JPS5994445A - Natural circulation type boiling cooler - Google Patents

Natural circulation type boiling cooler

Info

Publication number
JPS5994445A
JPS5994445A JP20520982A JP20520982A JPS5994445A JP S5994445 A JPS5994445 A JP S5994445A JP 20520982 A JP20520982 A JP 20520982A JP 20520982 A JP20520982 A JP 20520982A JP S5994445 A JPS5994445 A JP S5994445A
Authority
JP
Japan
Prior art keywords
gas
pipe
liquid
phase flow
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20520982A
Other languages
Japanese (ja)
Inventor
Hiroyuki Masuda
博之 益田
Yasuyuki Iwatani
岩谷 靖之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20520982A priority Critical patent/JPS5994445A/en
Publication of JPS5994445A publication Critical patent/JPS5994445A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/006Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect boiling cooling systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PURPOSE:To obtain a small-sized natural circulation type boiling cooler capable of controlling the cooling temperature of a heat generator by providing a valve in the cooler and allowing coolant to be adjusted in the pressure. CONSTITUTION:When the heat of a heat generator 3 is large, air bubbles 2a is separated by a separator 5 into vapor and liquid phases. The flow of the liquid phase is guided to a tube 103 through a tube 7, the flow of the vapor phase are guide to a tube 104 through a valve 6, cooled liquefied and returned to the tube 103. In this case, the pressure in the separator 5 varies by the adjustment of the valve 6, and when the pressure increases, the boiling point rises, and when the pressure decreases, the boiling point falls. Thus, the temperature of the generator 3 varies to high or low values. The separator 5 suppresses the variation in the large pressure of the vapor and liquid phase flows due to breakage of air bubbles 2a. According to this structure, since only the vapor phase flow is fed to a heat sink section 105, the section 105 can be reduced in size, and the cooler in which the cooling temperature of the generator can be controlled in small size can be obtained.

Description

【発明の詳細な説明】 この発明は自然循環式沸騰冷却装置に関するものであり
、特に沸騰気泡のポンプ駆動力により自然に循環する閉
鎖循環回路系内の液冷却媒体の沸騰二相流れにより、発
熱体を効率よく冷却すると共に、閉鎖循環回路系内の圧
力調整により沸騰圧力を調整して冷却温度を調整可能と
した自然循環式48冷却装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a natural circulation boiling cooling device, and in particular, heat generation is achieved by a boiling two-phase flow of a liquid cooling medium in a closed circulation circuit system that naturally circulates due to the pump driving force of boiling bubbles. This invention relates to a natural circulation type 48 cooling device that efficiently cools the body and is capable of adjusting the cooling temperature by adjusting the boiling pressure by adjusting the pressure within the closed circulation circuit system.

@1図は従来の自然循環式沸騰冷却装置を示す構成図で
ある。第1図において、冷却装置α)は底部管(101
)と、底部管(101)の一端に連通した長い上昇管(
102)と、底部管(101)の他端に連通した短い下
降管(103)と、一端を上昇管(102)の上端に連
通し他端を下降管(1,03)の上端に連通した連通管
(104)とからなる閉鎖循環回路(1a)、並びに連
通管(104)の外周部に取付けられた例えは凝縮器で
ある放熱部(105)がら構成されている。冷却媒体(
2)は例えは水、アンモニア、フロン系等の液状のもの
であり、冷却装置(1)の底4S管(101)と上昇’
t’; (102) (!:下降管(103)と連通管
(104)とに封入されている。発熱体(3)は例えば
分割可能に構成された円筒状のコイルであり、締付装置
(図示せず)等の適当な手段によって、銅の如き熱伝導
率の高い物質からなる加熱部(4)を介して冷却装置(
1)の上昇管(102)の外周部に施されている。
Figure @1 is a configuration diagram showing a conventional natural circulation boiling cooling device. In FIG. 1, the cooling device α) is connected to the bottom pipe (101
) and a long ascending pipe (
102), a short downcomer pipe (103) that communicated with the other end of the bottom pipe (101), and one end that communicated with the upper end of the ascender pipe (102) and the other end that communicated with the upper end of the descender pipe (1,03). It consists of a closed circulation circuit (1a) consisting of a communication pipe (104), and a heat radiation part (105), for example a condenser, attached to the outer periphery of the communication pipe (104). Cooling medium (
2) is a liquid such as water, ammonia, or fluorocarbon, and is connected to the bottom 4S pipe (101) of the cooling device (1) and the rising '
t'; (102) (!: Enclosed in the downcomer pipe (103) and the communication pipe (104). The heating element (3) is, for example, a cylindrical coil configured to be splittable, and the tightening device (not shown) or the like, the cooling device (
1) is applied to the outer periphery of the riser pipe (102).

次に動作について説明する。液状態の冷却媒体(2)は
、底部管(101)と上昇管(102)と下降管(10
3)と連通管(104)とに封入されており、この液状
態の冷却媒体(2)の封入された上昇管(102)に加
熱部(4)が設けられている。加熱部(4)に取付けら
れた冷却対象である発熱体(3)により、加熱部(4)
部分の上昇管(102)内の液状態の冷却媒体(2)は
加熱され、沸l#温度を越えると沸1隣を開始し、沸掩
気泡(2a)を発生する。沸騰気泡(2a)の発生によ
り閉鎖循環回路(1a)中の上昇管(102)と下降管
(103)との間で大きな密Ii差が生じる。
Next, the operation will be explained. The cooling medium (2) in a liquid state flows through a bottom pipe (101), an ascending pipe (102) and a descending pipe (10).
3) and a communication pipe (104), and a heating part (4) is provided in the riser pipe (102) in which the liquid cooling medium (2) is sealed. The heating element (3), which is the object to be cooled, is attached to the heating part (4).
The cooling medium (2) in liquid state in the riser pipe (102) of the section is heated and when it exceeds the boiling temperature it starts boiling and generates boiling bubbles (2a). The generation of boiling bubbles (2a) causes a large density Ii difference between the riser pipe (102) and the downcomer pipe (103) in the closed circulation circuit (1a).

このため冷却媒体(2)は上昇管(102)中では上方
へ、下降’!(103)中では下方への流れを生じ、閉
鎖循環回路(1a)を−巡することになる。従って、沸
騰気泡(2a)を含む液状J塵の冷却媒体(2)の沸騰
二相流れは、連通管(104)に導かれ、放熱部(1’
05)で冷却されると共に沸騰気泡(2a)は消滅する
。沸騰気泡(2a)が消滅して液単相流となった冷却媒
体(2)は、下降管(103)および底部管(101)
を経て再ひ上昇’P、 (102)の加熱部(4)で加
熱される。
Therefore, the cooling medium (2) moves upward and downward in the riser pipe (102)! (103), a downward flow occurs and circulates through the closed circulation circuit (1a). Therefore, the boiling two-phase flow of the liquid J dust cooling medium (2) containing boiling bubbles (2a) is guided to the communication pipe (104), and the heat dissipation part (1'
05), and the boiling bubbles (2a) disappear. The cooling medium (2), in which the boiling bubbles (2a) have disappeared and has become a liquid single-phase flow, flows through the downcomer pipe (103) and the bottom pipe (101).
After that, it rises again 'P' and is heated in the heating section (4) of (102).

従来の装置、は以上のように構成されており、冷却媒体
(2)の沸騰温度は使用する冷却媒体(2)の固有の特
性と、封入圧力とによって一義的に決まり、変更は不可
能である。また発熱体(3)が温度rllJ御を必要と
する場合には、この発熱体(3)の冷却には不適格であ
る。
The conventional device is configured as described above, and the boiling temperature of the cooling medium (2) is uniquely determined by the inherent characteristics of the cooling medium (2) used and the sealing pressure, and cannot be changed. be. Furthermore, if the heating element (3) requires temperature rllJ control, it is not suitable for cooling the heating element (3).

この発明は上記のような従来のものの欠点を除去するた
めになされたものである。以下図面によってこの発明の
一実施例を説明する。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above. An embodiment of the present invention will be described below with reference to the drawings.

第2図はこの発明に係る自然循環式沸騰冷却装置の一実
施例を示す朽′成因である。図中第1図と同一部分には
同一符号を付している。9!S2図において、気液分離
器(5)は上昇管(102)の加熱部(4)の上方に設
けられ、沸騰気泡(2a)を含む冷却媒体(2)の沸騰
二相流れを、気相流れと液相流れとに分離するものであ
る。圧力調整バルブ(6月才気液分離器(5)で分離さ
れた気相流れの圧力を調整して、連通管(104)に導
くものである。液戻り*(7)は気液分珊器(5)で分
離された液体流れを連通管(104)に対して側路させ
て下降管(103)に導くものである。なお冷却媒体(
2)は停止状態において気液分;帯器(5)内の底部の
位置まで入れである。
FIG. 2 shows the cause of decay of an embodiment of the natural circulation boiling cooling device according to the present invention. In the figure, the same parts as in FIG. 1 are given the same reference numerals. 9! In Figure S2, the gas-liquid separator (5) is installed above the heating section (4) of the riser (102), and converts the boiling two-phase flow of the cooling medium (2) containing boiling bubbles (2a) into the gas phase. It separates into a flow and a liquid phase flow. Pressure adjustment valve (This is a valve that adjusts the pressure of the gas phase flow separated by the gas-liquid separator (5) and guides it to the communication pipe (104). The liquid return * (7) is a gas-liquid separator. The liquid flow separated in step (5) is diverted to the communication pipe (104) and guided to the downcomer pipe (103).
2) In the stopped state, gas and liquid are filled up to the bottom of the container (5).

次に動作について説明する。発熱体(3)の加熱による
発熱量が小さいききには冷却媒体(2)は液相のまま上
昇管(102)から気液分離4a(5)に入り液戻り管
(7)から下降管(103)へと循環する。そうして発
熱量が増えると、気泡(2a)を生じた冷flJ rp
t一体(2)の沸抛二相流れは気液分離器(5)に入り
、気相と液相とに分離される。ここで生じる液相流れは
液戻り管(7)を介して下降管(103)に導かれ、/
、C相流れは圧力調整バルブ(6)を介して連通管(1
04’)に導かれ、放熱部(105)で冷却されて凝縮
液となり下降管(103)に戻る。この場合、圧力調整
バルブ(6)の調整によって気相流れの抵抗が変わり、
気液分離N7 (5)内の圧力が変化する。冷却媒体(
2)の沸騰温度は圧力の関数であり、圧力変化により可
能である。すなわち、圧力を高くすると加熱部(4)の
沸点は間くなり、逆に低くすると非点は低くなる。これ
に伴い発熱体(3)の温度は上下する。また気液分離器
(5)はサージタンクの役割も果たし、佛IC気!6 
(2a )の破裂などによる気相流れ、液オ・I」流れ
の大きな圧力変動を抑えることができる。
Next, the operation will be explained. When the amount of heat generated by heating the heating element (3) is small, the cooling medium (2) enters the gas-liquid separator 4a (5) from the rising pipe (102) while remaining in a liquid phase, and flows from the liquid return pipe (7) to the downcomer pipe ( 103). When the calorific value increases, the cold flJ rp that generated air bubbles (2a)
The boiling two-phase stream of the t-solid (2) enters the gas-liquid separator (5) and is separated into a gas phase and a liquid phase. The liquid phase flow generated here is guided to the downcomer pipe (103) via the liquid return pipe (7),
, C-phase flow is transferred to the communication pipe (1) via the pressure regulating valve (6).
04'), is cooled by the heat radiation part (105), becomes a condensate, and returns to the downcomer pipe (103). In this case, the resistance of the gas phase flow changes by adjusting the pressure regulating valve (6),
The pressure inside the gas-liquid separator N7 (5) changes. Cooling medium (
2) The boiling temperature is a function of pressure and is possible due to pressure changes. That is, when the pressure is increased, the boiling point of the heating section (4) becomes lower, and when the pressure is lowered, the astigmatism becomes lower. Along with this, the temperature of the heating element (3) rises and falls. The gas-liquid separator (5) also plays the role of a surge tank, allowing the Buddha IC Qi! 6
It is possible to suppress large pressure fluctuations in the gas phase flow and liquid O/I flow due to the rupture of (2a).

なお、上記実施例では発熱体(3)としてコイルの場合
を示したが、小型大容計電力機器の発熱部、電力用サイ
リスタ素子、あるいは電子制御機器であってもよい。ま
た圧力調整バルブ(6)としてモータ駆動型バルブを用
い、加i6 g (4)の温度をフィードバックさせて
圧力調整パルプ(6)を1i11′4整するようにすれ
ば、自動温度平衡機能をも併せて持たせることができる
In the above embodiments, a coil is used as the heating element (3), but it may also be a heating part of a small-sized, large-capacity electric power device, a power thyristor element, or an electronic control device. In addition, if a motor-driven valve is used as the pressure regulating valve (6) and the temperature of the added i6 g (4) is fed back to adjust the pressure regulating pulp (6) to 111'4, an automatic temperature balancing function can be achieved. You can have them together.

この発明は以上のように構成され、圧力調整パルプ(6
)によって冷却媒体(2)の圧力が調整できるため、N
li R気泡(2a)の発生温度を調整でき、発熱体(
3)の冷却温度を制御することができる。また放熱部(
105)に従来の如く冷却媒体(2)の沸騰二相流れの
全てを送るのではなく、気相流れのみを送るために、冷
却すべき冷却媒体(2)の熱容量は小さくなり、これに
伴って放熱部(105)を小型化することができる。
The present invention is configured as described above, and the pressure regulating pulp (6
) can adjust the pressure of the cooling medium (2), so N
The generation temperature of li R bubbles (2a) can be adjusted, and the heating element (
3) The cooling temperature can be controlled. Also, the heat dissipation part (
105), instead of sending all of the boiling two-phase flow of the cooling medium (2) as in the past, only the gaseous phase flow is sent, the heat capacity of the cooling medium (2) to be cooled becomes smaller, and accordingly, the heat capacity of the cooling medium (2) to be cooled becomes smaller. Therefore, the heat dissipation section (105) can be downsized.

次にこの発明の他の実施例を第3図について説明する。Next, another embodiment of the invention will be described with reference to FIG.

1中(3)は第2図のものと同じである。Item (3) in 1 is the same as in Figure 2.

図において、冷却装置(8)は横長の冷却媒体溜めタン
ク(801)と、このタンク(801)に並列に接続し
た複数(図示の実施例では6本)の底部管(802)と
、各底部管(802)にそれぞれ連通させた同数の上昇
管(so3)と、各上昇%t’ (803)の上端に対
して共通の気液分離器(804)と、前記冷却媒体溜め
タンク(soi)に接続した所望数(図示の実施例では
1本)の下降管(805)と、一端が下降管(805)
の上端に連通され他端が前記気液分離器(’804 )
に接続された同数の連a管(806)と、前記気液分(
1′a(804)で分離された気相流れを連通管(80
6)に導くために連通管(806)に設けた圧力調整パ
ルプ(807)と、前記気液分離k (804)で分離
された液相流れを前記下降管(805)に戻すための所
望数(図示の実施例では1本)の液戻り管(SOS)と
、前記連通lR(s o 6)の外周部に設けた放熱部
(809)とから構成され、これらの管(802)、(
803)、(805)、(806)。
In the figure, the cooling device (8) includes a horizontally elongated cooling medium storage tank (801), a plurality of (six in the illustrated embodiment) bottom pipes (802) connected in parallel to this tank (801), and each bottom pipe (802) connected in parallel to the tank (801). The same number of riser pipes (SO3) communicated with the pipes (802), a common gas-liquid separator (804) for the upper end of each rise %t' (803), and the cooling medium storage tank (SOI). a desired number (one in the illustrated embodiment) of downcomers (805) connected to the downcomer pipe (805) at one end;
The upper end of the gas-liquid separator ('804) is connected to the other end of the gas-liquid separator ('804)
The same number of continuous a-tubes (806) connected to the gas-liquid component (
The gas phase flow separated by 1'a (804) is transferred to the communication pipe (80
6) and a desired number of pressure regulating pulps (807) provided in the communication pipe (806) to lead the liquid phase flow separated by the gas-liquid separation k (804) back to the downcomer pipe (805). It is composed of a liquid return pipe (SOS) (one in the illustrated embodiment) and a heat dissipation part (809) provided on the outer periphery of the communication lR (s o 6), and these pipes (802), (
803), (805), (806).

(808)およびタンク(801)並びに気液分離器(
804)によってタンク(801)と気液分離器(80
4)を介して並列状に配置される複数の閉鎖循環回路(
8a)を形成している。なお冷却媒体は少なくとも、発
熱体(3)の発熱により沸lIi’+g したときに気
液分離器(804)に流入しつるレベルまで、停止状態
で封入しておく。かくして、停止状態において例えば上
述のように気液分泗り器(804)内の底部の位置まで
入れておく。
(808) and tank (801) and gas-liquid separator (
tank (801) and gas-liquid separator (80
4) multiple closed circulation circuits (
8a). Note that the cooling medium is sealed in a stopped state at least up to the level at which it flows into the gas-liquid separator (804) when it boils lIi'+g due to the heat generated by the heating element (3). Thus, in the stopped state, for example, the gas-liquid separator (804) is filled to the bottom position as described above.

前記した第2図の実施例の場合と同様に各発熱体(3)
の発熱時に生じる冷却媒体の落度差により各閉鎖循F9
J回路(8a)内に冷却媒体の循環(9)が生じる。沸
騰の際は気液分離器(804)で気相と液相とに分離さ
れ、液相は気液分離器(804)から液戻り管(808
)を通し、気相は気液分離器(804)から連通管(8
06)に入りここで放熱部(809)によって凝縮され
た後に、それぞれタンク(801)内に戻る。
As in the case of the embodiment shown in FIG. 2 described above, each heating element (3)
Each closed circulation F9
A circulation (9) of the cooling medium takes place within the J circuit (8a). During boiling, the gas-liquid separator (804) separates the gas phase and liquid phase, and the liquid phase is passed from the gas-liquid separator (804) to the liquid return pipe (808).
), and the gas phase is passed from the gas-liquid separator (804) to the communication pipe (804).
06), where it is condensed by the heat radiating section (809), and then returned to the tank (801).

このように閉鎖循環回路(8a)を共通の気液分離器(
804)および共通のタンク(801)を介して並列状
に複数個設けると、閉鎖循環回路(8a)の数だけの発
熱体(3)を同時に冷却でき、またこの各発熱体(3)
の総和に等しい大きな発熱体をも冷却できるものである
In this way, the closed circulation circuit (8a) is connected to a common gas-liquid separator (
804) and a common tank (801), it is possible to simultaneously cool as many heating elements (3) as there are closed circulation circuits (8a).
It is possible to cool a large heating element equal to the sum of .

上記実施例では6本の上昇管(803)に対し連通管(
806)、液戻り管(808)および下降’1(805
)を1本としたものを示したが、これらの本数は自由に
変更選択が可能である。
In the above embodiment, six rising pipes (803) are connected to the communicating pipe (
806), liquid return pipe (808) and descending '1 (805)
) is shown as one, but the number of these can be freely changed and selected.

以上のようにこの発明によれは、発熱体の冷却温度を制
御することができ、かつ放熱部を小型にすることができ
る効果を有する。
As described above, the present invention has the advantage that the cooling temperature of the heating element can be controlled and the heat radiating section can be made smaller.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の自然循環式冷却装置を示す構成1ス、第
2図はこの発明に係る自然循環式冷却装置Wtの一実施
例を示す構成図、第3図はこの発明の他の実加i例を示
す構成図である。 図において、(1)は冷却装置、(10’l)は底部管
、(102)は上昇管、(103)は下降管、(104
)は連通管、(105)は放熱盲人(1a)は閉鎖循環
回路、(2)は冷却媒体、(2a)は沸騰気泡、(3)
は発熱体、(4)は加熱部、(5)は気液分離に収(6
)は圧力i16整バルブ、(7)は液戻り管、(8)は
冷却袋fi’j、(801)は液溜めタンク、(802
は底゛爪管、(803)は上昇管、(804)は気液分
離器、(805)は下降管、(806)は連通管、(8
07)は圧力調整バルブ、(808)は液戻り管、(8
09)は放熱部、(8a)は閉鎖循環回酪である。なお
各図中同一部分には同一負号を付している。
FIG. 1 is a configuration diagram showing a conventional natural circulation type cooling device Wt, FIG. 2 is a configuration diagram showing an embodiment of the natural circulation type cooling device Wt according to the present invention, and FIG. 3 is a configuration diagram showing another embodiment of the present invention. It is a block diagram which shows the i example. In the figure, (1) is the cooling device, (10'l) is the bottom pipe, (102) is the ascending pipe, (103) is the descending pipe, (104)
) is a communication pipe, (105) is a heat radiation blind person (1a) is a closed circulation circuit, (2) is a cooling medium, (2a) is a boiling bubble, (3)
is the heating element, (4) is the heating section, and (5) is the gas-liquid separation unit (6).
) is the pressure i16 regulating valve, (7) is the liquid return pipe, (8) is the cooling bag fi'j, (801) is the liquid reservoir tank, (802
(803) is a rising pipe, (804) is a gas-liquid separator, (805) is a descending pipe, (806) is a communicating pipe, (803) is a rising pipe, (804) is a gas-liquid separator, (805) is a descending pipe, (806) is a communicating pipe,
07) is a pressure adjustment valve, (808) is a liquid return pipe, (8
09) is a heat dissipation part, and (8a) is a closed circulation circulatory system. Note that the same parts in each figure are given the same negative sign.

Claims (1)

【特許請求の範囲】 1、冷却対象である発熱体の加熱によって沸騰気泡を生
じる液状態−の冷却媒体を封入し前記冷却媒体を循環さ
せる閉め循環回路、前記閉鎖循環回路に設けられ前記沸
騰気泡を含む前記冷却媒体の沸騰二相流れを気相流れと
液相流れとに分ける気液分屏器、前記閉鎖循環回路に設
けられ前記気液分離器で分離された前記気相流れを冷却
して液体に戻す放熱部、および前記閉鎖循環回路に設け
られ前記気相流れの圧力を調整する圧力調整バルブを備
え、前記発熱体を前記閉鎖循環回路の外部に近接して設
置したことを特徴とする自然循環式沸騰冷却装置。 2、 閉鎖循環回路は、底部管と、底部管の一端に連通
した長い上昇管と、底部管の他端に連通した短い下降管
と、一端を上昇管の上端に連通し他・瑞を下降管の上端
に連通した連通管とからなり、気液分離器は前記上昇管
の上部に設けられ、前記気液分離器で分離された気相流
れは圧力調整バルブを介して前記連通管に導かれ、前記
気液分離器で分離された液相流れは液戻り管を介して前
記下降管に導かれるように措成された特許請求の範囲第
1項記載の自然循環式沸騰冷却装置。 3、 複数の閉鎖循環回路を、共通の気液分離器と共通
の冷却媒体)−めタンクとを介して並列状に設けた特許
請求の範囲第1項記載の自然循環式沸騰冷却装置。
[Scope of Claims] 1. A closed circulation circuit that encloses a cooling medium in a liquid state that generates boiling bubbles by heating a heating element to be cooled, and circulates the cooling medium; a gas-liquid separator that separates the boiling two-phase flow of the cooling medium into a gas-phase flow and a liquid-phase flow, which is provided in the closed circulation circuit and cools the gas-phase flow separated by the gas-liquid separator; and a pressure adjustment valve provided in the closed circulation circuit to adjust the pressure of the gas phase flow, and the heating element is installed close to the outside of the closed circulation circuit. A natural circulation boiling cooling device. 2. The closed circulation circuit consists of a bottom pipe, a long rising pipe that communicates with one end of the bottom pipe, a short descending pipe that communicates with the other end of the bottom pipe, and one end that communicates with the top end of the rising pipe and the other ends descending. A gas-liquid separator is provided at the top of the riser pipe, and the gas phase flow separated by the gas-liquid separator is guided to the communication pipe via a pressure regulating valve. 2. The natural circulation boiling cooling device according to claim 1, wherein the liquid phase flow separated by said gas-liquid separator is guided to said downcomer pipe via a liquid return pipe. 3. The natural circulation boiling cooling device according to claim 1, wherein a plurality of closed circulation circuits are provided in parallel via a common gas-liquid separator and a common cooling medium tank.
JP20520982A 1982-11-20 1982-11-20 Natural circulation type boiling cooler Pending JPS5994445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20520982A JPS5994445A (en) 1982-11-20 1982-11-20 Natural circulation type boiling cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20520982A JPS5994445A (en) 1982-11-20 1982-11-20 Natural circulation type boiling cooler

Publications (1)

Publication Number Publication Date
JPS5994445A true JPS5994445A (en) 1984-05-31

Family

ID=16503202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20520982A Pending JPS5994445A (en) 1982-11-20 1982-11-20 Natural circulation type boiling cooler

Country Status (1)

Country Link
JP (1) JPS5994445A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6564861B1 (en) * 1999-09-03 2003-05-20 Fujitsu Limited Cooling unit
WO2005055319A3 (en) * 2003-12-08 2005-09-09 Noise Limit Aps A cooling system with a bubble pump
EP2119994A1 (en) * 2008-05-14 2009-11-18 Abb Research Ltd. Evaporator for a cooling circuit
JP2010230276A (en) * 2009-03-27 2010-10-14 Fuji Heavy Ind Ltd Ebullient cooling device
FR2949912A1 (en) * 2009-09-08 2011-03-11 Thales Sa THERMAL CONTROL SYSTEM FOR EQUIPMENT
JP2016164478A (en) * 2015-03-06 2016-09-08 株式会社東芝 Cooling device
WO2023018590A1 (en) * 2021-08-09 2023-02-16 Aavid Thermalloy, Llc Method and apparatus for thermosiphon device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7337829B2 (en) 1999-09-03 2008-03-04 Fujitsu Limited Cooling unit
US7828047B2 (en) 1999-09-03 2010-11-09 Fujitsu Limited Cooling unit
US6564861B1 (en) * 1999-09-03 2003-05-20 Fujitsu Limited Cooling unit
WO2005055319A3 (en) * 2003-12-08 2005-09-09 Noise Limit Aps A cooling system with a bubble pump
US8134833B2 (en) 2008-05-14 2012-03-13 Abb Research Ltd Evaporator for a cooling circuit
EP2119994A1 (en) * 2008-05-14 2009-11-18 Abb Research Ltd. Evaporator for a cooling circuit
JP2010230276A (en) * 2009-03-27 2010-10-14 Fuji Heavy Ind Ltd Ebullient cooling device
FR2949912A1 (en) * 2009-09-08 2011-03-11 Thales Sa THERMAL CONTROL SYSTEM FOR EQUIPMENT
WO2011029778A1 (en) * 2009-09-08 2011-03-17 Thales System for thermally controlling an apparatus
US9007768B2 (en) 2009-09-08 2015-04-14 Thales System for thermally controlling an apparatus
JP2016164478A (en) * 2015-03-06 2016-09-08 株式会社東芝 Cooling device
WO2023018590A1 (en) * 2021-08-09 2023-02-16 Aavid Thermalloy, Llc Method and apparatus for thermosiphon device
US11650015B2 (en) 2021-08-09 2023-05-16 Aavid Thermalloy, Llc Method and apparatus for thermosiphon device

Similar Documents

Publication Publication Date Title
US3989102A (en) Cooling liquid de-gassing system
US4047561A (en) Cooling liquid de-gassing system
JPS5929985A (en) Constant pressure type boiling and cooling device
US5351488A (en) Solar energy generator
JPS5994445A (en) Natural circulation type boiling cooler
US6303006B1 (en) System and method for distilling liquid
JP2009216708A (en) Method and device for separating and removing neutron absorber from coolant in cooling circuit
US4018583A (en) Refrigeration heat recovery system
JPS6238393A (en) Emergency core cooling method and device
US2399922A (en) Refrigeration
US2027057A (en) Refrigeration
USRE30252E (en) High temperature heat recovery in refrigeration
US2290506A (en) Refrigeration
US4195488A (en) Cooling system
US2795940A (en) Absorption refrigeration
US3279202A (en) Concentration control for absorption refrigeration systems
US1455701A (en) Refrigerating apparatus of the absorption type
US3077443A (en) Method of operating an evaporatively cooled nuclear reactor
US3842618A (en) Absorption refrigeration apparatus of the inert gas type
US2973715A (en) Electrical generating systems
US2814468A (en) Air conditioning
US2494978A (en) Refrigeration
JPS5938564A (en) Refrigerator
US1950148A (en) Control of fluid circulation
JPH07318191A (en) Absorption type heat pump equipment