JP5299532B2 - Chrome-free painted steel plate with excellent red rust resistance - Google Patents

Chrome-free painted steel plate with excellent red rust resistance Download PDF

Info

Publication number
JP5299532B2
JP5299532B2 JP2012023400A JP2012023400A JP5299532B2 JP 5299532 B2 JP5299532 B2 JP 5299532B2 JP 2012023400 A JP2012023400 A JP 2012023400A JP 2012023400 A JP2012023400 A JP 2012023400A JP 5299532 B2 JP5299532 B2 JP 5299532B2
Authority
JP
Japan
Prior art keywords
steel sheet
coating
chromium
coated steel
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012023400A
Other languages
Japanese (ja)
Other versions
JP2012136025A (en
Inventor
保明 河村
雅充 松本
通泰 ▲高▼橋
泰 高本
明人 吉岡
明広 半
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012023400A priority Critical patent/JP5299532B2/en
Publication of JP2012136025A publication Critical patent/JP2012136025A/en
Application granted granted Critical
Publication of JP5299532B2 publication Critical patent/JP5299532B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent occurrence of red rust from an end face to be observed in chromium-free coated steel sheet not utilizing chromate treatment or chromate based rust prevention pigments without deteriorating corrosion resistance. <P>SOLUTION: In a chromium-free coated steel sheet, one or more layers of coating films are formed on both surfaces, respectively, of a coating base material comprising a plated steel sheet having a plated layer containing zinc. When one hundred samples of the coated steel sheet cut into a rectangle of 0.5 cm&times;4.5 cm are immersed in ion exchange water (&le;4&mu;S/cm) of 200 ml at 50&deg;C for 30 min under applying ultrasonic vibration with a frequency of 40 kHz, electric conductivity of immersion water is &ge;30&mu;S/cm. A coating film of outermost layer contains a compound (preferably an alkali metal phosphate) of 1 to 30% by mass with the proviso that (A) electric conductivity of the water is &ge;500&mu;S/cm when the compound is dissolved in ion exchange water (&le;4&mu;S/cm) in 0.1% by mass and (B) the compound is not thermally decomposed by 200&deg;C. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、屋外や水のかかる環境で使用される可能性のある家電製品、建材、自動車部品などの製造に有用な、クロムフリー塗装鋼板に関する。本発明の塗装鋼板は、従来のクロムフリー塗装鋼板と比較して、同等の耐食性能を保持しながら、端面からの赤錆発生をより効果的に抑制することができる。   The present invention relates to a chromium-free painted steel sheet that is useful for manufacturing home appliances, building materials, automobile parts, and the like that may be used outdoors or in an environment where water is applied. The coated steel sheet of the present invention can more effectively suppress the occurrence of red rust from the end face while maintaining equivalent corrosion resistance as compared with the conventional chromium-free coated steel sheet.

塗装鋼板(プレコート鋼板、PCMとも呼ばれる)は、基材鋼板に塗装と焼付けにより塗膜を形成した後、コイル状に巻き取られ、その状態でユーザーに納入される。ユーザーは、コイルを巻き戻して、打ち抜き、折り曲げ、絞り加工、またはこれらを組み合わせた加工を行って製品化する。作業環境を悪化させ、廃液処理が面倒な塗装作業をユーザーが行う必要がないことから、塗装鋼板の適用は多くの分野に普及している。   A coated steel plate (also referred to as pre-coated steel plate or PCM) is coated and baked on a base steel plate, wound up in a coil shape, and delivered to the user in that state. The user unwinds the coil and performs punching, bending, drawing, or a combination thereof to produce a product. The application of coated steel sheets is widespread in many fields because the user does not need to perform painting work that makes the working environment worse and waste liquid treatment is troublesome.

塗装鋼板の製造は、基材鋼板(典型的には亜鉛めっきと亜鉛合金めっきとを含む亜鉛系めっき鋼板)に、前処理として化成処理を施した後、下塗り塗料(プライマー)の塗布と焼付け、次に上塗り塗料の塗布と焼付けを順に行う2コート2ベーク方式が一般的である。ただし、「おもて面」とは反対側の「裏面」側については、前処理後に裏面用に開発された塗料を用いて1コート1ベーク方式で塗装が行われることもある。   The production of the coated steel sheet is performed by subjecting a base steel sheet (typically a zinc-based plated steel sheet including zinc plating and zinc alloy plating) to a chemical conversion treatment as a pretreatment, and then applying and baking an undercoat paint (primer). Next, a two-coat two-bake method is generally performed in which a top coat is applied and baked in order. However, on the “back surface” side opposite to the “front surface”, painting may be performed by a 1-coat 1-bake method using a paint developed for the back surface after the pretreatment.

塗装鋼板は、耐食性、加工性、塗膜硬度(耐傷つき性)、耐汚染性、耐薬品性、耐候性などの多くの性能が要求されるが、要求性能の順位は用途に応じて異なる。エアコン室外機や給湯器といった主に屋外で使用される製品用の塗装鋼板では、耐食性が非常に重要である。このような製品では、塗装鋼板を切断、打ち抜き加工した際の鋼板端面が、最終形状に加工後も視認できる個所に露出する場合がある。このような形状の製品においては特に、切断で生ずる鋼板端面の耐食性(以下、端面耐食性という)が要求される。   Painted steel sheets are required to have many performances such as corrosion resistance, workability, coating film hardness (scratch resistance), stain resistance, chemical resistance, weather resistance, etc., but the order of the required performance varies depending on the application. Corrosion resistance is very important in coated steel sheets for products used mainly outdoors such as air conditioner outdoor units and water heaters. In such a product, the end face of the steel plate when the coated steel plate is cut and punched may be exposed at a place where the final shape can be visually recognized. Particularly in the product having such a shape, corrosion resistance of the steel plate end face generated by cutting (hereinafter referred to as end face corrosion resistance) is required.

端面耐食性に優れた従来の塗装鋼板は、亜鉛系めっき鋼板を塗装基材とし、まずクロメート処理のような耐食性向上効果のある下地処理を施した後、少なくともおもて面側に対しては、クロム酸ストロンチウムなどのクロム酸塩系防錆顔料を含有する下塗り塗料(プライマー)を用いて下塗り塗膜を形成し、次いで所望の特性や外観を満たすように上塗り塗膜を形成したものである。   The conventional coated steel sheet with excellent end face corrosion resistance uses a zinc-based plated steel sheet as the coating base, and after first applying a ground treatment with an effect of improving corrosion resistance such as chromate treatment, at least on the front side, An undercoat film (primer) is formed using an undercoat paint (primer) containing a chromate-based rust preventive pigment such as strontium chromate, and then an overcoat film is formed so as to satisfy desired properties and appearance.

しかし、環境意識の高まりと共に、クロム酸ストロンチウムのような6価クロム化合物のみならず、3価も含めて一切のクロム化合物を使用しないクロムフリー塗装鋼板が指向されるようになってきた。特に近年のRoHS指令以降は、塗装鋼板のクロムフリー化が急務となっている。そのため、クロメート処理とクロム酸塩系防錆顔料に代わる代替技術がそれぞれ提案されている。   However, with increasing environmental awareness, not only hexavalent chromium compounds such as strontium chromate but also chromium-free coated steel sheets that do not use any chromium compounds including trivalents have come to be directed. In particular, since the recent RoHS directive, it has become an urgent task to make the coated steel plates chrome-free. Therefore, alternative technologies have been proposed to replace chromate treatment and chromate rust preventive pigments.

特許文献1には、トリポリリン酸アルミニウムなどのリン酸塩系防錆顔料とイオン交換シリカの混合物からなる防錆顔料を含有する塗料組成物から形成した塗膜が端面耐食性に優れていることが記載されている。一方、この塗膜をプライマーに適用しても、塩水噴霧試験において端面とクロスカット部のいずれも耐食性が不十分であることが、下記の非特許文献1に記載されている。   Patent Document 1 describes that a coating film formed from a coating composition containing a rust preventive pigment composed of a mixture of a phosphate-based rust preventive pigment such as aluminum tripolyphosphate and ion-exchange silica is excellent in end face corrosion resistance. Has been. On the other hand, even if this coating film is applied to a primer, it is described in the following non-patent document 1 that the corrosion resistance of both the end face and the crosscut portion is insufficient in the salt spray test.

特許文献2には、亜鉛めっき鋼板の表面に粒径10μm以下の酸化マグネシウムもしくは水酸化カルシウムを含有するプライマー層を形成し、その上にトップ層(上塗り塗膜)を形成した塗装鋼板が端面耐食性に優れていることが記載されている。端面耐食性は塩水噴霧試験による白錆発生率により評価している。   In Patent Document 2, a coated steel sheet in which a primer layer containing magnesium oxide or calcium hydroxide having a particle diameter of 10 μm or less is formed on the surface of a galvanized steel sheet, and a top layer (overcoat film) is formed thereon, is end face corrosion resistance. It is described that it is excellent. The end face corrosion resistance is evaluated by the white rust occurrence rate by the salt spray test.

特許文献3、4には、トリポリリン酸アルミニウム、ハイドロカルマイト化合物を防錆顔料として含む塗膜を備えるクロムフリー塗装鋼板が開示されている。   Patent Documents 3 and 4 disclose chromium-free coated steel sheets provided with a coating film containing aluminum tripolyphosphate and a hydrocalumite compound as anticorrosive pigments.

特開平9−12931号公報Japanese Patent Laid-Open No. 9-12931 特開2005−225052号公報JP 2005-225052 A 特開2004−237498号公報JP 2004-237498 A 特開2006−97023号公報JP 2006-97023 A 神戸製鋼技報Vol. 54, No. 1, 62-65頁(2004)Kobe Steel Engineering Reports Vol. 54, No. 1, pp. 62-65 (2004)

特許文献1〜4も含めて、クロムフリー塗装鋼板の技術はこれまでにもいくつか提案されており、いずれも所定の耐食性を備えることが記載されている。しかし、実際のクロムフリー塗装鋼板は、従来のクロム酸塩系防錆顔料を含有する塗装鋼板に比べると、端面耐食性に劣っていて、実用上の問題が発生していた。   Several techniques of chrome-free coated steel sheets including Patent Documents 1 to 4 have been proposed so far, and all of them are described as having predetermined corrosion resistance. However, the actual chromium-free coated steel sheet is inferior to the end face corrosion resistance as compared with the conventional coated steel sheet containing a chromate-based anticorrosive pigment, causing a problem in practical use.

具体的な例として、筐体(ハウジング)がクロムフリー塗装鋼板から作製されているエアコン室外機を、例えば屋上などの屋外に据え付けた建造物において、その建造物が完成してから販売・使用されるまでの間に、エアコン室外機に使用された塗装鋼板の切断端面から赤錆が発生し、周辺に錆が付着して変色するという現象が起こっていた。この端面の赤錆発生は、製品やその設置場所の外観を著しく悪化させるので、ユーザーから改善が望まれていた。   As a specific example, an air conditioner outdoor unit whose housing (housing) is made of chrome-free coated steel sheets is installed and installed outdoors, such as on the rooftop, and then sold and used after the building is completed. In the meantime, red rust was generated from the cut end face of the coated steel sheet used in the air conditioner outdoor unit, and the rust was attached to the surrounding area and discolored. The occurrence of red rust on the end face significantly deteriorates the appearance of the product and the place where it is installed.

本発明は、端面耐食性に優れ、端面からの赤錆発生が抑制されると同時に、従来のクロムフリー塗装鋼板と同等レベルの優れた耐食性を有し、かつ低コストで製造できる、クロムフリー塗装鋼板を提供することを目的とする。   The present invention provides a chromium-free coated steel sheet that is excellent in end face corrosion resistance, suppresses occurrence of red rust from the end face, and at the same time has excellent corrosion resistance equivalent to that of a conventional chromium-free painted steel sheet, and can be manufactured at low cost. The purpose is to provide.

塗装鋼板における赤錆発生は、基本的には基材である亜鉛系めっき鋼板のめっき層に含まれる亜鉛の犠牲防食能により防止される。すなわち、鋼板端面部が水分と接触したときに、鉄より優先的に亜鉛が溶解してイオン化することで、鉄のイオン化(酸化)に起因する赤錆の発生が防止される。   The occurrence of red rust in the coated steel sheet is basically prevented by the sacrificial anticorrosive ability of zinc contained in the plated layer of the zinc-based plated steel sheet as the base material. That is, when the steel plate end face portion comes into contact with moisture, zinc is preferentially dissolved and ionized over iron, thereby preventing red rust caused by iron ionization (oxidation).

しかし、実環境(例えば、前述したような屋外に長期間さらされるような環境)では、降雨や結露にさらされた塗装鋼板の端面部に付着する水は、あまり不純物が含まれておらず、電気伝導度が低いと考えられる。その結果、亜鉛の犠牲防食機能が働きにくく、赤錆が発生するのではないかと推定される。   However, in an actual environment (for example, an environment that is exposed to the outdoors for a long period of time as described above), the water adhering to the end surface of the coated steel plate that has been exposed to rainfall or condensation does not contain much impurities, It is thought that electric conductivity is low. As a result, it is presumed that the sacrificial anticorrosive function of zinc is difficult to work and red rust is generated.

クロム酸ストロンチウムで代表されるクロム酸塩系防錆顔料を塗膜中に配合した塗装鋼板は、耐端面赤錆性に優れることが知られているが、その端面赤錆の抑制機構としては次のように考えられる。   It is known that coated steel sheets containing chromate-based rust preventive pigments typified by strontium chromate in the coating are excellent in end face red rust resistance, but the end face red rust suppression mechanism is as follows. Can be considered.

(1)クロム酸ストロンチウムは、難溶性とされてはいるものの、クロムフリーの塗装鋼板に含まれる代表的な防錆顔料(例、トリポリリン酸アルミニウム、シリカ)と比較すれば、水に対する溶解度が高く、水に溶け易いため、水と接触した時に塗膜の端面から比較的容易に滲みだし、端面付近の水の電気伝導度を上げる。それにより、亜鉛の犠牲防食能を促進させ、鉄の酸化反応つまり赤錆発生を抑制する。   (1) Although strontium chromate is considered to be sparingly soluble, its solubility in water is high compared to typical anticorrosive pigments (eg, aluminum tripolyphosphate, silica) contained in chromium-free coated steel sheets. Since it is easily dissolved in water, it oozes relatively easily from the end face of the coating when it comes into contact with water, increasing the electrical conductivity of water near the end face. Thereby, the sacrificial anticorrosive ability of zinc is promoted, and iron oxidation reaction, that is, red rust generation is suppressed.

(2)溶解したクロム酸ストロンチウムは、水溶液の状態では弱アルカリ性であるため、鉄表面に不働態皮膜を形成する。
(3)亜鉛に対しては、クロメート皮膜と同様のCr6+の自己修復作用により、亜鉛の腐食の進行を抑制する。
(2) Since the dissolved strontium chromate is weakly alkaline in the aqueous solution state, it forms a passive film on the iron surface.
(3) For zinc, the progress of corrosion of zinc is suppressed by the self-repairing action of Cr6 + similar to the chromate film.

上記メカニズムのうち、(1)はクロム酸塩以外の化合物でも達成可能と考えられる。すなわち、鋼板(端面)に水が接触した際に、水の塗膜中の物質が水に溶け出すことで鋼板端面の水の電気伝導度を上昇させるような塗装鋼板は、端面の赤錆発生を生じににくいと考えられる。   Among the above mechanisms, (1) is considered to be achievable with compounds other than chromate. That is, when water comes into contact with the steel sheet (end face), the coated steel sheet that raises the electrical conductivity of the water on the end face of the steel sheet by dissolving the substance in the water coating into the water will cause red rust on the end face. It is considered difficult to occur.

この点、上記特許文献1で使用されているトリポリリン酸アルミニウムやシリカ、特許文献2で使用されている水酸化カルシウムや酸化マグネシウム、水酸化マグネシウムはいずれも水溶性が非常に小さい。従って、少なくとも上記(1)のメカニズムに必要な水溶性を有していない。そのため端面の赤錆防止効果は不十分となる。   In this respect, the aluminum tripolyphosphate and silica used in Patent Document 1 and the calcium hydroxide, magnesium oxide, and magnesium hydroxide used in Patent Document 2 are all very low in water solubility. Therefore, it does not have water solubility necessary for at least the mechanism (1). Therefore, the effect of preventing red rust on the end face is insufficient.

ここで、非特許文献1には、腐食環境下で溶出性の高い顔料を配合すると耐食性が改善される可能性があることに言及している。しかし、非特許文献1では、溶出性の具体的な程度や物質名についての言及はない上、塩水噴霧試験により端面の塗膜膨れ幅が評価されているのであって、後述するように実環境における端面の赤錆の防止に有効な開示がなされているとはいえない。   Here, Non-Patent Document 1 mentions that there is a possibility that the corrosion resistance may be improved by blending a pigment having a high elution property in a corrosive environment. However, in Non-Patent Document 1, there is no mention of a specific degree of elution and a substance name, and the swollen width of the coating film on the end face is evaluated by a salt spray test. It cannot be said that effective disclosure for preventing red rust on the end face is made.

しかし、(1)の効果だけであると、端面赤錆の抑制効果は得られるが、添加する顔料の種類によっては、従来から行われてきた塩水噴霧試験などの耐食性評価手法において耐食性が著しく損なわれることがある。即ち、クロム酸ストロンチウムが有する(2)および(3)の性能も合わせて発揮しうるクロムフリーの顔料を使用することが好ましい。   However, if only the effect of (1) is obtained, an effect of suppressing red rust on the end face can be obtained, but depending on the type of pigment to be added, the corrosion resistance is significantly impaired in a conventional corrosion resistance evaluation method such as a salt spray test. Sometimes. That is, it is preferable to use a chromium-free pigment that can also exhibit the performances (2) and (3) of strontium chromate.

本発明者らは、亜鉛系めっき鋼板を塗装基材とする塗装鋼板において、雨水と接触するような環境において亜鉛の犠牲防食能を確実に発揮させて端面耐食性を確保すると共に端面赤錆対策を実施していない従来のクロムフリー塗装鋼鈑と同等の耐食性を有する条件を特定して、本発明に到達した。   In the coated steel sheet using zinc-based plated steel sheet as the coating base, the present inventors ensured the sacrificial anticorrosive ability of zinc in an environment where it comes into contact with rainwater to ensure end surface corrosion resistance and implement countermeasures against end surface red rust. The present invention has been achieved by specifying conditions having corrosion resistance equivalent to that of a conventional chromium-free painted steel plate that has not been made.

本発明は、Zn含有めっき層を有するめっき鋼板からなる塗装基材の両面にそれぞれ2層以上の塗膜が形成されたクロムフリー塗装鋼板に関する。
第1の側面において、本発明に係る塗装鋼板は、前記塗装基材の少なくとも片面において、最外層の塗膜が下記(A)および(B)の要件を満たす少なくとも1種の非クロム化合物を含有し、該最外層の塗膜の膜厚が5〜30μmであり、最内層の塗膜の前記非クロム化合物の含有量が1質量%以下であり、この塗装鋼板を0.5cm×4.5cmの長方形に切断したサンプル100個を50℃のイオン交換水200mlに周波数40kHzの超音波振動付与下で30分浸漬した時の浸漬水の電気伝導度が30μS/cm以上であり、好ましくはこの浸漬水のP濃度が0.5μg/ml以上であることを特徴とする。
(A)イオン交換水(電気伝導度:4μS/cm以下)に0.1質量%濃度で溶解させた時の水の電気伝導度が500μS/cm以上、
(B)200℃までに熱分解を生じない。
The present invention relates to a chromium-free coated steel sheet in which two or more coating films are formed on both surfaces of a coated substrate made of a plated steel sheet having a Zn-containing plated layer.
1st side surface WHEREIN: The coated steel plate which concerns on this invention contains the at least 1 sort (s) of non-chromium compound with which the coating film of outermost layer satisfy | fills the requirements of following (A) and (B) in the at least single side | surface of the said coating base material. The coating thickness of the outermost layer is 5 to 30 μm, the content of the non-chromium compound in the coating layer of the innermost layer is 1% by mass or less, and this coated steel sheet is 0.5 cm × 4.5 cm. The electrical conductivity of the immersion water is 30 μS / cm or more when 100 samples of 100 mm cut into a rectangular shape are immersed in 200 ml of ion-exchanged water at 50 ° C. for 30 minutes under application of ultrasonic vibration at a frequency of 40 kHz. The P concentration of water is 0.5 μg / ml or more.
(A) The electric conductivity of water when dissolved in ion exchange water (electric conductivity: 4 μS / cm or less) at a concentration of 0.1% by mass is 500 μS / cm or more,
(B) No thermal decomposition occurs up to 200 ° C.

本発明において「イオン交換水」は、電気伝導度が4μS/cm以下となるまでイオン交換により脱イオン処理された水を意味する。梅雨時等の長雨等の不純物をほとんど含まない雨水や結露水の電気伝導度は、ほぼこのレベルである。   In the present invention, “ion-exchanged water” means water that has been deionized by ion exchange until the electric conductivity is 4 μS / cm or less. The electrical conductivity of rainwater and condensed water containing almost no impurities such as long rain during the rainy season is at this level.

第2の側面において、本発明に係る塗装鋼板は、前記塗装基材の少なくとも片面において、最内層以外の少なくとも1層の塗膜が下記(A)および(B)の要件を満たす少なくとも1種の非クロム化合物を含有し、最外層の塗膜の膜厚が5〜30μmであり、最内層の塗膜の前記非クロム化合物の含有量が1質量%以下であり、この塗装鋼板の表裏面をポリエステルフィルムで被覆してから0.5cm×4.5cmの長方形に切断したサンプル100個を50℃のイオン交換水200mlに周波数40kHzの超音波振動付与下で30分浸漬した時の浸漬水の電気伝導度が10μS/cm以上であり、好ましくはこの浸漬水のP濃度が0.5μg/ml以上であることを特徴とする。
(A)イオン交換水(電気伝導度:4μS/cm以下)に0.1質量%濃度で溶解させた時の水の電気伝導度が500μS/cm以上、
(B)200℃までに熱分解を生じない。
2nd side surface WHEREIN: The coated steel plate which concerns on this invention is at least 1 sort (s) of at least 1 type of coating films other than an innermost layer satisfy | filling the requirements of following (A) and (B) in the at least single side | surface of the said coating substrate. Contains a non-chromium compound, the film thickness of the outermost coating film is 5 to 30 μm, the content of the non-chromium compound in the innermost coating film is 1% by mass or less, Electricity of immersion water when 100 samples of 0.5cm x 4.5cm rectangle coated with polyester film were immersed in 200ml of ion exchange water at 50 ° C for 30 minutes under application of ultrasonic vibration of frequency 40kHz The conductivity is 10 μS / cm or more, and preferably, the P concentration of the immersion water is 0.5 μg / ml or more.
(A) The electric conductivity of water when dissolved in ion exchange water (electric conductivity: 4 μS / cm or less) at a concentration of 0.1% by mass is 500 μS / cm or more,
(B) No thermal decomposition occurs up to 200 ° C.

このクロムフリー塗装鋼板の少なくとも片面において、上記本発明の第1の側面では最外層の塗膜が、上記本発明の第2の側面では、塗膜が2層以上であって、その最内層以外の少なくとも1層の塗膜が、下記(A)および(B)の要件を満たす少なくとも1種の非クロム化合物(以下、この非クロム化合物を端面赤錆防止効果を付与する化合物ともいう)を含有することが好ましい:
(A)イオン交換水に0.1質量%濃度で溶解させた時の水の電気伝導度が500μS/cm以上、
(B)200℃までに熱分解を生じない。
In at least one side of the chromium-free coated steel sheet, the outermost layer coating film is the first side surface of the present invention, and the second side surface of the present invention is a coating film having two or more layers, other than the innermost layer. The at least one layer of coating film contains at least one non-chromium compound that satisfies the following requirements (A) and (B) (hereinafter, this non-chromium compound is also referred to as a compound that imparts an end face red rust preventing effect). Preferably:
(A) The electric conductivity of water when dissolved in ion exchange water at a concentration of 0.1% by mass is 500 μS / cm or more,
(B) No thermal decomposition occurs up to 200 ° C.

さらに別の側面から、本発明は、Zn含有めっき層を有するめっき鋼板からなる塗装基材の両面にそれぞれ2層以上の塗膜が形成されたクロムフリー塗装鋼板であって、
(1)少なくとも片面において、最外層の塗膜が、前記(A)および(B)を満たす少なくとも1種の非クロム化合物を0.5〜30質量%の量で含有し、該最外層の塗膜の膜厚が5〜30μmであり、最内層の塗膜の前記非クロム化合物の含有量が1質量%以下であるか、あるいは
(2)少なくとも片面において、最内層以外の少なくとも1層の塗膜が、前記(A)および(B)を満たす少なくとも1種の非クロム化合物を5〜30質量%の量で含有し、該最内層以外の少なくとも1層の塗膜の膜厚が5μm以上、50μm以下であり、かつ最外層の塗膜の膜厚が5〜30μmであり、最内層の塗膜の前記非クロム化合物の含有量が1質量%以下である、
ことを特徴とするクロムフリー塗装鋼板も提供する。
From yet another aspect, the present invention is a chromium-free coated steel sheet in which two or more coating films are formed on both sides of a coated base material made of a plated steel sheet having a Zn-containing plated layer,
(1) At least on one side, the outermost layer coating film contains at least one non-chromium compound satisfying the above (A) and (B) in an amount of 0.5 to 30% by mass, thickness of the membrane Ri 5~30μm der, der content of less than 1 wt% of the chromium-free compound of the innermost layer of the coating Luke, or
(2) On at least one surface, at least one coating film other than the innermost layer contains at least one non-chromium compound satisfying the above (A) and (B) in an amount of 5 to 30% by mass, thickness of the coating film at least one layer other than the inner layer 5μm or more and 50μm or less, and the thickness of the outermost layer of the coating film is Ri 5~30μm der, containing the non-chromium compound of the innermost layer of the coating amount Ru der than 1 mass%,
A chrome-free coated steel sheet is also provided.

好ましくは、前記(A)および(B)を満たす非クロム化合物は、アルカリ金属のリン酸塩および塩化物ならびにアルカリ土類金属の次亜リン酸塩から選ばれ、より好ましくはアルカリ金属のリン酸塩から選ばれる。   Preferably, the non-chromium compound satisfying the above (A) and (B) is selected from alkali metal phosphates and chlorides and alkaline earth metal hypophosphites, more preferably alkali metal phosphoric acid. Selected from salt.

好適態様において本発明のクロムフリー塗装鋼板は下記の1または2以上を満たす:
・前記片面は、好ましくは塗装鋼板としての裏面である;
・前記塗装基材と前記1層以上の塗膜との間にクロムを含有しない塗装下地処理皮膜を有する;
・前記塗装基材が少なくとも片面に2層以上の塗膜を有し、この2層以上の塗膜の最内層の塗膜が前記(A)および(B)の要件を満たす非クロム化合物を含有していない。
In a preferred embodiment, the chromium-free coated steel sheet of the present invention satisfies one or more of the following:
The one side is preferably the back side as a coated steel plate;
-Having a paint ground treatment film containing no chromium between the coating substrate and the one or more coating films;
-The coated substrate has at least two coatings on one side, and the innermost coating of the two or more coatings contains a non-chromium compound that satisfies the requirements (A) and (B). Not done.

本発明はまた、上記クロムフリー塗装鋼板を成型加工して得られた筐体にも関する The present invention also relates to a housing obtained by molding the chromium-free painted steel sheet .

従来、塗装鋼板の耐食性は、主に下塗り塗膜(プライマー層またはアンダーコート)、即ち、最内層の塗膜にクロム酸ストロンチウムなどの防錆顔料を比較的多量に含有させることによって確保されてきた。上塗り塗膜(トップコート)の方は、特におもて面側の場合、塗膜硬度、外観、耐汚染性、耐候性などの改善のために多くの添加成分を含有するので、多量の防錆顔料を添加する余地がないことも理由の1つである。   Conventionally, the corrosion resistance of a coated steel sheet has been ensured mainly by containing a relatively large amount of an anticorrosive pigment such as strontium chromate in the undercoat film (primer layer or undercoat), that is, the innermost film. . The top coating film (top coat) contains a lot of added components to improve the coating film hardness, appearance, stain resistance, weather resistance, etc., especially in the case of the front side. One reason is that there is no room for adding rust pigments.

本発明によれば、最外層の塗膜、あるいは塗膜が2層以上の場合には、最内層以外の塗膜に、アルカリ金属リン酸塩のような水溶性が比較的高い非クロム化合物を比較的少量含有させることによって、亜鉛系めっき鋼板を塗装基材とする塗装鋼板の端面耐食性が著しく改善され、端面における赤錆発生が防止される。   According to the present invention, when there are two or more outermost coating films or coating films, a non-chromium compound having a relatively high water solubility such as an alkali metal phosphate is applied to the coating film other than the innermost layer. By containing a relatively small amount, the end surface corrosion resistance of the coated steel plate using the zinc-based plated steel plate as a coating base is remarkably improved, and the occurrence of red rust on the end surface is prevented.

本発明に係る塗装鋼板は、雨水に曝される屋外環境においても基材の亜鉛系めっき鋼板が示す亜鉛の犠牲防食能を確実に発揮することができ、端面の赤錆発生を抑制し、赤錆発生に起因する製品やその設置場所の外観悪化を防止することができる。この赤錆抑制効果に加え、非クロム化合物を適切に選択することによって、端面むき出し部の腐食による塗膜膨れ等に関して、従来のクロムフリー塗装鋼鈑と同等レベルの耐食性が達成されうる。   The coated steel sheet according to the present invention can reliably exhibit the sacrificial anticorrosive ability of zinc exhibited by the galvanized steel sheet of the base material even in an outdoor environment exposed to rainwater, suppress the occurrence of red rust on the end face, and generate red rust. It is possible to prevent deterioration of the appearance of the product and its installation location due to the above. In addition to the effect of suppressing red rust, by appropriately selecting a non-chromium compound, the same level of corrosion resistance as that of a conventional chromium-free painted steel sheet can be achieved with respect to the swelling of the coating film due to the corrosion of the exposed end face.

端面赤錆性に優れた本発明に係る塗装鋼板は、打ち抜き加工による剥き出しの端面が多く露出する、特に屋外で使用される製品、例えば、エアコン室外機や給湯器等に適用するのに適している。但し、本発明に係る塗装鋼板の用途はそれに限定されるものではない。   The coated steel sheet according to the present invention with excellent end surface red rust property is suitable for application to products used outdoors, such as air conditioner outdoor units and water heaters, where many exposed end surfaces are exposed by punching. . However, the use of the coated steel sheet according to the present invention is not limited thereto.

下塗り塗膜に比較的水溶性の高い化合物を含有させた場合に見られる塗膜膨れ(ブリスター)発生機構の説明図である。It is explanatory drawing of the coating blister (blister) generation | occurrence | production mechanism seen when a relatively high water-soluble compound is contained in an undercoat coating film. 実施例において端面赤錆性試験に用いた試験片の形状と配置を示す説明図であり、(A)は正面図、(B)は側面図である。It is explanatory drawing which shows the shape and arrangement | positioning of the test piece used for the end face red rust test in the Example, (A) is a front view, (B) is a side view.

以下では、本発明の好ましい実施態様である、少なくとも片面に下塗り塗膜と上塗り塗膜の2層塗膜を有する塗装鋼板を例にとって、本発明に係る塗装鋼板について要素ごとに説明する。   Below, the coated steel plate which concerns on this invention is demonstrated for every element for the example of the coated steel plate which has a two-layer coating film of an undercoat and a top coat film on at least one side which is a preferable embodiment of this invention.

(1)基材鋼板
本発明の塗装鋼板では、端面からの赤錆発生に亜鉛の犠牲防食能を利用するので、基材鋼板は亜鉛を含有するめっき層を有する亜鉛系めっき鋼板、すなわち、亜鉛めっき鋼板または亜鉛合金めっき鋼板とする。
(1) Substrate steel plate In the coated steel plate of the present invention, since the sacrificial anticorrosive ability of zinc is used for the occurrence of red rust from the end face, the base steel plate is a zinc-based plated steel plate having a plated layer containing zinc, that is, galvanized. A steel plate or a zinc alloy plated steel plate is used.

亜鉛系めっき鋼板は、電気めっき、溶融めっき、気相めっきのいずれで作製したものでもよい。亜鉛系めっき鋼板の例としては、溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板、溶融5%Al−Zn合金めっき鋼板、溶融55%Al−Zn合金めっき鋼板、合金化溶融亜鉛めっき鋼板、電気Zn−Ni合金めっき鋼板などが挙げられる。   The zinc-based plated steel sheet may be produced by any of electroplating, hot dipping, and vapor phase plating. Examples of galvanized steel sheets include hot dip galvanized steel sheets, electrogalvanized steel sheets, molten 5% Al—Zn alloy plated steel sheets, molten 55% Al—Zn alloy plated steel sheets, alloyed hot dip galvanized steel sheets, and electrical Zn—Ni. Examples include alloy plated steel sheets.

亜鉛系めっき鋼板のめっき付着量も特に限定されず、一般的な範囲内でよい。好ましくは、片面平均付着量で100g/m2以下である。この付着量は、より具体的には、電気めっきの場合には3〜50g/m2、溶融めっきの場合には20〜100g/m2とすることがより好ましい。めっき付着量が少なすぎると耐食性が低下し、多すぎると加工性が劣化する。 The coating amount of the galvanized steel sheet is not particularly limited and may be within a general range. Preferably, the average adhesion amount on one side is 100 g / m 2 or less. More specifically, the adhesion amount is more preferably 3 to 50 g / m 2 in the case of electroplating and 20 to 100 g / m 2 in the case of hot dipping. If the coating amount is too small, the corrosion resistance is lowered, and if too much, the workability is deteriorated.

鋼板の厚さは、用途によって決定されるものではあるが、あまり厚い場合は赤錆が発生しやすいと考えられる。塗装鋼板として通常用いられる2.0mm以下程度の厚みであれば問題はない。   The thickness of the steel sheet is determined depending on the application, but it is considered that red rust is likely to occur when the steel sheet is too thick. There is no problem if the thickness is about 2.0 mm or less, which is usually used as a coated steel sheet.

(2)塗装前処理
塗装鋼板の製造では、塗膜密着性と耐食性を確保するため、塗装前に基材鋼板を前処理(下地処理)するのが普通である。この前処理は、一般には化成処理により行われ、その前に、Ni等の鉄族金属イオンを含む酸性もしくはアルカリ性水溶液による表面調整処理を施すことが多い。また、それ以前に、基材鋼板を清浄化するため、アルカリ脱脂などが通常は行われる。
(2) Pre-coating treatment In the production of coated steel plates, it is common to pre-treat (base treatment) the base steel plate before painting in order to ensure coating film adhesion and corrosion resistance. This pretreatment is generally performed by chemical conversion treatment, and before that, surface conditioning treatment is often performed using an acidic or alkaline aqueous solution containing an iron group metal ion such as Ni. Prior to that, alkaline degreasing or the like is usually performed to clean the base steel sheet.

化成処理は、クロムフリーの塗装鋼板とするために、クロメート処理ではなく、クロムを実質的に含有しない化成処理液を用いて行う。そのような化成処理液の代表例は、液相シリカ、気相シリカおよび/またはケイ酸塩などのケイ素化合物を主皮膜成分とし、場合により有機樹脂を共存させたシリカ系化成処理液である。   In order to obtain a chromium-free coated steel sheet, the chemical conversion treatment is performed using a chemical conversion treatment solution that does not substantially contain chromium, not a chromate treatment. A typical example of such a chemical conversion treatment liquid is a silica-based chemical conversion treatment liquid in which a silicon compound such as liquid phase silica, vapor phase silica and / or silicate is used as a main film component and an organic resin is allowed to coexist in some cases.

化成処理は、シリカ系化成処理に限られるものではない。シリカ系以外にも、塗装下地処理に使用するための各種のクロムフリー化成処理液が提案されており、また今後も提案されることが予想される。そのようなクロムフリー化成処理液を使用することもできる。化成処理により形成される化成処理皮膜の付着量は、使用する化成処理に応じて、適当な付着量を選択すればよい。シリカ系化成処理液の場合、通常の付着量は、Si換算で1〜20mg/m2の範囲内であろう。 The chemical conversion treatment is not limited to silica chemical conversion treatment. In addition to silica-based materials, various chromium-free chemical conversion treatment solutions for use in coating substrate treatment have been proposed and are expected to be proposed in the future. Such a chromium-free chemical conversion treatment solution can also be used. What is necessary is just to select the adhesion amount of the chemical conversion treatment film formed by chemical conversion treatment according to the chemical conversion treatment to be used. In the case of a silica-based chemical conversion treatment liquid, the usual adhesion amount will be in the range of 1 to 20 mg / m 2 in terms of Si.

(3)塗膜(下塗り塗膜と上塗り塗膜)
本実施形態では、おもて面と裏面がいずれも、下塗り塗膜(最内層塗膜)と上塗り塗膜(最外層塗膜)の2層を有する場合について説明する。しかし、一方または両方の面が1層のみの塗膜を有するか、あるいは3層以上の塗膜を有することも可能である。なお、塗膜上塗り塗膜はトップコート、下塗り塗膜はプライマーと呼ばれることがある。
(3) Coating film (undercoat and topcoat)
In the present embodiment, the case where both the front surface and the back surface have two layers of an undercoat coating film (innermost layer coating film) and a top coating film (outermost layer coating film) will be described. However, it is also possible for one or both surfaces to have only one layer of coating or to have three or more layers. The overcoating film is sometimes referred to as a top coat, and the undercoating film is sometimes referred to as a primer.

(3−1)上塗り塗膜(最外層塗膜)
本発明に係る塗装鋼板は、塗膜中に比較的水溶性が高い非クロム化合物を含有し、その雨水への溶出を利用して、基材の亜鉛系めっき鋼板が持つ犠牲防食能を十分に発揮させ、端面赤錆の発生を防止することに特徴がある。
(3-1) Top coat (outermost layer)
The coated steel sheet according to the present invention contains a non-chromium compound having a relatively high water solubility in the coating film, and sufficiently utilizes the elution into the rainwater to sufficiently provide the sacrificial anticorrosive ability of the base zinc-based plated steel sheet. It is characterized by preventing the occurrence of end surface red rust.

この溶出の程度は、次の(a)と(b)の2種類の手法により具体化できる:
(a)塗装鋼板を0.5cm×4.5cmの長方形に切断したサンプル100個を50℃のイオン交換水200mlに周波数40kHzの超音波振動付与下で30分浸漬する浸漬試験(以下、表面浸漬試験という)で得られた浸漬水の電気伝導度が30μS/cm以上であり、好ましくはこの浸漬水のP濃度が0.5μg/ml以上である;
(b)塗装鋼鈑の表裏面をポリエステルフィルムで被覆してから0.5cm×4.5cmの長方形に切断したサンプル100個を50℃のイオン交換水200mlに周波数40kHzの超音波振動付与下で30分浸漬浸漬する浸漬試験(以下、端面浸漬試験という)で得られた浸漬水の電気伝導度が10μS/cm以上であり、好ましくはこの浸漬水のP濃度が0.5μg/ml以上である。
The extent of this elution can be embodied by the following two methods (a) and (b):
(a) Immersion test (hereinafter referred to as surface immersion) in which 100 samples of a coated steel plate cut into a rectangle of 0.5 cm × 4.5 cm are immersed in 200 ml of ion-exchanged water at 50 ° C. for 30 minutes under application of ultrasonic vibration at a frequency of 40 kHz. The electrical conductivity of the immersion water obtained in the test) is 30 μS / cm or more, preferably the P concentration of the immersion water is 0.5 μg / ml or more;
(b) After coating the front and back surfaces of the coated steel plate with a polyester film, 100 samples cut into a rectangle of 0.5 cm × 4.5 cm were applied to 200 ml of ion-exchanged water at 50 ° C. with ultrasonic vibration at a frequency of 40 kHz. The electrical conductivity of the immersion water obtained in the immersion test (hereinafter referred to as end face immersion test) for 30 minutes is 10 μS / cm or more, preferably the P concentration of this immersion water is 0.5 μg / ml or more. .

(a)の表面浸漬試験では、塗装鋼板のサンプルの端面と表裏面のすべての表面がイオン交換水と接触するのに対し、(b)端面浸漬試験では、塗装鋼板のサンプルの端面だけがイオン交換水と接触する。浸漬水の好ましい電気伝導度は、(a)の表面浸漬試験では45μs/cm以上であり、(b)の端面浸漬試験では15μs/cm以上である。浸漬水の電気伝導度の上限は特に限定されないが、好ましくは、(a)の表面浸漬試験では700μs/cm以下、(b)の端面浸漬試験では、140μs/cm以下である。   In the surface immersion test of (a), the end surface and all the front and back surfaces of the coated steel sheet sample are in contact with ion-exchanged water, whereas in the (b) end surface immersion test, only the end surface of the coated steel sheet sample is ionized. Contact with exchange water. The preferable electrical conductivity of the immersion water is 45 μs / cm or more in the surface immersion test (a), and 15 μs / cm or more in the end surface immersion test (b). The upper limit of the electric conductivity of the immersion water is not particularly limited, but is preferably 700 μs / cm or less in the surface immersion test (a) and 140 μs / cm or less in the end surface immersion test (b).

雨水は塗装鋼板の端面だけでなく、表裏面の少なくとも片面にも接触できることが多い。製品がそのような状況で使用される場合には、塗膜の端面だけからでなく、塗膜の表面からもイオンが溶出可能であるので、表面浸漬試験により塗装鋼板の端面耐食性を規定することが好ましい。しかし、実際の腐食環境においては、塗膜の表面からの溶出が期待できない状況も想定される。そのような場合には、端面からの溶出だけで浸漬水の電気伝導度が上昇するのが好ましい。その場合を想定して、別の手法として、端面からの溶出だけを評価する端面浸漬試験によって塗装鋼板の端面耐食性を規定する。   In many cases, rainwater can contact not only the end surface of the coated steel sheet but also at least one side of the front and back surfaces. When the product is used in such a situation, ions can be eluted not only from the end face of the paint film but also from the surface of the paint film. Is preferred. However, in an actual corrosive environment, a situation where elution from the surface of the coating film cannot be expected is also assumed. In such a case, it is preferable that the electrical conductivity of immersion water rises only by the elution from an end surface. Assuming that case, as another method, the end surface corrosion resistance of the coated steel sheet is defined by an end surface immersion test in which only elution from the end surface is evaluated.

端面浸漬試験のサンプルは、適当な大きさの塗装鋼板の表裏面に市販のポリエステル粘着フィルムを貼付して密着させた後、所定寸法に切断することにより作製することができる。ポリエステル粘着フィルムとしては、例えば、日東電工製のポリエステル粘着テープNo.31シリーズを使用することができる。   The sample for the end face immersion test can be prepared by attaching a commercially available polyester adhesive film to the front and back surfaces of a coated steel sheet of an appropriate size and bringing it into close contact, and then cutting it to a predetermined size. As the polyester adhesive film, for example, Nitto Denko's polyester adhesive tape No. 31 series can be used.

本発明に係る塗装鋼板は、耐端面赤錆性について、上記(a)と(b)のいずれか一方の特性を満たせばよい(即ち、表面浸漬試験と端面浸漬試験の一方のみを実施すればよい)が、好ましくは(a)と(b)の両方の特性を満たす。   The coated steel sheet according to the present invention only needs to satisfy either one of the above-mentioned characteristics (a) and (b) for end face red rust resistance (that is, only one of the surface immersion test and the end surface immersion test may be performed). ) Preferably satisfy both properties (a) and (b).

表面浸漬試験において、浸漬後の浸漬水が上記(a)に規定する高い電気伝導度を有するようにするには、塗膜の端面だけからでなく、塗膜の表面からもイオンが溶出することが有利である。そのため、最外層塗膜である上塗り塗膜が、下記(A)および(B)を満たす溶解度が比較的高い、少なくとも1種の非クロム化合物を0.5〜30質量%の量で含有することが好ましい:
(A)イオン交換水(電気伝導度:4μS/cm以下)に0.1質量%濃度で溶解させた時の水の電気伝導度が500μS/cm以上、および
(B)200℃までに熱分解を生じない。
In the surface immersion test, in order for the immersion water after immersion to have the high electrical conductivity specified in (a) above, ions should be eluted not only from the end face of the coating film but also from the coating film surface. Is advantageous. Therefore, the top coat film which is the outermost layer paint film contains at least one non-chromium compound having a relatively high solubility satisfying the following (A) and (B) in an amount of 0.5 to 30% by mass. Is preferred:
(A) The electric conductivity of water when dissolved in ion exchange water (electric conductivity: 4 μS / cm or less) at a concentration of 0.1% by mass is 500 μS / cm or more, and
(B) No thermal decomposition occurs up to 200 ° C.

なお、(B)の条件は、塗装後の焼付け中に化合物が分解しないためのものである。
上記(A)および(B)の要件を満たす非クロム化合物の例は、アルカリ金属のリン酸塩もしくは塩化物またはアルカリ土類金属の次亜リン酸塩である。具体例としては、トリポリリン酸ナトリウム(三リン酸五ナトリウム)、リン酸二水素カリウム、リン酸水素二カリウム、リン酸二水素ナトリウム、塩化ナトリウム、次亜リン酸カルシウム等があげられる。
The condition (B) is for preventing the compound from decomposing during baking after coating.
Examples of non-chromium compounds that meet the above requirements (A) and (B) are alkali metal phosphates or chlorides or alkaline earth metal hypophosphites. Specific examples include sodium tripolyphosphate (pentasodium triphosphate), potassium dihydrogen phosphate, dipotassium hydrogen phosphate, sodium dihydrogen phosphate, sodium chloride, calcium hypophosphite and the like.

端面以外の耐食性とのバランスという点では、前記非クロム化合物としてアルカリ金属リン酸塩を選択することが好ましい。ここで、「リン酸塩」とは、オルトリン酸塩に限られるものではなく、トリポリリン酸塩のようなポリリン酸塩(縮合リン酸塩)、亜リン酸塩、メタリン酸塩、ピロリン酸塩なども含む。   In view of the balance with the corrosion resistance other than the end face, it is preferable to select an alkali metal phosphate as the non-chromium compound. Here, “phosphate” is not limited to orthophosphate, but polyphosphate (condensed phosphate) such as tripolyphosphate, phosphite, metaphosphate, pyrophosphate, etc. Including.

好ましいアルカリ金属リン酸塩としては、リン酸二水素ナトリウム、リン酸水素二カリウム、トリポリリン酸ナトリウム、リン酸二水素ナトリウム一水和物、リン酸二水素ナトリウム二水和物が挙げられ、これらの1種又は2種以上を使用することができる。また、好ましいアルカリ金属リン酸塩としては、リン酸二水素カリウムが挙げられる。   Preferred alkali metal phosphates include sodium dihydrogen phosphate, dipotassium hydrogen phosphate, sodium tripolyphosphate, sodium dihydrogen phosphate monohydrate, sodium dihydrogen phosphate dihydrate, and these 1 type (s) or 2 or more types can be used. Moreover, potassium dihydrogen phosphate is mentioned as a preferable alkali metal phosphate.

ただし、(A)および(B)を満たす非クロム化合物、例えば、リン酸塩であっても、必ずしも赤錆発生を抑制するわけではない。例えば、ハイドロカルマイト処理されたリン酸亜鉛(例として、東邦顔料製EXPERT NP-530 N20)や、ある種の亜リン酸マグネシウム(例えば、東邦顔料NP-1802)は、いずれもクロムフリー顔料としての市販されており、かつ上記(A)および(B)をいずれも満たすものであるが、これらを上塗り塗膜に1〜30質量%の量で添加しても、前述した表面浸漬試験における浸漬水の電気伝導度は30μS/cmを下回り、塗装鋼板の端面の赤錆抑制効果は十分でない。上記(A)および(B)を満たす化合物は、浸漬試験における浸漬水の電気伝導度が上記(a)または(b)を満たすようになるもの、好ましくはアルカリ金属リン酸塩から選択する。   However, even non-chromium compounds satisfying (A) and (B), for example, phosphates, do not necessarily suppress the occurrence of red rust. For example, hydrocalumite-treated zinc phosphate (for example, EXPERT NP-530 N20 manufactured by Toho Pigment) and certain types of magnesium phosphite (for example, Toho Pigment NP-1802) are both chromium-free pigments. Although it is commercially available and satisfies both of the above (A) and (B), even if these are added to the top coat in an amount of 1 to 30% by mass, the immersion in the surface immersion test described above The electric conductivity of water is less than 30 μS / cm, and the effect of suppressing red rust on the end face of the coated steel sheet is not sufficient. The compound satisfying the above (A) and (B) is selected from those whose electric conductivity of immersion water in the immersion test satisfies the above (a) or (b), preferably an alkali metal phosphate.

上記(A)および(B)を満たす非クロム化合物、好ましくはアルカリ金属リン酸塩の塗膜中の含有量は、表面浸漬試験において上記(a)の特性を満たすように、おもて面または裏面いずれか一方の最外層塗膜(例、上塗り塗膜)だけに含有させる場合、好ましくは1〜30質量%であり、より好ましくは2〜20質量%である。アルカリ金属リン酸塩等の非クロム化合物を両面の上塗り塗膜に含有させる場合は、下限値は前記の半分程度でよい。即ち、この場合の含有量は、好ましくは0.5〜30質量%、より好ましくは1〜20質量%でよい。この非クロム化合物を上塗り塗膜(最外層)以外の塗膜(下塗り塗膜や3層以上塗膜を有する場合の中塗り塗膜)にも含有させる場合には、含有量の下限はさらにやや低くなる場合がある。   The content of the non-chromium compound satisfying the above (A) and (B), preferably the alkali metal phosphate, in the coating film is such that the front surface or When it is contained only in the outermost layer coating film (eg, top coating film) on the back side, it is preferably 1 to 30% by mass, more preferably 2 to 20% by mass. When a non-chromium compound such as alkali metal phosphate is contained in the top coating film on both sides, the lower limit may be about half of the above. That is, the content in this case is preferably 0.5 to 30% by mass, more preferably 1 to 20% by mass. When this non-chromium compound is also contained in a coating film other than the top coating film (outermost layer) (an undercoating film or an intermediate coating film in the case of having three or more layers), the lower limit of the content is slightly more May be lower.

この場合の最外層塗膜(例、上塗り塗膜)の膜厚は特に制限されないが、通常0.5μm以上、50μm以下である。0.5μm以下では、耐食性をはじめとする塗膜に求められる性能が不十分となる。50μmを超えると、塗装鋼板の加工性が著しく低下する。好ましい膜厚は1〜30μmである。   The film thickness of the outermost layer coating film (eg, top coating film) in this case is not particularly limited, but is usually 0.5 μm or more and 50 μm or less. When the thickness is 0.5 μm or less, the performance required for the coating including corrosion resistance becomes insufficient. When it exceeds 50 micrometers, the workability of a coated steel plate will fall remarkably. A preferred film thickness is 1 to 30 μm.

一方、端面浸漬試験では、端面だけがイオン交換水と接触する。イオン交換水の接触面積が端面という狭い面積に限られるため、端面浸漬試験において浸漬水が上記(b)に規定する高い電気伝導度を有するようにするには、塗膜中に、上記(A)と(B)を満たす、溶解度が比較的高い、少なくとも1種の非クロム化合物をかなり高い割合、すなわち、5〜30質量%の範囲内の量で含有させることが好ましい。   On the other hand, in the end face immersion test, only the end face comes into contact with ion exchange water. Since the contact area of ion-exchanged water is limited to a narrow area such as an end face, in order to make the immersion water have high electrical conductivity as defined in (b) in the end face immersion test, the above (A ) And (B), and a relatively high solubility of at least one non-chromium compound is preferably included in a fairly high proportion, that is, in an amount in the range of 5-30% by weight.

端面浸漬試験では、表裏面はイオン交換水と接触しないため、上記(A)と(B)を満たす非クロム化合物を最外層の塗膜に含有させる必要はなく、最内層以外のいずれかの塗膜に含有させればよい。例えば、塗膜が3層である場合には、上記非クロム化合物は、中間層(中塗り塗膜)と最外層(上塗り塗膜)のいずれか一方または両方に含有させればよい。上記(A)と(B)を満たす非クロム化合物は、水溶性が比較的高いため、最内層(下塗り塗膜)に含有させると、塗膜膨れを生じ易くなる。   In the end face immersion test, the front and back surfaces do not come into contact with ion-exchanged water, and therefore it is not necessary to include a non-chromium compound satisfying the above (A) and (B) in the outermost layer coating, and any coating other than the innermost layer is required. What is necessary is just to make it contain in a film | membrane. For example, when the coating film has three layers, the non-chromium compound may be contained in one or both of the intermediate layer (intermediate coating film) and the outermost layer (top coating film). Since the non-chromium compound satisfying the above (A) and (B) has a relatively high water solubility, when it is contained in the innermost layer (undercoat coating film), it tends to cause swelling of the coating film.

この場合の上記(A)および(B)を満たす非クロム化合物、好ましくはアルカリ金属リン酸塩の塗膜中の含有量は、前述したように、5〜30質量%であり、好ましくは10〜30質量%、より好ましくは10〜20質量%である。この非クロム化合物を2以上の塗膜(例えば両面の上塗り塗膜)に含有させる場合でも、1塗膜当たり含有量はこの範囲とすることが好ましい。   In this case, the content of the non-chromium compound satisfying the above (A) and (B), preferably the alkali metal phosphate, in the coating film is 5 to 30% by mass, preferably 10 to 10%, as described above. 30 mass%, More preferably, it is 10-20 mass%. Even when this non-chromium compound is contained in two or more coating films (for example, a top coating film on both surfaces), the content per coating film is preferably within this range.

端面という小面積から水中に十分な量の上記非クロム化合物(好ましくはアルカリ金属リン酸塩)を溶出させるために、この非クロム化合物を含有させる最内層以外の塗膜(例えば、上塗り塗膜あるいは3層以上の中塗り膜)の膜厚を、他の性能を害さない範囲で大きくすることが好ましい。好ましい膜厚は5μm以上、50μm以下であり、より好ましい膜厚は8〜30μmである。   In order to elute a sufficient amount of the above-mentioned non-chromium compound (preferably alkali metal phosphate) into water from a small area called an end face, a coating film other than the innermost layer containing this non-chromium compound (for example, a top coating film or It is preferable to increase the thickness of the three or more intermediate coating films within a range that does not impair other performances. A preferable film thickness is 5 μm or more and 50 μm or less, and a more preferable film thickness is 8 to 30 μm.

アルカリ金属リン酸塩などの非クロム化合物を含有させる塗膜(本実施態様では上塗り塗膜)のベース樹脂は特に限定されず、例えば、ポリエステル樹脂、アクリル樹脂、エポキシ樹脂、ポリウレタン樹脂、シリコーンポリエステル樹脂、ポリ塩化ビニル樹脂、フッ素樹脂などから選んだ1種または2種以上を使用することができる。架橋剤は、後述する下塗り塗膜に関して述べたものと同様でよく、必要に応じて架橋触媒を配合する。   The base resin of the coating film (in this embodiment, the top coating film) containing a non-chromium compound such as alkali metal phosphate is not particularly limited. For example, polyester resin, acrylic resin, epoxy resin, polyurethane resin, silicone polyester resin One or more selected from polyvinyl chloride resin, fluororesin, and the like can be used. The crosslinking agent may be the same as that described for the undercoat film described later, and a crosslinking catalyst is blended as necessary.

上塗り塗膜は、上述した非クロム化合物のほか、通常用いられるクロムフリー防錆顔料を含んでいてもよい。たとえば、先に例示したハイドロカルマイト化合物や亜リン酸マグネシウム、トリポリリン酸アルミニウム、多孔質シリカ(吸油量:100〜1000ml/100g、比表面積:200〜1000m2/g、平均粒径:2〜30μm)等を含んでいてもよい。ハイドロカルマイト化合物以外のものが好ましい。 The top coat film may contain a commonly used chromium-free rust preventive pigment in addition to the non-chromium compound described above. For example, the previously exemplified hydrocalumite compound, magnesium phosphite, aluminum tripolyphosphate, porous silica (oil absorption: 100 to 1000 ml / 100 g, specific surface area: 200 to 1000 m 2 / g, average particle size: 2 to 30 μm ) And the like. Those other than hydrocalumite compounds are preferred.

上塗り塗膜は、通常、着色顔料を含有する。着色顔料の例としては、酸化亜鉛、酸化チタン、炭酸カルシウム、カオリンなどの無機顔料、銅フタロシアニン、トルイジンレッドなどの有機顔料、さらにはカーボンブラックなどが挙げられる。着色顔料の塗膜中の含有量は30質量%以下とするのが好ましく、上記非クロム化合物や防錆顔料と合わせた合計量は、塗膜の60質量%以下、特に50質量%以下とすることが好ましい。   The top coat film usually contains a color pigment. Examples of the color pigment include inorganic pigments such as zinc oxide, titanium oxide, calcium carbonate, and kaolin, organic pigments such as copper phthalocyanine and toluidine red, and carbon black. The content of the color pigment in the coating film is preferably 30% by mass or less, and the total amount combined with the non-chromium compound and the rust preventive pigment is 60% by mass or less, particularly 50% by mass or less of the coating film. It is preferable.

後で実施例7において例証するように、本発明に従って使用する水溶性が比較的高い非クロム化合物に加えて、それ以外の顔料、例えば、水溶性が低い防錆顔料、着色顔料を比較的多量に(例えば、20重量%以上)共存させることにより、塗装鋼板の両面をシールして行う端面赤錆試験における耐端面赤錆性が改善される。その理由は、水溶性の低い防錆顔料、着色顔料を塗膜中に大量に存在(20重量%以上)させることで、塗膜端面から塗膜内部への水の浸入量が多くなり(水溶性の低い防錆顔料、着色顔料と塗膜樹脂との界面に水が浸入)、その結果極端面に存在する水溶性が比較的高い非クロム化合物の溶出に加え、端面近傍や塗膜内部に存在する水溶性が比較的高い非クロム化合物も溶出するためではないかと推測される。   As illustrated later in Example 7, in addition to the relatively high water-soluble non-chromium compound used in accordance with the present invention, a relatively large amount of other pigments such as rust preventive pigments and colored pigments with low water solubility are used. (For example, 20% by weight or more) coexistence improves the end face red rust resistance in the end face red rust test performed by sealing both surfaces of the coated steel sheet. The reason for this is that a large amount of water-resistant rust preventive pigments and colored pigments are present in the coating film (20% by weight or more), so that the amount of water penetrating from the coating surface to the inside of the coating film increases (water-soluble Low rust preventive pigment, water permeates the interface between the color pigment and the coating resin). As a result, in addition to the elution of non-chromium compounds with relatively high water solubility present at the extreme surface, in the vicinity of the end surface and inside the coating It is presumed that non-chromium compounds having a relatively high water solubility are also eluted.

上塗り塗膜は、上記成分以外にも他の添加剤を含有しうる。例えば、耐候性を改善するのに有効な紫外線吸収剤および光安定剤、加工性(プレス成形性)の改善に有効なワックスである。   The top coat film may contain other additives in addition to the above components. For example, UV absorbers and light stabilizers effective for improving weather resistance, and waxes effective for improving processability (press moldability).

このように、上塗り塗膜には、耐食性以外の種々の性能が要求され、ことに塗装鋼板としてのおもて面には、意匠性、加工性、耐候性等が高いレベルで要求される。そこで、本発明の上記(A)および(B)を満たす非クロム化合物を含有させた上塗り塗膜は、塗装鋼板としての裏面側に形成することが好ましい。その場合、おもて面側の上塗り塗膜の構成は特に制限されない。例えば、意匠性、加工性、耐候性の改善を主に意図した添加物を含有させた塗膜構成とすることができる。   As described above, the top coat film is required to have various performances other than the corrosion resistance. Particularly, the front surface of the coated steel sheet is required to have a high level of designability, workability, weather resistance, and the like. Therefore, it is preferable that the top coat film containing the non-chromium compound satisfying the above (A) and (B) of the present invention is formed on the back side of the coated steel sheet. In that case, the structure of the top coat film on the front side is not particularly limited. For example, it can be set as the coating-film structure containing the additive mainly intended to improve the designability, workability, and weather resistance.

上塗り塗膜の膜厚は、0.5〜50μmであることが望ましく、さらに望ましくは5〜30μmである。塗膜厚が薄すぎると耐食性および隠蔽性が不十分であり、厚すぎるとコスト高および塗膜内部応力増大に伴う加工性、密着性が低下することがある。   The film thickness of the top coat film is desirably 0.5 to 50 μm, and more desirably 5 to 30 μm. If the coating film thickness is too thin, the corrosion resistance and the concealing property are insufficient, and if it is too thick, the cost and the workability and adhesion due to the increase in coating film internal stress may be reduced.

(3−2)下塗り塗膜(最内層塗膜)
耐食性を改善するためにクロム酸ストロンチウムなどのクロム酸塩系の防錆顔料を使用した従来の塗装鋼板では、この防錆顔料は下塗り塗膜に含有させることが多かった。その一つの理由は、前述したように、上塗り塗膜には種々の性能が要求され、塗膜設計の自由度が制約されるのに対して、下塗り塗膜の方は制約が少ないためである。
(3-2) Undercoat coating (innermost layer coating)
In conventional coated steel sheets using chromate-based rust preventive pigments such as strontium chromate in order to improve the corrosion resistance, the rust preventive pigments are often included in the undercoat. One reason for this is that, as described above, the top coat film requires various performances and the degree of freedom in designing the coat film is limited, while the undercoat film has fewer restrictions. .

本発明の塗装鋼板においても、下塗り塗膜に種々のクロムフリー防錆顔料や添加剤を含有させてもよい。しかし、前記(A)および(B)を満たす非クロム化合物を下塗り塗膜に実質的な量で含有させると、塗膜膨れ(ブリスター)が生じやすくなる。この現象の推定機構を図1に示す。(A)を満たす化合物は水溶性が比較的高いことから、塗装鋼板表面から侵入した水分は下塗り塗膜中の非クロム化合物付近に集中し、その水分は表面自由エネルギーの大きい塗膜鋼板界面に集中することでと塗膜膨れが発生すると考えられる。   Also in the coated steel sheet of the present invention, various undercoating rust preventive pigments and additives may be included in the undercoat coating film. However, when a non-chromium compound satisfying the above (A) and (B) is contained in a substantial amount in the undercoat coating film, blistering (blister) tends to occur. An estimation mechanism of this phenomenon is shown in FIG. Since the compound satisfying (A) has a relatively high water solubility, the water invading from the surface of the coated steel sheet is concentrated near the non-chromium compound in the undercoat film, and the water content is on the surface of the coated steel sheet having a large surface free energy. It is thought that the film bulges when concentrated.

この塗膜膨れを防止するために、前記(A)および(B)を満たす、比較的水溶性の高い非クロム化合物は、下塗り塗膜には実質的な量では含有させない(例えば、含有させても1質量%以下とする)ことが好ましい。   In order to prevent the swelling of the coating film, the non-chromium compound that satisfies the above (A) and (B) and has a relatively high water solubility is not contained in a substantial amount (for example, contained) in the undercoat coating film. Is preferably 1% by mass or less).

下塗り塗膜を構成するベース樹脂は、特に限定されず、エポキシ樹脂、ポリウレタン樹脂、ポリエステル樹脂など、これまでも塗装鋼板の下塗りに用いられてきた各種の樹脂から選択できる。ベース樹脂に組み合わせる架橋剤としては、例えば、メラミン樹脂、ポリイソシアネート化合物などが挙げられる。必要であれば、架橋触媒を配合する。   The base resin constituting the undercoat coating film is not particularly limited, and can be selected from various resins that have been used for undercoating of coated steel sheets, such as epoxy resins, polyurethane resins, and polyester resins. Examples of the crosslinking agent combined with the base resin include melamine resin and polyisocyanate compound. If necessary, a crosslinking catalyst is blended.

下塗り塗膜に含有させる防錆顔料としては、水溶性が比較的小さいもの、具体的には、イオン交換水(電気伝導度:4μS/cm以下)に0.1質量%濃度で溶解させた時の電気伝導度が700μS/cm未満、特に500μs/cm以下のものである。そのような防錆顔料の例としては、トリポリリン酸アルミニウム、リン酸および亜リン酸のZn、Mg、Al、Ti、Zr、およびCe塩、Caイオン交換シリカ、並びに吸油量100〜1000ml/100g、比表面積200〜1000m2/g、平均粒径2〜30μmの非晶質シリカ粒子が挙げられる。好ましい防錆顔料は、トリポリリン酸アルミニウムを初めとするリン酸塩系防錆顔料、シリカ系防錆顔料、またはその両者の組み合わせである。特に好ましいのは、トリポリリン酸アルミニウム、Ca交換シリカ、吸油量100〜1000ml/100g、比表面積200〜1000m2/g、平均粒径2〜30μmの多孔質シリカ粒子である。 The anticorrosive pigment to be contained in the undercoat film is one having a relatively low water solubility, specifically, when dissolved in ion exchange water (electric conductivity: 4 μS / cm or less) at a concentration of 0.1% by mass. Has an electric conductivity of less than 700 μS / cm, particularly 500 μs / cm or less. Examples of such rust preventive pigments include aluminum tripolyphosphate, phosphoric acid and phosphorous acid Zn, Mg, Al, Ti, Zr, and Ce salts, Ca ion exchange silica, and oil absorption of 100 to 1000 ml / 100 g, Specific examples include amorphous silica particles having a specific surface area of 200 to 1000 m 2 / g and an average particle size of 2 to 30 μm. Preferred rust preventive pigments are phosphate rust preventive pigments such as aluminum tripolyphosphate, silica rust preventive pigments, or a combination of both. Particularly preferred are aluminum tripolyphosphate, Ca-exchanged silica, porous silica particles having an oil absorption of 100 to 1000 ml / 100 g, a specific surface area of 200 to 1000 m 2 / g, and an average particle size of 2 to 30 μm.

下塗り塗膜中の防錆顔料の含有量は5〜60質量%とすることが好ましく、より好ましい含有量は10〜30質量%である。防錆顔料の量が少なすぎると、平板部や疵部の耐食性および端面の耐白錆性の改善効果のみならず、塗膜硬度の改善効果も十分に発揮されない。一方、防錆顔料の量が60質量%を超えると、塗装鋼板の加工性が低下する。   The content of the anticorrosive pigment in the undercoat coating film is preferably 5 to 60% by mass, and more preferably 10 to 30% by mass. If the amount of the rust preventive pigment is too small, not only the effect of improving the corrosion resistance of the flat plate portion and the heel portion and the white rust resistance of the end face, but also the effect of improving the coating film hardness is not sufficiently exhibited. On the other hand, when the amount of the rust preventive pigment exceeds 60% by mass, the workability of the coated steel sheet is lowered.

下塗り塗膜は、樹脂(および架橋剤)と防錆顔料以外に、着色顔料、レベリング剤、ビーズなどの1種または2種以上をさらに含有しうる。但し、顔料類の含有量が増えると、加工性が低下することがあるので、防錆顔料以外の顔料をさらに含有する場合でも、顔料の合計量は60質量%以下、特に加工性を重視する場合は35質量%以下とすることが好ましい。   In addition to the resin (and the crosslinking agent) and the rust preventive pigment, the undercoat coating film may further contain one or two or more of color pigments, leveling agents, beads and the like. However, as the pigment content increases, the processability may decrease. Therefore, even when a pigment other than the rust preventive pigment is further contained, the total amount of the pigment is 60% by mass or less, and particularly workability is emphasized. In such a case, the content is preferably 35% by mass or less.

下塗り塗膜の厚さ(乾燥塗膜厚)は1〜20μmであることが望ましい。さらに望ましくは、2〜15μmである。塗膜厚が薄すぎると耐食性が低下し、厚すぎるとコスト高に加え、塗膜の内部応力増大に伴って加工性、密着性が低下することがある。   The thickness of the undercoat coating film (dry coating film thickness) is desirably 1 to 20 μm. More desirably, the thickness is 2 to 15 μm. If the coating film thickness is too thin, the corrosion resistance is lowered. If the coating thickness is too thick, the cost and the workability and adhesion may be lowered as the internal stress of the coating film increases.

(3−3)塗装方法
上述した下塗り塗膜と上塗り塗膜は、いずれも必要成分を溶媒中に溶解または分散させた塗料(すなわち、下塗り塗料および上塗り塗料)の塗布および焼付け(加熱乾燥)により形成される。各塗料は溶媒が有機溶剤である溶剤系塗料と、溶媒が水または水と水混和性有機溶剤との混合溶媒である水系塗料のいずれでもよい。ただし、上塗り塗膜中に上記(A)および(B)を満たす非クロム化合物を含有させる場合、この非クロム化合物は水溶性が比較的高いことから、この上塗り塗膜を形成する塗料は溶剤系塗料とすることが好ましい。
(3-3) Coating method The above-described undercoat and topcoat are both applied and baked (heat-dried) with a paint in which necessary components are dissolved or dispersed in a solvent (ie, undercoat and topcoat). It is formed. Each paint may be either a solvent-based paint whose solvent is an organic solvent or a water-based paint whose solvent is a mixed solvent of water or water and a water-miscible organic solvent. However, when the non-chromium compound satisfying the above (A) and (B) is contained in the top coat film, since this non-chromium compound has a relatively high water solubility, the paint for forming this top coat film is a solvent system. A paint is preferred.

このような非クロム化合物を塗料に比較的高い割合で含有させると、塗料の粘度が上昇することがある。その場合には、必要に応じてアルコール等の脱水剤をあわせて適量含有させて塗料の粘度を調整してもよい。   When such a non-chromium compound is contained in the coating material at a relatively high ratio, the viscosity of the coating material may increase. In that case, the viscosity of the paint may be adjusted by adding an appropriate amount of a dehydrating agent such as alcohol, if necessary.

塗装は通常は2コート2ベーク方式であるが、焼付けを上塗り塗料の塗布後だけに行う2コート1ベーク方式とすることも場合によっては可能である。
下塗り塗料および上塗り塗料の塗布方法は特に限定されるものではなく、ロールコーター、カーテンフローコーター、スプレーガン、バーコーター等によって行えばよい。塗布後の焼付け(塗膜の乾燥)は、塗膜を構成する樹脂および架橋剤に応じて設定したPMT(鋼板最高到達温度)となるように行う。この温度は一般に100〜280℃の範囲内である。加熱方法は、熱風乾燥でも、炉内乾燥でもよい。
The coating is usually a two-coat two-bake method, but a two-coat one-bake method in which baking is performed only after application of the top coat is possible in some cases.
The method for applying the undercoat and topcoat is not particularly limited, and may be performed by a roll coater, a curtain flow coater, a spray gun, a bar coater, or the like. Baking after coating (drying of the coating film) is performed so as to have a PMT (maximum temperature reached by the steel sheet) set in accordance with the resin and the crosslinking agent constituting the coating film. This temperature is generally in the range of 100-280 ° C. The heating method may be hot air drying or oven drying.

(3−4)片面が3層以上の塗膜を有する場合
片面3層以上の塗膜を有する場合、いわゆる中塗り塗膜(上塗り(最外層)でも下塗り(最内層)でもない塗膜)中に、前述の(A)および(B)を満たす非クロム化合物(アルカリ金属リン酸塩等)を含有させてもよい。この場合、アルカリ金属リン酸塩等が中塗り塗膜中に含有される(A)および(B)の要件を満たす非クロム化合物は、主として端面からのみの溶出が期待される。
(3-4) When one side has a coating film of three or more layers When it has a coating film of three or more layers on one side, in a so-called intermediate coating film (coating film that is neither an upper coat (outermost layer) nor an undercoat (innermost layer)) In addition, non-chromium compounds (such as alkali metal phosphates) that satisfy the above-mentioned (A) and (B) may be contained. In this case, the non-chromium compound satisfying the requirements (A) and (B) in which the alkali metal phosphate or the like is contained in the intermediate coating film is expected to be eluted mainly only from the end face.

このような場合の中塗り塗膜については、前述した端面浸漬試験により試験して、浸漬水の電気伝導度が10μS/cm以上となるようにすればよい。その場合には、塗膜中の非クロム化合物の含有量を高めにし、及び/又は塗膜厚みを大きくすることが好ましいことについては前述した。   The intermediate coating film in such a case may be tested by the end face immersion test described above so that the electric conductivity of the immersion water is 10 μS / cm or more. In that case, it was mentioned above that it is preferable to increase the content of the non-chromium compound in the coating film and / or increase the thickness of the coating film.

(4)成型
本発明の塗装鋼板から、例えば、打ち抜き、プレス成型といった慣用の方法により筐体を形成することができる。この筐体は耐端面赤錆性に優れているので、例えば、エアコン室外機や給湯器などの屋外で使用されることの多い機器のハウジングとして有用であり、雨水にさらされても、赤錆発生が抑制される。
(4) Molding The casing can be formed from the coated steel sheet of the present invention by a conventional method such as punching or press molding. This housing has excellent resistance to red rust on the end face, so it is useful as a housing for equipment that is often used outdoors, such as air conditioner outdoor units and water heaters. Red rust is generated even when exposed to rainwater. It is suppressed.

(5)試験方法
本発明に関連し、塗装鋼板の端面の赤錆発生を模擬・評価するための試験方法について説明する。
(5) Test Method A test method for simulating and evaluating the occurrence of red rust on the end face of the coated steel sheet will be described in relation to the present invention.

従来の塗装鋼板の耐食性を評価する加速試験として、塩水噴霧試験あるいは塩水噴霧と湿潤、乾燥等を繰り返すサイクル腐食試験が多く用いられてきた。これらの試験方法はそれぞれに特徴のある優れた方法であるが、塗装鋼板の端面の赤錆発生に関しては、上記の試験で良好な結果であっても、実環境において良好とは言えない。   As an accelerated test for evaluating the corrosion resistance of a conventional coated steel sheet, a salt spray test or a cyclic corrosion test in which salt spray and wet, dry, etc. are repeated has been often used. Each of these test methods is an excellent method characterized by each, but regarding the occurrence of red rust on the end face of the coated steel sheet, even if the test results are good, it cannot be said that they are good in the actual environment.

これは、海岸地帯といった環境でない限り、雨水や結露により鋼板端面に付着する水分中の塩分は極めて低いと考えられ、このような環境(すなわち塩分の低い環境)では、塩基性塩化亜鉛のような安定な腐食生成物が形成されにくいなど、高塩分の環境とは腐食のメカニズムが異なり、耐食性の序列が変化しうるためと考えられる。   This is considered to be due to the extremely low salinity in the water adhering to the steel plate end face due to rainwater and condensation unless the environment is a coastal area. In such an environment (ie, an environment with low salinity) This is thought to be because the corrosion mechanism is different from the environment of high salinity, such as the formation of stable corrosion products, and the order of corrosion resistance can change.

これに対し、後述の実施例で述べるような、塗装鋼板をイオン交換水に浸漬する試験方法や湿潤試験の方が、雨水や結露に曝された場合の実環境に近く、塗装鋼板の端面の赤錆状況を評価する加速試験として適当である。   On the other hand, as described in the examples below, the test method in which the coated steel sheet is immersed in ion-exchanged water and the wet test are closer to the actual environment when exposed to rainwater or condensation, and the end surface of the coated steel sheet It is suitable as an accelerated test for evaluating the red rust situation.

塗料の試験:
板表面に最外層塗膜を形成するためのクロムフリー溶剤系塗料であって、前述した表面浸漬試験と同様に、塗料を乾燥させて得たフィルムを0.5cm×4.5cmの長方形に切断したサンプル100個を用いて、これらのサンプルを50℃のイオン交換水200mlに周波数40kHzの超音波振動付与下で30分浸漬した時の浸漬水の電気伝導度が50μS/cm以上であり、好ましくはこの浸漬水のP濃度が0.5μg/ml以上であるクロムフリー溶剤系塗料も提供する。この鋼板は好ましくは亜鉛系めっき鋼板である。
Paint test:
A chromium-free solvent-based coating composition for forming the outermost layer coating film on the steel sheet surface, as with surface immersion test described above, the coating material and the obtained dried film into a rectangular 0.5 cm × 4.5 cm Using 100 cut samples, these samples were immersed in 200 ml of ion-exchanged water at 50 ° C. for 30 minutes under application of ultrasonic vibration at a frequency of 40 kHz, and the electric conductivity of the immersion water was 50 μS / cm or more, A chromium-free solvent-based paint having a P concentration of the immersion water of preferably 0.5 μg / ml or more is also provided. This steel plate is preferably a galvanized steel plate.

すなわち、この塗料を上塗り塗膜とする塗装鋼板を製造することなく、塗料それ自体を適当な水不溶性かつ剥離性で耐熱性の基体(例、ポリテトラフルオロエチレンのシートまたはそれが被覆された基体)に直接塗布し、焼付けにより塗膜を乾燥させてフィルムを形成し、形成されたフィルムを基体から剥離した後、得られたフィルムから上記寸法のサンプル100個を作製して、イオン交換水への浸漬試験に付し、浸漬時の浸漬水の電気伝導度と好ましくはP含有量を測定することにより、その塗料を基材が亜鉛系めっき鋼板である塗装鋼板の上塗り塗膜の形成に使用した場合の耐端面赤錆性を予測することができる。この試験で所定の条件を満たす塗料を使用することにより、耐端面赤錆性に優れた塗装鋼板を製造することができる。   That is, without producing a coated steel sheet having this paint as a top coat, the paint itself is made into a suitable water-insoluble, peelable and heat-resistant substrate (for example, a polytetrafluoroethylene sheet or a substrate coated with it). ), And the coating film is dried by baking to form a film. After the formed film is peeled off from the substrate, 100 samples of the above dimensions are prepared from the obtained film, and then into ion-exchanged water. The coating is used for the formation of a top coat on a coated steel sheet whose base material is a galvanized steel sheet by measuring the electrical conductivity of the immersion water during immersion and preferably measuring the P content. The end face red rust resistance can be predicted. By using a paint satisfying a predetermined condition in this test, a coated steel sheet having excellent end surface red rust resistance can be produced.

前述した端面浸漬試験のように、端面からの溶出だけにより塗料を評価することも可能である。即ち、上記と同様に得た塗料のフィルムの表裏面をポリエステルフィルムで被覆してから0.5cm×4.5cmの長方形に切断したサンプル100個を50℃のイオン交換水(電気伝導度:4μS/cm以下)200mlに周波数40kHzの超音波振動付与下で30分浸漬した時の浸漬水の電気伝導度が10μS/cm以上となる塗料であれば、耐端面赤錆性に優れた塗装鋼板を製造することができる。   As in the end face immersion test described above, it is also possible to evaluate the paint only by elution from the end face. That is, 100 samples which were cut into a rectangle of 0.5 cm × 4.5 cm after covering the front and back surfaces of the paint film obtained in the same manner as described above with a polyester film were subjected to ion exchange water (electric conductivity: 4 μS) at 50 ° C. / Cm or less) If the paint has an electric conductivity of 10 μS / cm or more when immersed in 200 ml for 30 minutes under application of ultrasonic vibration at a frequency of 40 kHz, a coated steel sheet having excellent resistance to red rust on the end face is manufactured. can do.

いずれの場合も、試験用の塗料フィルムの厚みは、乾燥厚みで10μmとする。
塗膜フィルムのサンプルを用いた表面浸漬試験では、フィルムの両面が水と接触するので、塗装鋼板のサンプルを浸漬した場合より非クロム化合物の溶出量が多くなる。そのため、浸漬水の電気伝導度の下限を50μs/cmとする。この場合の浸漬水の電気伝導度は好ましくは80μs/cm以上、1000μs/cm以下である。
In either case, the thickness of the test paint film is 10 μm in terms of dry thickness.
In the surface immersion test using the sample of the coating film, both sides of the film come into contact with water, and thus the amount of elution of the non-chromium compound is larger than when the coated steel plate sample is immersed. Therefore, the lower limit of the electric conductivity of the immersion water is set to 50 μs / cm. In this case, the electric conductivity of the immersion water is preferably 80 μs / cm or more and 1000 μs / cm or less.

端面浸漬試験の場合の浸漬水の電気伝導度は、好ましくは15μs/cm以上、300μs/cm以下である。
なお、塗膜を剥離せずに、塗装基体に付着したままで塗料の試験を行う場合には、前述した塗装鋼板の場合と同様に試験を行い、同じ基準を採用すればよい。
The electric conductivity of the immersion water in the end face immersion test is preferably 15 μs / cm or more and 300 μs / cm or less.
In the case where the coating test is performed while the coating film is not peeled off while being adhered to the coating substrate, the same standard may be adopted by performing the testing in the same manner as in the case of the coated steel sheet described above.

以下の実施例により本発明の効果を例証する。実施例は例示を目的とし、本発明を制限するものではない。実施例中、%は特に指定しない限り質量%である。
各実施例で使用した非クロム化合物(又はクロムフリー顔料)の種類を、その液伝導度[イオン交換水(電気伝導度:4μS/cm以下、以下も同じ)に0.1質量%濃度で溶解させた時の水の電気伝導度]と共に表1にまとめて示す。また、従来のクロム系顔料の例としてのクロム酸ストロンチウムについてもあわせて表1に示す。
The following examples illustrate the effectiveness of the present invention. The examples are for purposes of illustration and are not intended to limit the invention. In Examples,% is% by mass unless otherwise specified.
The type of the non-chromium compound (or chromium-free pigment) used in each example was dissolved in the liquid conductivity [ion exchange water (electric conductivity: 4 μS / cm or less, the same applies below) at a concentration of 0.1% by mass. Table 1 together with the electrical conductivity of water when the Table 1 also shows strontium chromate as an example of a conventional chromium pigment.

Figure 0005299532
Figure 0005299532

表1に示した非クロム化合物及びクロム系顔料(クロム化合物)のうち、リン酸亜鉛ハイドロカルマイト、亜リン酸カルシウムハイドロカルマイト、亜リン酸マグネシウムは、いずれも東邦顔料社製のそれぞれNP−530 N20、NP−1020C N20、NP−1902であった。トリポリリン酸アルミニウムはテイカ社製K−WHITE #82、多孔質シリカは洞海化学工業社製H−31、カルシウムイオン交換シリカ(Ca交換シリカ)は富士シリシア化学製シールデックス、クロム酸ストロンチウムはキクチカラー社製ストクロC、チタニアは石原産業社製タイペークCR−90であった。それ以外の非クロム化合物はいずれも一般化学試薬を使用した。   Of the non-chromium compounds and chromium pigments (chromium compounds) shown in Table 1, zinc phosphate hydrocalumite, calcium phosphite hydrocalumite, and magnesium phosphite are all NP-530 N20 manufactured by Toho Pigment Co., Ltd. NP-1020C N20, NP-1902. Aluminum tripolyphosphate is K-WHITE # 82 manufactured by Teika, porous silica is H-31 manufactured by Dokai Chemical Industry, calcium ion-exchange silica (Ca-exchange silica) is Shieldex manufactured by Fuji Silysia Chemical, and strontium chromate is Kikuchi Color Stokuro C and Titania manufactured by Ishihara Sangyo Co., Ltd. were Type CR CR90. For other non-chromium compounds, general chemical reagents were used.

なお、各実施例における上塗り塗膜および下塗り塗膜の塗膜構成を表示する表において、非クロム化合物およびクロム系顔料(クロム化合物)の添加量(%)はいずれも塗料固形分に対する化合物の質量%(以下、PWCと略記する)で表示する。   In addition, in the table | surface which displays the coating-film structure of the top coat film and undercoat film in each Example, both the addition amount (%) of a non-chromium compound and chromium system pigment (chromium compound) is the mass of the compound with respect to paint solid content. % (Hereinafter abbreviated as PWC).

(実施例1)
塗装基材の板厚0.8mmの溶融亜鉛めっき鋼板(亜鉛付着量:片面当たり45g/m2、寸法:300×250mm)に、アルカリ脱脂および水洗を行った後、日本ペイント社製のシリカ系クロムフリー化成処理液(サーフコートEC2330)を用いて、この製品の指示通りに化成処理を両面に施した。化成処理は、付着量がSi付着量で4〜8mg/m2となるように行った。
Example 1
After applying alkali degreasing and water washing to a hot-dip galvanized steel sheet with a coating thickness of 0.8 mm (zinc adhesion amount: 45 g / m 2 per side, dimensions: 300 × 250 mm), a silica system manufactured by Nippon Paint Co., Ltd. Using a chromium-free chemical conversion treatment solution (Surfcoat EC2330), chemical conversion treatment was performed on both sides as instructed by this product. The chemical conversion treatment was performed so that the adhesion amount was 4 to 8 mg / m 2 in terms of Si adhesion amount.

表1から選んだ1種または2種以上の非クロム化合物を、これらを含有しない市販の下塗り塗料および上塗り塗料(使用した市販塗料をベース塗料という)に添加して、両面用の下塗り塗料、おもて面用の上塗り塗料、および裏面用の上塗り塗料を調製した。   One or two or more non-chromium compounds selected from Table 1 are added to a commercially available undercoat and topcoat that does not contain these compounds, and the undercoat for both sides A top coating for the front side and a top coating for the back side were prepared.

ベース塗料として使用したのは、おもて面、裏面共に下塗り塗料が日本ファインコーティングス社製のポリエステル系塗料(IP512プライマーのクリヤータイプ、主樹脂分子量10000以上、架橋剤:メラミン)、おもて面上塗り塗料は白色顔料としてチタニアを含有する日本ファインコーティングス社製の焼付け型ポリエステル樹脂塗料(IPT206−CF585、主樹脂分子量約8000、架橋剤:メラミン)、裏面上塗り塗料は日本ファインコーティングス社製の焼付け型ポリエステル樹脂塗料1(IPT236−CF756のPWC30%タイプ、主樹脂分子量約3000、架橋剤:メラミン)および日本ファインコーティングス社製の焼付け型ポリエステル樹脂塗料2(NFC880ベージュ色(PWC50%)タイプ:主樹脂分子量約4000、架橋剤メラミン)であった。なお、各塗料に添加した非クロム化合物の種類は、両面用の下塗り塗料については表2に、裏面用の上塗り塗料については表3にそれぞれ示す。おもて面用の上塗り塗料には非クロム化合物を添加しなかった。添加した非クロム化合物は、塗料重量100gに対して20gのガラスビーズを入れた容器をハイブリッドミキサーで20分間撹拌することにより、塗料中に均一に分散させた。   The base paint used was a polyester paint (IP512 primer clear type, main resin molecular weight 10000 or more, crosslinker: melamine) made by Nippon Fine Coatings Co., Ltd. The top coating is a baking type polyester resin coating (IPT206-CF585, main resin molecular weight of about 8000, melamine) made by Nippon Fine Coatings, which contains titania as a white pigment, and the back coating is manufactured by Nippon Fine Coatings. Baked polyester resin paint 1 (IPT236-CF756 PWC 30% type, main resin molecular weight about 3000, crosslinking agent: melamine) and Nihon Fine Coatings baked polyester resin paint 2 (NFC880 beige (PWC 50%) type : Resin molecular weight of about 4000, it was crosslinkers melamine). The types of non-chromium compounds added to each paint are shown in Table 2 for the undercoat paint for both sides and in Table 3 for the top coat for the back face. No non-chromium compound was added to the top coating for the front side. The added non-chromium compound was uniformly dispersed in the paint by stirring a container containing 20 g of glass beads for 100 g of the paint with a hybrid mixer for 20 minutes.

これらの塗料を用いて、最初におもて面の下塗り塗膜(PMT170℃)、2番目に裏面の下塗り塗膜(PMT220℃)、3番目におもて面の上塗り塗膜(PMT170℃)、最後に裏面の上塗り塗膜(PMT230℃)の順番および焼付け温度(PMT=最高到達板温)にて塗装を行い、表4に示す塗膜構成を有する塗装鋼板のサンプルを得た。塗装はバーコーターで行い、塗装厚みは、下塗り塗膜はおもて面側が11μm、裏面側が5μm、上塗り塗膜はおもて面側が16μm、裏面側が10μmに統一した。   Using these paints, first, the undercoat film on the front surface (PMT 170 ° C.), the second undercoat film on the back surface (PMT 220 ° C.), and the third, the top coat film on the front surface (PMT 170 ° C.) Finally, coating was performed at the order of the top coat film (PMT 230 ° C.) and the baking temperature (PMT = maximum reached plate temperature) on the back surface to obtain a sample of the coated steel sheet having the coating film composition shown in Table 4. The coating was performed with a bar coater, and the coating thickness was unified to 11 μm on the front side for the undercoat and 5 μm on the back side, and 16 μm for the top side and 10 μm on the back side.

また、従来の6価クロムを含有する比較例として、クロム酸ストロンチウムを防錆顔料とする下塗り塗料および上塗り塗料についても同様の実験および下記に示す性能評価試験を実施した。   In addition, as a comparative example containing conventional hexavalent chromium, a similar experiment and a performance evaluation test described below were carried out on an undercoating paint and an overcoating paint using strontium chromate as an antirust pigment.

こうして得られた塗装鋼板について、耐端面赤錆性、イオン交換水浸漬後の電気伝導度測定および溶液分析、湿潤試験時の塗膜膨れの有無について試験を実施した。試験結果も表4に併記する。   The coated steel sheet thus obtained was tested for end face red rust resistance, electrical conductivity measurement after immersion in ion-exchanged water, solution analysis, and the presence or absence of film swelling during a wet test. The test results are also shown in Table 4.

(1)端面赤錆性試験1
塗装鋼板の各サンプルについて、1cm×4cmの長方形サイズ(端面長さの和は10cm)の試験片をシャーリングにて10個ずつ切り出し(各サンプルにおける試験片の合計端面長さは1m)、10個の試験片を別々にビーカー内のイオン交換水20ml中に浸漬する。ビーカーを40℃の恒温槽に72時間放置した後、試験片を取り出し、各試験片の端面からの赤錆発生状況(端面から発生した赤錆により変色した溶液の色調を観察)を測定する。評価基準は次の通りであり、△以上を合格とする。
(1) End face red rust test 1
For each sample of the coated steel sheet, 10 test pieces each having a rectangular size of 1 cm × 4 cm (the sum of the end face lengths is 10 cm) are cut out by shearing (total end face length of the test pieces in each sample is 1 m), 10 pieces Are separately immersed in 20 ml of ion-exchanged water in a beaker. After leaving the beaker in a constant temperature bath at 40 ° C. for 72 hours, the test piece is taken out and the state of occurrence of red rust from the end face of each test piece (observation of the color tone of the solution discolored by the red rust generated from the end face) is measured. The evaluation criteria are as follows.

◎:赤錆発生ほとんど無(溶液は透明でほとんど着色無し)、
○:端面から若干の赤錆発生(溶液は透明、薄く赤色に着色)、
△:赤錆発生あり(溶液中に赤錆の固形分が少しあり、赤茶色に着色)、
×:大量の赤錆発生(溶液中に赤錆の固形分が多量にあり、濃い赤茶色に着色)。
◎: Almost no red rust (solution is transparent and almost not colored),
○: Some red rust is generated from the end face (solution is transparent, lightly colored in red),
Δ: Red rust is generated (the solution has a little solid red rust and colored reddish brown),
X: A large amount of red rust is generated (the solution contains a large amount of solid solid red rust and is colored dark red brown).

(2)端面赤錆性試験2
図2に模式的に示す試験片を作製し、湿潤試験条件(温度:49℃、相対湿度95%以上)に96時間放置した後の、各試験片の端面からの赤錆発生状況(図2に記載の端面赤錆評価部位の赤錆発生状況)を目視にて測定する。評価基準は次の通りであり、○以上を合格とする。
(2) End face red rust test 2
Test specimens schematically shown in FIG. 2 were prepared, and after the samples were left for 96 hours under wet test conditions (temperature: 49 ° C., relative humidity of 95% or higher), red rust was generated from the end faces of the test specimens (see FIG. 2). The state of occurrence of red rust at the end face red rust evaluation site is measured visually. The evaluation criteria are as follows.

◎:赤錆発生ほとんど無(端面から赤錆発生がほとんど見られない)、
○:端面から若干の赤錆発生(トータル長さ10mm未満の端面に赤錆発生あり)、
△:赤錆発生あり(長さ10mm以上、30mm未満の端面に赤錆発生あり)、1
×:大量の赤錆発生(端面のほぼ全長(30mm以上)に赤錆発生あり)。
◎: Almost no red rust generated (almost no red rust generated from the end face),
○: Some red rust is generated from the end face (red rust is generated on the end face with a total length of less than 10 mm),
Δ: Red rust is generated (red rust is generated on the end face having a length of 10 mm or more and less than 30 mm), 1
X: A large amount of red rust occurred (red rust occurred on almost the entire end face (30 mm or more)).

なお、図2に模式的に示した試験片は、塗装鋼板から打ち抜きにより作製した3枚の板を、スペーサーを使って支え板に図示のような配置で接着することにより作製した。スペーサーと支え板はいずれもポリ塩化ビニル製であった。図2(B)の点線部の拡大部は、打ち抜いた際のバリを模擬的に示す。打ち抜きでは、このように端部にバリが残り、図2に示すように配置した隣接する板の接触部では、実際にはバリ間に微小な隙間ができ、水がこの隙間から侵入しうる。エアコン室外機では、後で配管を接合できるように、叩いたらとれるようにバリで接続した加工部分を形成することがある。本試験は、このようなバリ部分からの水の浸入を模擬した試験である。   In addition, the test piece schematically shown in FIG. 2 was prepared by adhering three plates produced by punching from a coated steel plate to a support plate in the arrangement as shown in the figure using a spacer. Both the spacer and the support plate were made of polyvinyl chloride. The enlarged portion of the dotted line portion in FIG. 2 (B) schematically shows a burr when punched. In punching, burrs remain at the end portions in this way, and in the contact portions of adjacent plates arranged as shown in FIG. 2, a minute gap is actually formed between the burrs, and water can enter from this gap. In the outdoor unit of an air conditioner, a processed part connected with a burr may be formed so that the pipe can be joined later so that the pipe can be removed. This test is a test simulating such intrusion of water from the burr part.

(3)イオン交換水浸漬試験(浸漬水の電気伝導度)
(3−1)塗装鋼板の各サンプルについて、0.5cm×4.5cmの細片サイズ(端面長さの和は10cm)の試験片をシャーリングにて100個ずつ切り出す(各サンプルにおける試験片の合計端面長さは10m)。
(3−2)これら100個の試験片を、超音波振動装置に載置したビーカー内の50℃のイオン交換水200ml中に一緒に浸漬する。
(3−3)50℃の温度を保持したまま、ビーカーに40kHzの超音波振動を30分間付与する(使用装置:アズワン社製US CLEANER)。
(3−4)超音波振動の付与が終了した後、試験片を直ちに取り除き、得られた水溶液(浸漬水)を用いて、電気伝導度計(堀場製作所社製D−54SE)にて電気伝導度を測定する。
(3) Ion exchange water immersion test (electric conductivity of immersion water)
(3-1) For each sample of the coated steel plate, 100 pieces of 0.5 cm × 4.5 cm strip size pieces (the sum of the end face lengths is 10 cm) are cut out by shearing (each of the test pieces in each sample). Total end face length is 10m).
(3-2) These 100 test pieces are immersed together in 200 ml of 50 ° C. ion exchange water in a beaker placed on an ultrasonic vibration device.
(3-3) While maintaining a temperature of 50 ° C., a 40 kHz ultrasonic vibration is applied to the beaker for 30 minutes (device used: US CLEANER manufactured by ASONE).
(3-4) After the application of ultrasonic vibration is completed, the test piece is immediately removed, and the resulting aqueous solution (immersion water) is used to conduct electricity with an electric conductivity meter (D-54SE manufactured by Horiba, Ltd.). Measure the degree.

(4)湿潤試験後の塗膜膨れ
塗装鋼板の各サンプルから70mm×150mmのサイズの試験片をシャーリングにより切り出し、この試験片を上記(2)に記載したのと同様の湿潤試験条件下に96時間放置した後、平面部における塗膜膨れ(ブリスター)の発生状況(膨れ幅)を測定する。評価基準は次の通りである(○が合格):
○:平面部からの塗膜膨れの発生がほとんど無い(最大膨れ幅が2mm未満)、
×:平面部から幅2mm以上の塗膜膨れが多数発生。
(4) Swelling of paint film after wet test A test piece having a size of 70 mm × 150 mm was cut out from each sample of the coated steel sheet by shearing, and this test piece was subjected to the same wet test conditions as described in (2) above. After being allowed to stand for a period of time, the state of occurrence of the blister on the flat surface (blister width) is measured. The evaluation criteria are as follows (○ passes):
○: There is almost no occurrence of film swelling from the flat surface (maximum swelling width is less than 2 mm),
X: Many coating film swelling of width 2mm or more generate | occur | produces from a plane part.

Figure 0005299532
Figure 0005299532

Figure 0005299532
Figure 0005299532

Figure 0005299532
Figure 0005299532

表4に示すように、裏面側上塗り塗料がクロム酸ストロンチウムを含有しているNo.28、29および両面の下塗り塗料がクロム酸ストロンチウムを含有しているNo.30では、塗装鋼板のイオン交換水浸漬試験での浸漬水の電気伝導度は比較的低くても、端面耐食性に優れ、かつ塗膜膨れも良好であった。前述したように、クロム酸ストロンチウムは、亜鉛、鉄に対する不働態化効果が大きく、この不働態化効果により端面赤錆発生を抑制できるためである。   As shown in Table 4, in No. 28 and 29 in which the back side top coat contains strontium chromate and No. 30 in which the undercoat on both sides contains strontium chromate, ion-exchanged water for the coated steel sheet Even though the electric conductivity of the immersion water in the immersion test was relatively low, the end surface was excellent in corrosion resistance and the coating film swelled well. As described above, strontium chromate has a large passivation effect on zinc and iron, and this passivation effect can suppress the occurrence of red rust on the end face.

一方、クロムフリーの塗装鋼板では、イオン交換水浸漬試験での浸漬水の電気伝導度が30μS/cm以上である本発明に従ったNo.1〜1では、上塗り塗料と下塗り塗料のいずれもクロム化合物を含有していないにもかかわらず、端面赤錆性試験1および2の結果が良好で、端面耐食性に優れていた。特に、リン酸水素カリウムなどの水溶性が高い非クロム化合物を上塗り塗膜に含有させたNo.1〜11では、塗膜膨れの結果も良好であり、耐食性も良好であって、条件によっては、クロム酸ストロンチウムを含有させた場合に匹敵しうる結果が得られた。しかし、非クロム化合物を下塗り塗膜に含有させたNo.12では、端面耐食性は良好であるものの、塗膜膨れの結果は不芳となった。従って、端面赤錆を抑制しうる非クロム化合物は上塗り塗膜に含有させることが好ましいことがわかる。 On the other hand, in the painted steel sheet of the chromium-free, the Nanba1~1 1 according to the present invention that the electric conductivity of the immersion water in the deionized water immersion test is a 30 [mu] S / cm or more, none of the top coating and primer coating Although the chromium compound was not contained, the results of the end face red rust test 1 and 2 were good, and the end face corrosion resistance was excellent. In particular, No. 1 containing a non-chromium compound with high water solubility such as potassium hydrogen phosphate in the top coat film. 1 to 11, the result of the swelling of the coating film was good and the corrosion resistance was also good, and depending on the conditions, a result comparable to that obtained when strontium chromate was contained was obtained. However, in No. 12 in which the non-chromium compound was contained in the undercoat film, the end face corrosion resistance was good, but the result of the film swelling was unsatisfactory. Therefore, it can be seen that a non-chromium compound capable of suppressing end face red rust is preferably contained in the top coat film.

これに対し、上塗り塗膜と下塗り塗膜がクロム化合物を含有せず、本発明と同様に代替の非クロム化合物を添加しても、イオン交換水浸漬試験での浸漬水の電気伝導度が30μS/cmを下回ったNo.13〜27では、赤錆の発生が起こり易く、耐端面赤錆性が不芳であった。さらに、下塗り塗膜が水溶性の比較的高い非クロム化合物を含有しているNo.13〜16では、No.12と同様に、塗膜膨れが不芳となった。   On the other hand, the top coat film and the undercoat film do not contain a chromium compound, and even if an alternative non-chromium compound is added as in the present invention, the electrical conductivity of the immersion water in the ion exchange water immersion test is 30 μS. In Nos. 13 to 27 below / cm, red rust was likely to occur, and the red rust resistance was poor. Further, in Nos. 13 to 16 in which the undercoat coating film contains a non-chromium compound having a relatively high water solubility, similarly to No. 12, the swelling of the coating film was unsatisfactory.

表1に示すように、亜リン酸マグネシウムや亜リン酸カルシウムハイロドカルマイトは、上記要件(A)を満たす液伝導度を示し、比較的水溶性が高い。しかし、それを単独で上塗り塗膜に含有させたNo.18、22および27は、いずれも塗装鋼板のイオン交換水浸漬試験での電気伝導度が低く、トリポリリン酸アルミニウム、カルシウムイオン交換シリカ、もしくはチタニアといった水溶性の低い防錆顔料を上塗り塗膜に含有させたNo.13〜17、19〜21、23〜26と同様に、耐端面赤錆性に劣る結果となった。   As shown in Table 1, magnesium phosphite and calcium phosphite hydridocalumite exhibit liquid conductivity satisfying the above requirement (A) and are relatively water-soluble. However, Nos. 18, 22 and 27, each of which is contained alone in the top coat film, have low electrical conductivity in the ion-exchange water immersion test of the coated steel sheet, and are aluminum tripolyphosphate, calcium ion-exchange silica, or Similar to Nos. 13 to 17, 19 to 21, and 23 to 26, in which the top coating film contains a rust preventive pigment having low water solubility such as titania, the results were inferior to the end face red rust resistance.

これらの結果から、塗装鋼板の耐端面赤錆性を改善するには、上塗り塗膜に含有させた防錆用化合物それ自体の水溶性ではなく、塗装鋼板からの化合物の溶出性を評価するイオン交換水浸漬試験での浸漬水の電気伝導度が目安となることがわかる。   From these results, in order to improve the red rust resistance of the coated steel sheet, ion exchange that evaluates the elution of the compound from the coated steel sheet, not the water-solubility of the anticorrosive compound itself contained in the top coat film. It can be seen that the electrical conductivity of the immersion water in the water immersion test is a guide.

(実施例2)
塗装基材の板厚0.8mmの溶融亜鉛めっき鋼板(亜鉛付着量:片面当たり45g/m2、寸法:300×250mm)に、アルカリ脱脂および水洗を行った後、日本ペイント社製のシリカ系クロムフリー化成処理液(サーフコートEC2330)を用いて、この製品の指示通りに化成処理を両面に施した。化成処理は、付着量がSi付着量で4〜8mg/m2となるように行った。
(Example 2)
After applying alkali degreasing and water washing to a hot-dip galvanized steel sheet with a coating thickness of 0.8 mm (zinc adhesion amount: 45 g / m 2 per side, dimensions: 300 × 250 mm), a silica system manufactured by Nippon Paint Co., Ltd. Using a chromium-free chemical conversion treatment solution (Surfcoat EC2330), chemical conversion treatment was performed on both sides as instructed by this product. The chemical conversion treatment was performed so that the adhesion amount was 4 to 8 mg / m 2 in terms of Si adhesion amount.

表1から選んだ1種または2種以上の非クロム化合物を、これらを含有しない市販の下塗り塗料および上塗り塗料に添加して、おもて面用の下塗り塗料と裏面用の下塗り塗料および上塗り塗料を調製した。おもて面用の上塗り塗料には、この添加を行わなかった。裏面用の下塗り塗料は、後述するように、市販の下塗り塗料に、防錆顔料として表1に記載のトリポリリン酸アルミニウム35%とチタニア15%とを添加して調製した。添加した防錆顔料は、実施例1に記載した方法で均一分散させた。   One or more non-chromium compounds selected from Table 1 are added to commercially available undercoats and topcoats that do not contain them, and undercoats for the front side and undercoats and topcoats for the back side Was prepared. This addition was not made to the top coating for the front side. As will be described later, the undercoat paint for the back surface was prepared by adding 35% aluminum tripolyphosphate and 15% titania listed in Table 1 to the commercially available undercoat paint as anticorrosive pigments. The added anticorrosive pigment was uniformly dispersed by the method described in Example 1.

使用したベース塗料は、おもて面下塗り塗料が日本ファインコーティングス社製のポリエステル系塗料(FLC3900プライマーのクリヤータイプ、主樹脂分子量10000以上、架橋剤:メラミン、Tg約10℃)、裏面下塗り塗料が日本ファインコーティングス社製のポリエステル系塗料(PB10Pプライマーのクリヤータイプ、主樹脂分子量10000以上、架橋剤:メラミン、Tg約40℃にPWCでトリポリリン酸アルミニウムを35%、チタニアを15%添加した塗料)、おもて面上塗り塗料は白色顔料としてチタニアを含有する日本ファインコーティングス社製の焼付け型ポリエステル樹脂塗料(SRF05、主樹脂分子量約8000、架橋剤:メラミン)、裏面上塗り塗料は日本ファインコーティングス社製の焼付け型ポリエステル樹脂塗料(NSC880濃ベージュ色(PWC30%)タイプであった。   The base paint used was a front surface undercoat paint made by Nippon Fine Coatings, a polyester paint (CLC type of FLC3900 primer, main resin molecular weight 10000 or more, cross-linking agent: melamine, Tg of about 10 ° C.), back surface undercoat paint Made by Nippon Fine Coatings Co., Ltd. (PB10P primer clear type, main resin molecular weight 10000 or more, cross-linking agent: melamine, Tg approx. 40 ° C PWC with 35% aluminum tripolyphosphate and 15% titania added) ) The front surface top coat paint contains titania as a white pigment and is a baking type polyester resin paint (SRF05, main resin molecular weight of about 8000, crosslinker: melamine) manufactured by Nippon Fine Coatings Co., Ltd. Baking type made by Su Riesuteru resin paint (NSC880 dark beige (PWC30%) of a type.

添加した非クロム化合物の種類と添加量を、おもて面用の下塗り塗料については表5に、裏面用の上塗り塗料については表6にそれぞれ示す。
これらの塗料を用いて、最初におもて面の下塗り塗膜(PMT170℃)、2番目に裏面の下塗り塗膜(PMT220℃)、3番目におもて面の上塗り塗膜(PMT170℃)、最後に裏面の上塗り塗膜(PMT230℃)の順番および焼付け温度(PMT=最高到達板温)にて塗装を行い、表7に示す塗膜構成を有する塗装鋼板のサンプルを得た。塗装はバーコーターで行い、塗装厚みは、下塗り塗膜はおもて面側が10.5μm、裏面側が5μm、上塗り塗膜はおもて面側が14.5μm、裏面側が10μmに統一した。
The type and amount of the added non-chromium compound are shown in Table 5 for the undercoat paint for the front surface and in Table 6 for the top coat paint for the back surface.
Using these paints, first, the undercoat film on the front surface (PMT 170 ° C.), the second undercoat film on the back surface (PMT 220 ° C.), and the third, the top coat film on the front surface (PMT 170 ° C.) Finally, coating was performed at the order of the top coat film (PMT 230 ° C.) and the baking temperature (PMT = maximum reached plate temperature) on the back surface to obtain a sample of the coated steel sheet having the coating film composition shown in Table 7. The coating was performed with a bar coater, and the coating thickness was unified to 10.5 μm for the front side of the undercoat and 5 μm for the back side, 14.5 μm for the front side and 10 μm for the back side.

また、従来の6価クロムを含有する比較例として、クロム酸ストロンチウムを防錆顔料とする下塗り塗料および上塗り塗料についても同様の実験および下記に示す性能評価試験を実施した。   In addition, as a comparative example containing conventional hexavalent chromium, a similar experiment and a performance evaluation test described below were carried out on an undercoating paint and an overcoating paint using strontium chromate as an antirust pigment.

こうして得られた塗装鋼板について、耐端面赤錆性、イオン交換水浸漬後の電気伝導度測定および溶液分析、湿潤試験時の塗膜膨れの有無、塩水噴霧試験後の塗膜膨れ幅について下記の要領で試験を実施した。試験結果も表7に併記する。   About the coated steel sheet thus obtained, the following points regarding end face red rust resistance, electrical conductivity measurement and solution analysis after immersion in ion-exchanged water, presence or absence of coating film swelling during wet test, coating film swelling width after salt spray test The test was conducted at The test results are also shown in Table 7.

(1)端面赤錆性試験1
(2)端面赤錆性試験2
端面赤錆性試験1および2はいずれも実施例1に記載したように実施および評価した。
(1) End face red rust test 1
(2) End face red rust test 2
End face red rust tests 1 and 2 were both conducted and evaluated as described in Example 1.

(3)端面赤錆性試験3
本試験は端面のみからの溶出状況を調査するものである。
塗装鋼板の各サンプルの両面に予めポリエステル粘着テープ(日東電工社製)を貼付してシールした。その後、1cm×4cmの長方形サイズ(端面長さの和は10cm)の試験片をシャーリングにて10個ずつ切り出し(各サンプルにおける試験片の合計端面長さは1m)、10個の試験片を別々にビーカー内のイオン交換水20ml中に浸漬する。ビーカーを40℃の恒温槽に72時間放置した後、試験片を取り出し、各試験片の端面からの赤錆発生状況(端面から発生した赤錆により変色した溶液の色調を観察)を測定する。評価基準は次の通りであり、△以上を合格とする。
(3) End face red rust test 3
This test investigates the elution status from the end face only.
A polyester adhesive tape (manufactured by Nitto Denko) was previously applied to both surfaces of each sample of the coated steel plate and sealed. Thereafter, 10 test pieces each having a rectangular size of 1 cm × 4 cm (the sum of the end face lengths is 10 cm) are cut out by shearing (the total end face length of the test pieces in each sample is 1 m), and the 10 test pieces are separated. The sample is immersed in 20 ml of ion exchange water in a beaker. After leaving the beaker in a constant temperature bath at 40 ° C. for 72 hours, the test piece is taken out and the state of occurrence of red rust from the end face of each test piece (observation of the color tone of the solution discolored by the red rust generated from the end face) is measured. The evaluation criteria are as follows.

◎:赤錆発生ほとんど無し(溶液は透明でほとんど着色無し)、
○:端面から若干の赤錆発生(溶液は透明、薄く赤色に着色)、
△:赤錆発生あり(溶液中に赤錆の固形分が少しあり、赤茶色に着色)、
×:大量の赤錆発生(溶液中に赤錆の固形分が多量にあり、濃い赤茶色に着色)。
A: Almost no red rust is generated (the solution is transparent and hardly colored),
○: Some red rust is generated from the end face (solution is transparent, lightly colored in red),
Δ: Red rust is generated (the solution has a little solid red rust and colored reddish brown),
X: A large amount of red rust is generated (the solution contains a large amount of solid solid red rust and is colored dark red brown).

(3)イオン交換水浸漬試験(浸漬水の電気伝導度、溶液分析)
(3−1)塗装鋼板の各サンプルについて、0.5cm×4.5cmの細片サイズ(端面長さの和は10cm)の試験片をシャーリングにて100個ずつ切り出す(各サンプルにおける合計端面長さは10m)。
(3−2)これら100個の試験片を、超音波振動装置に載置したビーカー内の50℃のイオン交換水200ml中に一緒に浸漬する。
(3−3)50℃の温度を保持したまま、ビーカーに40kHzの超音波振動を30分間付与する(使用装置:アズワン社製US CLEANER)。
(3−4−1) 超音波振動の付与が終了した後、試験片を直ちに取り除き、得られた水溶液(浸漬水)を用いて、電気伝導度計(堀場製作所社製D−54SE)にて電気伝導度を測定する。
(3−4−2) 超音波振動の付与が終了した後、試験片を直ちに取り除き、得られた水溶液(浸漬水)を用いて、ICP−AESにより溶液中のP濃度を測定する。
(3) Ion-exchange water immersion test (electric conductivity of immersion water, solution analysis)
(3-1) For each sample of coated steel plate, 100 test pieces each having a 0.5 cm × 4.5 cm strip size (the sum of end face lengths is 10 cm) are cut out by shearing (total end face length in each sample) Is 10m).
(3-2) These 100 test pieces are immersed together in 200 ml of 50 ° C. ion exchange water in a beaker placed on an ultrasonic vibration device.
(3-3) While maintaining a temperature of 50 ° C., a 40 kHz ultrasonic vibration is applied to the beaker for 30 minutes (device used: US CLEANER manufactured by ASONE).
(3-4-1) After the application of ultrasonic vibration was completed, the test piece was immediately removed, and the obtained aqueous solution (immersion water) was used to measure the conductivity with an electric conductivity meter (D-54SE manufactured by Horiba, Ltd.). Measure electrical conductivity.
(3-4-2) After the application of ultrasonic vibration is completed, the test piece is immediately removed, and the P concentration in the solution is measured by ICP-AES using the obtained aqueous solution (immersion water).

(4)湿潤試験後の塗膜膨れ
塗装鋼板の各サンプルから70mm×150mmのサイズの試験片をシャーリングにより切り出し、この試験片を上記(2)に記載したのと同様の湿潤試験条件下に96時間放置した後、平面部における塗膜膨れ(ブリスター)の発生状況(膨れ幅)を測定する。評価基準は次の通りである(○が合格):
○:平面部からの塗膜膨れの発生がほとんど無い(最大膨れ幅が2mm未満)、
×:平面部から幅2mm以上の塗膜膨れが多数発生。
(4) Swelling of paint film after wet test A test piece having a size of 70 mm × 150 mm was cut out from each sample of the coated steel sheet by shearing, and this test piece was subjected to the same wet test conditions as described in (2) above. After being allowed to stand for a period of time, the state of occurrence of the blister on the flat surface (blister width) is measured. The evaluation criteria are as follows (○ passes):
○: There is almost no occurrence of film swelling from the flat surface (maximum swelling width is less than 2 mm),
X: Many coating film swelling of width 2mm or more generate | occur | produces from a plane part.

(5)塩水噴霧試験後の塗膜膨れ(耐食性)
塗装鋼板の各サンプルから70mm×150mmのサイズの試験片をシャーリングにより切り出した試験片をJIS K5600 7−1に準拠した塩水噴霧試験機に240時間入れた後、端面からの塗膜膨れ幅を測定して、耐食性を評価する。判定基準は、次の通りである(○が合格):
○:基準板と比較してほぼ同等の最大塗膜膨れ幅(+1.0mm未満)、
×:基準板と比較して最大塗膜膨れ幅の増大(1.0mm以上)、
[基準板は表6に記載のN5サンプル]。
(5) Swelling of paint film after salt spray test (corrosion resistance)
A test piece obtained by cutting a 70 mm × 150 mm size test piece from each sample of the coated steel sheet by shearing was placed in a salt spray tester in accordance with JIS K5600 7-1 for 240 hours, and then the film swelling width from the end face was measured. Then, the corrosion resistance is evaluated. Judgment criteria are as follows (○ is acceptable):
◯: Maximum equivalent film swell width (less than +1.0 mm) compared to the reference plate,
X: Increase of the maximum paint film swelling width (1.0 mm or more) compared to the reference plate,
[Reference plate is N5 sample shown in Table 6].

Figure 0005299532
Figure 0005299532

Figure 0005299532
Figure 0005299532

Figure 0005299532
Figure 0005299532

表7に示すように、おもて面の下塗り塗料または裏面の上塗り塗料がクロム酸ストロンチウムを含有しているN10およびO5では、塗装鋼板のイオン交換水浸漬試験での浸漬水の電気伝導度は比較的低いが、端面耐食性に優れ、湿潤試験後の塗膜膨れも良好で、かつ塩水噴霧試験での塗膜膨れ幅も良好であった。前述したように、クロム酸ストロンチウムは、亜鉛、鉄に対する不働態化効果が大きく、この不働態化効果により端面赤錆発生を抑制すると共に優れた耐食性能を有することができたものと推定される。   As shown in Table 7, in N10 and O5 in which the undercoat paint on the front surface or the top coat paint on the back surface contains strontium chromate, the electrical conductivity of the immersion water in the ion exchange water immersion test of the coated steel sheet is Although relatively low, it was excellent in end face corrosion resistance, the coating film swelling after the wet test was good, and the coating film swelling width in the salt spray test was also good. As described above, strontium chromate has a large passivating effect on zinc and iron, and it is presumed that the passivating effect can suppress generation of red rust on the end face and have excellent corrosion resistance.

一方、本発明に従って塗装鋼板のイオン交換水浸漬試験での浸漬水の電気伝導度が30μS/cm以上であるA5、B5、C5、C6、C7、D5、D6、D7,E5、E6、E7、F5、G5、H5、H6、H7、I5、I6、I7の各サンプルでは、上塗り塗料と下塗り塗料のいずれもクロム化合物を含有していないにもかかわらず、端面赤錆性試験1および2の結果が良好で、耐端面赤錆性に優れていた。特に、リン酸二水素カリウム、リン酸水素二カリウムなどの水溶性が高い非クロム化合物を上塗り塗膜に含有させたB5、C5、C6、C7、E5、E6、E7、G5、H5、H6、H7サンプルでは湿潤試験後の平面からの塗膜膨れの結果も良好であり、耐端面赤錆性も良好であって、条件によっては、クロム酸ストロンチウムを含有させた場合に匹敵しうる結果が得られた。しかし、この種の化合物を下塗り塗膜に含有させたN1、N3サンプルでは、耐端面赤錆性は比較的良好であるものの、湿潤試験後に塗膜表面の塗膜膨れの結果は不芳となった。 On the other hand, according to the present invention, the electrical conductivity of immersion water in the ion exchange water immersion test of the coated steel sheet is 30 μS / cm or more A5, B5, C5, C6, C7, D5, D6, D7, E5, E6, E7, F5, G5, H5, H6, H7, I5, I6, in each sample of I 7, none of the top coating and primer coating not containing chromium compounds Nevertheless, the end face rust resistance tests 1 and 2 results Was excellent and the end face was resistant to red rust. In particular, B5, C5, C6, C7, E5, E6, E7, G5, H5, H6, in which a non-chromium compound having high water solubility such as potassium dihydrogen phosphate and dipotassium hydrogen phosphate is contained in the top coat film, In the H7 sample, the result of the film swelling from the flat surface after the wet test is good, the end face red rust resistance is also good, and depending on the conditions, a result comparable to the case of containing strontium chromate is obtained. It was. However, in the N1 and N3 samples in which this kind of compound was contained in the undercoat film, although the end face red rust resistance was relatively good, the result of the film swell on the film surface after the wet test was unsatisfactory. .

また、A5、B5、C5、C6、C7、D5、D6、D7,E5、E6、E7、F5、G5、H5、H6、H7、N1、N3サンプルについては、耐端面赤錆性に加え、塩水噴霧試験後の塗膜膨れ幅も良好であり、溶出性の高い顔料を添加しても、従来の耐食性試験に悪影響を及ぼさないことが確認できた。これは、溶出性の高い顔料が、Pを含むアルカリ金属リン酸塩であると、これら顔料が溶出した際に、鋼板端面に何らかの作用(ホパイト,ホスホフィライト<燐葉石>等の形成)をしたためと思われる。   In addition to A5, B5, C5, C6, C7, D5, D6, D7, E5, E6, E7, F5, G5, H5, H6, H7, N1, N3 samples, salt spray The swollen width of the coating film after the test was also good, and it was confirmed that even if a pigment having a high dissolution property was added, the conventional corrosion resistance test was not adversely affected. This is because if the pigment having a high elution property is an alkali metal phosphate containing P, when these pigments are eluted, some action (formation of hopite, phosphophyllite, etc.) It seems to have done.

一方、溶出性の高い顔料が塩化ナトリウムなどの顔料を用いたI5、I6、I7、N4では、耐端面赤錆性は優れるが、塩水噴霧試験で評価される耐食性は低くなった。
これに対し、上塗り塗膜と下塗り塗膜がクロム化合物を含有せず、かつイオン交換水浸漬試験での浸漬水の電気伝導度が30μS/cmを下回った、本発明の範囲外の比較例であるJ5、K5、K6、L5、L7、M5、N5、N6、N7、N8、N9の各サンプルでは、赤錆の発生が起こり易く、耐端面赤錆性が不芳であった。さらに、下塗り塗膜が水溶性の比較的高い非クロム化合物を含有しているN2、N4サンプルでは、N1、N3サンプルと同様に、湿潤試験後の平面部からの塗膜膨れが不芳となった。
On the other hand, when I5, I6, I7, and N4 using pigments such as sodium chloride as the highly soluble pigment, the end face red rust resistance is excellent, but the corrosion resistance evaluated in the salt spray test is low.
On the other hand, in the comparative example outside the scope of the present invention, the top coat film and the undercoat film did not contain a chromium compound, and the electrical conductivity of the immersion water in the ion exchange water immersion test was less than 30 μS / cm. In certain samples of J5, K5, K6, L5, L7, M5, N5, N6, N7, N8, and N9, red rust was likely to occur and the end face red rust resistance was poor. Further, in the N2 and N4 samples in which the undercoat coating film contains a non-chromium compound having a relatively high water solubility, the swelling of the coating film from the flat surface after the wet test is unsatisfactory as in the N1 and N3 samples. It was.

実施例1でも述べたように、亜リン酸マグネシウムは、前記要件(A)を満たす液伝導度を示し、比較的水溶性が高い。しかし、それを単独で上塗り塗膜に含有させたM5サンプルは、塗装鋼板のイオン交換水浸漬試験での電気伝導度が低く、トリポリリン酸アルミニウム、カルシウムイオン交換シリカ、多孔質シリカもしくはチタニアといった水溶性の低い防錆顔料を上塗り塗膜に含有させたJ5、K5、K6、L5、L7、N5サンプルと同様に、耐端面赤錆性に劣る結果となった。   As described in Example 1, magnesium phosphite exhibits liquid conductivity that satisfies the requirement (A) and is relatively water-soluble. However, the M5 sample containing it alone in the top coat film has low electrical conductivity in the ion exchange water immersion test of the coated steel sheet, and is water-soluble such as aluminum tripolyphosphate, calcium ion exchange silica, porous silica or titania. In the same manner as the J5, K5, K6, L5, L7, and N5 samples in which the top coating film contains a low rust-preventive pigment, the results were inferior to the end face red rust resistance.

この結果から、塗装鋼板の耐端面赤錆性を改善するには、上塗り塗膜に含有させた防錆用化合物それ自体の水溶性ではなく、塗装鋼板からの化合物の溶出性を評価するイオン交換水浸漬試験での浸漬水の電気伝導度が目安となることがわかる。   From this result, in order to improve the red rust resistance of the coated steel sheet, ion-exchanged water that evaluates the elution of the compound from the coated steel sheet, not the water-solubility of the rust-preventing compound contained in the top coat film itself. It can be seen that the electrical conductivity of the immersion water in the immersion test is a guide.

(実施例3)
塗装基材の板厚0.8mmの溶融亜鉛めっき鋼板(亜鉛付着量:片面当たり45g/m2、寸法:300×250mm)に、アルカリ脱脂および水洗を行った後、日本ペイント社製のシリカ系クロムフリー化成処理液(サーフコートEC2330)を用いて、この製品の指示通りに化成処理を両面に施した。化成処理は、付着量がSi付着量で4〜8mg/m2となるように行った。
Example 3
After applying alkali degreasing and water washing to a hot-dip galvanized steel sheet with a coating thickness of 0.8 mm (zinc adhesion amount: 45 g / m 2 per side, dimensions: 300 × 250 mm), a silica system manufactured by Nippon Paint Co., Ltd. Using a chromium-free chemical conversion treatment solution (Surfcoat EC2330), chemical conversion treatment was performed on both sides as instructed by this product. The chemical conversion treatment was performed so that the adhesion amount was 4 to 8 mg / m 2 in terms of Si adhesion amount.

表1から選んだ1種または2種以上の非クロム化合物を、これらを含有しない市販の下塗り塗料および上塗り塗料に添加して、おもて面用の下塗り塗料と上塗り塗料および裏面用の下塗り塗料を調製した。裏面用の上塗り塗料には、この添加を行わなかった。後述するように、おもて面用の下塗り塗料は、市販の下塗り塗料に防錆顔料として表1に記載のトリポリリン酸アルミニウム21%とチタニア9%とを添加して調製し、裏面用の下塗り塗料は、市販の下塗り塗料に防錆顔料として表1に記載のトリポリリン酸アルミニウム35%とチタニア15%とを添加して調製した。添加した防錆顔料は、実施例1に記載した方法で均一分散させた。   One or more non-chromium compounds selected from Table 1 are added to commercially available undercoats and topcoats that do not contain these, and undercoats and topcoats for the front side and undercoats for the back side Was prepared. This addition was not made to the top coat for the back side. As will be described later, the undercoat paint for the front surface is prepared by adding 21% aluminum tripolyphosphate and 9% titania listed in Table 1 as a rust preventive pigment to a commercially available undercoat paint. The paint was prepared by adding 35% aluminum tripolyphosphate and 15% titania listed in Table 1 as a rust preventive pigment to a commercially available undercoat paint. The added anticorrosive pigment was uniformly dispersed by the method described in Example 1.

ベース塗料として使用したのは、おもて面下塗り塗料が日本ファインコーティングス社製のポリエステル系塗料(FLC3900プライマーのクリヤータイプ、主樹脂分子量10000以上、架橋剤:メラミン、Tg約10℃にPWCでトリポリリン酸アルミニウムを21%、チタニアを9%添加した塗料)、裏面下塗り塗料が日本ファインコーティングス社製のポリエステル系塗料(PB10Pプライマーのクリヤータイプ、主樹脂分子量10000以上、架橋剤:メラミン、Tg約40℃にPWCでトリポリリン酸アルミニウムを35%、チタニアを15%添加した塗料)、おもて面上塗り塗料は白色顔料としてチタニアを含有する日本ファインコーティングス社製の焼付け型ポリエステル樹脂塗料(SRF05、主樹脂分子量約8000、架橋剤:メラミン)、裏面上塗り塗料は日本ファインコーティングス社製の焼付け型ポリエステル樹脂塗料(NFC880ベージュ色(PWC30%)タイプ)であった。   As the base paint, the front surface undercoat paint was made by Nihon Fine Coatings polyester-based paint (FLC3900 primer clear type, main resin molecular weight 10000 or more, cross-linking agent: melamine, Tg about 10 ° C with PWC (Paint with 21% aluminum tripolyphosphate and 9% titania added), backside undercoat is a polyester-based paint made by Nippon Fine Coatings (PB10P primer clear type, main resin molecular weight 10000 or more, crosslinking agent: melamine, Tg approx. Bake type polyester resin paint (SRF05, made by Nippon Fine Coatings Co., Ltd.) containing 35% tripolyaluminum triphosphate and 15% titania added by PWC at 40 ° C. Main resin molecular weight about 800 , The cross-linking agent: melamine), back top coat paint was Japan Fine Coatings Co., Ltd. of baking type polyester resin paint (NFC880 beige (PWC30%) type).

おもて面用の上塗り塗料に添加した非クロム化合物の種類と添加量を表8に示す。
これらの塗料を用いて、最初に裏面の下塗り塗膜(PMT170℃)、2番目におもて面の下塗り塗膜(PMT220℃)、3番目に裏面の上塗り塗膜(PMT170℃)、最後に表8に記載の塗料を用いおもて面の上塗り塗膜(PMT230℃)の順番および焼付け温度にて塗装を行い、表9に示す塗膜構成を有する塗装鋼板のサンプルを得た。塗装はバーコーターで行い、塗装厚みは、下塗り塗膜はおもて面側が10.5μm、裏面側が5μm、上塗り塗膜はおもて面側が14.5μm、裏面側が10μmに統一した。
Table 8 shows the types and amounts of the non-chromium compounds added to the top coating for the front surface.
Using these paints, first the undercoat film on the back surface (PMT 170 ° C.), the second undercoat film on the front surface (PMT 220 ° C.), the third the top coat film on the back surface (PMT 170 ° C.), and finally Coating was performed in the order of the top coating film (PMT 230 ° C.) and baking temperature of the front surface using the coating materials shown in Table 8, and a sample of a coated steel sheet having the coating film composition shown in Table 9 was obtained. The coating was performed with a bar coater, and the coating thickness was unified to 10.5 μm for the front side of the undercoat and 5 μm for the back side, 14.5 μm for the front side and 10 μm for the back side.

こうして得られた塗装鋼板について、耐端面赤錆性、イオン交換水浸漬後の電気伝導度測定および溶液分析、湿潤試験時の塗膜膨れの有無、塩水噴霧試験後の塗膜膨れ幅について、下記の要領で試験を実施した。試験結果も表9に併記する。   About the coated steel sheet obtained in this way, resistance to red rust resistance, electrical conductivity measurement after immersion in ion-exchanged water and solution analysis, presence or absence of coating film swelling during a wet test, coating film swelling width after a salt spray test, The test was carried out as outlined. The test results are also shown in Table 9.

(1)端面赤錆性試験1
(2)端面赤錆性試験2
(3)イオン交換水浸漬試験(浸漬水の電気伝導度、溶液分析)
(4)湿潤試験後の塗膜膨れ
以上の各試験は、実施例1または実施例2に記載したのと同じ方法および評価基準で実施した。
(1) End face red rust test 1
(2) End face red rust test 2
(3) Ion-exchange water immersion test (electric conductivity of immersion water, solution analysis)
(4) Coating swelling after wetting test Each of the above tests was carried out by the same method and evaluation criteria as described in Example 1 or Example 2.

(5)塩水噴霧試験後の塗膜膨れ(耐食性)
実施例2に記載した通りに試験を実施し、評価した。ただし、基準板としては、表9に記載のTサンプルを使用した。
(5) Swelling of paint film after salt spray test (corrosion resistance)
Tests were performed and evaluated as described in Example 2. However, T samples listed in Table 9 were used as the reference plate.

(6)曲げ加工性
試験片に対して0T折り曲げ試験(23℃)を行い、180°密着曲げ塗膜についてクラック発生有無を10倍ルーペおよび目視にて調査した。評価基準は下記の通りで、◎印および○印の場合を良好とした:
◎:まったくクラックなし、
○:ごくわずかなクラックあり(ルーペでは確認できるが、目視では確認できないレベル)、
△:若干クラックあり(目視で5個以内)、
×:かなり多くのクラックあり(目視で5個より多い)。
(6) Bending Workability A 0T bending test (23 ° C.) was performed on the test piece, and the presence or absence of cracks in the 180 ° adhesive bending coating film was examined with a 10-fold magnifier and visually. The evaluation criteria are as follows, and the case of ◎ and ○ is good:
A: No crack at all,
○: There are very few cracks (a level that can be confirmed with a magnifying glass but cannot be visually confirmed)
Δ: Slightly cracked (within 5 visually)
X: There are quite many cracks (more than 5 visually).

(7)鉛筆硬度試験
JIS K5600−5−4(引っかき硬度(鉛筆法))の方法に従って測定した。評価基準は下記の通りで、○印の場合を良好とした:
○:F以上、
△:HB、
×:B以下。
(7) Pencil hardness test It measured according to the method of JIS K5600-5-4 (scratch hardness (pencil method)). The evaluation criteria are as follows, and the case of ○ mark is good:
○: F or more,
Δ: HB,
X: B or less.

(8)塗膜密着性
各サンプルについて、沸騰水に2時間浸漬させ、取り出し後、碁盤目に2mm間隔でマス目をいれ(25マス)、その後エリクセン試験機で、碁盤目を入れた箇所を7mm張り出し、その部分にテープを貼り付け、塗膜残存率を測定した。評価基準は下記の通りで、○以上を合格とした:
◎:25/25、
○:23〜24/25、
△:15〜23/25、
×:15以下/25。
(8) Coating film adhesion For each sample, immerse it in boiling water for 2 hours, take it out, put squares at 2 mm intervals in the grid (25 squares), and then use the Eriksen test machine Overhanging 7 mm, a tape was applied to the portion, and the coating film residual ratio was measured. The evaluation criteria are as follows, and a score of ○ or higher was accepted:
A: 25/25,
○: 23-24 / 25,
Δ: 15-23 / 25,
X: 15 or less / 25.

(9)耐薬品性
各サンプルを、常温環境下(23℃)で5%HCl水溶液(酸)または5%NaOH水溶液(塩基)に24時間浸漬させた際の塗膜表面の外観について評価を行った。判定基準は、下記の通りで、○以上を合格とした:
○:ブリスター発生なし、0.5mm未満のブリスター発生、
△:0.5mm以上3.0mm未満のブリスター発生、
×:3.0mm以上のブリスター発生。
(9) Chemical resistance Each sample was evaluated for the appearance of the coating surface when immersed in a 5% HCl aqueous solution (acid) or 5% NaOH aqueous solution (base) for 24 hours in a normal temperature environment (23 ° C.). It was. Judgment criteria are as follows.
○: No blister occurred, blister less than 0.5 mm occurred,
Δ: Blister generation of 0.5 mm or more and less than 3.0 mm,
X: Blister generation of 3.0 mm or more occurred.

Figure 0005299532
Figure 0005299532

Figure 0005299532
Figure 0005299532

塗装鋼板のイオン交換水浸漬試験での浸漬水の電気伝導度が30μS/cm以上である本発明に従ったP、Q、Rサンプルでは、上塗り塗料と下塗り塗料のいずれもクロム化合物を含有していないにもかかわらず、端面赤錆性試験1および2の結果が良好で、耐端面赤錆性に優れていた。本系については、いずれもおもて面の上塗り塗膜に非クロム化合物を添加しているため、すべてのサンプルにおいて湿潤試験後の平面からの塗膜膨れの結果も良好であった。   In the P, Q, and R samples according to the present invention in which the electric conductivity of immersion water in the ion exchange water immersion test of the coated steel sheet is 30 μS / cm or more, both the top coat and the undercoat paint contain a chromium compound. Despite the absence, the results of end face red rust test 1 and 2 were good, and the end face red rust resistance was excellent. In this system, since a non-chromium compound was added to the top coating film on the front surface, the results of coating swelling from the flat surface after the wet test were good in all samples.

また、非クロム化合物がアルカリ金属リン酸塩であるP,Qサンプルについては、耐端面赤錆性に加え、塩水噴霧試験後の塗膜膨れ幅についても、比較サンプルと比べて劣っておらず、溶出性の高い顔料を添加しても従来の耐食性試験に悪影響を及ぼさないことが確認できた。その理由については実施例2で述べたとおりである。   In addition, for P and Q samples whose non-chromium compound is an alkali metal phosphate, in addition to the end face red rust resistance, the film swell width after the salt spray test is not inferior to that of the comparative sample. It was confirmed that the addition of a highly soluble pigment did not adversely affect the conventional corrosion resistance test. The reason is as described in the second embodiment.

一方、溶出性の高い非クロム化合物が塩化ナトリウムであるRサンプルでは、耐端面赤錆性の改善という本発明の目的は達成できるが、塩水噴霧試験により評価される耐食性が低下した。   On the other hand, in the R sample in which the non-chromium compound having high elution property is sodium chloride, the object of the present invention of improving the end face red rust resistance can be achieved, but the corrosion resistance evaluated by the salt spray test is lowered.

これに対し、上塗り塗膜と下塗り塗膜がクロム化合物を含有せず、かつイオン交換水浸漬試験での浸漬水の電気伝導度が30μS/cmを下回った、比較例のS、Tサンプルでは、赤錆の発生が起こり易く、耐端面赤錆性が不芳であった。   On the other hand, in the S and T samples of the comparative examples, the top coat film and the undercoat film do not contain a chromium compound, and the electrical conductivity of the immersion water in the ion exchange water immersion test is less than 30 μS / cm. Red rust was likely to occur and the end face red rust resistance was unsatisfactory.

また、裏面とは異なり各種性能が要求されるおもて面の上塗り塗膜に非クロム化合物を添加しても、P〜Tのサンプルはいずれも加工性、硬度、密着性、耐薬品性を十分に満たすことが確認できた。   In addition, even if a non-chromium compound is added to the top coating on the front surface where various performances are required, unlike the back surface, all the P to T samples have processability, hardness, adhesion, and chemical resistance. It was confirmed that it was sufficiently satisfied.

この結果から、塗装鋼板の耐端面赤錆性を改善するには、上塗り塗膜に含有させた防錆用化合物それ自体の水溶性ではなく、塗装鋼板からの化合物の溶出性を評価するイオン交換水浸漬試験での浸漬水の電気伝導度が目安となることがわかる。   From this result, in order to improve the red rust resistance of the coated steel sheet, ion-exchanged water that evaluates the elution of the compound from the coated steel sheet, not the water-solubility of the rust-preventing compound contained in the top coat film itself. It can be seen that the electrical conductivity of the immersion water in the immersion test is a guide.

(実施例4)
塗装基材の表10に示す各種のZn系めっき鋼板に、アルカリ脱脂および水洗を行った後、日本ペイント社製のシリカ系クロムフリー化成処理液(サーフコート欧州共同体2330)を用いて、この製品の指示通りに化成処理を両面に施した。化成処理は付着量がSi付着量で4〜8mg/m2となるように行った。
Example 4
After various alkali-degreasing and water washing were performed on various Zn-based plated steel sheets shown in Table 10 of the coated substrate, this product was prepared using a silica-based chromium-free chemical conversion treatment liquid (Surfcoat European Community 2330) manufactured by Nippon Paint Co., Ltd. Chemical conversion treatment was applied to both sides as instructed. The chemical conversion treatment was performed so that the adhesion amount was 4 to 8 mg / m 2 in terms of the Si adhesion amount.

表1から選んだ非クロム化合物を、これらを含有しない市販の下塗り塗料および上塗り塗料に添加して、おもて面用の下塗り塗料と裏面用の下塗り塗料および上塗り塗料を調製した。おもて面用の上塗り塗料には、この添加を行わなかった。後述するように、おもて面用の下塗り塗料は、市販の下塗り塗料に防錆顔料として表1に記載のトリポリリン酸アルミニウム21%とチタニア9%とを添加して調製し、裏面用の下塗り塗料は、市販の下塗り塗料に防錆顔料として表1に記載のトリポリリン酸アルミニウム35%とチタニア15%とを添加して調製した。添加した防錆顔料は、実施例1に記載した方法で均一分散させた。   A non-chromium compound selected from Table 1 was added to a commercially available undercoat and topcoat that did not contain them to prepare a frontcoat undercoat and a backcoat undercoat and topcoat. This addition was not made to the top coating for the front side. As will be described later, the undercoat paint for the front surface is prepared by adding 21% aluminum tripolyphosphate and 9% titania listed in Table 1 as a rust preventive pigment to a commercially available undercoat paint. The paint was prepared by adding 35% aluminum tripolyphosphate and 15% titania listed in Table 1 as a rust preventive pigment to a commercially available undercoat paint. The added anticorrosive pigment was uniformly dispersed by the method described in Example 1.

使用したベース塗料は、おもて面下塗り塗料が日本ファインコーティングス社製のポリエステル系塗料(FLC3900プライマーのクリヤータイプ、主樹脂分子量10000以上、架橋剤:メラミン、主樹脂Tg約10℃にPWCでトリポリリン酸アルミニウムを21%、チタニアを9%添加した塗料)、裏面下塗り塗料が日本ファインコーティングス社製のポリエステル系塗料(PB10Pプライマーのクリヤータイプ、主樹脂分子量10000以上、架橋剤:メラミン、主樹脂Tg約40℃にPWCでトリポリリン酸アルミニウムを35%、チタニアを15%添加した塗料)、おもて面上塗り塗料は白色顔料としてチタニアを含有する日本ファインコーティングス社製の焼付け型ポリエステル樹脂塗料(SRF05、主樹脂分子量約8000、架橋剤:メラミン)、裏面上塗り塗料は日本ファインコーティングス社製の焼付け型ポリエステル樹脂塗料(NFC880ベージュ色(PWC30%)タイプ)であった。   The base paint used is a front surface undercoat polyester-based paint manufactured by Nippon Fine Coatings (clear type FLC3900 primer, main resin molecular weight 10000 or more, crosslinker: melamine, main resin Tg at about 10 ° C with PWC (Paint containing 21% aluminum tripolyphosphate and 9% titania), and backside undercoat is a polyester-based paint made by Nihon Fine Coatings (PB10P primer clear type, main resin molecular weight 10000 or more, crosslinker: melamine, main resin Tg approx. 40 ° C. with PWC and 35% tripolyaluminum phosphate and 15% titania added), and the top surface paint is titania as a white pigment. SRF05, main resin molecular weight about 8 00, the cross-linking agent: melamine), back top coat paint was Japan Fine Coatings Co., Ltd. of baking type polyester resin paint (NFC880 beige (PWC30%) type).

裏面用の上塗り塗料に添加した非クロム化合物の種類と添加量を表11に示す。
これらの塗料を用いて、最初におもて面の下塗り塗膜(PMT170℃)、2番目に裏面の下塗り塗膜(PMT220℃)、3番目におもて面の上塗り塗膜(PMT170℃)、最後に表12に記載の塗料を用い裏面の上塗り塗膜(PMT230℃)の順番および焼付け温度にて塗装を行い、表13に示す塗膜構成を有する塗装鋼板のサンプルを得た。塗装はバーコーターで行い、塗装厚みは、下塗り塗膜はおもて面側が10.5μm、裏面側が5μm、上塗り塗膜はおもて面側が14.5μm、裏面側が10μmに統一した。
Table 11 shows the types and addition amounts of the non-chromium compounds added to the top coating for the back surface.
Using these paints, first, the undercoat film on the front surface (PMT 170 ° C.), the second undercoat film on the back surface (PMT 220 ° C.), and the third, the top coat film on the front surface (PMT 170 ° C.) Finally, coating was carried out at the order of the top coating film (PMT 230 ° C.) and baking temperature of the back surface using the coating materials shown in Table 12, and a sample of a coated steel sheet having the coating film composition shown in Table 13 was obtained. The coating was performed with a bar coater, and the coating thickness was unified to 10.5 μm for the front side of the undercoat and 5 μm for the back side, 14.5 μm for the front side and 10 μm for the back side.

こうして得られた塗装鋼板について、耐端面赤錆性、イオン交換水浸漬後の電気伝導度測定および溶液分析、湿潤試験時の塗膜膨れの有無、塩水噴霧試験後の塗膜膨れ幅について、下記の要領で試験を実施した。試験結果も表12に併記する。   About the coated steel sheet obtained in this way, resistance to red rust resistance, electrical conductivity measurement after immersion in ion-exchanged water and solution analysis, presence or absence of coating film swelling during a wet test, coating film swelling width after a salt spray test, The test was carried out as outlined. The test results are also shown in Table 12.

(1)端面赤錆性試験1
(2)イオン交換水浸漬試験(浸漬水の電気伝導度、溶液分析)
(3)湿潤試験後の塗膜膨れ
以上の各試験は、実施例1または実施例2に記載したのと同じ方法および評価基準で実施した。
(1) End face red rust test 1
(2) Ion exchange water immersion test (electric conductivity of immersion water, solution analysis)
(3) Coating swelling after wetting test Each of the above tests was carried out by the same method and evaluation criteria as described in Example 1 or Example 2.

(4)塩水噴霧試験後の塗膜膨れ(耐食性)
実施例2に記載した通りに試験を実施し、評価した。ただし、基準板として、表12のJサンプルを使用した。
(4) Swelling of coating film after salt spray test (corrosion resistance)
Tests were performed and evaluated as described in Example 2. However, the J sample in Table 12 was used as the reference plate.

Figure 0005299532
Figure 0005299532

Figure 0005299532
Figure 0005299532

Figure 0005299532
Figure 0005299532

表12からわかるように、塗装鋼板のイオン交換水浸漬試験での浸漬水の電気伝導度が30μS/cm以上である本発明に従ったサンプルでは、上塗り塗料と下塗り塗料のいずれもクロム化合物を含有していないにもかかわらず、また、めっき基材の種類によらず、端面赤錆性試験の結果が良好で、耐端面赤錆性に優れていた。いずれのサンプルも、裏面の上塗り塗料に溶解度が比較的大きな非クロム化合物を添加しているため、湿潤試験後の平面からの塗膜膨れの結果も良好であった。   As can be seen from Table 12, in the sample according to the present invention in which the electric conductivity of the immersion water in the ion exchange water immersion test of the coated steel sheet is 30 μS / cm or more, both the top coat and the undercoat paint contain a chromium compound. In spite of not having done, and regardless of the type of the plating base material, the end face red rust test result was good and the end face red rust resistance was excellent. In all the samples, since a non-chromium compound having a relatively high solubility was added to the back coating on the back surface, the result of the film swelling from the flat surface after the wet test was also good.

これに対し、上塗り塗膜と下塗り塗膜がクロム化合物を含有せず、かつイオン交換水浸漬試験での浸漬水の電気伝導度が30μS/cmを下回った比較例サンプルでは、いずれのめっき基材でも赤錆の発生が起こり易く、耐端面赤錆性が不芳であった。   On the other hand, in the comparative sample in which the top coat film and the undercoat film do not contain a chromium compound and the electrical conductivity of the immersion water in the ion exchange water immersion test is less than 30 μS / cm, any plating substrate However, red rust was easily generated, and the red rust resistance of the end face was poor.

(実施例5)
塗装基材の板厚0.8mmの溶融亜鉛めっき鋼板(亜鉛付着量:片面当たり45g/m2、寸法:300×250mm)に、アルカリ脱脂および水洗を行った後、日本ペイント社製のシリカ系クロムフリー化成処理液(サーフコートEC2330)を用いて、この製品の指示通りに化成処理を両面に施した。化成処理は、付着量がSi付着量で4〜8mg/m2となるように行った。
(Example 5)
After applying alkali degreasing and water washing to a hot-dip galvanized steel sheet with a coating thickness of 0.8 mm (zinc adhesion amount: 45 g / m 2 per side, dimensions: 300 × 250 mm), a silica system manufactured by Nippon Paint Co., Ltd. Using a chromium-free chemical conversion treatment solution (Surfcoat EC2330), chemical conversion treatment was performed on both sides as instructed by this product. The chemical conversion treatment was performed so that the adhesion amount was 4 to 8 mg / m 2 in terms of Si adhesion amount.

表1から選んだ非クロム化合物を、これらを含有しない市販の下塗り塗料および上塗り塗料に添加して、おもて面用の下塗り塗料、裏面用の下塗り塗料、おもて面用の中塗り塗料、おもと面用の上塗り塗料、および裏面用の上塗り塗料を調製した。本実施例では、おもて面は上塗り、中塗り、下塗りの3層塗膜とした。後述するように、おもて面用の下塗り塗料は、市販の下塗り塗料に防錆顔料として表1に記載のトリポリリン酸アルミニウム21%とチタニア9%とを添加して調製し、裏面用の下塗り塗料は、市販の下塗り塗料に防錆顔料として表1に記載のトリポリリン酸アルミニウム35%とチタニア15%とを添加して調製した。添加した防錆顔料は、実施例1に記載した方法で均一分散させた。   A non-chromium compound selected from Table 1 is added to a commercially available undercoat and topcoat that does not contain these compounds, so that an undercoat for the front surface, an undercoat for the back surface, and an intermediate paint for the front surface A top coat for the front side and a top coat for the back side were prepared. In this example, the front surface was a three-layer coating film of top coat, intermediate coat and undercoat. As will be described later, the undercoat paint for the front surface is prepared by adding 21% aluminum tripolyphosphate and 9% titania listed in Table 1 as a rust preventive pigment to a commercially available undercoat paint. The paint was prepared by adding 35% aluminum tripolyphosphate and 15% titania listed in Table 1 as a rust preventive pigment to a commercially available undercoat paint. The added anticorrosive pigment was uniformly dispersed by the method described in Example 1.

使用したベース塗料は、おもて面の下塗り塗料が日本ファインコーティングス社製のポリエステル系塗料(FLC3900プライマーのクリヤータイプ、主樹脂分子量10000以上、架橋剤:メラミン、Tg約10℃にPWCでトリポリリン酸アルミニウムを21%、チタニアを9%添加した塗料)、裏面の下塗り塗料が日本ファインコーティングス社製のポリエステル系塗料(PB10Pプライマーのクリヤータイプ、主樹脂分子量10000以上、架橋剤:メラミン、Tg約40℃にPWCでトリポリリン酸アルミニウムを35%、チタニアを15%添加した塗料)、おもて面の中塗り塗料は日本ファインコーティングス社製の焼付け型ポリエステル樹脂塗料(NFC880ベージュ色(PWC30%)タイプ)、おもて面の上塗り塗料は白色顔料としてチタニアを含有する日本ファインコーティングス社製の焼付け型ポリエステル樹脂塗料(SRF05、主樹脂分子量約8000、架橋剤:メラミン)、裏面の上塗り塗料は日本ファインコーティングス社製の焼付け型ポリエステル樹脂塗料(NFC880ベージュ色(PWC30%)タイプ)であった。   The base paint used is a polyester-based paint made by Nippon Fine Coatings Co., Ltd. (clear type of FLC3900 primer, main resin molecular weight 10000 or more, cross-linking agent: melamine, Tg approx. (Paint with 21% aluminum oxide and 9% titania), and backside undercoat paint is a polyester paint manufactured by Nippon Fine Coatings Co., Ltd. (PB10P primer clear type, main resin molecular weight 10000 or more, crosslinking agent: melamine, Tg approx. (Coating with 35% tripolyaluminum phosphate and 15% titania added by PWC at 40 ° C), the intermediate coating on the front surface is a baked polyester resin paint (NFC880 beige color (PWC 30%) by Nippon Fine Coatings) Type), top coating of front side Is a baking type polyester resin paint (SRF05, main resin molecular weight of about 8000, crosslinker: melamine) manufactured by Nippon Fine Coatings, which contains titania as a white pigment, and the back coating is a baking type polyester manufactured by Nippon Fine Coatings. It was a resin paint (NFC880 beige color (PWC 30%) type).

おもて面の中塗り塗膜と裏面の上塗り塗膜の形成に使用した塗料(塗料記号B,J,Y)、ならびにおもて面の上塗り塗膜の形成に使用した塗料(塗料記号P,Z)のベース塗料および添加した非クロム化合物の種類と添加量を表13に示す。   The paint used to form the top coat on the front surface and the top coat on the back (paint symbol B, J, Y), and the paint used to form the top coat on the front surface (paint symbol P , Z) Table 13 shows the types and amounts of the non-chromium compound added and the base paint.

これらの塗料を用いて、最初に裏面の下塗り塗膜(PMT170℃)、2番目におもて面の下塗り塗膜(PMT220℃)、次いでおもて面の中塗り塗膜(PMT170℃)、裏面の上塗り塗膜(PMT170℃)、最後におもて面の上塗り塗膜(PMT230℃)を塗装して、表14に示す塗膜構成を有する塗装鋼板のサンプルを得た。   Using these paints, first the undercoat film on the back surface (PMT 170 ° C.), the second undercoat film on the front surface (PMT 220 ° C.), and then the intermediate coat film on the front surface (PMT 170 ° C.), The back coating film (PMT 170 ° C.) and finally the top coating film (PMT 230 ° C.) were applied to obtain a sample of a coated steel sheet having the coating film composition shown in Table 14.

塗装はバーコーターで行い、塗装厚みは、下塗り塗膜はおもて面側が10.5μm、裏面側が5μm、おもて面の中塗り塗膜は10μm、上塗り塗膜はおもて面側が14.5μm、裏面側が10μmに統一した。   The coating is performed with a bar coater. The thickness of the undercoat is 10.5 μm for the front side, 5 μm for the back side, 10 μm for the intermediate coat on the front side, and 14.5 μm for the top coat side. The back side was unified to 10 μm.

こうして得られた塗装鋼板について、耐端面赤錆性、イオン交換水浸漬後の電気伝導度測定および溶液分析、湿潤試験時の塗膜膨れの有無、塩水噴霧試験後の塗膜膨れ幅について、下記の要領で試験を実施した。試験結果も表14に併記する。   About the coated steel sheet obtained in this way, resistance to red rust resistance, electrical conductivity measurement after immersion in ion-exchanged water and solution analysis, presence or absence of coating film swelling during a wet test, coating film swelling width after a salt spray test, The test was carried out as outlined. The test results are also shown in Table 14.

(1)端面赤錆性試験1
(2)イオン交換水浸漬試験(浸漬水の電気伝導度、溶液分析)
(3)湿潤試験後の塗膜膨れ
以上の各試験は、実施例1または実施例2に記載したのと同じ方法および評価基準で実施した。
(1) End face red rust test 1
(2) Ion exchange water immersion test (electric conductivity of immersion water, solution analysis)
(3) Coating swelling after wetting test Each of the above tests was carried out by the same method and evaluation criteria as described in Example 1 or Example 2.

(4)塩水噴霧試験後の塗膜膨れ(耐食性)
実施例2に記載した通りに試験を実施し、評価した。ただし、基準板として、表14のYYZサンプルを使用した。
(4) Swelling of coating film after salt spray test (corrosion resistance)
Tests were performed and evaluated as described in Example 2. However, the YYZ sample in Table 14 was used as the reference plate.

Figure 0005299532
Figure 0005299532

Figure 0005299532
Figure 0005299532

表14からわかるように、塗装鋼板のイオン交換水浸漬試験での浸漬水の電気伝導度が30μS/cm以上である本発明に従ったサンプルでは、上塗り塗料、中塗り塗料、下塗り塗料のいずれもクロム化合物を含有していないにもかかわらず、端面赤錆性試験の結果が良好で、耐端面赤錆性に優れていた。また、おもて面の中塗り塗膜にのみ非クロム化合物を添加したサンプルについても、端面赤錆性試験の結果が良好で、湿潤試験後の平面からの塗膜膨れの結果も良好であった。   As can be seen from Table 14, in the sample according to the present invention in which the electric conductivity of the immersion water in the ion-exchange water immersion test of the coated steel sheet is 30 μS / cm or more, any of the top coating, intermediate coating, and undercoating coating is used. Despite containing no chromium compound, the results of the end face red rust test were good and the end face red rust resistance was excellent. In addition, for the sample in which the non-chromium compound was added only to the intermediate coating on the front surface, the result of the end face red rust test was good, and the result of the film swelling from the plane after the wet test was also good. .

これに対し、上塗り塗膜と下塗り塗膜がクロム化合物を含有せず、かつイオン交換水浸漬試験での浸漬水の電気伝導度が30μS/cmを下回った比較例のサンプルでは、赤錆の発生が起こり易く、耐端面赤錆性が不芳であった。   On the other hand, in the sample of the comparative example in which the top coat film and the undercoat film do not contain a chromium compound and the electrical conductivity of the immersion water in the ion exchange water immersion test is less than 30 μS / cm, the occurrence of red rust occurs. It was easy to occur and the end face red rust resistance was unsatisfactory.

この結果から、塗装鋼板の耐端面赤錆性を改善するには、下塗り塗膜よりも上層の塗膜に溶出性の高い非クロム化合物を添加することで、従来の性能を保持し、端面赤錆性を向上させることが可能であることが分かる。   From this result, in order to improve the end face red rust resistance of the coated steel sheet, by adding a non-chromium compound with high elution property to the upper layer coating film than the undercoat film, the conventional performance is maintained and the end surface red rust resistance is maintained. It can be seen that it is possible to improve.

(実施例6)
板厚および片面当たりの亜鉛付着量(片側目付量)が表15に示すように異なる溶融亜鉛めっき鋼板を塗装基材とし、この塗装基材に、アルカリ脱脂および水洗を行った後、日本ペイント社製のシリカ系クロムフリー化成処理液(サーフコートEC2330)を用いて、この製品の指示通りに化成処理を両面に施した。化成処理は、付着量がSi付着量で4〜8mg/m2となるように行った。
(Example 6)
As shown in Table 15, hot-dip galvanized steel sheets with different coating thicknesses and zinc adhesion amounts per side (Table 1) were used as the coating base, and this coating base was subjected to alkaline degreasing and water washing. Using a silica-based chromium-free chemical conversion treatment solution (Surfcoat EC2330), chemical conversion treatment was performed on both sides as instructed by this product. The chemical conversion treatment was performed so that the adhesion amount was 4 to 8 mg / m 2 in terms of Si adhesion amount.

表1から選んだ非クロム化合物を、これらを含有しない市販の下塗り塗料および上塗り塗料に添加して、おもて面用の下塗り塗料と裏面用の下塗り塗料および上塗り塗料を調製した。おもて面用の上塗り塗料には、この添加を行わなかった。後述するように、おもて面用の下塗り塗料は、市販の下塗り塗料に防錆顔料として表1に記載のトリポリリン酸アルミニウム21%とチタニア9%とを添加して調製し、裏面用の下塗り塗料は、市販の下塗り塗料に防錆顔料として表1に記載のトリポリリン酸アルミニウム35%とチタニア15%とを添加して調製した。添加した非クロム化合物は、実施例1に記載した方法で均一分散させた。   A non-chromium compound selected from Table 1 was added to a commercially available undercoat and topcoat that did not contain them to prepare a frontcoat undercoat and a backcoat undercoat and topcoat. This addition was not made to the top coating for the front side. As will be described later, the undercoat paint for the front surface is prepared by adding 21% aluminum tripolyphosphate and 9% titania listed in Table 1 as a rust preventive pigment to a commercially available undercoat paint. The paint was prepared by adding 35% aluminum tripolyphosphate and 15% titania listed in Table 1 as a rust preventive pigment to a commercially available undercoat paint. The added non-chromium compound was uniformly dispersed by the method described in Example 1.

使用したベース塗料は、おもて面下塗り塗料が日本ファインコーティングス社製のポリエステル系塗料(FLC3900プライマーのクリヤータイプ、主樹脂分子量10000以上、架橋剤:メラミン、主樹脂Tg約10℃にPWCでトリポリリン酸アルミニウムを21%、チタニアを9%添加した塗料)、裏面下塗り塗料が日本ファインコーティングス社製のポリエステル系塗料(PB10Pプライマーのクリヤータイプ、主樹脂分子量10000以上、架橋剤:メラミン、主樹脂Tg約40℃にPWCでトリポリリン酸アルミニウムを35%、チタニアを15%添加した塗料)、おもて面上塗り塗料は白色顔料としてチタニアを含有する日本ファインコーティングス社製の焼付け型ポリエステル樹脂塗料(SRF05、主樹脂分子量約8000、架橋剤:メラミン)、裏面上塗り塗料は日本ファインコーティングス社製の焼付け型ポリエステル樹脂塗料(NFC880ベージュ色(PWC30%)タイプ)であった。   The base paint used is a front surface undercoat polyester-based paint manufactured by Nippon Fine Coatings (clear type FLC3900 primer, main resin molecular weight 10000 or more, crosslinker: melamine, main resin Tg at about 10 ° C with PWC (Paint containing 21% aluminum tripolyphosphate and 9% titania), and backside undercoat is a polyester-based paint made by Nihon Fine Coatings (PB10P primer clear type, main resin molecular weight 10000 or more, crosslinker: melamine, main resin Tg approx. 40 ° C. with PWC and 35% tripolyaluminum phosphate and 15% titania added), and the top surface paint is titania as a white pigment. SRF05, main resin molecular weight about 8 00, the cross-linking agent: melamine), back top coat paint was Japan Fine Coatings Co., Ltd. of baking type polyester resin paint (NFC880 beige (PWC30%) type).

裏面用の上塗り塗料に添加した非クロム化合物の種類と添加量を表16に示す。
これらの塗料を用いて、最初におもて面の下塗り塗膜(PMT170℃)、2番目に裏面の下塗り塗膜(PMT220℃)、3番目におもて面の上塗り塗膜(PMT170℃)、最後に表16に記載の塗料を用い裏面の上塗り塗膜(PMT230℃)の順番および焼付け温度にて塗装を行い、表17に示す塗膜構成を有する塗装鋼板のサンプルを得た。塗装はバーコーターで行い、塗装厚みは、下塗り塗膜はおもて面側が10.5μm、裏面側が5μm、上塗り塗膜はおもて面側が14.5μm、裏面側が10μmに統一した。
Table 16 shows the types and addition amounts of the non-chromium compounds added to the top coating for the back surface.
Using these paints, first, the undercoat film on the front surface (PMT 170 ° C.), the second undercoat film on the back surface (PMT 220 ° C.), and the third, the top coat film on the front surface (PMT 170 ° C.) Finally, coating was carried out in the order of the top coating film (PMT 230 ° C.) and baking temperature of the back surface using the coating materials shown in Table 16, and a sample of the coated steel sheet having the coating film composition shown in Table 17 was obtained. The coating was performed with a bar coater, and the coating thickness was unified to 10.5 μm for the front side of the undercoat and 5 μm for the back side, 14.5 μm for the front side and 10 μm for the back side.

こうして得られた塗装鋼板について、端面赤錆性試験を下記の要領で実施した。試験結果も表17に併記する。
(1)端面赤錆性試験4
塗装鋼板の各サンプルについて、1cm×4cmの長方形サイズ(端面長さの和は10cm)の試験片をシャーリングにて10個ずつ切り出し(各サンプルにおける試験片の合計端面長さは1m)、10個の試験片を別々にビーカー内のイオン交換水20ml中または、イオン交換水に塩化ナトリウムを添加し、溶液の電気伝導度を100μS/cmに調整した溶液に浸漬する。ビーカーを40℃の恒温槽に120時間放置した後、試験片を取り出し、各試験片の端面からの赤錆および白錆発生状況を測定する。評価基準は次の通りであり、○以上を合格とする。
About the coated steel plate obtained in this way, the end face red rust property test was implemented in the following way. The test results are also shown in Table 17.
(1) End face red rust test 4
For each sample of the coated steel sheet, 10 test pieces each having a rectangular size of 1 cm × 4 cm (the sum of the end face lengths is 10 cm) are cut out by shearing (total end face length of the test pieces in each sample is 1 m), 10 pieces The test pieces are separately immersed in 20 ml of ion exchange water in a beaker or in a solution in which sodium chloride is added to the ion exchange water and the electric conductivity of the solution is adjusted to 100 μS / cm. After leaving the beaker in a constant temperature bath at 40 ° C. for 120 hours, the test piece is taken out and the occurrence of red rust and white rust from the end face of each test piece is measured. The evaluation criteria are as follows.

○:赤錆、白錆発生無し
△:白錆のみ発生有り
×:赤錆発生あり(白錆発生)
○: No red rust or white rust △: Only white rust occurs ×: Red rust occurs (white rust occurs)

Figure 0005299532
Figure 0005299532

Figure 0005299532
Figure 0005299532

Figure 0005299532
Figure 0005299532

表17からわかるように、塗装鋼板のうら面の上塗り塗膜中にアルカリ金属のリン酸化合物(リン酸二水素カリウム)を含む系では、イオン交換水および塩化ナトリウム水溶液ともに、屋外用途で適用可能と推定される溶融めっき鋼板の板厚、めっき付着量いずれの範囲においても優れた耐端面赤錆性を有することが確認できた。   As can be seen from Table 17, in systems where an alkali metal phosphate compound (potassium dihydrogen phosphate) is contained in the top coat of the coated steel sheet, both ion-exchanged water and aqueous sodium chloride solution can be applied outdoors. It was confirmed that it had excellent end face red rust resistance in both the range of the thickness of the hot dip plated steel sheet and the amount of coating adhesion.

一方、塗装鋼板のうら面の上塗り塗膜中に溶出性の高い上記アルカリ金属のリン酸化合物を添加していない系に関しては、イオン交換水浸漬試験では、屋外用途で適用可能と推定される溶融めっき鋼板の板厚、めっき付着量の範囲内で、耐端面赤錆性が不芳で有ることが確認できた。   On the other hand, for systems that do not contain the above-mentioned alkali metal phosphate compound, which has high elution, in the top coat of the coated steel sheet, in the ion-exchanged water immersion test, melting that is estimated to be applicable in outdoor applications It was confirmed that the end face red rust resistance was unsatisfactory within the range of the thickness of the plated steel sheet and the amount of coating.

100μS/cm塩化ナトリウム水溶液浸漬では、板厚の薄いG1N、G2N、亜鉛目付の多いG2N、G7N、G9Nにおいて白錆のみの発生を確認した。これは、塗装鋼板端面に占める亜鉛端面の存在比が他のめっき鋼板と比較して高く、また、イオン交換水と比較して電気伝導度が高いために、亜鉛の犠牲防食機能が働きやすくなったためと推定される。   In the 100 μS / cm sodium chloride aqueous solution immersion, the occurrence of only white rust was confirmed in G1N, G2N with thin plate thickness, and G2N, G7N, and G9N with a large zinc basis weight. This is because the abundance ratio of the zinc end face to the end face of the coated steel sheet is higher than that of other plated steel sheets, and the electric conductivity is higher than that of ion-exchanged water, so that the sacrificial anticorrosive function of zinc is likely to work It is estimated that

(実施例7)
塗装基材の板厚0.8mmの溶融亜鉛めっき鋼板(付着量:片面当たり45g/m2、寸法:300×250mm)に、アルカリ脱脂および水洗を行った後、日本ペイント社製のシリカ系クロムフリー化成処理液(サーフコートEC2330)を用いて、この製品の指示通りに化成処理を両面に施した。化成処理は付着量がSi付着量で4〜8mg/m2となるように行った。
(Example 7)
After applying alkali degreasing and water washing to a hot-dip galvanized steel sheet with a coating thickness of 0.8 mm (attachment amount: 45 g / m 2 per side, dimensions: 300 × 250 mm), Nippon Paint Co., Ltd. silica-based chromium Using a free chemical conversion treatment solution (Surfcoat EC2330), chemical conversion treatment was performed on both sides as instructed by this product. The chemical conversion treatment was performed so that the adhesion amount was 4 to 8 mg / m 2 in terms of the Si adhesion amount.

表1から選んだ非クロム化合物を、これらを含有しない市販の下塗り塗料および上塗り塗料に添加して、おもて面用の下塗り塗料と裏面用の下塗り塗料および上塗り塗料を調製した。おもて面用の上塗り塗料には、この添加を行わなかった。   A non-chromium compound selected from Table 1 was added to a commercially available undercoat and topcoat that did not contain them to prepare a frontcoat undercoat and a backcoat undercoat and topcoat. This addition was not made to the top coating for the front side.

使用したベース塗料は、おもて面下塗り塗料が日本ファインコーティングス社製のポリエステル系塗料(FLC3900プライマーのクリヤータイプ、主樹脂分子量10000以上、架橋剤:メラミン、主樹脂Tg約10℃)、裏面下塗り塗料が日本ファインコーティングス社製のポリエステル系塗料(PB10Pプライマーのクリヤータイプ、主樹脂分子量10000以上、架橋剤:メラミン、主樹脂Tg約40℃)、おもて面上塗り塗料は白色顔料としてチタニアを含有する日本ファインコーティングス社製の焼付け型ポリエステル樹脂塗料(SRF05、主樹脂分子量約8000、架橋剤:メラミン)、裏面上塗り塗料は日本ファインコーティングス社製の焼付け型ポリエステル樹脂塗料(NSC880クリア塗料)であった。   The base coating used is a polyester base coating made by Nippon Fine Coatings Co., Ltd. (Clear type of FLC3900 primer, main resin molecular weight of 10,000 or more, crosslinking agent: melamine, main resin Tg of about 10 ° C.), back surface Undercoat paint made by Nippon Fine Coatings Co., Ltd. (PB10P primer clear type, main resin molecular weight 10000 or more, cross-linking agent: melamine, main resin Tg about 40 ° C.), front top coat is titania as white pigment Baked polyester resin paint (SRF05, main resin molecular weight of about 8000, cross-linking agent: melamine) made by Nippon Fine Coatings Co., Ltd., and baked polyester resin paint (NSC880 clear paint made by Nippon Fine Coatings Co., Ltd.) )Met.

おもて面用の下塗り塗料は、上記ベース塗料(FLC3900プライマーのクリヤータイプ)に、防錆顔料である表1に記載のトリポリリン酸アルミニウム21%とチタニア9%とを添加して調製した。裏面用の下塗り塗料は、上記ベース塗料(PB10Pプライマーのクリヤータイプ)に、防錆顔料の表1に記載のトリポリリン酸アルミニウム35%とチタニア15%とを添加して調製した。これらの下塗り塗料については、添加した防錆顔料を実施例1に記載した方法で均一に分散させた。   The undercoat paint for the front surface was prepared by adding 21% aluminum tripolyphosphate and 9% titania listed in Table 1 as anticorrosive pigments to the above base paint (clear type of FLC3900 primer). The undercoat paint for the back surface was prepared by adding 35% aluminum tripolyphosphate and 15% titania listed in Table 1 of anticorrosive pigments to the above base paint (clear type of PB10P primer). For these undercoat paints, the added rust preventive pigment was uniformly dispersed by the method described in Example 1.

裏面用の上塗り塗料には、上記ベース塗料(NSC880クリア塗料)に、場合により表18に記載した着色顔料を表示の量で添加してPWCを調整し、さらに表19に記載した非クロム化合物を表示の量で添加した後、塗料重量100gに対して20gのガラスビーズを入れた容器をハイブリッドミキサーで撹拌することにより撹拌して、化合物および顔料を均一に分散させた。この時の顔料の撹拌時間を表19に示す。   In the top coating for the back surface, the PWC is adjusted by adding the indicated amount of the color pigment described in Table 18 to the above base coating (NSC880 clear coating) in some cases, and the non-chromium compound described in Table 19 is further added. After adding in the indicated amount, a container containing 20 g of glass beads with respect to 100 g of paint weight was stirred by a hybrid mixer to uniformly disperse the compound and pigment. Table 19 shows the stirring time of the pigment at this time.

これらの塗料を用いて、最初におもて面の下塗り塗膜(PMT170℃)、2番目に裏面の下塗り塗膜(PMT220℃)、3番目におもて面の上塗り塗膜(PMT170℃)、最後に表19に記載した塗料(表20にも記載)を用いた裏面の上塗り塗膜(PMT230℃)の順番および焼付け温度にて塗装を行って、塗装鋼板のサンプルを得た。塗装はバーコーターで行い、塗装厚みは、下塗り塗膜はおもて面側が10.5μm、裏面側が5μm、上塗り塗膜はおもて面側が14.5μmに統一し、裏面側の上塗り塗膜は、5μm、10μm、15μmに変化させた(一部の塗料では10μmのみ)。   Using these paints, first, the undercoat film on the front surface (PMT 170 ° C.), the second undercoat film on the back surface (PMT 220 ° C.), and the third, the top coat film on the front surface (PMT 170 ° C.) Finally, coating was performed in the order of the top coat film (PMT 230 ° C.) and the baking temperature using the coating materials described in Table 19 (also described in Table 20) to obtain samples of coated steel sheets. The coating is carried out with a bar coater, and the coating thickness is unified to 10.5 μm for the front side of the undercoat and 5 μm for the back side, and 14.5 μm for the top side of the top coat. The thickness was changed to 5 μm, 10 μm, and 15 μm (only 10 μm for some paints).

こうして得られた塗装鋼板について、耐端面赤錆性、イオン交換水浸漬後の電気伝導度測定および溶液分析、裏面上塗り塗膜の顔料粒径測定、湿潤試験時の塗膜膨れの有無、塩水噴霧試験後の塗膜膨れ幅について、下記の要領で試験を実施した。試験結果を、使用した裏面側の上塗り塗膜中の非クロム化合物の種類、添加量と共に表20に併記する。   About the coated steel sheet thus obtained, end face red rust resistance, electrical conductivity measurement and solution analysis after immersion in ion-exchanged water, pigment particle size measurement of the back coating film on the back surface, presence or absence of film swelling during the wet test, salt spray test The test was carried out in the following manner for the subsequent swollen width of the coating film. The test results are shown in Table 20 together with the type and amount of the non-chromium compound in the back coating used.

(1)端面赤錆性試験(シール有り)
実施例2に記載した端面赤錆性試験3と同様に試験および評価を行った。即ち、試験片は、塗装鋼板の各サンプルの両面に予めポリエステルテープを貼付した後、切断して作製した。
(1) End face red rust test (with seal)
Tests and evaluations were performed in the same manner as the end face red rust test 3 described in Example 2. That is, the test piece was prepared by pasting a polyester tape on both surfaces of each sample of the coated steel sheet and then cutting.

(2)端面赤錆性試験(シール無し)
実施例1に記載した端面赤錆性試験1と同様に試験および評価を行った。
(2) End face red rust test (no seal)
Tests and evaluations were performed in the same manner as the end face red rust test 1 described in Example 1.

(3)イオン交換水浸漬試験2(シール有り、浸漬水の電気伝導度)
(3−1)塗装鋼板の各サンプルの両面に予めポリエステルテープ(日東電工社製)を貼付してシールした。その後、0.5cm×4.5cmの細片サイズ(端面長さの和は10cm)の試験片をシャーリングにて100個ずつ切り出す(各サンプルにおける合計端面長さは10m)。
(3−2)これら100個の試験片を、超音波振動装置に載置したビーカー内の50℃のイオン交換水(4μS/cm以下)200ml中に一緒に浸漬する。
(3−3)50℃の温度を保持したまま、ビーカーに40kHzの超音波振動を30分間付与する(使用装置:アズワン社製US CLEANER)。
(3−4) 超音波振動の付与が終了した後、試験片を直ちに取り除き、得られた水溶液(浸漬水)を用いて、電気伝導度計(堀場製作所社製D−54SE)にて電気伝導度を測定する。
(3) Ion-exchange water immersion test 2 (with seal, electrical conductivity of immersion water)
(3-1) A polyester tape (manufactured by Nitto Denko) was previously applied to both surfaces of each sample of the coated steel plate and sealed. Thereafter, 100 test pieces each having a 0.5 cm × 4.5 cm strip size (the sum of end face lengths is 10 cm) are cut out by shearing (the total end face length in each sample is 10 m).
(3-2) These 100 test pieces are immersed together in 200 ml of 50 ° C. ion exchange water (4 μS / cm or less) in a beaker placed on an ultrasonic vibration device.
(3-3) While maintaining a temperature of 50 ° C., a 40 kHz ultrasonic vibration is applied to the beaker for 30 minutes (device used: US CLEANER manufactured by ASONE).
(3-4) After the application of ultrasonic vibration is completed, the test piece is immediately removed, and the resulting aqueous solution (immersion water) is used to conduct electricity with an electric conductivity meter (D-54SE manufactured by Horiba, Ltd.). Measure the degree.

(4)湿潤試験後の塗膜膨れ
実施例1に記載したのと同じ方法および評価基準で実施した。
(5)裏面上塗り塗膜の非クロム化合物粒径測定
表20に記載の各種撹拌条件で作製した塗料を、TP技研株式会社製のグラインドメーター(つぶゲージ)を用いて撹拌後の非クロム化合物の粒径を測定した。用いたグラインドメーターの溝の深さとしては、0〜100μm(最小目盛り10μm)のものを用い、塗料中の非クロム化合物の粒径を求めた。
(4) Swelling of coating film after wet test The same method and evaluation criteria as described in Example 1 were used.
(5) Measurement of particle size of non-chromium compound in back coating film on top surface The coating of the non-chromium compound after stirring using a grindometer (crushed gauge) manufactured by TP Giken Co., Ltd. The particle size was measured. The grindometer groove depth used was 0-100 μm (minimum scale 10 μm), and the particle size of the non-chromium compound in the paint was determined.

(6)塩水噴霧試験後の塗膜膨れ(耐食性)
実施例2に記載した通りに試験を実施して、耐食性を評価した。ただし、基準板としては表20の46の塗料を用いた膜厚10μmのサンプルを使用した。
(6) Swelling of coating film after salt spray test (corrosion resistance)
Tests were performed as described in Example 2 to evaluate corrosion resistance. However, as the reference plate, a sample having a film thickness of 10 μm using 46 paint of Table 20 was used.

Figure 0005299532
Figure 0005299532

Figure 0005299532
Figure 0005299532

Figure 0005299532
Figure 0005299532

表20に示した結果からわかるように、端面赤錆性試験をシール無しで実施した結果では、非クロム化合物として溶出性が比較的高いアルカリ金属リン酸塩を含む系においては、PWC、膜厚、添加量、含量粒径によらずに耐端面赤錆性が良好であるのに対し、他の非クロム化合物を含有する系では耐端面赤錆性が低かった。   As can be seen from the results shown in Table 20, in the results of carrying out the end face red rust test without a seal, in a system containing an alkali metal phosphate having a relatively high dissolution property as a non-chromium compound, PWC, film thickness, The end face red rust resistance was good regardless of the added amount and the content particle size, while the system containing other non-chromium compounds had low end face red rust resistance.

端面のみからの非クロム化合物が溶出するように塗装鋼板の表裏面をシールして端面赤錆性試験を実施した場合には、シール無し試験で良好であったアルカリ金属リン酸塩を含む系でも、顔料濃度、添加量、膜厚の組み合わせによっては耐端面赤錆性が不十分となる場合があることが確認された。例えば、塗膜中の顔料濃度が低い(例、20%未満)、アルカリ金属リン酸塩の添加量が少ない(例、5%未満)、塗膜厚みが薄い(例、5μm)という3条件のうち少なくとも1つの条件を満たす場合がそうであった。   When the front and back surfaces of the coated steel sheet are sealed so that the non-chromium compound is eluted only from the end face, and the end face red rust property test is performed, even in a system containing an alkali metal phosphate that was good in the non-seal test, It was confirmed that end face red rust resistance may be insufficient depending on the combination of pigment concentration, addition amount, and film thickness. For example, the pigment concentration in the coating film is low (eg, less than 20%), the addition amount of alkali metal phosphate is small (eg, less than 5%), and the coating thickness is thin (eg, 5 μm). This was the case when at least one of the conditions was met.

塗装鋼板の表裏面をシールした浸漬試験によって、塗装鋼板の端面のみからの非クロム化合物の溶出量を評価するために浸漬水の電気伝導度を測定した結果では、平面からの溶出量と比較して非常に小さな値となった、10μS/cm以上であれば、耐端面赤錆性の改善効果が確認され、20μS/cm以上であれば概ね良好となることが確認された。   As a result of measuring the electrical conductivity of immersion water in order to evaluate the elution amount of non-chromium compounds from only the end surface of the coated steel plate by the immersion test with the front and back surfaces of the coated steel plate sealed, It was confirmed that the effect of improving the end face red rust resistance was confirmed when the value was 10 μS / cm or more, which was a very small value, and generally good when the value was 20 μS / cm or more.

塗膜膨れについては、非クロム化合物を上塗り塗膜に添加しているため影響がなく、どの塗装鋼板でも膨れ(ブリスター)の発生は生じなかった。
耐食性については、粒度を細かくした場合に、若干ではあるが改善効果が確認された。同様に、従来のクロムフリー防錆顔料を添加した場合も耐食性が向上することが確認されている。水溶性が比較的高い非クロム化合物を使用しても、十分な耐食性が得られることが確認された。
The film swelling was not affected because a non-chromium compound was added to the top coating film, and no blistering occurred in any coated steel sheet.
As for the corrosion resistance, when the particle size was made fine, an improvement effect was confirmed although it was slightly. Similarly, it has been confirmed that the corrosion resistance is improved when a conventional chromium-free rust preventive pigment is added. It was confirmed that sufficient corrosion resistance can be obtained even when a non-chromium compound having a relatively high water solubility is used.

(実施例8)
テフロン(登録商標)の板(厚さ:2mm)に、表21に示すように非クロム化合物をベース塗料に含有させた塗料を10μmの膜厚になるようバーコーターで塗布し、PMT230℃で焼き付け、塗膜フィルムを作製した。
(Example 8)
As shown in Table 21, a Teflon (registered trademark) plate (thickness: 2 mm) was coated with a coating containing a non-chromium compound in a base coating with a bar coater to a thickness of 10 μm and baked at PMT 230 ° C. A coating film was prepared.

使用したベース塗料は、日本ファインコーティングス社製の焼付け型ポリエステル樹脂塗料(NFC880ベージュ色(PWC50%)タイプ:主樹脂分子量約4000、架橋剤メラミン)であった。このベース塗料に非クロム化合物を表示の量で添加した後、塗料質量100gに対して20gのガラスビーズを入れた容器をハイブリッドミキサーで40分間撹拌することにより、顔料を均一に分散させて、塗料を作製した。   The base paint used was a baking type polyester resin paint (NFC880 beige (PWC 50%) type: main resin molecular weight of about 4000, melamine crosslinking agent) manufactured by Nippon Fine Coatings. After adding a non-chromium compound in the indicated amount to this base paint, a container containing 20 g of glass beads with respect to 100 g of the paint mass is stirred for 40 minutes with a hybrid mixer to uniformly disperse the pigment. Was made.

こうして得られた厚み10μmの塗膜フィルムを上記の板から剥離し、イオン交換水浸漬後の電気伝導度測定を下記の要領で実施した。試験結果についても表21に記載する。
(1)イオン交換水浸漬試験(浸漬水の電気伝導度)
(1−1)塗膜フィルムの各サンプルについて、0.5cm×4.5cmの細片サイズ(端面長さの和は10cm)の試験片をカッターナイフにて100枚ずつ切り出す(各サンプルにおける試験片の合計端面長さは10m)。
(1−2)これら100枚の試験片を、超音波振動装置に載置したビーカー内の50℃のイオン交換水200ml中に一緒に浸漬する。
(1−3)50℃の温度を保持したまま、ビーカーに40kHzの超音波振動を30分間付与する(使用装置:アズワン社製US CLEANER)。
(1−4)超音波振動の付与が終了した後、試験片を直ちに取り除き、得られた水溶液(浸漬水)を用いて、電気伝導度計(堀場製作所社製D−54SE)にて電気伝導度を測定する。
The coating film having a thickness of 10 μm thus obtained was peeled from the above plate, and the electrical conductivity after immersion in ion-exchanged water was measured as follows. The test results are also shown in Table 21.
(1) Ion exchange water immersion test (electric conductivity of immersion water)
(1-1) With respect to each sample of the coating film, 100 pieces of test pieces each having a 0.5 cm × 4.5 cm strip size (the sum of end face lengths is 10 cm) are cut out with a cutter knife (test in each sample) The total end face length of the piece is 10 m).
(1-2) These 100 test pieces are immersed together in 200 ml of 50 ° C. ion exchange water in a beaker placed in an ultrasonic vibration device.
(1-3) While maintaining a temperature of 50 ° C., a 40 kHz ultrasonic vibration is applied to the beaker for 30 minutes (Usage device: US CLEANER manufactured by ASONE).
(1-4) After the application of ultrasonic vibration is completed, the test piece is immediately removed, and the resulting aqueous solution (immersion water) is used to conduct electricity with an electric conductivity meter (D-54SE manufactured by Horiba, Ltd.). Measure the degree.

Figure 0005299532
Figure 0005299532

表21に示した結果からわかるように、溶解性の高いアルカリ金属リン酸塩または、塩化物である塩化ナトリウムを含む系においては、塗装鋼板での試験結果と同様に、非常に高い電気伝導度を示しているのに対し、他の防錆顔料を含有する系では、塗装鋼板での結果と同様、電気伝導度が低い値を示していた。従って、塗膜フィルムの浸漬試験でも、耐端面赤錆性に優れた塗装鋼板の製造に適した塗料であるかどうかを評価することができることがわかった。   As can be seen from the results shown in Table 21, in the system containing highly soluble alkali metal phosphate or sodium chloride, which is a chloride, the electrical conductivity is very high, similar to the test results on the coated steel sheet. On the other hand, in the system containing other rust preventive pigments, the electric conductivity was low as in the case of the coated steel sheet. Therefore, it was found that it is possible to evaluate whether or not the coating film is a coating material suitable for manufacturing a coated steel plate having excellent resistance to red rust on end faces even in a coating film immersion test.

Claims (14)

Zn含有めっき層を有するめっき鋼板からなる塗装基材の両面にそれぞれ2層以上の塗膜を有するクロムフリー塗装鋼板であって、前記塗装基材の少なくとも片面において、最外層の塗膜が下記(A)および(B)の要件を満たす少なくとも1種の非クロム化合物を含有し、該最外層の塗膜の膜厚が5〜30μmであり、最内層の塗膜の前記非クロム化合物の含有量が1質量%以下であり、この塗装鋼鈑を0.5cm×4.5cmの長方形に切断したサンプル100個を50℃のイオン交換水(電気伝導度:4μS/cm以下)200mlに周波数40kHzの超音波振動付与下で30分浸漬した時の浸漬水の電気伝導度が30μS/cm以上であることを特徴とするクロムフリー塗装鋼板。
(A)イオン交換水(電気伝導度:4μS/cm以下)に0.1質量%濃度で溶解させた時の水の電気伝導度が500μS/cm以上、
(B)200℃までに熱分解を生じない。
A chromium-free painted steel sheet having two or more coating films on both sides of a coated base material made of a plated steel sheet having a Zn-containing plated layer, and the coating film of the outermost layer on at least one surface of the coated base material is A content of at least one non-chromium compound satisfying the requirements of A) and (B), the outermost layer coating film having a thickness of 5 to 30 μm, and the innermost layer coating film content of the non-chromium compound Is 100 mass%, 100 samples of this coated steel plate cut into a rectangle of 0.5 cm × 4.5 cm are placed in 200 ml of 50 ° C. ion exchange water (electric conductivity: 4 μS / cm or less) with a frequency of 40 kHz. A chromium-free coated steel sheet characterized by having an electric conductivity of immersion water of 30 μS / cm or more when immersed for 30 minutes under application of ultrasonic vibration.
(A) The electric conductivity of water when dissolved in ion exchange water (electric conductivity: 4 μS / cm or less) at a concentration of 0.1% by mass is 500 μS / cm or more,
(B) No thermal decomposition occurs up to 200 ° C.
Zn含有めっき層を有するめっき鋼板からなる塗装基材の両面にそれぞれ2層以上の塗膜を有するクロムフリー塗装鋼板であって、前記塗装基材の少なくとも片面において、最内層以外の少なくとも1層の塗膜が下記(A)および(B)の要件を満たす少なくとも1種の非クロム化合物を含有し、最外層の塗膜の膜厚が5〜30μmであり、最内層の塗膜の前記非クロム化合物の含有量が1質量%以下であり、この塗装鋼鈑の表裏面をポリエステルフィルムで被覆してから0.5cm×4.5cmの長方形に切断したサンプル100個を50℃のイオン交換水(電気伝導度:4μS/cm以下)200mlに周波数40kHzの超音波振動付与下で30分浸漬した時の浸漬水の電気伝導度が10μS/cm以上であることを特徴とするクロムフリー塗装鋼板。
(A)イオン交換水(電気伝導度:4μS/cm以下)に0.1質量%濃度で溶解させた時の水の電気伝導度が500μS/cm以上、
(B)200℃までに熱分解を生じない。
A chromium-free coated steel sheet having two or more coating films on each side of a coated base material comprising a plated steel sheet having a Zn-containing plated layer, wherein at least one layer other than the innermost layer is formed on at least one side of the coated base material. The coating film contains at least one non-chromium compound that satisfies the following requirements (A) and (B), the coating thickness of the outermost layer is 5 to 30 μm, and the non-chromium of the innermost coating layer The content of the compound is 1% by mass or less, and 100 samples cut into a rectangle of 0.5 cm × 4.5 cm after covering the front and back surfaces of the coated steel sheet with a polyester film were subjected to ion exchange water at 50 ° C. ( (Electric conductivity: 4 μS / cm or less) Chromium-free coated steel characterized in that the electric conductivity of immersion water is 10 μS / cm or more when immersed in 200 ml for 30 minutes under application of ultrasonic vibration at a frequency of 40 kHz. .
(A) The electric conductivity of water when dissolved in ion exchange water (electric conductivity: 4 μS / cm or less) at a concentration of 0.1% by mass is 500 μS / cm or more,
(B) No thermal decomposition occurs up to 200 ° C.
前記浸漬水のP濃度が0.5μg/ml以上である、請求項1または2に記載のクロムフリー塗装鋼板。   The chromium-free painted steel sheet according to claim 1 or 2, wherein the P concentration of the immersion water is 0.5 µg / ml or more. Zn含有めっき層を有するめっき鋼板からなる塗装基材の両面にそれぞれ2層以上の塗膜を有するクロムフリー塗装鋼板であって、少なくとも片面において、最外層の塗膜が、下記(A)および(B)の要件を満たす少なくとも1種の非クロム化合物を0.5〜30質量%の量で含有し、該最外層の塗膜の膜厚が5〜30μm以下であり、最内層の塗膜の前記非クロム化合物の含有量が1質量%以下であることを特徴とするクロムフリー塗装鋼板。
(A)イオン交換水(電気伝導度:4μS/cm以下)に0.1質量%濃度で溶解させた時の水の電気伝導度が500μS/cm以上、
(B)200℃までに熱分解を生じない。
A chromium-free coated steel sheet having two or more coating films on both surfaces of a coated base material made of a plated steel sheet having a Zn-containing plating layer, and the coating film of the outermost layer on at least one surface has the following (A) and ( at least one non-chromium compound meets the requirements of B) in an amount of 0.5 to 30 wt%, the film thickness of the coating film of the outermost layer is Ri der less 5 to 30 [mu] m, the innermost layer of the coating chrome-free coated steel sheet that content is characterized der Rukoto most 1 mass% of the non-chromium compound.
(A) The electric conductivity of water when dissolved in ion exchange water (electric conductivity: 4 μS / cm or less) at a concentration of 0.1% by mass is 500 μS / cm or more,
(B) No thermal decomposition occurs up to 200 ° C.
Zn含有めっき層を有するめっき鋼板からなる塗装基材の両面にそれぞれ2層以上の塗膜を有するクロムフリー塗装鋼板であって、少なくとも片面において、最内層以外の少なくとも1層の塗膜が、下記(A)および(B)の要件を満たす少なくとも1種の非クロム化合物を5〜30質量%の量で含有し、該最内層以外の少なくとも1層の塗膜の膜厚が5μm以上、50μm以下であり、かつ最外層の塗膜の膜厚が5〜30μmであり、最内層の塗膜の前記非クロム化合物の含有量が1質量%以下であることを特徴とするクロムフリー塗装鋼板。
(A)イオン交換水(電気伝導度:4μS/cm以下)に0.1質量%濃度で溶解させた時の水の電気伝導度が500μS/cm以上、
(B)200℃までに熱分解を生じない。
A chromium-free coated steel sheet having two or more coating films on both surfaces of a coated base material comprising a plated steel sheet having a Zn-containing plating layer, and at least one layer of the coating film other than the innermost layer is at least on one side, It contains at least one non-chromium compound satisfying the requirements of (A) and (B) in an amount of 5 to 30% by mass, and the film thickness of at least one layer other than the innermost layer is 5 μm or more and 50 μm or less. , and the and chromium-free coated steel sheet thickness of the outermost layer of the coating film is Ri 5~30μm der, the content of the chromium-free compound of the innermost layer of the coating, characterized in der Rukoto than 1 mass% .
(A) The electric conductivity of water when dissolved in ion exchange water (electric conductivity: 4 μS / cm or less) at a concentration of 0.1% by mass is 500 μS / cm or more,
(B) No thermal decomposition occurs up to 200 ° C.
前記非クロム化合物がアルカリ金属のリン酸塩および塩化物ならびにアルカリ土類金属の次亜リン酸塩よりなる群から選ばれた1種又は2種以上である、請求項1〜5のいずれかに記載のクロムフリー塗装鋼板。   The non-chromium compound is one or two or more selected from the group consisting of alkali metal phosphates and chlorides and alkaline earth metal hypophosphites. Chrome-free painted steel sheet as described. 前記アルカリ金属リン酸塩が、リン酸二水素ナトリウム、リン酸水素二カリウム、トリポリリン酸ナトリウム、リン酸二水素ナトリウム一水和物、リン酸二水素ナトリウム二水和物、リン酸二水素カリウムから選ばれた少なくとも1種のアルカリ金属リン酸塩である、請求項6に記載のクロムフリー塗装鋼板。   The alkali metal phosphate is sodium dihydrogen phosphate, dipotassium hydrogen phosphate, sodium tripolyphosphate, sodium dihydrogen phosphate monohydrate, sodium dihydrogen phosphate dihydrate, potassium dihydrogen phosphate The chromium-free painted steel sheet according to claim 6, which is at least one selected alkali metal phosphate. 前記片面が塗装鋼板としての裏面である、請求項1〜7のいずれかに記載のクロムフリー塗装鋼板。   The chromium-free painted steel plate according to any one of claims 1 to 7, wherein the one surface is a back surface as a coated steel plate. 前記塗装基材と前記2層以上の塗膜との間に、クロムを含有しない塗装下地処理皮膜を有する、請求項1〜8のいずれかに記載の塗装鋼板。   The coated steel sheet according to any one of claims 1 to 8, wherein the coated steel sheet has a painted base treatment film that does not contain chromium between the coated substrate and the two or more coating films. 前記2層以上の塗膜の最内層の塗膜が前記(A)および(B)の要件を満たす非クロム化合物を含有していない、請求項1〜9のいずれかに記載の塗装鋼板。   The coated steel sheet according to any one of claims 1 to 9, wherein the innermost coating film of the two or more coating films does not contain a non-chromium compound that satisfies the requirements (A) and (B). 前記塗装基材の板厚が0.5mm以上、2.0mm以下である、請求項1〜10のいずれかに記載の塗装鋼板。   The coated steel sheet according to any one of claims 1 to 10, wherein a thickness of the coated substrate is 0.5 mm or more and 2.0 mm or less. 前記塗装基材の亜鉛系めっき付着量が、片側平均付着量で100g/m以下である、請求項1〜11のいずれかに記載の塗装鋼板。 The coated steel sheet according to any one of claims 1 to 11, wherein a zinc-based plating adhesion amount of the coating substrate is 100 g / m 2 or less in terms of one-side average adhesion amount. 前記最内層以外の少なくとも1層の塗膜が、前記非クロム化合物に加えて、着色顔料を20〜50質量%含有する、請求項4に記載の塗装鋼板。   The coated steel sheet according to claim 4, wherein at least one coating film other than the innermost layer contains 20 to 50 mass% of a coloring pigment in addition to the non-chromium compound. 請求項1〜13のいずれかに記載のクロムフリー塗装鋼板の成型加工により得られた筐体。   The housing | casing obtained by the shaping | molding process of the chromium free coating steel plate in any one of Claims 1-13.
JP2012023400A 2007-07-24 2012-02-06 Chrome-free painted steel plate with excellent red rust resistance Active JP5299532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012023400A JP5299532B2 (en) 2007-07-24 2012-02-06 Chrome-free painted steel plate with excellent red rust resistance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007192322 2007-07-24
JP2007192322 2007-07-24
JP2012023400A JP5299532B2 (en) 2007-07-24 2012-02-06 Chrome-free painted steel plate with excellent red rust resistance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008164589A Division JP2009045923A (en) 2007-07-24 2008-06-24 Chromium-free coated steel sheet excellent in anti-red rust on end face

Publications (2)

Publication Number Publication Date
JP2012136025A JP2012136025A (en) 2012-07-19
JP5299532B2 true JP5299532B2 (en) 2013-09-25

Family

ID=40498597

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2008164589A Pending JP2009045923A (en) 2007-07-24 2008-06-24 Chromium-free coated steel sheet excellent in anti-red rust on end face
JP2012023400A Active JP5299532B2 (en) 2007-07-24 2012-02-06 Chrome-free painted steel plate with excellent red rust resistance
JP2012023399A Active JP5299531B2 (en) 2007-07-24 2012-02-06 Chrome-free painted steel plate with excellent red rust resistance

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008164589A Pending JP2009045923A (en) 2007-07-24 2008-06-24 Chromium-free coated steel sheet excellent in anti-red rust on end face

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012023399A Active JP5299531B2 (en) 2007-07-24 2012-02-06 Chrome-free painted steel plate with excellent red rust resistance

Country Status (1)

Country Link
JP (3) JP2009045923A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138233A (en) * 2007-12-06 2009-06-25 Nippon Fine Coatings Inc Chromate-free paint composition for inhibiting red rust of painted steel sheet
JP5187221B2 (en) * 2009-01-22 2013-04-24 新日鐵住金株式会社 Chrome-free coated steel sheet and casing made using the same
JP5126548B2 (en) * 2009-04-14 2013-01-23 新日鐵住金株式会社 Coated steel sheet and electronic equipment casing using the same
JP5416461B2 (en) * 2009-04-15 2014-02-12 新日鐵住金株式会社 Method for removing rust from steel structures
JP5568191B1 (en) * 2014-03-19 2014-08-06 日新製鋼株式会社 Painted steel sheet and exterior building materials
KR102363205B1 (en) 2016-06-14 2022-02-14 덴카 주식회사 High-purity barium titanate-based powder, manufacturing method thereof, and resin composition and fingerprint sensor
SG10201914074YA (en) 2017-04-05 2020-03-30 Nippon Steel Corp Precoated steel sheet excellent in scratch resistance and moisture absorption resistance of coating and excellent in end face red rust corrosion resistance

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3706518B2 (en) * 1998-12-28 2005-10-12 新日本製鐵株式会社 Non-chromium surface-treated zinc-coated steel sheet
JP2002079175A (en) * 2000-09-04 2002-03-19 Sumitomo Metal Ind Ltd Coated material sheet
JP2002294154A (en) * 2001-03-28 2002-10-09 Nisshin Steel Co Ltd Coating material composition for precoated metal plate having excellent resistance to adhesion of dirt, and precoated metal plate
JP2003268578A (en) * 2002-03-15 2003-09-25 Dainippon Toryo Co Ltd Corrosion inhibition method for weather resistant steel
JP4066910B2 (en) * 2003-07-10 2008-03-26 日鉄住金鋼板株式会社 Painted steel sheet not containing chromium
JP5135669B2 (en) * 2005-09-16 2013-02-06 新日鐵住金株式会社 Manufacturing method of painted metal
JP2007119858A (en) * 2005-10-28 2007-05-17 Sumitomo Metal Ind Ltd Chromium-free precoated steel plate
JP2007126565A (en) * 2005-11-04 2007-05-24 Dainippon Toryo Co Ltd Coating composition for galvanized steel sheet or zinc alloy-plated steel sheet and steel sheet coated therewith

Also Published As

Publication number Publication date
JP2012136025A (en) 2012-07-19
JP2012121331A (en) 2012-06-28
JP2009045923A (en) 2009-03-05
JP5299531B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
JP5299532B2 (en) Chrome-free painted steel plate with excellent red rust resistance
US9187829B2 (en) Surface-treatment solution for zinc or zinc alloy coated steel sheet and method for manufacturing zinc or zinc alloy coated steel sheet
JP5080922B2 (en) Non-chromium resin coated metal plate with excellent end face corrosion resistance
CN102686776A (en) Metal pretreatment composition containing zirconium, copper, zinc, and nitrate and related coatings on metal substrates
JP5103111B2 (en) Painted steel plate
JP2007119858A (en) Chromium-free precoated steel plate
JP5176890B2 (en) Coated steel sheet and casing for electronic equipment using the same
JP2968959B1 (en) Surface treated metal plate and method of manufacturing the same
JP5380033B2 (en) Painted metal material with excellent corrosion resistance and paint adhesion
JP5433950B2 (en) Metal paint
JP5125284B2 (en) Aluminum coating material and manufacturing method thereof
JP4992500B2 (en) Chrome-free painted steel plate with excellent red rust resistance
JP4947025B2 (en) Chrome-free painted steel plate with excellent red rust resistance
WO1999050366A1 (en) Metallic material with organic composite coating excellent in corrosion resistance and coatability and reduced in finger mark adhesion and process for producing the same
JP5187221B2 (en) Chrome-free coated steel sheet and casing made using the same
JP2007260953A (en) Chromium-free coated steel sheet excellent in corrosion resistance
JP3962123B2 (en) Organic surface treatment metal plate and organic metal surface treatment liquid
JP2009173996A (en) Coated steel product
JP5531986B2 (en) Chrome-free coated steel sheet and casing made using the same
JP5225212B2 (en) Painted steel sheet and exterior member using the same
TWI431158B (en) Non-chromate-type pre-coated steel plate with excellent red rust and corrosion resistance
JP2016193593A (en) Chromate-free type precoated steel sheet excellent in edge face red rust anticorrosion and having coated film excellent in hygroscopic resistance
JP5309648B2 (en) Painted metal parts
WO2023017668A1 (en) Hexavalent chromium-free water-based surface treatment solution, surface-treated metal, and surface treatment method
Geng et al. Influence of processing parameters on cerium based conversion coatings

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R151 Written notification of patent or utility model registration

Ref document number: 5299532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350