JP5300221B2 - Hollow activated carbon and method for producing the same - Google Patents

Hollow activated carbon and method for producing the same Download PDF

Info

Publication number
JP5300221B2
JP5300221B2 JP2007190660A JP2007190660A JP5300221B2 JP 5300221 B2 JP5300221 B2 JP 5300221B2 JP 2007190660 A JP2007190660 A JP 2007190660A JP 2007190660 A JP2007190660 A JP 2007190660A JP 5300221 B2 JP5300221 B2 JP 5300221B2
Authority
JP
Japan
Prior art keywords
activated carbon
raw material
molding
hollow
hollow activated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007190660A
Other languages
Japanese (ja)
Other versions
JP2009023889A (en
Inventor
正明 濱口
Original Assignee
株式会社一芯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社一芯 filed Critical 株式会社一芯
Priority to JP2007190660A priority Critical patent/JP5300221B2/en
Publication of JP2009023889A publication Critical patent/JP2009023889A/en
Application granted granted Critical
Publication of JP5300221B2 publication Critical patent/JP5300221B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide activated carbon which has a high adsorption efficiency, a small pressure loss and high strength and particularly is strong enough to be usable after repeated regeneration. <P>SOLUTION: A molding material having through-holes inside is obtained by extrusion-molding powder materials of organic substances containing lignin such as wood, bamboo, bean-curd waste, coffee lees, compost and paper sludge or by molding machine-processed wood chip materials of such as Japanese cedar, Japanese cypress, lauan, gum tree, bamboo, ramin and Paulownia tomentosa (S1).The molding material is carbonized and dry-distilled by placing it in a heating oven and heating it in an oxygen-free state (S2). After the carbonization and dry-distillation, the temperature is further elevated and water is fed into the heating oven for activation (S3). <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、吸着効率の高い新規な中空活性炭の製造方法等に関するものである。   The present invention relates to a method for producing a novel hollow activated carbon having high adsorption efficiency.

活性炭は脱臭装置等に充填されて使用され、大型の脱臭処理施設から家庭用の小型の脱臭機器に至るまで、臭気の除去という用途に広く利用されている。   Activated carbon is used by being filled in a deodorizing apparatus or the like, and is widely used for removing odors from large deodorizing treatment facilities to small household deodorizing equipment.

活性炭はペレット状とよばれる略円柱状のものが一般的であるが、内部を軸方向にくり抜いて貫通孔を設けたものや、内部に十字状のリブが構成された中空状の構造が知られている(例えば、特許文献1、2)。これらの構造は圧力損失を低減することができるため、脱臭風量を大きくすることができる。   Activated carbon is generally in the shape of a column called pellets, but it is known to have a hollow structure with a hollow formed by hollowing out the inside in the axial direction and a cross-shaped rib inside. (For example, Patent Documents 1 and 2). Since these structures can reduce pressure loss, the amount of deodorizing air can be increased.

一般に、圧力損失の低い活性炭を製造するには、ペレット状活性炭の場合では、外径を太くする方法が考えられる。しかし、外径を太くすると、賦活ガスが内部に到達しにくいため、賦活時間が長くなる結果全体の大きさが小さくなる。これを防ぐために賦活時間を短くすると結果吸着効率が低下する。そこで、吸着性能を上げるために、賦活ガスを内部まで到達させるために、内部を中空状にするという発想が生まれるのである。   In general, in order to produce activated carbon with low pressure loss, in the case of pellet-like activated carbon, a method of increasing the outer diameter can be considered. However, when the outer diameter is increased, the activation gas is difficult to reach the inside, so that the activation time becomes longer and the overall size becomes smaller. If the activation time is shortened to prevent this, the resulting adsorption efficiency decreases. Then, in order to raise adsorption performance, in order to make activation gas reach the inside, the idea of making the inside hollow is born.

ペレット状活性炭は、現在市販されているもので最大7mmφの直径を有し、長さが5mm〜30mm程度のペレット状であるが、内部を軸方向にくり抜いて中空状にすると、賦活工程において賦活ガスが内部に到達しやすいため、賦活時間を短縮して吸着性能を高めることができる。
特開2002−65824号公報 特開2005−52785号公報
Pelletized activated carbon is currently commercially available and has a maximum diameter of 7 mmφ and a pellet shape with a length of about 5 mm to 30 mm. Since the gas easily reaches the inside, the activation time can be shortened to enhance the adsorption performance.
JP 2002-65824 A JP 2005-52785 A

一般に、活性炭の性能指標のうち代表的なものは、吸着効率と圧力損失と強度がある。本発明において、吸着効率とは、特定の有機物質(例えばベンゼン)の吸着量で評価される指標を意味する。圧力損失とは、ガス線速度LV(Line Verosity)に対する圧力損失ΔPで表されるもので、脱臭風量を評価するための指標を意味する。圧力損失が高いことは、同じ能力の脱臭ファンを用いた場合には風量が小さくなることを意味する。強度とは、活性炭自体の物理的な破壊強度、すなわち壊れにくさを表す指標を意味する。   In general, typical performance indexes of activated carbon include adsorption efficiency, pressure loss, and strength. In the present invention, the adsorption efficiency means an index evaluated by the amount of adsorption of a specific organic substance (for example, benzene). The pressure loss is expressed by the pressure loss ΔP with respect to the gas linear velocity LV (Line Verosity), and means an index for evaluating the amount of deodorized air. A high pressure loss means that the air volume is reduced when a deodorizing fan having the same capacity is used. The strength means an index representing the physical breaking strength of activated carbon itself, that is, the resistance to breaking.

従来の中空活性炭はいずれも活性炭粉末をバインダーで固めることによって製造されるものであり、圧力損失を低減することができる反面、強度が小さくもろかった。そのため一回だけしか使用できず、再生して繰り返し何度も使用することができなかった。   All of the conventional hollow activated carbons are produced by solidifying activated carbon powder with a binder, and the pressure loss can be reduced, but the strength is small and brittle. Therefore, it could be used only once, and it could not be replayed and used repeatedly.

本発明は、吸着効率が高く、圧力損失が小さく、かつ、強度の大きい、理想的な活性炭を提供することを目的としてなされたものであり、特に、従来の吸着量及び圧力損失を維持しながら、繰り返し再生して使用可能な程度までその強度を十分に大きくすることを主たる技術的課題とするものである。   The present invention has been made for the purpose of providing an ideal activated carbon having high adsorption efficiency, low pressure loss, and high strength. In particular, while maintaining the conventional adsorption amount and pressure loss. Therefore, the main technical problem is to sufficiently increase the strength to the extent that it can be repeatedly reproduced and used.

本発明に係る中空活性炭は、従来のように活性炭粉末をバインダーによって「固める」のではなく、予め原料の段階から中空状に成型し、得られた成型材を後に活性炭化するという方法によって作られる。本明細書では、内部に中空部分が形成された構造を備えた活性炭を総称して「中空活性炭」というが、後述するようにこれには多くの実施形態が考えられる。   The hollow activated carbon according to the present invention is made by a method in which activated carbon powder is not solidified with a binder as in the prior art, but is formed into a hollow shape from the raw material stage in advance, and the obtained molding material is activated carbonized later. . In this specification, activated carbon having a structure in which a hollow portion is formed inside is collectively referred to as “hollow activated carbon”, but many embodiments can be considered as described later.

本発明に係る中空活性炭の製造工程において最も困難な点は、成型材を得るところと、得られた成型材を活性炭化する熱処理工程にあるが、試行錯誤によって最終的には歩留まりも高く、かつ十分に実用レベルの性能が得られた。   The most difficult point in the manufacturing process of the hollow activated carbon according to the present invention lies in obtaining the molding material and in the heat treatment step of active carbonizing the obtained molding material, but ultimately the yield is high by trial and error, and A sufficiently practical level of performance was obtained.

本発明に係る第1の方法は、出発材料として粉末原料を使用し、押し出し成型することによって中空状に成型し、その後炭化及び乾留し、賦活する。この第1の方法における粉末原料は、具体的には、オガ粉、竹粉、オカラ、コーヒーかす、堆肥、製紙スラッジなどが含まれる。また、完成品の強度をより大きくするために、必要により、粉末リグニンを加えてもよい。   In the first method according to the present invention, a powder raw material is used as a starting material, it is molded into a hollow shape by extrusion molding, and then carbonized and dry-distilled for activation. Specifically, the powder raw material in the first method includes oga powder, bamboo powder, okara, coffee grounds, compost, papermaking sludge, and the like. Further, in order to increase the strength of the finished product, powder lignin may be added as necessary.

本発明に係る第2の方法は、出発材料として木片原料を使用し、機械加工によって中空状に成型し、その後炭化及び乾留し、賦活する。この第2の方法における木片原料は、炭化・乾留及び賦活工程によって活性炭となりうる原料全般を指す広義に解すべきものであり、例えば、杉、檜、ラワン材、ゴムの木、竹、ラミン、桐など、比較的空隙率の大きい木質が好ましい。すでに活性炭化されているものは「木片原料」には該当しない。   The second method according to the present invention uses a wood chip raw material as a starting material, is formed into a hollow shape by machining, and then carbonized and dry-distilled to activate. The wood chip raw material in this second method should be broadly understood to indicate all raw materials that can be activated carbon by carbonization, carbonization and activation processes, for example, cedar, firewood, lauan, rubber wood, bamboo, lamin, paulownia A wood having a relatively large porosity is preferable. Those that have already been activated carbonized do not fall under “wood chip material”.

また、第1及び第2の方法における、炭化乾留及び賦活工程も本発明の特徴部分である。具体的には、加熱炉内に成型原料を設置し、酸素を遮断した状態で昇温し、この状態を一定時間保持する工程を段階的に繰り返すことによって、水素及び酸素原子を脱離する炭化・乾留工程と、その後更に加熱すると共に水を注入することで水性化反応を生ぜしめる賦活工程とを連続的にかつ同一の反応炉内で行う。従来は炭化・乾留工程と、賦活工程とが別々の炉で実施されることが通常であったが、このように本発明では、これらの工程を同一の反応炉内で連続的に行うことができる。   In addition, carbonization dry distillation and activation steps in the first and second methods are also characteristic features of the present invention. Specifically, carbonization that desorbs hydrogen and oxygen atoms is performed by stepwise repeating a process of placing a molding raw material in a heating furnace, heating in a state where oxygen is shut off, and maintaining this state for a certain period of time. -A carbonization process and the activation process which produces a water-ized reaction by injecting water further after that are performed continuously and in the same reactor. Conventionally, the carbonization / dry distillation process and the activation process are usually performed in separate furnaces. In the present invention, these processes can be continuously performed in the same reactor. it can.

また、本発明に係る製造方法によって得られた活性炭は成型原料の段階で貫通孔を設けるため、複数の貫通孔を設けたり、ハート型など複雑な形状に加工することも容易である。   Moreover, since the activated carbon obtained by the manufacturing method according to the present invention is provided with through holes at the stage of the forming raw material, it is easy to provide a plurality of through holes or to process a complicated shape such as a heart shape.

本発明に係る中空活性炭の製造方法によると、高い吸着性能と低い圧力損失を維持しながら従来の中空活性炭よりも強度を大きくすることができ、繰り返し再生して使用することが可能な中空活性炭が得られる。   According to the method for producing a hollow activated carbon according to the present invention, there is provided a hollow activated carbon that can have a higher strength than a conventional hollow activated carbon while maintaining high adsorption performance and low pressure loss, and can be repeatedly regenerated and used. can get.

図1は、本発明に係る中空活性炭の製造方法を実施するための工程図を示す図である。各ステップの詳細は後述するが、ここでは全体的な流れについて説明する。本発明に係る方法は、予め原料の段階から中空状に成型し、得られた成型材を後に活性炭化するという方法によって作られることが特徴である。   FIG. 1 is a diagram showing a process chart for carrying out the method for producing hollow activated carbon according to the present invention. Although details of each step will be described later, an overall flow will be described here. The method according to the present invention is characterized in that it is produced by a method in which a hollow material is molded in advance from the raw material stage, and the obtained molding material is activated carbonized later.

ステップS1は、成型工程である。この工程を行う目的は、本発明における出発材料として用いる「活性炭化される前の原料」を予め中空状に成型するためである。出発材料にどのような原料を用いるかによって、大きく2つの方法に分けられる。すなわち、
(1)粉末原料を用いる場合
(2)木片原料を用いる場合
の2つである。なお、出発材料は異なっても成型工程後の原料(本明細書では、これを「成型原料」という。)の形状はほぼ同じになる。但し、大きさは異なっていてもよい。
Step S1 is a molding process. The purpose of performing this step is to previously mold the “raw material before being activated carbonized” used as a starting material in the present invention into a hollow shape. Depending on what raw material is used for the starting material, there are roughly two methods. That is,
(1) When using powder raw material (2) When using wood chip raw material. In addition, even if the starting materials are different, the shape of the raw material after the molding step (this is referred to as “molding raw material” in this specification) is substantially the same. However, the size may be different.

(1)の粉末原料を用いる場合は、オガ粉、竹粉、オカラ、コーヒーかす、堆肥、製紙スラッジなどの粉末原料を中空状に押し出し成型する工程がこれにあたる。押し出し成型の温度条件は常温から200℃までの温度範囲で行うことが好ましい。(2)の木片原料の場合は、杉や檜などの木材をあらかじめ中空状に金型などを用いて機械加工して成型する工程がこれにあたる。   When the powder raw material of (1) is used, this is a process of extruding and molding powder raw materials such as oga powder, bamboo powder, okara, coffee grounds, compost, and paper sludge into a hollow shape. The temperature condition of the extrusion molding is preferably performed in a temperature range from room temperature to 200 ° C. (2) In the case of a wood chip material, this is a process in which wood such as cedar and straw is machined in advance into a hollow shape using a mold or the like.

図2(a)〜(c)は、ステップS1の成型工程後に得られる成型原料1の形状の一例を示している。図2(a)は成型工程後の斜視図であり(b)は正面図、(c)は断面図である。これらの図より、成型原料1は、全体が略円柱状(ペレット状)であって直径D1の底面に軸方向に沿って直径D2の貫通孔2が形成されていることが分かる。柱の長さをLとすると、Lは概ね5mm〜30mm程度である。従来の製法と異なり、この段階ではまだ活性炭化されていない。   2A to 2C show an example of the shape of the forming raw material 1 obtained after the forming step of Step S1. 2A is a perspective view after the molding step, FIG. 2B is a front view, and FIG. 2C is a cross-sectional view. From these figures, it can be seen that the molding raw material 1 has a substantially cylindrical shape (pellet shape) as a whole, and a through hole 2 having a diameter D2 is formed along the axial direction on the bottom surface having a diameter D1. When the length of the column is L, L is approximately 5 mm to 30 mm. Unlike the conventional manufacturing method, it is not yet activated carbonized at this stage.

なお、製造のしやすさ等の理由からペレット状が作りやすいが、金型などを工夫すれば角柱など他の形状も可能である。そのため、後述の実施例では図3に示すような角柱に貫通孔を設けた後活性炭化した中空活性炭を一例試作し、その性能評価を行っている。   In addition, although it is easy to make a pellet shape for reasons such as ease of manufacturing, other shapes such as a prism can be formed by devising a mold or the like. Therefore, in the examples described later, a hollow activated carbon activated by carbonization after providing a through hole in a prism as shown in FIG. 3 is prototyped and its performance is evaluated.

図3(a)〜(c)は、図2のペレット状を角柱状に変更した場合の例を示している。図3(a)は成型工程後の斜視図であり(b)は正面図、(c)は断面図である。これらの図より、成型原料3は、全体が略角柱状であって一辺Sの正方形の底面に軸方向に沿って直径D2の貫通孔4が形成されている。柱の長さをLとすると、Lは概ね5mm〜30mm程度である。従来の製法と異なり、この段階ではまだ活性炭化されていない。   3A to 3C show an example in which the pellet shape of FIG. 2 is changed to a prism shape. 3A is a perspective view after the molding step, FIG. 3B is a front view, and FIG. 3C is a cross-sectional view. From these figures, the molding raw material 3 has a substantially prismatic shape as a whole, and a through hole 4 having a diameter D2 is formed along the axial direction on the square bottom surface of one side S. When the length of the column is L, L is approximately 5 mm to 30 mm. Unlike the conventional manufacturing method, it is not yet activated carbonized at this stage.

ステップS2は、炭化・乾留工程である。この工程を行う目的は、ステップS1で得られた成型原料を活性炭化するためにまず原料をグルコース分解させるためである。これによって水素(H)及び酸素(O)その他の不純物を脱離して、緻密な炭素構造が得られる。炭化と乾留は厳密には異なる意味を持つが、共に酸素(O)を遮断した状態で一定時間毎に昇温する工程である点で共通するので、本明細書では両者を区別せず、「炭化・乾留工程」と表記する。 Step S2 is a carbonization / dry distillation process. The purpose of performing this process is to first subject the raw material to glucose decomposition in order to carbonize the molding raw material obtained in step S1. Thereby, hydrogen (H), oxygen (O) and other impurities are eliminated, and a dense carbon structure is obtained. Strictly speaking, carbonization and dry distillation have different meanings, but both are common in that the temperature is raised every certain time in a state where oxygen (O 2 ) is shut off, so in this specification, the two are not distinguished. It is expressed as “carbonization / dry distillation process”.

ステップS3は、賦活工程である。この工程を行う目的は、ステップS2で炭化・乾留された成型原料に水(HO)を注入することで水性化反応を行うためである。これによって緻密な炭素構造から二酸化炭素(CO)の形で炭素が離脱し、多孔質の炭素構造が得られる。この工程は一般に賦活工程と呼ばれている。 Step S3 is an activation process. The purpose of performing this step is to perform an aqueous reaction by injecting water (H 2 O) into the molding raw material carbonized and carbonized in step S2. As a result, carbon is released from the dense carbon structure in the form of carbon dioxide (CO 2 ), and a porous carbon structure is obtained. This process is generally called an activation process.

ステップS4は、篩い分け工程である。この工程を行う目的は、ステップ3で得られた原料を大きさや品質などの基準で篩い分けするためである。   Step S4 is a sieving step. The purpose of performing this process is to screen the raw material obtained in step 3 based on criteria such as size and quality.

ちなみに、木片原料を出発材料とする従来の製造方法では、出発材料となる原料(例えば、ヤシガラや石炭など)を粉砕した後、篩い分けし、炭化・乾留した後、再度篩い分けをし、その後、賦活する。最後にもう一度篩い分けを行って製品が完成する。このように、工程が多くしかも篩い分け作業が3回もあるので、最終製品は原料の1/9乃至1/10の量となることが通常であった。これに対し、本発明では、篩い分け工程はたった1回でよく、歩留まりが極めて高い。   By the way, in the conventional manufacturing method using wood chip raw material as a starting material, the starting material (for example, coconut husk and coal) is pulverized, sieved, carbonized and carbonized, and then sieved again. , Activate. Finally, another sieving is performed to complete the product. Thus, since there are many steps and the sieving operation is performed three times, the final product is usually 1/9 to 1/10 of the raw material. On the other hand, in the present invention, the sieving step is only required once, and the yield is extremely high.

本発明では、ステップS2及びステップS3の間に篩い分け工程が不要となるため、いずれも同一の反応炉で連続的に行うことができる。これは工程を大幅に簡略化させることに大きく寄与する。   In the present invention, since a sieving step is not required between step S2 and step S3, both can be performed continuously in the same reactor. This greatly contributes to greatly simplifying the process.

次に、具体的なヒートカーブについて説明する。このヒートカーブは後述する実施例で説明するサンプルを製造した際に用いたものである。   Next, a specific heat curve will be described. This heat curve is used when a sample described in an example described later is manufactured.

図4は、ステップS2とステップS3の工程における加熱炉内の温度の時間経過を示すヒートカーブの一例である。横軸は経過時間、縦軸は炉内温度をそれぞれ示している。但し、厳密なものではなく、実際には温度制御装置の性能に依存する設定値とのズレは許容するものとする。   FIG. 4 is an example of a heat curve showing the passage of time of the temperature in the heating furnace in the steps S2 and S3. The horizontal axis represents the elapsed time, and the vertical axis represents the furnace temperature. However, this is not a strict one, and in fact, a deviation from the set value depending on the performance of the temperature control device is allowed.

この図に示すように、酸素(O)を遮断した状態で、約3時間かけて300℃まで昇温し、次に、300℃を3時間維持する。更に、1時間かけて400℃まで昇温し、400℃を3時間維持する。更に、2時間かけて600℃まで昇温し、3時間維持する。ここまでの工程が、ステップS2で説明した炭化・乾留工程である。 As shown in this figure, with the oxygen (O 2 ) shut off, the temperature is raised to 300 ° C. over about 3 hours, and then 300 ° C. is maintained for 3 hours. Further, the temperature is raised to 400 ° C. over 1 hour and maintained at 400 ° C. for 3 hours. Further, the temperature is raised to 600 ° C. over 2 hours and maintained for 3 hours. The process so far is the carbonization / dry distillation process described in step S2.

従来はここで一旦篩い分けのために降温していたが、本発明ではそのまま温度を上げて賦活工程に入る。炭化・乾留工程の後、更に3時間かけて800℃まで昇温し、800℃に達した後、約28時間保温する。賦活工程中は一定間隔で水(HO)を注入する。これによって水性化反応が起こり、多孔質構造が得られる。 Conventionally, the temperature is once lowered for sieving here, but in the present invention, the temperature is increased as it is and the activation process is started. After the carbonization / dry distillation step, the temperature is further raised to 800 ° C. over 3 hours, and after reaching 800 ° C., the temperature is kept for about 28 hours. Water (H 2 O) is injected at regular intervals during the activation process. As a result, an aqueous reaction occurs, and a porous structure is obtained.

なお、ヒートカーブはこれ以外のパターンも当然考えられるので、図4は本発明を実施する一例を示したものにすぎない。   Since the heat curve may naturally have other patterns, FIG. 4 is merely an example for carrying out the present invention.

(実施例)
表1は、製造条件の異なる種々の活性炭サンプルについて、仕上がり形状、ベンゼン吸着量、強度、圧力損失を調べた結果を示している。なお、形状は以下のとおりとした。
本発明の実施例として、
・ペレット状の活性炭に貫通孔を設けたもの(ペレット状中空炭)
・角柱状の活性炭に貫通孔を設けたもの(角状中空炭)
比較例として、
・ペレット状の活性炭(ペレット炭)
・ペレット炭に貫通孔を設けその内部に十字状のリブが形成されたもの(リブ付中空炭)
・薄片状のもの(破砕炭)
(Example)
Table 1 shows the results of examining the finished shape, benzene adsorption amount, strength, and pressure loss for various activated carbon samples having different production conditions. The shape was as follows.
As an example of the present invention,
・ Pellet-shaped activated carbon with through-holes (pellet-shaped hollow charcoal)
・ A prismatic activated carbon with through holes (square hollow charcoal)
As a comparative example,
・ Pellets in activated carbon (pellet charcoal)
・ Pellet charcoal with through-holes with cross-shaped ribs formed inside (ribboned hollow charcoal)
・ Flame (crushed charcoal)

表1に示す各サンプルA〜Lの詳細は、以下の通りである。
[粉末原料](本発明)
A オガ粉100%、成型原料の寸法が、底面外径D1=25mmφ、底面内径=10mmφ、長さL=25mmのペレット状中空炭
B オガ粉:竹粉=4:1(重量比)、成型原料の寸法が、底面外径D1=25mmφ、底面内径=10mmφ、長さL=25mmのペレット状中空炭
C オガ粉100%、成型原料の寸法が、底面外径D1=20mmφ、底面内径=8mmφ、長さL=20mmのペレット状中空炭
D オガ粉:竹粉=1:1(重量比)、成型原料の寸法が、底面外径D1=15mmφ、底面内径=6mmφ、長さL=15mmのペレット状中空炭
Details of the samples A to L shown in Table 1 are as follows.
[Powder material] (Invention)
A Pellet hollow charcoal with 100% sawdust, bottom outer diameter D1 = 25mmφ, bottom inner diameter = 10mmφ, length L = 25mm B Butter: bamboo powder = 4: 1 (weight ratio), molding The raw material dimensions are the bottom outer diameter D1 = 25mmφ, the bottom inner diameter = 10mmφ, the length L = 25mm pellet-shaped hollow charcoal C 100% powder, the molding raw material dimensions are the bottom outer diameter D1 = 20mmφ, the bottom inner diameter = 8mmφ , Length L = 20 mm pellet-shaped hollow charcoal D Oga powder: bamboo powder = 1: 1 (weight ratio), the dimensions of the molding raw material are bottom outer diameter D1 = 15 mmφ, bottom inner diameter = 6 mmφ, length L = 15 mm Pelleted hollow charcoal

[木片原料](本発明)
E 杉材を金型により加工し、成型原料の寸法が、底面外径D1=25mmφ、底面内径=10mmφ、長さL=25mmのペレット状中空炭
F ラワン材を金型により加工し、成型原料の寸法が、底面外径D1=12mmφ、底面内径=4mmφ、長さL=12mmのペレット状中空炭
G 白樺材を金型により加工し、底面が25mm×25mmの角柱状で底面内径=10mmφの貫通孔を設けた長さL=16mmの角状中空炭
[Raw material] (Invention)
E Cedar wood is processed with a mold, and the molding raw material has a pellet-shaped hollow charcoal with a bottom outer diameter D1 = 25 mmφ, a bottom inner diameter = 10 mmφ, and a length L = 25 mm. Is a pellet-shaped hollow charcoal G having a bottom outer diameter D1 = 12 mmφ, a bottom inner diameter = 4 mmφ, and a length L = 12 mm. A white birch material is processed with a mold, and the bottom is a 25 mm × 25 mm prismatic shape with a bottom inner diameter = 10 mmφ. Square hollow charcoal with a length L = 16 mm provided with through holes

上記サンプルのうち、サンプルA〜Fの形状は概ね図2に示すペレット状中空炭、サンプルGの形状は概ね図3に示す角状中空炭であり、いずれも内径D2の貫通孔が設けられている。   Among the above samples, the shapes of samples A to F are generally pelleted hollow charcoal as shown in FIG. 2, and the shape of sample G is generally rectangular hollow charcoal as shown in FIG. 3, each having a through hole having an inner diameter D2. Yes.

[比較例](従来例)
以下の比較例H〜Lはいずれも従来の製法で製造したものである。
H ヤシガラ活性炭を約4mm〜5mmの薄片状にしたヤシガラ破砕炭
I 仕上がり形状が約4mmφの石炭ペレット炭、貫通孔なし
J 仕上がり形状が約7mmφの石炭ペレット炭、貫通孔なし
K ヤシガラ活性炭粉末の粉末をバインダーで固めて造粒し、貫通孔を設けたペレット状中空炭(いわゆる「マカロニ炭(製品名及び登録商標)」)
L ヤシガラ活性炭粉末の粉末をバインダーで固めて造粒し、貫通孔と十字状のリブを設けたリブ付中空炭(いわゆる「マカロニ十字炭(製品名及び登録商標)」)
[Comparative example] (Conventional example)
The following Comparative Examples H to L are all manufactured by a conventional manufacturing method.
H Coconut husk activated charcoal made from coconut husk activated carbon in flakes of about 4 mm to 5 mm I Finished coal pellet charcoal with about 4 mmφ, no through hole J Finished charcoal pellet charcoal with about 7 mmφ, no through hole K Powder of coconut gallium activated carbon powder Pelletized hollow charcoal that has been granulated by solidifying with a binder (so-called “macaroni charcoal (product name and registered trademark)”)
L Coconut charcoal powder is solidified with a binder, granulated, and ribbed hollow charcoal (so-called “macaroni cross charcoal (product name and registered trademark)”) provided with through-holes and cross-shaped ribs

(結果)

Figure 0005300221
(result)
Figure 0005300221

なお、表1における「形状」は、ペレット状中空炭、角状中空炭、ペレット炭、リブ付中空炭、破砕炭の概略形状を示している。また、「仕上がり形状」とは、本発明においては成型原料を活性炭化した後の最終形状の寸法を、比較例においては活性炭化された最終製品を篩い分けして得られた形状の寸法を指す。また、ベンゼン吸着量は吸着性能を表す指標であり、数値が大きいほど吸着性能が高いことを示す。また、強度とは、木屋式硬度計で測定した測定値であり、数値が大きいほど強度が大きいことを示す。   In addition, "shape" in Table 1 has shown the schematic shape of pellet-shaped hollow charcoal, square hollow charcoal, pellet charcoal, hollow charcoal with a rib, and crushed charcoal. In addition, the “finished shape” in the present invention refers to the size of the final shape after the active carbonization of the molding raw material, and in the comparative example, refers to the size of the shape obtained by sieving the activated carbonized final product. . Further, the benzene adsorption amount is an index representing the adsorption performance, and the larger the value, the higher the adsorption performance. Further, the strength is a measured value measured with a Kiyama-type hardness meter, and indicates that the larger the numerical value, the higher the strength.

図5は、種々の活性炭の圧力損失を調べたグラフを示している。サンプルは表1のA、D、H、I、J、Lとした。このグラフは両対数で表示され、横軸はガス線速度LV[m/s]、縦軸は圧力損失ΔP[kPa:HO/m・Bed]を表している。表2は、図5から読み取ったガス線速度LVの大きさが、0.1、0.3及び1[m/s]の3点における圧力損失の値を示している。 FIG. 5 is a graph showing the pressure loss of various activated carbons. The samples were A, D, H, I, J, and L in Table 1. This graph is displayed as a logarithm, the horizontal axis represents the gas linear velocity LV [m / s], and the vertical axis represents the pressure loss ΔP [kPa: H 2 O / m · Bed]. Table 2 shows pressure loss values at three points where the magnitude of the gas linear velocity LV read from FIG. 5 is 0.1, 0.3, and 1 [m / s].

Figure 0005300221
Figure 0005300221

(評価)
−吸着性能について−
吸着性能についてはラワン材(サンプルF)が良好であり、白樺(サンプルG)が若干低かった。また、粉末原料についていえば、竹粉を一定量加えるとやや吸着量が増加する傾向が見られたが、全体的にそれほど顕著な差異はみられなかった。もっとも、従来の製法で作られたサンプルKやサンプルLより、吸着性能が高いことが分かった。
(Evaluation)
-About adsorption performance-
Regarding the adsorption performance, the Lauan material (Sample F) was good, and the white birch (Sample G) was slightly low. In addition, regarding the powder raw material, when a certain amount of bamboo powder was added, the amount of adsorption slightly increased, but overall there was no significant difference. But it turned out that adsorption performance is higher than the sample K and the sample L which were made by the conventional manufacturing method.

−強度について−
粉末原料については原料構成比の等しいものの比較から、サイズが大きいものほど強度も大きくなる傾向が明らかとなった。また、オガ粉と竹粉の混合比の比較から、吸着量は竹粉を加えるほど増加するが、反面強度が低下することも明らかとなった。これは、オガ粉にはバインダーとしての働きを持つリグニンが含まれているが、竹粉にはリグニンが殆ど含まれていないためと考えられる。換言すると、粉末原料については、強度を高めるためにリグニンが有効であることが分かる。この意味において、粉末原料として可能なものは、リグニンを含む有機物の粉末(これには、「粉末リグニン」を混合した粉末も含まれる。)が適用できる。具体的には、オガ粉、竹粉、オカラ、コーヒーかすなどに必要な場合は粉末リグニンを添加したものである。その他の可能性としては、堆肥や製紙スラッジなども有効である。実験で試作したサンプルA、C、D及びGについては、いずれも再生利用可能な程度に十分な強度を備えていた。
-Strength-
From the comparison of powder raw materials having the same raw material composition ratio, it became clear that the larger the size, the higher the strength. Moreover, it became clear from the comparison of the mixing ratio of oga powder and bamboo powder that the amount of adsorption increases as bamboo powder is added, but the strength decreases. This is probably because oga powder contains lignin that functions as a binder, but bamboo powder contains almost no lignin. In other words, it is understood that lignin is effective for increasing the strength of the powder raw material. In this sense, organic powders containing lignin (including powders mixed with “powder lignin”) can be applied as possible powder raw materials. Specifically, powder lignin is added when necessary for oga powder, bamboo powder, okara, coffee grounds and the like. Other possibilities include compost and papermaking sludge. Samples A, C, D, and G that were experimentally produced had sufficient strength to be recyclable.

−圧力損失について−
図5及び表2によると、風量を大きくするほど圧力損失が大きくなる傾向が読み取れるが、特に試料1(オガ粉100%)及び試料2(オガ粉:竹粉=1:1)及びリブ付中空炭(それぞれ、サンプルA、D、Lに対応)は、いずれも圧力損失が極めて小さいことが読み取られる。
-Pressure loss-
According to FIG. 5 and Table 2, it can be seen that the pressure loss tends to increase as the air volume increases, but in particular, sample 1 (100% sawdust), sample 2 (slag flour: bamboo powder = 1: 1) and hollow with ribs. It is read that charcoal (corresponding to samples A, D, and L, respectively) has a very small pressure loss.

−まとめ−
以上の実験により、吸着性能と強度と圧力損失という3つの評価基準のそれぞれが数値で表されたが、これらの全てが平均的に良好だったのは、サンプルA、C、D及びGであった。
-Summary-
From the above experiments, each of the three evaluation criteria of adsorption performance, strength, and pressure loss was expressed numerically, but all of these were average on samples A, C, D, and G. It was.

(その他の実施例)
活性炭化後に形状を加工することは殆ど不可能であるため、従来は完成した活性炭を形状・寸法ごとに篩い分けして分別し希望の形状を得ていたが、この方法は、歩留まりが非常に低かった。これに対し、杉や檜などの木片原料自体を出発材料とする場合、活性炭化する前の状態の木を加工するため、加工の自由度は非常に大きく、よって、様々な形状が可能である。
(Other examples)
Since it is almost impossible to process the shape after activated carbonization, conventionally, the finished activated carbon was sieved according to shape and size to obtain the desired shape, but this method has a very high yield. It was low. On the other hand, when the raw material itself of wood such as cedar and persimmon is used as a starting material, since the wood before active carbonization is processed, the degree of freedom of processing is very large, and thus various shapes are possible. .

図6は、その他の実施例について説明するための図であり、成型原料の他の実施態様を例示している。すなわち、図6(a)のように、ペレット状の木片原料5aに複数の貫通孔6aを設けたもの、図6(b)のように、球状の木片原料5bに複数の貫通孔6bを設けたもの、図6(c)のように、ハート型の木片原料5cに複数の貫通孔6cを設けたもの、などが考えられる。その他、図示を省略するが、星形など多くのパターンが考えられる。   Drawing 6 is a figure for explaining other examples, and illustrates other embodiments of a forming raw material. That is, as shown in FIG. 6 (a), a pellet-shaped wood piece raw material 5a is provided with a plurality of through holes 6a, and as shown in FIG. 6 (b), a spherical wood piece raw material 5b is provided with a plurality of through holes 6b. As shown in FIG. 6C, a heart-shaped wood piece material 5c provided with a plurality of through-holes 6c is conceivable. In addition, although illustration is omitted, many patterns such as a star shape are conceivable.

このように木片原料を任意に加工してそこから炭化・乾留工程を行えば、任意の形状の中空活性炭を製造することができる。特に、複数の貫通孔を設けることにより、圧力損失が一層小さくなることはもちろん、さらに、賦活時間が短縮化されるため寸法の減少が小さくなるという利点がある。   In this way, if the wood chip raw material is arbitrarily processed and the carbonization / dry distillation process is performed therefrom, a hollow activated carbon having an arbitrary shape can be produced. In particular, by providing a plurality of through-holes, there is an advantage that the pressure loss is further reduced, and further, since the activation time is shortened, the reduction in size is reduced.

本発明に係る中空活性炭の製造方法は、吸着効率が高く、圧力損失が小さく、かつ、強度の大きい、理想的な活性炭の製造方法を提供するものであり、この製造方法によって得られる中空活性炭は、以下のような産業上の利用可能性を備えている。   The method for producing hollow activated carbon according to the present invention provides an ideal activated carbon production method with high adsorption efficiency, low pressure loss, and high strength, and the hollow activated carbon obtained by this production method is It has the following industrial applicability.

(1)脱臭風量の大きい大型脱臭装置への利用
既設の脱臭装置に充填されている活性炭を本発明に係る中空活性炭に置き換えると設備はそのままで風量が大幅に増大する。従来は風量を増大させる必要が生じた場合はもう一基増設しなければならなかった。
(2)家庭用の分野において、居室用の脱臭機器やエアコンなどの吹き出し口に装着する脱臭カートリッジとしての利用
(3)排ガス対策を可能にした屋上排気ファンなどへの利用
(1) Use for large-sized deodorizing apparatus with large deodorizing air volume When the activated carbon filled in the existing deodorizing apparatus is replaced with the hollow activated carbon according to the present invention, the air volume is greatly increased without changing the facilities. In the past, when it was necessary to increase the air flow, another unit had to be added.
(2) Use as a deodorizing cartridge to be installed in the air outlet of a deodorizing device for a living room or an air conditioner in the field of home use. (3) Use for a rooftop exhaust fan that enables exhaust gas countermeasures.

本発明に係る中空活性炭の製造方法によって得られる中空活性炭は、従来の吸着量及び圧力損失を維持しながら、しかも、繰り返し何度も再生できる強度を有しているため、ランニングコストを抑えることができる。従って、本発明が実施された場合の産業上の利用可能性は極めて大きい。   The hollow activated carbon obtained by the method for producing hollow activated carbon according to the present invention has the strength that can be regenerated many times while maintaining the conventional adsorption amount and pressure loss, thereby reducing the running cost. it can. Therefore, the industrial applicability when the present invention is implemented is extremely large.

図1は、本発明に係る中空活性炭の製造方法を実施するための工程図を示す図である。FIG. 1 is a diagram showing a process chart for carrying out the method for producing hollow activated carbon according to the present invention. 図2(a)〜(c)は、ステップS1の成型工程後に得られる成型原料1の形状の一例を示している。図2(a)は成型工程後の斜視図であり(b)は正面図、(c)は断面図である。2A to 2C show an example of the shape of the forming raw material 1 obtained after the forming step of Step S1. 2A is a perspective view after the molding step, FIG. 2B is a front view, and FIG. 2C is a cross-sectional view. 図3(a)〜(c)は、図2のペレット状を角柱状に変更した場合の例を示している。図3(a)は成型工程後の斜視図であり(b)は正面図、(c)は断面図である。これらの図より、成型原料3は、全体が略角柱状であって一辺Sの略正方形の底面に軸方向に沿って直径D2の貫通孔4が形成されている。3A to 3C show an example in which the pellet shape of FIG. 2 is changed to a prism shape. 3A is a perspective view after the molding step, FIG. 3B is a front view, and FIG. 3C is a cross-sectional view. From these figures, the molding raw material 3 has a substantially prismatic shape as a whole, and a through-hole 4 having a diameter D2 is formed along the axial direction on the substantially square bottom surface of one side S. 図4は、ステップS2とステップS3の工程におけるヒートカーブの一例である。FIG. 4 is an example of a heat curve in the steps S2 and S3. 図5は、種々の活性炭の圧力損失を調べたグラフを示している。FIG. 5 is a graph showing the pressure loss of various activated carbons. 図6(a)〜(c)は、その他の実施例について説明するための図であり、成型原料の他の実施態様を例示している。FIGS. 6A to 6C are diagrams for explaining other examples and illustrate other embodiments of the forming raw material.

符号の説明Explanation of symbols

1、3、5 成型原料
2、4、6 貫通孔
1, 3, 5 Molding raw material 2, 4, 6 Through hole

Claims (6)

内部に貫通孔を備えた成型原料を形成する成型工程S1と、前記成型原料を加熱炉に設置して酸素を遮断した状態で一定時間毎に昇温と保温を繰り返していくことにより前記成型原料を炭化・乾留する工程S2と、前記炭化・乾留工程の後、さらに昇温すると共に加熱炉内に水を注入し賦活する工程S3を備えたことを特徴とする中空活性炭の製造方法。 A molding step S1 for forming a molding raw material having a through-hole inside, and the molding raw material is repeatedly heated and kept at regular intervals in a state where the molding raw material is installed in a heating furnace and oxygen is shut off. A process for producing hollow activated carbon, comprising a step S2 for carbonizing and carbonizing, and a step S3 for further raising the temperature and injecting water into a heating furnace and activating after the carbonizing / dry distillation step. 前記成型工程S1では、リグニンを含む有機物の粉末原料を押し出し成型することを特徴とする請求項1記載の中空活性炭の製造方法。 The method for producing hollow activated carbon according to claim 1, wherein in the molding step S1, an organic powder material containing lignin is extruded. 前記粉末原料は、木、竹、オカラ、コーヒーかす、堆肥、製紙スラッジから選択される少なくとも一つを含むことを特徴とする請求項2記載の中空活性炭の製造方法。 3. The method for producing hollow activated carbon according to claim 2, wherein the powder raw material includes at least one selected from wood, bamboo, okara, coffee grounds, compost, and paper sludge. 前記成型工程S1では、木片原料を機械加工によって成型することを特徴とする請求項1記載の中空活性炭の製造方法。 The method for producing hollow activated carbon according to claim 1, wherein in the molding step S1, the wood chip material is molded by machining. 前記木片原料は、杉、檜、ラワン材、ゴムの木、竹、ラミン、桐から選択される少なくとも一つから構成されることを特徴とする請求項4記載の中空活性炭の製造方法。 5. The method for producing hollow activated carbon according to claim 4, wherein the wood chip material is composed of at least one selected from cedar, straw, lauan, rubber tree, bamboo, lamin, and paulownia. 前記炭化・乾留工程S2と、前記賦活工程S3は、同一反応炉内において連続的に実施することを特徴とする請求項1乃至5のいずれか1項に記載の中空活性炭の製造方法。 The method for producing hollow activated carbon according to any one of claims 1 to 5, wherein the carbonization / dry distillation step S2 and the activation step S3 are continuously performed in the same reaction furnace.
JP2007190660A 2007-07-23 2007-07-23 Hollow activated carbon and method for producing the same Active JP5300221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007190660A JP5300221B2 (en) 2007-07-23 2007-07-23 Hollow activated carbon and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007190660A JP5300221B2 (en) 2007-07-23 2007-07-23 Hollow activated carbon and method for producing the same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2012107105A Division JP5478662B2 (en) 2012-05-08 2012-05-08 Hollow activated carbon
JP2013079573A Division JP5643870B2 (en) 2013-04-05 2013-04-05 Hollow activated carbon

Publications (2)

Publication Number Publication Date
JP2009023889A JP2009023889A (en) 2009-02-05
JP5300221B2 true JP5300221B2 (en) 2013-09-25

Family

ID=40396052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007190660A Active JP5300221B2 (en) 2007-07-23 2007-07-23 Hollow activated carbon and method for producing the same

Country Status (1)

Country Link
JP (1) JP5300221B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6002877B2 (en) * 2010-02-02 2016-10-05 株式会社ガイア環境技術研究所 Method for producing oil or gas adsorbent and oil or gas adsorbent
JP5721726B2 (en) * 2010-09-21 2015-05-20 中村 八束 Power storage device
JP5643870B2 (en) * 2013-04-05 2014-12-17 株式会社一芯 Hollow activated carbon
JP6723717B2 (en) * 2015-10-14 2020-07-15 大阪ガスケミカル株式会社 Activated carbon
CN111974352A (en) * 2020-08-21 2020-11-24 湖南农业大学 Ramie leaf silicon-based biochar and preparation method and application thereof
CN115304063A (en) * 2022-08-22 2022-11-08 中国科学院、水利部成都山地灾害与环境研究所 Formula and use method of biochar for reducing greenhouse gas emission

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412400U (en) * 1990-05-23 1992-01-31
JPH08224468A (en) * 1995-02-20 1996-09-03 Kanebo Ltd Cylindrically pelletized carbon based adsorbent
JP2003082360A (en) * 2001-09-10 2003-03-19 Morio Nakamura Shape-kept bamboo charcoal, method for preparation thereof, and apparatus for preparation thereof

Also Published As

Publication number Publication date
JP2009023889A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
JP5478662B2 (en) Hollow activated carbon
JP5300221B2 (en) Hollow activated carbon and method for producing the same
US5916499A (en) Method for producing porous carbon material product
KR20190093960A (en) Method for manufacturing activated carbon
JP6676821B2 (en) Method of producing binder-based activated carbon with no binder
US20060281633A1 (en) Method of making bamboo charcoal adsorbents
KR101931088B1 (en) Method of preparing activated carbon for filter using biomass and method of preparing filter using the same
CN101898115B (en) Filter medium, preparation method thereof, filter element and water purification device
CN106395819A (en) Preparation method of saw-dust activated carbon
Mariana et al. Properties and adsorptive performance of candlenut shell and its porous charcoals for aqueous mercury (II) removal
JP2000313611A (en) Active carbon and its production
CN111013534A (en) Intermediate-temperature biochar and preparation method and application thereof
WO2019047155A1 (en) Method for preparing nitrogen-containing activated carbon by activation of ammonia gas
Amran et al. Effects of chemical activating agents on physical properties of activated carbons–a commentary
JP5643870B2 (en) Hollow activated carbon
CN103523848A (en) Method for removing sulfonamide antibiotics in water bodies with charcoal prepared from masson pine wood chips and application of charcoal in removing sulfonamide antibiotics in water bodies
JP2008194600A (en) Adsorbent material made up of active carbon with high specific surface area using waste as raw material
JP2006213547A (en) Wood-based granular activated carbon and its manufacturing method
Bouchemal et al. The effect of temperature and impregnation ratio on the active carbon porosity
JPH07144976A (en) Production of compacted activated carbon from coffee bean husk
JPWO2018181778A1 (en) Activated carbon production method
JP2009057239A (en) Activated carbon preparation method
JP6723717B2 (en) Activated carbon
CN109437195A (en) A kind of preparation method of bamboo matter pressure-variable adsorption active carbon
JPH11349318A (en) Production of activated carbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130618

R150 Certificate of patent or registration of utility model

Ref document number: 5300221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250