a diaphragm pump. Although not shown, check valves for preventing a back flow of cooling water during pump operation are respectively provided on the upstream side and the downstream side. ing. Further, the diaphragm provided in the cooling water pump (diaphragm pump) 20 is pumped by turning on / off the electromagnet.

又、図8に示すように、本実施形態で採用する各切換弁31,32は、電磁式三方弁であり、同図(a)は両切換弁31,32がOFFの状態、同図(b)は両切換弁31,32がONの状態が示されている。同図(a)に示すように、両切換弁31,32がOFFの状態では、冷却水ポンプ20の下流側に接続する第2冷却水通路14bが冷却水ポンプ20を介して第6冷却水通路14gに連通される。従って、この状態では下部溜り室19に貯留されている冷却水が調圧室13の方向へ送水される(送水運転)。   Further, as shown in FIG. 8, the switching valves 31 and 32 employed in this embodiment are electromagnetic three-way valves. FIG. 8A shows a state in which both switching valves 31 and 32 are OFF. b) shows a state in which both switching valves 31 and 32 are ON. As shown in FIG. 5A, when both switching valves 31 and 32 are OFF, the second cooling water passage 14b connected to the downstream side of the cooling water pump 20 is connected to the sixth cooling water via the cooling water pump 20. It communicates with the passage 14g. Therefore, in this state, the cooling water stored in the lower reservoir chamber 19 is supplied toward the pressure regulating chamber 13 (water supply operation).

又、同図(b)に示すように、両切換弁31,32がONの状態では、冷却水ポンプ20の下流側に接続する第5冷却水通路14fが冷却水ポンプ20を介して、冷却水ポンプ20の上流側に接続する第2冷却水通路14bに連通される。従って、この状態では調圧室13側の冷却水が下部溜り室19の方向へ抜水される(抜水運転)。尚、この両切換弁31,32は同図(a)がON、同図(b)がOFFであっても良い。   Further, as shown in FIG. 5B, when both switching valves 31 and 32 are ON, the fifth cooling water passage 14f connected to the downstream side of the cooling water pump 20 is cooled via the cooling water pump 20. The second cooling water passage 14b connected to the upstream side of the water pump 20 is communicated. Therefore, in this state, the cooling water on the pressure regulating chamber 13 side is drained toward the lower reservoir chamber 19 (drainage operation). Note that both the switching valves 31 and 32 may be ON in the same figure (a) and OFF in the same figure (b).

制御装置30では、調圧室13の水位WL、空間内圧PT、上部冷却水温TW1、下部溜り室19の下部冷却水温TW2に基づいて、冷却水ポンプ20、及び両切換弁31,32を動作させて、冷却水温が所定温度範囲に収まるように制御する。この制御は、具体的には、図10、図11に示すポンプ駆動制御ルーチンに従って行われる。尚、このルーチンは、基本的に図3、図4に示すポンプ駆動制御ルーチンと同じ処理が行われるため、同じ処理の行われるステップには、図3、図4に示す符号と同一の符号を付して詳細な説明は省略する。   In the control device 30, the cooling water pump 20 and both switching valves 31 and 32 are operated based on the water level WL of the pressure regulating chamber 13, the internal pressure PT, the upper cooling water temperature TW 1, and the lower cooling water temperature TW 2 of the lower reservoir 19. Thus, the cooling water temperature is controlled to fall within a predetermined temperature range. Specifically, this control is performed according to the pump drive control routine shown in FIGS. Since this routine basically performs the same process as the pump drive control routine shown in FIGS. 3 and 4, the same reference numerals as those shown in FIGS. Detailed description will be omitted.

ステップS2で、調圧室13に貯留されている冷却水の水位WLが上限水位Hw未満と判定されて(WL<Hw)、ステップS3’へ進むと、冷却水ポンプ20を高(H)運転させると共に、両切換弁31,32をOFF動作させ(高送水運転)、ステップS1へ戻る。冷却水ポンプ20の高運転は、電磁石のON/OFFする周期を短くし、ダイヤフラムの往復動作を速くして、冷却水の吐出量を増加させることで行う。   In step S2, when the water level WL of the cooling water stored in the pressure regulating chamber 13 is determined to be less than the upper limit water level Hw (WL <Hw) and the process proceeds to step S3 ′, the cooling water pump 20 is operated at high (H). At the same time, both switching valves 31 and 32 are turned off (high water supply operation), and the process returns to step S1. The high operation of the cooling water pump 20 is performed by shortening the ON / OFF cycle of the electromagnet, speeding up the reciprocating operation of the diaphragm, and increasing the discharge amount of the cooling water.

そして、調圧室13の水位WLが上限水位Hwに達したと判断して(WL≧Hw)、ステップS4へ進み、ステップS4,S5で、内圧センサ23で検出した調圧室13の空間内圧PTと予め設定した1次規定圧Mptとを比較する。そして、PT>Mptの場合、すなわち、水位WLが上限水位Hwに達した直後で空間内圧PTが比較的高い場合は、ステップS6’へ進み、両切換弁31,32をONさせると共に、冷却水ポンプ20を高(H)運転させる。   Then, it is determined that the water level WL in the pressure regulating chamber 13 has reached the upper limit water level Hw (WL ≧ Hw), the process proceeds to step S4, and the spatial internal pressure of the pressure regulating chamber 13 detected by the internal pressure sensor 23 in steps S4 and S5. PT is compared with a preset primary specified pressure Mpt. If PT> Mpt, that is, if the internal pressure PT is relatively high immediately after the water level WL reaches the upper limit water level Hw, the process proceeds to step S6 ′, and both the switching valves 31, 32 are turned on and the cooling water is supplied. The pump 20 is operated at high (H).

図8(b)に示すように、両切換弁31,32がONすると、冷却水ポンプ20に接続される流路が切り替わり、第3、第4冷却水通路14c,14d側に連通する第5冷却水通路14fが冷却水ポンプ20の上流側に接続され、又、下流側に第2冷却水通路14bが接続される。その結果、冷却水ポンプ20は高抜水運転となり、調圧室13の水位WLが比較的速い速度で低下し、空間内圧PTが減少される。   As shown in FIG. 8 (b), when both switching valves 31, 32 are turned ON, the flow path connected to the cooling water pump 20 is switched, and the fifth and fourth cooling water passages 14c, 14d communicated with each other. The cooling water passage 14f is connected to the upstream side of the cooling water pump 20, and the second cooling water passage 14b is connected to the downstream side. As a result, the cooling water pump 20 enters a high drainage operation, the water level WL in the pressure regulating chamber 13 decreases at a relatively high speed, and the internal pressure PT is reduced.

そして、空間内圧PTが1次規定圧Mpt以下まで低下した場合(PT≦Mpt)、ステップS7’へ進み、冷却水ポンプ20を低(L)運転させ、両切換弁31,32をONさせ(低抜水運転)、ステップS8へ進む。冷却水ポンプ20の低運転は、電磁石のON/OFFする周期を長くし、ダイヤフラムの往復動作間隔を長くし、冷却水の吐出量を減少させることで行う。   When the internal pressure PT has decreased to the primary specified pressure Mpt or less (PT ≦ Mpt), the process proceeds to step S7 ′, the cooling water pump 20 is operated low (L), and both switching valves 31 and 32 are turned on ( Low drainage operation), the process proceeds to step S8. The low operation of the cooling water pump 20 is performed by increasing the ON / OFF cycle of the electromagnet, increasing the reciprocating operation interval of the diaphragm, and decreasing the discharge amount of the cooling water.

その後、ステップS8〜S11まで、上述した第1実施形態と同様の処理を行い、ステップS11で、上部冷却水温TW1が目標上部規定水温Ltw1を超過していると判断した場合(TW1>Ltw1)、ステップS12’へ進み、冷却水ポンプ20の低抜水運転を継続させて、冷却水の飽和温度をゆっくりと低下させる。   Thereafter, the same processing as in the first embodiment described above is performed from step S8 to S11. When it is determined in step S11 that the upper cooling water temperature TW1 exceeds the target upper specified water temperature Ltw1 (TW1> Ltw1), Proceeding to step S12 ′, the low water discharge operation of the cooling water pump 20 is continued and the saturation temperature of the cooling water is slowly lowered.

一方、ステップS11で、上部冷却水温TW1が目標上部規定水温Ltw1未満と判定された場合は(TW1≦Ltw1)、冷却水の飽和温度を低下させる必要がないので、ステップS13’で、冷却水ポンプ20を停止させると共に、両切換弁31,32をOFFさせ、ステップS14へ進む。そして、ステップS14〜S17まで、上述した第1実施形態と同様の処理を行い、
ステップS17で、下部冷却水温TW2が目標下部規定水温Ltw2よりも高いと判断された場合(TW2>Ltw2)、ステップS3’へ戻り、又、下部冷却水温TW2が目標下部規定水温Ltw2よりも低いと判断された場合(TW2≦Ltw2)、ステップS18’へ進む。ステップS18’へ進むと、低送水運転を実行すべく、冷却水ポンプ20を低運転させると共に、両切換弁31,32をOFF動作させて、ステップS1へ戻る。尚、冷却ファン12aの制御動作は、第1実施形態と同じであるため、説明を省略する。
On the other hand, if it is determined in step S11 that the upper cooling water temperature TW1 is lower than the target upper specified water temperature Ltw1 (TW1 ≦ Ltw1), it is not necessary to lower the saturation temperature of the cooling water, so in step S13 ′, the cooling water pump 20 is stopped, both switching valves 31 and 32 are turned OFF, and the process proceeds to step S14. And from step S14 to S17, the same process as the first embodiment described above is performed,
If it is determined in step S17 that the lower cooling water temperature TW2 is higher than the target lower specified water temperature Ltw2 (TW2> Ltw2), the process returns to step S3 ′, and if the lower cooling water temperature TW2 is lower than the target lower specified water temperature Ltw2 If it is determined (TW2 ≦ Ltw2), the process proceeds to step S18 ′. If it progresses to step S18 ', in order to perform a low water supply operation, while operating the cooling water pump 20 low, both the switching valves 31 and 32 are turned off, and it returns to step S1. The control operation of the cooling fan 12a is the same as that in the first embodiment, and a description thereof will be omitted.

このように、本実施形態では、冷却水ポンプ20を単方向ポンプとしたので、上述した第1実施形態の効果に加え、ポンプ駆動回路等の制御機構を単純化することができるばかりでなく、ダイヤフラムポンプ等、非回転式ポンプを採用することも可能となり、製品コストの低減を図ることができる。   Thus, in this embodiment, since the cooling water pump 20 is a unidirectional pump, in addition to the effects of the first embodiment described above, not only can the control mechanism such as the pump drive circuit be simplified, A non-rotating pump such as a diaphragm pump can also be used, and the product cost can be reduced.

1…走行用モータジェネレータ、
2…インバータ、
3…バッテリ、
11…沸騰冷却装置、
12…コンデンサ、
12a…電動式冷却ファン、
13…調圧室、
14…下部冷却水通路、
16…リザーバ室、
17…上部還流通路、
18…水蒸気還流通路、
19…下部溜り室、
20…冷却水ポンプ、
21…冷却水還流通路、
22…水位センサ、
23…内圧センサ、
24…水温センサ、
25…逆止弁、
28…内圧センサ、
29…水温センサ、
30…制御装置
Hpa…目標上部規定圧
Hw…上限水位
Lpt…目標規定圧
Ltw1…目標上部規定水温
Ltw2…目標下部規定水温
Lw…下限水位
Mpt…1次規定圧
PA…(リザーバ室の)内圧
PT…(調圧室の)空間内圧
TW1…上部冷却水温
TW2…下部冷却水温
WL…水位
1 ... Motor generator for running,
2 ... Inverter,
3 ... Battery
11 ... Boiling cooler,
12: Capacitor,
12a ... Electric cooling fan,
13 ... pressure regulating chamber,
14 ... Lower cooling water passage,
16 ... reservoir chamber,
17 ... upper return passage,
18 ... water vapor reflux passage,
19 ... Lower chamber,
20 ... cooling water pump,
21 ... Cooling water recirculation passage,
22 ... Water level sensor,
23 ... Internal pressure sensor,
24 ... Water temperature sensor,
25. Check valve,
28 ... Internal pressure sensor,
29 ... Water temperature sensor,
30 ... Control device Hpa ... Target upper specified pressure Hw ... Upper limit water level Lpt ... Target specified pressure Ltw1 ... Target upper specified water temperature Ltw2 ... Target lower specified water temperature Lw ... Lower limit water level Mpt ... Primary specified pressure PA ... Internal pressure PT (in the reservoir chamber) ... Space pressure TW1 (in the pressure regulating chamber) ... Upper cooling water temperature TW2 ... Lower cooling water temperature WL ... Water level

特開2001-349681号公報Japanese Patent Laid-Open No. 2001-349881

Claims (3)

発熱体を冷却する液相冷媒が流通する液相冷媒通路と、
前記液相冷媒通路内での沸騰により発生した気相冷媒を前記液相冷媒通路へ還流させると共に、該液相冷媒通路に連通されて密閉された循環路が形成される冷媒還流通路と、
前記液相冷媒通路の上部に設けられて前記液相冷媒を滞留させる調圧室と、
該調圧室の上部に連通されている前記気相冷媒通路に設けられて前記調圧室から該気相冷媒通路側への前記気相冷媒の流通のみを許容する逆止手段と、
前記液相冷媒通路に設けられて前記液相冷媒を流動させるポンプユニットと、
前記ポンプユニットの動作を制御する制御手段と
を備える沸騰冷却装置において、
前記ポンプユニットは前記液相冷媒を前記液相冷媒通路内で双方向に流動可能であり、
前記制御手段は、
前記調圧室に貯留されている液相冷媒の温度と予め設定されている目標飽和温度とを比較し、該液相冷媒の温度が該目標飽和温度範囲に収まるように前記ポンプユニットを駆動させて前記調圧室の空間圧力を減圧させ
前記液相冷媒の温度を前記目標飽和温度範囲に収めた後、前記調圧室の前記液位と予め設定されている下限液位とを比較し、該液位が該下限液位よりも低い場合は、前記液相冷媒通路の前記調圧室とは前記ポンプユニットを挟んで反対側の液相冷媒の温度と予め設定した目標規定温度とを比較し、 該液相冷媒の温度が該目標規定温度よりも高い場合は速い送り速度で、該液相冷媒の温度が該目標規定温度よりも低い場合は遅い送り速度で前記ポンプユニットを駆動させて前記調圧室の前記液位が予め設定した上限水位になるまで前記液相冷媒を送る
ことを特徴とする沸騰冷却装置。
A liquid-phase refrigerant passage through which a liquid-phase refrigerant for cooling the heating element flows;
Refrigerating gas phase refrigerant generated by boiling in the liquid phase refrigerant passage to the liquid phase refrigerant passage, and a refrigerant reflux passage communicating with the liquid phase refrigerant passage to form a closed circulation path;
A pressure regulating chamber provided in an upper portion of the liquid phase refrigerant passage and retaining the liquid phase refrigerant;
Check means provided in the gas-phase refrigerant passage communicating with an upper portion of the pressure-regulating chamber and allowing only the gas-phase refrigerant to flow from the pressure-regulating chamber to the gas-phase refrigerant passage side;
A pump unit that is provided in the liquid phase refrigerant passage and causes the liquid phase refrigerant to flow;
A boiling cooling device comprising a control means for controlling the operation of the pump unit;
The pump unit can flow the liquid-phase refrigerant bidirectionally in the liquid-phase refrigerant passage,
The control means includes
The temperature of the liquid phase refrigerant stored in the pressure regulating chamber is compared with a preset target saturation temperature, and the pump unit is driven so that the temperature of the liquid phase refrigerant falls within the target saturation temperature range. To reduce the space pressure in the pressure regulating chamber ,
After the temperature of the liquid phase refrigerant falls within the target saturation temperature range, the liquid level in the pressure regulating chamber is compared with a preset lower limit liquid level, and the liquid level is lower than the lower limit liquid level. In this case, the temperature of the liquid-phase refrigerant passage is compared with the temperature of the liquid-phase refrigerant on the opposite side of the pump unit with respect to the pressure regulating chamber, and a preset target specified temperature is determined. When the temperature is higher than the specified temperature, the pump unit is driven at a high feed rate, and when the temperature of the liquid-phase refrigerant is lower than the target specified temperature, the liquid level in the pressure adjusting chamber is set in advance. The boiling cooling device, wherein the liquid-phase refrigerant is sent until the upper limit water level is reached.
前記冷媒還流通路に、前記気相冷媒を滞留させるリザーバ室と、該リザーバ室の下流であって前記気相冷媒を冷却するコンデンサとが設けられ、
前記コンデンサに、該コンデンサを冷却する冷却ファンが対設され、
前記制御手段は、前記リザーバ室の内圧と予め設定した目標規定圧とを比較し、該リザーバ室の内圧が該目標規定圧よりも高い場合、前記冷却ファンを駆動させる
ことを特徴とする請求項1に記載の沸騰冷却装置。
A reservoir chamber that retains the gas-phase refrigerant and a condenser that cools the gas-phase refrigerant downstream from the reservoir chamber are provided in the refrigerant reflux passage.
The condenser is provided with a cooling fan for cooling the condenser,
The control means compares the internal pressure of the reservoir chamber with a preset target specified pressure, and drives the cooling fan when the internal pressure of the reservoir chamber is higher than the target specified pressure. cooling apparatus according to 1.
前記冷媒還流通路に、前記気相冷媒を滞留させるリザーバ室と、該リザーバ室の下流であって前記気相冷媒を冷却するコンデンサとが設けられ、
前記制御手段は、前記リザーバ室の内圧と予め設定した目標規定圧とを比較し、該リザーバ室の内圧が該目標規定圧よりも高い場合、前記冷却ファンを高速駆動させ、又前記リザーバ室の内圧が該目標規定圧よりも低い場合、前記コンデンサの下流の前記液相冷媒の温度と前記目標規定温度とを比較し、該液相冷媒の温度が該目標規定温度よりも高い場合、前記冷却ファンを前記低速駆動させる
ことを特徴とする請求項1又は請求項2に記載の沸騰冷却装置。
A reservoir chamber that retains the gas-phase refrigerant and a condenser that cools the gas-phase refrigerant downstream from the reservoir chamber are provided in the refrigerant reflux passage.
The control means compares the internal pressure of the reservoir chamber with a preset target specified pressure, and when the internal pressure of the reservoir chamber is higher than the target specified pressure, drives the cooling fan at a high speed, When the internal pressure is lower than the target specified pressure, the temperature of the liquid phase refrigerant downstream of the condenser is compared with the target specified temperature, and when the temperature of the liquid phase refrigerant is higher than the target specified temperature, the cooling cooling apparatus according to claim 1 or claim 2, characterized in that said low-speed drive of the fan.
JP2009080029A 2009-03-27 2009-03-27 Boiling cooler Expired - Fee Related JP5302068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009080029A JP5302068B2 (en) 2009-03-27 2009-03-27 Boiling cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009080029A JP5302068B2 (en) 2009-03-27 2009-03-27 Boiling cooler

Publications (2)

Publication Number Publication Date
JP2010230276A JP2010230276A (en) 2010-10-14
JP5302068B2 true JP5302068B2 (en) 2013-10-02

Family

ID=43046272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009080029A Expired - Fee Related JP5302068B2 (en) 2009-03-27 2009-03-27 Boiling cooler

Country Status (1)

Country Link
JP (1) JP5302068B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5871723B2 (en) * 2012-06-13 2016-03-01 日立アプライアンス株式会社 Air conditioner and control method thereof
FR3003725B1 (en) * 2013-03-22 2015-04-17 Alstom Transport Sa ELECTRIC POWER CONVERTER FOR A RAILWAY VEHICLE.
FR3083802B1 (en) * 2018-07-13 2021-02-12 Total Marketing Services COOLING AND FIRE-RESISTANT COMPOSITION FOR THE PROPULSION SYSTEM OF AN ELECTRIC OR HYBRID VEHICLE

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5994445A (en) * 1982-11-20 1984-05-31 Mitsubishi Electric Corp Natural circulation type boiling cooler
JPH0354099A (en) * 1989-07-20 1991-03-08 Natl Space Dev Agency Japan<Nasda> Two-phase fluid loop type heat control device
JPH0546089U (en) * 1991-11-21 1993-06-18 三菱電機株式会社 Boiling cooling circuit
JP2006057925A (en) * 2004-08-20 2006-03-02 Kobe Univ Two-phase flow loop type heat transport device

Also Published As

Publication number Publication date
JP2010230276A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
CN102099560B (en) Exhaust heat regeneration system
KR100716706B1 (en) Operating Method of Single or Double Effect Absorption Refrigerator
JP5204965B2 (en) Absorption heat pump
CN104949378A (en) Absorption heat pump
JP2000345835A (en) Internal combustion engine
JP5302068B2 (en) Boiling cooler
JP4027303B2 (en) Rankine cycle equipment
JPS611818A (en) Boiling and cooling apparatus for engine
JPH0545446B2 (en)
JP5802514B2 (en) Heat pump water heater
JP5856042B2 (en) Heat pump water heater
JP5929464B2 (en) Heat pump and heat pump activation method
JP2013076372A (en) Waste heat utilization device
JPS6183410A (en) Coolant-temperature controller in evaporative cooling apparatus of internal-combustion engine
JP2006230096A (en) Apparatus and method for cooling motor
JP2841705B2 (en) Engine flow boiling cooling system
US10240512B2 (en) Rankine cycle system
KR20100019422A (en) A method and system for extending a turndown ratio of an absorption chiller
JP2002340404A (en) Hot water feeding device
JP2014134174A (en) Rankine cycle device for vehicle
CN114094139A (en) Fuel cell system with multi-level thermal management control
JPH0341051Y2 (en)
JPH0324827Y2 (en)
JPS60248944A (en) Hot water supplying device
JP2005164161A (en) Absorption refrigerator and solution level control method for its regenerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5302068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees