JP5299809B2 - Metal recovery from non-ferrous metal smelting residue - Google Patents

Metal recovery from non-ferrous metal smelting residue Download PDF

Info

Publication number
JP5299809B2
JP5299809B2 JP2007319722A JP2007319722A JP5299809B2 JP 5299809 B2 JP5299809 B2 JP 5299809B2 JP 2007319722 A JP2007319722 A JP 2007319722A JP 2007319722 A JP2007319722 A JP 2007319722A JP 5299809 B2 JP5299809 B2 JP 5299809B2
Authority
JP
Japan
Prior art keywords
residue
elution
copper
arsenic
smelting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007319722A
Other languages
Japanese (ja)
Other versions
JP2008169477A5 (en
JP2008169477A (en
Inventor
温 大和谷
康則 樋口
敦 柴山
康志 高崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita University NUC
Original Assignee
Akita University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita University NUC filed Critical Akita University NUC
Priority to JP2007319722A priority Critical patent/JP5299809B2/en
Publication of JP2008169477A publication Critical patent/JP2008169477A/en
Publication of JP2008169477A5 publication Critical patent/JP2008169477A5/ja
Application granted granted Critical
Publication of JP5299809B2 publication Critical patent/JP5299809B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、非鉄金属の製錬工程において生じる残渣から金属を回収する方法に関し、特に、銅製錬工程において硫酸製造時に生じる煙灰から銅及び鉛等の有価金属を回収する方法に関する。   The present invention relates to a method for recovering a metal from a residue generated in a non-ferrous metal smelting process, and more particularly to a method for recovering valuable metals such as copper and lead from smoke ash generated during sulfuric acid production in a copper smelting process.

銅等の非鉄金属の製錬においては、煙灰、スラグ類を含む製錬時に発生する副産物類である製錬残渣が発生する。このような製錬残渣には、目的とする金属の他に、鉛、ビスマス、亜鉛、砒素及びカドミウム等が含まれており、従来、前工程に戻されて再度原料として炉に投入されたり、成分毎に分離して製錬原料等として利用されたりしている(例えば、特許文献1及び2、並びに非特許文献1参照。)。例えば、特許文献1に記載の処理方法では、銅精錬の煙灰処理又は排ガス浄水処理で発生した重金属を含むスラッジを、例えば付着水分が10%以下になるまで乾燥させた後、製銅炉に投入して溶解処理している。また、非特許文献1には、複数回溶出処理を行い、銅製錬残渣から硫酸鉛、硫化銅、石膏、銅沈殿物、砒酸鉄、鉄沈殿物、水酸化亜鉛・カドミウムを回収する方法が開示されている。   In the smelting of non-ferrous metals such as copper, smelting residues, which are by-products generated during smelting including smoke ash and slag, are generated. Such smelting residue contains lead, bismuth, zinc, arsenic, cadmium, etc., in addition to the target metal, and has been conventionally returned to the previous process and again put into the furnace as a raw material, They are separated for each component and used as smelting raw materials or the like (for example, see Patent Documents 1 and 2 and Non-Patent Document 1). For example, in the treatment method described in Patent Document 1, sludge containing heavy metals generated by smoke ash treatment of copper refining or purification of exhaust gas is dried, for example, until the adhering moisture is 10% or less, and then put into a copper making furnace And dissolved. Non-Patent Document 1 discloses a method of performing elution treatment a plurality of times and recovering lead sulfate, copper sulfide, gypsum, copper precipitate, iron arsenate, iron precipitate, zinc hydroxide and cadmium from a copper smelting residue. Has been.

更に、図2は特許文献2に記載の従来の製錬残渣処理方法を示すフローチャート図である。図2に示すように、特許文献2に記載の処理方法では、銅を多量に含む製錬残渣を経済的に処理するため、銅製錬残渣に硫酸を加えて空気又は酸素を吹き込むことにより、残渣中の銅及び砒素等を溶出させると共に、鉛、ビスマス及びアンチモン等を溶出残渣として分離し、更に、溶出液のpHを4.5〜6にすることにより、砒素を銅と共に沈殿させている。この特許文献2に記載の処理方法では、工程を簡略化できると共に、砒素を除去するためにのみ使用する高価な試薬が不要となるため、処理コストを低減することができる。   FIG. 2 is a flowchart showing a conventional smelting residue treatment method described in Patent Document 2. As shown in FIG. 2, in the treatment method described in Patent Document 2, in order to economically treat a smelting residue containing a large amount of copper, sulfuric acid is added to the copper smelting residue and air or oxygen is blown into the residue. Copper, arsenic and the like are eluted, lead, bismuth, antimony and the like are separated as an elution residue, and the pH of the eluate is adjusted to 4.5 to 6 to precipitate arsenic together with copper. In the processing method described in Patent Document 2, the process can be simplified, and an expensive reagent used only for removing arsenic is not required, so that the processing cost can be reduced.

特開平11−199946号公報JP 11-199946 A 特開平6−25763号公報JP-A-6-25763 渡辺 堅治、「小坂製錬における自溶炉ダストの処理について」、社団法人資源・素材学会編、資源・素材2003(宇部)企画発表・一般発表(C)(D)資料、2003年、p.315−317Kenji Watanabe, “Treatment of Dust from Smelting Furnace at Kosaka Smelting”, edited by the Society of Resources and Materials, Resource / Material 2003 (Ube), Planned / General Presentation (C) (D), 2003, p. 315-317

しかしながら、前述した特許文献1及び2、並びに非特許文献1に記載の従来の技術は、砒素含有率が低い製錬残渣を対象にした処理方法であり、銅製錬工程において硫酸製造時に生じる煙灰のように、砒素含有率が高い製錬残渣の処理には不向きである。具体的には、製錬残渣に含まれる砒素の多くは、製錬対象物である銅、鉛又は共存物資として存在する鉄、その他の酸化物若しくは硫化物に固定化された状態で存在するため、砒素とこれらを相互に分離することは極めて困難である。このため、前述した従来の処理方法では、残渣中に含まれる砒素を十分に除去することができず、銅及び鉛等の有価物の回収率が低下するという問題がある。また、従来、製錬残渣中の砒素を亜砒酸等の砒素化合物の原料として利用する方法も開発されているが、近年、砒素化合物の需要が減少しており、この方法で大量の煙灰、スラグ類を含む製錬時に発生する副産物類である製錬残渣を処理することは困難である。更に、このような砒素含有量が高い煙灰、スラグ類を含む製錬時に発生する副産物類である製錬残渣を産業廃棄物として処理する場合、管理及び処理に多大な費用を要する。このような理由から、砒素含有率が高い煙灰、スラグ類を含む製錬時に発生する副産物類である製錬残渣を有効活用できる方法が求められている。   However, the conventional techniques described in Patent Documents 1 and 2 and Non-Patent Document 1 described above are treatment methods for smelting residues having a low arsenic content, and the smoke ash produced during sulfuric acid production in the copper smelting process Thus, it is not suitable for the treatment of smelting residue having a high arsenic content. Specifically, because most of the arsenic contained in the smelting residue is fixed in the smelting target copper, lead, or iron that exists as a coexisting material, other oxides or sulfides. It is extremely difficult to separate arsenic and these from each other. For this reason, in the conventional processing method described above, arsenic contained in the residue cannot be sufficiently removed, and there is a problem that the recovery rate of valuable materials such as copper and lead is lowered. In addition, a method of using arsenic in smelting residue as a raw material for arsenic compounds such as arsenous acid has been developed. However, in recent years, the demand for arsenic compounds has been reduced. It is difficult to treat smelting residue, which is a by-product generated during smelting including smelting. Furthermore, when processing the smelting residue which is a by-product generated at the time of smelting including smoke ash and slag having a high arsenic content as an industrial waste, management and processing are very expensive. For these reasons, there is a need for a method that can effectively utilize smelting residues, which are by-products generated during smelting, including smoke ash and slag having a high arsenic content.

本発明は、上述した問題点に鑑みて案出されたものであり、砒素含有量が高い銅製錬残
渣から、砒素を効率的に除去し、銅及び鉛等の有価金属を高収率で回収することができる非鉄金属製錬残渣からの金属回収方法を提供することを目的とする。
The present invention has been devised in view of the above-mentioned problems, and efficiently removes arsenic from a copper smelting residue having a high arsenic content, and recovers valuable metals such as copper and lead in a high yield. It aims at providing the metal recovery method from the nonferrous metal smelting residue which can be done.

本発明に係る非鉄金属製錬残渣からの金属回収方法は、砒素を0.1〜30質量%含有する非鉄金属製錬残渣から金属を回収する方法であって、前記非鉄金属製錬残渣を、不活性ガス雰囲気中で、400〜1200℃の温度下で、1〜8時間加熱する工程と、加熱後の非鉄金属製錬残渣を、pHが1.5を超え3.0未満の酸性水溶液に浸漬し、液温を15〜25℃に保持しながら、0.5時間以内で溶出処理を行った後濾過して、溶出液と溶出残渣とに分離する第1の溶出分離工程と、前記第1の溶出処理工程の溶出残渣を、pHを1未満に調節した酸性水溶液、或いはpHを1未満に調節した酸性水溶液と過酸化水素水との混合溶液に浸漬し、液温を20〜100℃に保持しながら、0.5〜2時間溶出処理を行った後濾過して、溶出液と溶出残渣とに分離する第2の溶出分離工程とを有することを特徴とする。   The metal recovery method from a nonferrous metal smelting residue according to the present invention is a method of recovering a metal from a nonferrous metal smelting residue containing 0.1 to 30% by mass of arsenic, In an inert gas atmosphere, the step of heating at a temperature of 400 to 1200 ° C. for 1 to 8 hours and the non-ferrous metal smelting residue after heating into an acidic aqueous solution having a pH of more than 1.5 and less than 3.0 A first elution separation step in which the elution treatment is performed within 0.5 hour, followed by filtration and separation into an eluate and an elution residue, while dipping and maintaining the liquid temperature at 15 to 25 ° C .; The elution residue of 1 elution treatment step is immersed in an acidic aqueous solution whose pH is adjusted to less than 1 or a mixed solution of an acidic aqueous solution whose pH is adjusted to less than 1 and hydrogen peroxide solution, and the liquid temperature is 20 to 100 ° C. And elution treatment for 0.5-2 hours while maintaining And having a second elution separation step of separating into a dissolution residue.

この非鉄金属製錬残渣からの金属回収方法では、前記加熱工程における加熱温度を600〜800℃とすることが好ましい。   In the method for recovering metal from the non-ferrous metal smelting residue, the heating temperature in the heating step is preferably 600 to 800 ° C.

また、鉛を硫酸鉛、カルシウムを硫酸カルシウムとして固定化させて残渣に残留させることができるため、第1の溶出処理工程に用いる酸性水溶液として硫酸水溶液、第2の溶出処理工程に用いる溶液として硫酸水溶液、或いは硫酸水溶液と過酸化水素水との混合溶液を用いることが好ましい。さらに、第2の溶出処理工程では、用いる溶液を硫酸水溶液とした場合より、銅の浸出率が高くなるため、硫酸水溶液と過酸化水素水との混合溶液を用いることが好ましい。   In addition, since lead can be fixed as lead sulfate and calcium as calcium sulfate and can be left in the residue, sulfuric acid aqueous solution is used as the acidic aqueous solution used in the first elution treatment step, and sulfuric acid is used as the solution used in the second elution treatment step. It is preferable to use an aqueous solution or a mixed solution of a sulfuric acid aqueous solution and a hydrogen peroxide solution. Furthermore, in the second elution treatment step, since the copper leaching rate is higher than when the solution used is an aqueous sulfuric acid solution, it is preferable to use a mixed solution of an aqueous sulfuric acid solution and a hydrogen peroxide solution.

本発明によれば、溶出処理前に煙灰、スラグ類を含む製錬時に発生する副産物類である製錬残渣に高温での加熱処理を行い、製錬残渣に含まれる砒素を揮発分離すると共に、加熱処理後の製錬残渣に残留している砒素を溶出処理により分離しているため、従来の方法に比べて、製錬残渣中の砒素の除去率を大幅に向上させることができ、砒素含有量が高い銅製錬残渣であっても、砒素を効率的に除去し、銅及び鉛等の有価金属を高収率で回収することができる。   According to the present invention, the smelting residue, which is a by-product generated during smelting including smoke ash and slag before elution, is subjected to heat treatment at a high temperature to volatilize and separate arsenic contained in the smelting residue, Since arsenic remaining in the smelting residue after heat treatment is separated by elution treatment, the removal rate of arsenic in the smelting residue can be greatly improved compared to conventional methods, and it contains arsenic. Even if the amount of copper smelting residue is high, arsenic can be efficiently removed and valuable metals such as copper and lead can be recovered in high yield.

以下、本発明の実施形態に係る非鉄金属製錬残渣からの金属回収方法について、添付の図面を参照して詳細に説明する。本実施形態の金属回収方法においては、砒素を0.1〜30質量%含有する銅製錬残渣から銅及び鉛を回収する。なお、この銅製錬残渣には、前述の砒素、銅及び鉛以外に、例えばアルミニウム、珪素、硫黄、カルシウム及び鉄等が含まれている。   Hereinafter, a method for recovering metal from a nonferrous metal smelting residue according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. In the metal recovery method of this embodiment, copper and lead are recovered from a copper smelting residue containing 0.1 to 30% by mass of arsenic. The copper smelting residue contains, for example, aluminum, silicon, sulfur, calcium and iron in addition to the arsenic, copper and lead described above.

図1は本実施形態の非鉄金属製錬残渣からの金属回収方法を示すフローチャート図である。図1に示すように、本実施形態の金属回収方法においては、先ず、銅製錬残渣を、窒素等の不活性ガス雰囲気中で、400〜1200℃の温度下で、1〜8時間加熱し、銅製錬残渣から砒素を揮発分離する(ステップS1)。これにより、銅製錬残渣に含まれる砒素の50〜80質量%程度が分離され、加熱後の銅精錬残渣中の砒素含有量を7質量%以下に低減することができる。この工程において砒素は、純度が高い砒酸又は亜砒酸として回収されるため、例えば半導体材料、半導体レーザ及び発光ダイオード等への利用が期待される。一方、ステップS1の加熱により、銅製錬残渣中の銅及び鉛も揮発するが、その量は僅かであり、処理前の銅製錬残渣に含まれていた量に対して、銅99質量%以上、鉛99質量%以上が加熱後の銅精錬残渣に残留する。   FIG. 1 is a flowchart showing a method for recovering metal from nonferrous metal smelting residue according to this embodiment. As shown in FIG. 1, in the metal recovery method of the present embodiment, first, a copper smelting residue is heated in an inert gas atmosphere such as nitrogen at a temperature of 400 to 1200 ° C. for 1 to 8 hours, Arsenic is volatilely separated from the copper smelting residue (step S1). Thereby, about 50-80 mass% of arsenic contained in the copper smelting residue is separated, and the arsenic content in the copper smelting residue after heating can be reduced to 7 mass% or less. In this step, arsenic is recovered as arsenic acid or arsenous acid having a high purity, so that it is expected to be used for semiconductor materials, semiconductor lasers, light emitting diodes, and the like. On the other hand, although the copper and lead in the copper smelting residue are volatilized by heating in step S1, the amount thereof is slight, and 99% by mass or more of copper with respect to the amount contained in the copper smelting residue before treatment, 99 mass% or more of lead remains in the copper refining residue after heating.

このとき、加熱温度が400℃未満の場合、砒酸鉄が分解されないため、後述するステップS3の工程において溶出残渣B1中に砒素が残留する。一方、加熱温度が1200℃を超えると、銅及び鉛の揮発が著しくなると共に残渣が溶融するため、処理が困難となる。また、加熱時間が1時間未満の場合、砒酸鉄等の砒素化合物の分解が不十分となる。一方、8時間を超えて加熱しても、砒素の揮発量に変化はなく、加熱のためのエネルギー費のみが増加するため、経済性が悪くなる。よって、ステップS1では、400〜1200℃の温度下で、1〜8時間加熱する。なお、加熱温度は600〜800℃にすることが好ましく、これにより、砒素化合物を効率よく分解し、後述するステップS2での処理量の減量及び処理工程の簡略化ができ、更に、高温で加熱することによる銅及び鉛の揮発を最小限に抑えることができると共に、設備費及びエネルギー費の増加も防止することができる。また、加熱時の雰囲気を不活性ガス雰囲気としている理由は、砒素の酸化を抑制し、分解した砒素を揮発しやすい三酸化二砒素にすることで、砒素の揮発量を増加させ、後述するステップS2での処理量を減少させるためである。   At this time, when the heating temperature is less than 400 ° C., iron arsenate is not decomposed, so that arsenic remains in the elution residue B1 in the step S3 described later. On the other hand, if the heating temperature exceeds 1200 ° C., the volatilization of copper and lead becomes remarkable and the residue melts, so that the treatment becomes difficult. In addition, when the heating time is less than 1 hour, the decomposition of an arsenic compound such as iron arsenate is insufficient. On the other hand, even if the heating is performed for more than 8 hours, the volatilization amount of arsenic does not change, and only the energy cost for heating increases, resulting in poor economic efficiency. Therefore, in step S1, heating is performed at a temperature of 400 to 1200 ° C. for 1 to 8 hours. The heating temperature is preferably 600 to 800 ° C., whereby the arsenic compound can be efficiently decomposed, the amount of treatment can be reduced in step S2 to be described later, and the treatment process can be simplified. In addition to minimizing the volatilization of copper and lead, it is possible to prevent an increase in equipment costs and energy costs. Further, the reason why the atmosphere during the heating is an inert gas atmosphere is that the arsenic volatilization amount is increased by suppressing the arsenic oxidation and making the decomposed arsenic volatile arsenic trioxide, thereby increasing the amount of volatilization of arsenic. This is to reduce the processing amount in S2.

次に、加熱後の銅製錬残渣を、pHが1.5を超え3.0未満の酸性水溶液に浸漬し、溶出温度を15〜20℃、溶出時間を0.5時間以下として溶出処理を行い、加熱後の銅製錬残渣に残留している砒素を酸性水溶液中に溶出させる(ステップS2)。その後、ろ過して溶出液A1と溶出残渣B1とに分離する(ステップS3)。これにより、溶出残渣B1中の砒素濃度を1質量%以下に低減することができる。なお、この溶出処理により、加熱後の銅製錬残渣中の銅及び鉛も酸性水溶液中に溶出するが、その量は僅かであり、処理前の銅製錬残渣に含まれていた量に対して、銅90質量%以上、鉛99質量%以上が溶出残渣に残留する。なお、酸性水溶液としては、低コストの硫酸水溶液を用いることが好ましい。   Next, the copper smelting residue after heating is immersed in an acidic aqueous solution having a pH of more than 1.5 and less than 3.0, and an elution treatment is performed with an elution temperature of 15 to 20 ° C. and an elution time of 0.5 hours or less. The arsenic remaining in the copper smelting residue after heating is eluted in the acidic aqueous solution (step S2). Then, it filters and isolate | separates into the eluate A1 and the elution residue B1 (step S3). Thereby, the arsenic density | concentration in the elution residue B1 can be reduced to 1 mass% or less. In addition, by this elution treatment, copper and lead in the copper smelting residue after heating are also eluted in the acidic aqueous solution, but the amount is slight, with respect to the amount contained in the copper smelting residue before treatment, 90 mass% or more of copper and 99 mass% or more of lead remain in the elution residue. As the acidic aqueous solution, it is preferable to use a low-cost sulfuric acid aqueous solution.

上述した溶出処理において、酸性水溶液のpHが1.5以下の場合は銅の溶出量が増大し、一方、酸性水溶液のpHが3.0以上の場合は砒素の溶出量が減少する。また、溶出温度が15℃未満の場合、冷却するためのエネルギーが必要となり、一方、溶出温度が25℃を超えると、浸出促進効果が働き、銅が溶出されやすくなる。更に、溶出時間が0.5時間未満の場合は、銅がほとんど溶出しないため、浸出時間は0.5時間以上必要である。   In the elution treatment described above, the elution amount of copper increases when the pH of the acidic aqueous solution is 1.5 or less, while the elution amount of arsenic decreases when the pH of the acidic aqueous solution is 3.0 or more. Moreover, when the elution temperature is less than 15 ° C., energy for cooling is required. On the other hand, when the elution temperature exceeds 25 ° C., the leaching promoting effect works and copper is easily eluted. Furthermore, when the elution time is less than 0.5 hours, copper is hardly eluted, so that the leaching time is 0.5 hours or more.

次に、ステップS3で分離した溶出残渣B1を、pHを1未満に調節した酸性水溶液、或いはpHを1未満に調節した酸性水溶液と過酸化水素水との混合溶液に浸漬し、溶出温度を20〜100℃、溶出時間を0.5〜2時間として溶出処理を行い、銅を溶出させる(ステップS4)。その後、ろ過して銅を含有する溶出液A2と鉛を含有する溶出残渣B2とに分離する(ステップS5)。これにより、溶出液A2には、処理前の銅製錬残渣に含まれていた量に対して80質量%以上の銅が溶出し、溶出残渣B2には処理前の銅製錬残渣に含まれていた量に対して70質量%以上の鉛が含有される。また、このとき、過酸化水素との混合溶液を用いると、銅の溶出率をより向上させることができる。溶出液A2中の銅は、例えばセメンテーション、溶媒抽出、イオン浮選及びキレート吸着等を利用することにより回収することができ、回収された銅は銅製錬の原料等に利用することができる。また、溶出残渣B2中の鉛は、例えば浮遊選鉱法により鉛成分とカルシウム成分を分離することができ、鉛成分は鉛精錬の原料等に利用することができる。   Next, the elution residue B1 separated in step S3 is immersed in an acidic aqueous solution whose pH is adjusted to less than 1, or a mixed solution of an acidic aqueous solution whose pH is adjusted to less than 1 and hydrogen peroxide, and an elution temperature of 20 is set. Elution is performed at -100 ° C. and an elution time of 0.5-2 hours to elute copper (step S4). Then, it filters and isolate | separates into the eluate A2 containing copper, and the elution residue B2 containing lead (step S5). Thereby, 80 mass% or more of copper eluted in the eluate A2 with respect to the amount contained in the copper smelting residue before treatment, and the elution residue B2 was contained in the copper smelting residue before treatment. 70 mass% or more of lead is contained with respect to the amount. At this time, if a mixed solution with hydrogen peroxide is used, the elution rate of copper can be further improved. Copper in the eluate A2 can be recovered by using, for example, cementation, solvent extraction, ion flotation, chelate adsorption, and the like, and the recovered copper can be used as a raw material for copper smelting. The lead in the elution residue B2 can be separated into a lead component and a calcium component by, for example, a flotation process, and the lead component can be used as a raw material for lead refining.

上述の如く、本実施形態の非鉄金属製錬残渣からの金属回収方法においては、溶出処理前に煙灰、スラグ類を含む製錬時に発生する副産物類である製錬残渣に高温での加熱処理を行い、製錬残渣に含まれる砒素を揮発分離すると共に、加熱処理後の製錬残渣に残留している砒素を溶出処理により分離しているため、従来の方法に比べて、製錬残渣中の砒素の除去率を大幅に向上させることができる。その結果、砒素含有量が高い銅製錬残渣であっても、砒素を効率的に除去し、銅及び鉛等の有価金属を高収率で回収することができる。   As described above, in the metal recovery method from the non-ferrous metal smelting residue of this embodiment, the smelting residue, which is a by-product generated during smelting including smoke ash and slag, is subjected to heat treatment at a high temperature before the elution process. And volatile separation of arsenic contained in the smelting residue, and separation of arsenic remaining in the smelting residue after heat treatment by elution treatment, so compared to the conventional method, The arsenic removal rate can be greatly improved. As a result, even a copper smelting residue having a high arsenic content can efficiently remove arsenic and recover valuable metals such as copper and lead in a high yield.

なお、本実施形態においては、銅製錬残渣から銅及び鉛を回収する方法について述べたが、本発明はこれに限定されるものではなく、銅以外の非鉄金属の煙灰、スラグ類を含む製錬時に発生する副産物類である製錬残渣にも適用することができ、同様の効果が得られる。また、銅及び鉛以外の有価成分についても、砒素を分離した後の溶出残渣から公知の方法を適用して適宜分離回収することができる。   In the present embodiment, the method for recovering copper and lead from the copper smelting residue has been described, but the present invention is not limited to this, and smelting includes smoke ash and slag of non-ferrous metals other than copper. It can also be applied to smelting residue, which is a by-product sometimes generated, and the same effect can be obtained. Further, valuable components other than copper and lead can be appropriately separated and recovered from the elution residue after separating arsenic by applying a known method.

以下、本発明の効果について、実施例及び比較例を挙げて具体的に説明する。先ず、本発明の実施例として、砒素含有量が14.4質量%、銅含有量が2.2質量%、鉛含有量が4.4質量%の銅製錬残渣から、図1に示す方法で銅及び鉛を回収した。具体的には、
先ず、銅製錬残渣を、窒素雰囲気中、700℃の温度下で、2時間加熱処理し、砒素を揮発分離した。これにより、処理前の銅製錬残渣に含まれる砒素の80質量%を分離することができた。また、加熱後の銅製錬残渣の質量は、処理前の銅製錬残渣の62%に減少しており、砒素含有量が5.7質量%、銅含有量が3.7質量%、鉛含有量が5.6%であった。そして、加熱後の銅製錬残渣中への残留率(加熱後の銅製錬残渣中の量/処理前の銅製錬残渣に含まれていた量)は、砒素が24%、銅が104%、鉛が79%であった。
Hereinafter, the effects of the present invention will be specifically described with reference to Examples and Comparative Examples. First, as an example of the present invention, from a copper smelting residue having an arsenic content of 14.4% by mass, a copper content of 2.2% by mass, and a lead content of 4.4% by mass, the method shown in FIG. Copper and lead were recovered. In particular,
First, the copper smelting residue was heat-treated in a nitrogen atmosphere at a temperature of 700 ° C. for 2 hours to volatilize and separate arsenic. Thereby, 80% by mass of arsenic contained in the copper smelting residue before treatment could be separated. Moreover, the mass of the copper smelting residue after heating is reduced to 62% of the copper smelting residue before treatment, the arsenic content is 5.7% by mass, the copper content is 3.7% by mass, and the lead content Was 5.6%. And the residual rate in the copper smelting residue after heating (amount in the copper smelting residue after heating / amount contained in the copper smelting residue before treatment) is 24% for arsenic, 104% for copper, lead Was 79%.

次に、加熱後の残渣を、0.2mol/リットルの硫酸水溶液にパルプ濃度100g/リットルで浸漬し、液の温度を20℃に保持して、攪拌しながら0.25時間溶出処理を行った。その後、0.2μmのメンブランフィルターで濾過し、溶出液A1と溶出残渣B1とに分離した。そして、溶出液A1をICPにより分析したところ、砒素含有量が5196mg/リットル、銅が150mg/リットル、鉛が34mg/リットルであり、溶出液A1への溶出率(溶出液A1中の量/処理前の銅製錬残渣に含まれていた量)は、砒素が23%、銅が4%、鉛が0.5%であった。一方、120℃で5時間以上乾燥させた後の溶出残渣B1の質量は、処理前の銅製錬残渣の60%であり、砒素含有量が0.8質量%、銅含有量が3.3質量%、鉛含有量が7.5%であった。また、残留率(溶出残渣B1中の量/処理前の銅製錬残渣に含まれていた量)は、砒素が3.1%、銅が90%、鉛が101%であった。   Next, the residue after heating was immersed in a 0.2 mol / liter sulfuric acid aqueous solution at a pulp concentration of 100 g / liter, the temperature of the liquid was kept at 20 ° C., and the elution treatment was performed for 0.25 hours with stirring. . Then, it filtered with the 0.2 micrometer membrane filter, and isolate | separated into the eluate A1 and the elution residue B1. When the eluate A1 was analyzed by ICP, the arsenic content was 5196 mg / liter, copper was 150 mg / liter, and lead was 34 mg / liter. The amount contained in the previous copper smelting residue was 23% for arsenic, 4% for copper, and 0.5% for lead. On the other hand, the mass of the elution residue B1 after drying at 120 ° C. for 5 hours or more is 60% of the copper smelting residue before treatment, the arsenic content is 0.8 mass%, and the copper content is 3.3 mass. % And lead content was 7.5%. The residual ratio (amount in the elution residue B1 / amount contained in the copper smelting residue before treatment) was 3.1% for arsenic, 90% for copper, and 101% for lead.

次に、溶出残渣B1を、1mol/リットルの硫酸水溶液9.33mlと30体積%の過酸化水素水0.67mlとの混合溶液に浸漬し、パルプ濃度100g/リットルで浸漬し、液の温度を60〜65℃に保持して、攪拌しながら0.5〜2時間溶出処理を行った。その後、0.2μmのメンブランフィルターで濾過し、溶出液A2と溶出残渣B2とに分離した。そして、溶出液A2をICPにより分析したところ、砒素含有量が447mg/リットル、銅が4000mg/リットル、鉛が18mg/リットルであり、溶出液A2への溶出率(溶出液A2中の量/処理前の銅製錬残渣に含まれていた量)は、砒素が2%、銅が108%、鉛が0.2%であった。一方、溶出残渣B1の質量は処理前の銅製錬残渣の38%であり、砒素含有量が0.3質量%、銅含有量が0.3質量%、鉛含有量が8.5%であった。また、残留率(溶出残渣B2中の量/処理前の銅製錬残渣に含まれていた量)は、砒素が0.3%、銅が5%、鉛が74%であった。

Next, the elution residue B1 is immersed in a mixed solution of 9.33 ml of 1 mol / liter sulfuric acid aqueous solution and 0.67 ml of 30% by volume hydrogen peroxide solution, and is immersed at a pulp concentration of 100 g / liter. The elution treatment was performed for 0.5 to 2 hours while stirring at a temperature of 60 to 65 ° C. Then, it filtered with the 0.2 micrometer membrane filter, and isolate | separated into the eluate A2 and the elution residue B2. When the eluate A2 was analyzed by ICP, the arsenic content was 447 mg / liter, copper was 4000 mg / liter, and lead was 18 mg / liter, and the elution rate into the eluent A2 (amount / treatment in the eluent A2) The amount contained in the previous copper smelting residue was 2% for arsenic, 108% for copper, and 0.2% for lead. On the other hand, the mass of the elution residue B1 was 38% of the copper smelting residue before treatment, the arsenic content was 0.3% by mass, the copper content was 0.3% by mass, and the lead content was 8.5%. It was. The residual ratio (amount in elution residue B2 / amount contained in the copper smelting residue before treatment) was 0.3% for arsenic, 5% for copper, and 74% for lead.

また、本発明の比較例として、加熱処理を行わずに、砒素含有量が14.4質量%、銅含有量が2.2質量%、鉛含有量が4.4質量%の銅製錬残渣から、従来の処理方法で銅及び鉛を回収した。具体的には、銅製錬残渣30gを1mol/リットルの硫酸水溶液300ml中で1時間溶出した後、濾過し、100mlの純水で洗浄した。その結果、濾液及び洗浄液を合わせた溶液(400ml)は、銅が308mg/リットル、鉛が2mg/リットルであったが、溶出液中での回収率は銅が19%、鉛が0.1%にすぎなかった。また、溶出残渣20.9g中には4.6質量%の砒素が残留しており、その残留率は22%であった。   Moreover, as a comparative example of the present invention, from a copper smelting residue having an arsenic content of 14.4% by mass, a copper content of 2.2% by mass, and a lead content of 4.4% by mass without performing heat treatment. Copper and lead were recovered by conventional processing methods. Specifically, 30 g of copper smelting residue was eluted in 300 ml of 1 mol / liter sulfuric acid aqueous solution for 1 hour, filtered, and washed with 100 ml of pure water. As a result, the combined solution (400 ml) of the filtrate and the washing solution was 308 mg / liter for copper and 2 mg / liter for lead, but the recovery rate in the eluate was 19% for copper and 0.1% for lead. It was only. In addition, 4.6% by mass of arsenic remained in 20.9 g of the elution residue, and the residual rate was 22%.

以下、本発明の効果について、実施例及び比較例を挙げて具体的に説明する。先ず、本発明の実施例として、砒素含有量が19.8質量%、銅含有量が2.9質量%、鉛含有量が4.7質量%の銅製錬残渣から、図1に示す方法で銅及び鉛を回収した。具体的には、先ず、銅製錬残渣を、窒素雰囲気中、700℃の温度下で、2時間加熱処理し、砒素を揮発分離した。これにより、処理前の銅製錬残渣に含まれる砒素の85質量%を分離することができた。また、加熱後の銅製錬残渣の質量は、処理前の銅製錬残渣の60%に減少しており、砒素含有量が5.1質量%、銅含有量が3.8質量%、鉛含有量が7.1%であった。そして、加熱後の銅製錬残渣中への残留率(加熱後の銅製錬残渣中の量/処理前の銅製錬残渣に含まれていた量)は、砒素が16%、銅が79%、鉛が91%であった。   Hereinafter, the effects of the present invention will be specifically described with reference to Examples and Comparative Examples. First, as an example of the present invention, from a copper smelting residue having an arsenic content of 19.8% by mass, a copper content of 2.9% by mass, and a lead content of 4.7% by mass, the method shown in FIG. Copper and lead were recovered. Specifically, first, a copper smelting residue was heat-treated in a nitrogen atmosphere at a temperature of 700 ° C. for 2 hours to volatilize and separate arsenic. As a result, 85% by mass of arsenic contained in the copper smelting residue before treatment could be separated. Moreover, the mass of the copper smelting residue after heating is reduced to 60% of the copper smelting residue before treatment, the arsenic content is 5.1% by mass, the copper content is 3.8% by mass, and the lead content Was 7.1%. The residual ratio in the copper smelting residue after heating (the amount in the copper smelting residue after heating / the amount contained in the copper smelting residue before treatment) is 16% for arsenic, 79% for copper, lead Was 91%.

次に、加熱後の残渣を、0.2mol/リットルの硫酸水溶液にパルプ濃度100g/リットルで浸漬し、液の温度を20℃に保持して、攪拌しながら0.25時間溶出処理を行った。その後、0.2μmのメンブランフィルターで濾過し、溶出液A1と溶出残渣B1とに分離した。そして、溶出液A1をICPにより分析したところ、砒素含有量が4900mg/リットル、銅が70mg/リットル、鉛が40mg/リットルであり、溶出液A1への溶出率(溶出液A1中の量/処理前の銅製錬残渣に含まれていた量)は、砒素が14%、銅が1%、鉛が0.5%であった。一方、120℃で5時間以上乾燥させた後の溶出残渣B1の質量は、処理前の銅製錬残渣の58%であり、砒素含有量が0.5質量%、銅含有量が3.7質量%、鉛含有量が7.3%であった。また、残留率(溶出残渣B1中の量/処理前の銅製錬残渣に含まれていた量)は、砒素が1.5%、銅が74%、鉛が91%であった。   Next, the residue after heating was immersed in a 0.2 mol / liter sulfuric acid aqueous solution at a pulp concentration of 100 g / liter, the temperature of the liquid was kept at 20 ° C., and the elution treatment was performed for 0.25 hours with stirring. . Then, it filtered with the 0.2 micrometer membrane filter, and isolate | separated into the eluate A1 and the elution residue B1. When the eluate A1 was analyzed by ICP, the arsenic content was 4900 mg / liter, copper was 70 mg / liter, and lead was 40 mg / liter, and the elution rate into the eluent A1 (amount / treatment in eluent A1 The amount contained in the previous copper smelting residue was 14% for arsenic, 1% for copper, and 0.5% for lead. On the other hand, the mass of the elution residue B1 after drying at 120 ° C. for 5 hours or more is 58% of the copper smelting residue before treatment, the arsenic content is 0.5 mass%, and the copper content is 3.7 mass. % And lead content was 7.3%. The residual ratio (amount in elution residue B1 / amount contained in the copper smelting residue before treatment) was 1.5% for arsenic, 74% for copper, and 91% for lead.

次に、溶出残渣B1を、1mol/リットルの硫酸水溶液9.33mlと30体積%の過酸化水素水0.67mlとの混合溶液に浸漬し、パルプ濃度100g/リットルで浸漬し、液の温度を60〜65℃に保持して、攪拌しながら0.5〜2時間溶出処理を行った。その後、0.2μmのメンブランフィルターで濾過し、溶出液A2と溶出残渣B2とに分離した。そして、溶出液A2をICPにより分析したところ、砒素含有量が320mg/リットル、銅が3700mg/リットル、鉛が80mg/リットルであり、溶出液A2への溶出率(溶出液A2中の量/処理前の銅製錬残渣に含まれていた量)は、砒素が1%、銅が72%、鉛が1%であった。一方、溶出残渣B1の質量は処理前の銅製錬残渣の29%であり、砒素含有量が0.3質量%、銅含有量が0.6質量%、鉛含有量が14.1%であった。また、残留率(溶出残渣B2中の量/処理前の銅製錬残渣に含まれていた量)は、砒素が0.4%、銅が6%、鉛が88%であった。
Next, the elution residue B1 is immersed in a mixed solution of 9.33 ml of 1 mol / liter sulfuric acid aqueous solution and 0.67 ml of 30% by volume hydrogen peroxide solution, and is immersed at a pulp concentration of 100 g / liter. The elution treatment was performed for 0.5 to 2 hours while stirring at a temperature of 60 to 65 ° C. Then, it filtered with the 0.2 micrometer membrane filter, and isolate | separated into the eluate A2 and the elution residue B2. When the eluate A2 was analyzed by ICP, the arsenic content was 320 mg / liter, copper was 3700 mg / liter, and lead was 80 mg / liter, and the elution rate into the eluent A2 (amount / treatment in the eluent A2) The amount contained in the previous copper smelting residue was 1% for arsenic, 72% for copper, and 1% for lead. On the other hand, the mass of the elution residue B1 was 29% of the copper smelting residue before treatment, the arsenic content was 0.3% by mass, the copper content was 0.6% by mass, and the lead content was 14.1%. It was. The residual ratio (amount in elution residue B2 / amount contained in the copper smelting residue before treatment) was 0.4% for arsenic, 6% for copper, and 88% for lead.

また、本発明の比較例として、加熱処理を行わずに、砒素含有量が19.8質量%、銅含有量が2.9質量%、鉛含有量が4.7質量%の銅製錬残渣から、従来の処理方法で銅及び鉛を回収した。具体的には、銅製錬残渣30gを1mol/リットルの硫酸水溶液300ml中で1時間溶出した後、濾過し、100mlの純水で洗浄した。その結果、濾液及び洗浄液を合わせた溶液(400ml)は、銅が669mg/リットル、鉛が263mg/リットルであったが、溶出液中での回収率は銅が29%、鉛が7%にすぎなかった。また、溶出残渣19.4g中には5.7質量%の砒素が残留しており、その残留率は19%であった。   Further, as a comparative example of the present invention, without performing heat treatment, from a copper smelting residue having an arsenic content of 19.8 mass%, a copper content of 2.9 mass%, and a lead content of 4.7 mass% Copper and lead were recovered by conventional processing methods. Specifically, 30 g of copper smelting residue was eluted in 300 ml of 1 mol / liter sulfuric acid aqueous solution for 1 hour, filtered, and washed with 100 ml of pure water. As a result, the combined solution (400 ml) of the filtrate and the washing solution had 669 mg / liter of copper and 263 mg / liter of lead, but the recoveries in the eluate were 29% for copper and 7% for lead. There wasn't. Further, 5.7% by mass of arsenic remained in 19.4 g of the elution residue, and the residual rate was 19%.

本実施形態の非鉄金属製錬残渣からの金属回収方法を示すフローチャート図である。It is a flowchart figure which shows the metal collection | recovery method from the nonferrous metal smelting residue of this embodiment. 特許文献2に記載の従来の製錬残渣処理方法を示すフローチャート図である。It is a flowchart figure which shows the conventional smelting residue processing method of patent document 2.

Claims (3)

砒素を0.1〜30質量%含有する非鉄金属製錬残渣から金属を回収する方法であって、
前記非鉄金属製錬残渣を、不活性ガス雰囲気中で、400〜1200℃の温度下で、1〜8時間加熱する工程と、
加熱後の非鉄金属製錬残渣を、pHが1.5を超え3.0未満の酸性水溶液に浸漬し、液温を15〜25℃に保持しながら、0.5時間以内で溶出処理を行った後濾過して、溶出液と溶出残渣とに分離する第1の溶出分離工程と、
前記第1の溶出処理工程の溶出残渣を、pHを1未満に調節した酸性水溶液、或いはpHを1未満に調節した酸性水溶液と過酸化水素水との混合溶液に浸漬し、液温を20〜100℃に保持しながら、0.5〜2時間溶出処理を行った後濾過して、溶出液と溶出残渣とに分離する第2の溶出分離工程と、
を有することを特徴とする非鉄金属製錬残渣からの金属回収方法。
A method of recovering a metal from a nonferrous metal smelting residue containing 0.1 to 30% by mass of arsenic,
Heating the non-ferrous metal smelting residue in an inert gas atmosphere at a temperature of 400 to 1200 ° C. for 1 to 8 hours;
The non-ferrous metal smelting residue after heating is immersed in an acidic aqueous solution having a pH of more than 1.5 and less than 3.0, and elution treatment is performed within 0.5 hours while maintaining the liquid temperature at 15 to 25 ° C. And a first elution separation step of separating the eluate and the elution residue by filtration,
The elution residue of the first elution treatment step is immersed in an acidic aqueous solution having a pH adjusted to less than 1, or a mixed solution of an acidic aqueous solution having a pH adjusted to less than 1 and hydrogen peroxide, and the liquid temperature is set to 20 to A second elution separation step of performing elution treatment for 0.5 to 2 hours while maintaining at 100 ° C., followed by filtration and separation into an eluate and an elution residue;
A method for recovering a metal from a non-ferrous metal smelting residue, comprising:
砒素を0.1〜30質量%含有する非鉄金属製錬残渣から金属を回収する方法であって、
前記非鉄金属製錬残渣を、不活性ガス雰囲気中で、400〜1200℃の温度下で、1〜8時間加熱する工程と、
加熱後の非鉄金属製錬残渣を、pHが1.5を超え3.0未満の硫酸水溶液に浸漬し、液温を15〜25℃に保持しながら、0.5時間以内で溶出処理を行った後濾過して、溶出液と溶出残渣とに分離する第1の溶出分離工程と、
前記第1の溶出処理工程の溶出残渣を、pHを1未満に調節した硫酸水溶液と過酸化水素水との混合溶液に浸漬し、液温を20〜100℃に保持しながら、0.5〜2時間溶出処理を行った後濾過して、溶出液と溶出残渣とに分離する第2の溶出分離工程と、
を有することを特徴とする非鉄金属製錬残渣からの金属回収方法。
A method of recovering a metal from a nonferrous metal smelting residue containing 0.1 to 30% by mass of arsenic,
Heating the non-ferrous metal smelting residue in an inert gas atmosphere at a temperature of 400 to 1200 ° C. for 1 to 8 hours;
The non-ferrous metal smelting residue after heating is immersed in a sulfuric acid aqueous solution having a pH of more than 1.5 and less than 3.0, and elution treatment is performed within 0.5 hours while maintaining the liquid temperature at 15 to 25 ° C. And a first elution separation step of separating the eluate and the elution residue by filtration,
The elution residue of the first elution treatment step is immersed in a mixed solution of a sulfuric acid aqueous solution and a hydrogen peroxide solution whose pH is adjusted to less than 1, while maintaining the liquid temperature at 20 to 100 ° C., 0.5 to A second elution separation step of performing elution treatment for 2 hours and then filtering to separate into an eluate and an elution residue;
A method for recovering a metal from a non-ferrous metal smelting residue, comprising:
前記加熱工程における加熱温度を600〜800℃とすることを特徴とする請求項1又は2に記載の非鉄金属製錬残渣からの金属回収方法。   The method for recovering a metal from a nonferrous metal smelting residue according to claim 1 or 2, wherein the heating temperature in the heating step is 600 to 800 ° C.
JP2007319722A 2006-12-12 2007-12-11 Metal recovery from non-ferrous metal smelting residue Active JP5299809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007319722A JP5299809B2 (en) 2006-12-12 2007-12-11 Metal recovery from non-ferrous metal smelting residue

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006334537 2006-12-12
JP2006334537 2006-12-12
JP2007319722A JP5299809B2 (en) 2006-12-12 2007-12-11 Metal recovery from non-ferrous metal smelting residue

Publications (3)

Publication Number Publication Date
JP2008169477A JP2008169477A (en) 2008-07-24
JP2008169477A5 JP2008169477A5 (en) 2010-10-14
JP5299809B2 true JP5299809B2 (en) 2013-09-25

Family

ID=39697840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007319722A Active JP5299809B2 (en) 2006-12-12 2007-12-11 Metal recovery from non-ferrous metal smelting residue

Country Status (1)

Country Link
JP (1) JP5299809B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010011242A1 (en) 2010-03-10 2011-09-15 Aurubis Ag Method and device for treating flue dust

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162233A (en) * 1983-03-08 1984-09-13 Nippon Mining Co Ltd Wet treatment of copper refining smoke ash
JP2002249827A (en) * 2001-02-26 2002-09-06 Nippon Mining & Metals Co Ltd Treatment method for electrolytic cement copper
JP2004307965A (en) * 2003-04-09 2004-11-04 Sumitomo Metal Mining Co Ltd Method for removing arsenic and antimony by separation from slag fuming dust
JP4085908B2 (en) * 2003-07-28 2008-05-14 住友金属鉱山株式会社 Method for concentrating noble metals contained in leaching residue of wet copper refining process
JP4216307B2 (en) * 2006-09-27 2009-01-28 日鉱金属株式会社 Process for electrolytically precipitated copper

Also Published As

Publication number Publication date
JP2008169477A (en) 2008-07-24

Similar Documents

Publication Publication Date Title
US9284624B2 (en) Process for recovering zinc and/or zinc oxide II
JP6336469B2 (en) Method for producing scandium-containing solid material with high scandium content
JP2013152854A (en) Method of separating valuable metal from waste secondary battery, and method of recovering valuable metal using the same
MX2014002803A (en) Process for purifying zinc oxide.
KR20170019246A (en) A recovery method for valuable metal from the LED wastes or electronic wastes
CN1271224C (en) Process for electrolytic production of highly pure zinc or zinc compounds from primary and secondary zinc raw materials
US5082493A (en) Processing of carbon steel furnace dusts
JP5062111B2 (en) Method for producing high-purity arsenous acid aqueous solution from copper-free slime
JP2010196140A (en) Method for recovering bismuth
JP5299809B2 (en) Metal recovery from non-ferrous metal smelting residue
JP2008208441A (en) Solvent extraction method for chloride aqueous solution
JP2006089809A (en) METHOD FOR SEPARATING AND RECOVERING Sb AND Bi
JP2020105588A (en) Treatment method of mixture containing noble metal, selenium and tellurium
JP2011161386A (en) Method for treating thioarsenite
JP2008127604A (en) Method of recovering noble metal element
JP4264519B2 (en) Method for reducing metal impurities
EA007859B1 (en) Method for removing thallium from a zinc-containing solution
JP6835577B2 (en) How to collect valuables
JP4505840B2 (en) Method for recovering valuable materials from molten fly ash
JP2007154249A (en) Method for recovering silver in wet type copper refining process
JP2009167442A (en) Method for separating arsenic and antimony in arsenic acid aqueous solution
CN107746975A (en) A kind of method that high content chlorine oxygen bismuth is reclaimed in the flue dust acid leaching residue from Copper making
JPH0357052B2 (en)
JP7337209B2 (en) Iridium recovery method
JP7359059B2 (en) Method for producing cadmium hydroxide

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120823

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5299809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250