JP5298758B2 - Gas flow path forming member used for power generation cell of fuel cell and manufacturing method thereof - Google Patents

Gas flow path forming member used for power generation cell of fuel cell and manufacturing method thereof Download PDF

Info

Publication number
JP5298758B2
JP5298758B2 JP2008270027A JP2008270027A JP5298758B2 JP 5298758 B2 JP5298758 B2 JP 5298758B2 JP 2008270027 A JP2008270027 A JP 2008270027A JP 2008270027 A JP2008270027 A JP 2008270027A JP 5298758 B2 JP5298758 B2 JP 5298758B2
Authority
JP
Japan
Prior art keywords
flow path
gas flow
gas
ring
path forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008270027A
Other languages
Japanese (ja)
Other versions
JP2010153041A (en
Inventor
諭 二見
圭二 橋本
友和 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Auto Body Co Ltd
Toyota Motor Corp
Original Assignee
Toyota Auto Body Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Auto Body Co Ltd, Toyota Motor Corp filed Critical Toyota Auto Body Co Ltd
Priority to JP2008270027A priority Critical patent/JP5298758B2/en
Priority to PCT/JP2009/058343 priority patent/WO2010047142A1/en
Priority to CA2713192A priority patent/CA2713192C/en
Priority to US12/867,268 priority patent/US9160026B2/en
Priority to PCT/JP2009/060954 priority patent/WO2009154203A1/en
Priority to CN200980105900.XA priority patent/CN101946349B/en
Priority to DE112009001377T priority patent/DE112009001377T5/en
Publication of JP2010153041A publication Critical patent/JP2010153041A/en
Application granted granted Critical
Publication of JP5298758B2 publication Critical patent/JP5298758B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、燃料電池の発電セルにおいて、ガス拡散層とセパレータとの間に介在されるガス流路形成部材及びその製造方法に関する。   The present invention relates to a gas flow path forming member interposed between a gas diffusion layer and a separator in a power generation cell of a fuel cell, and a method for manufacturing the same.

従来、固体高分子型燃料電池として、特許文献1に開示されたものが提案されている。この燃料電池は、発電セルを積層した燃料電池スタックにより構成されている。発電セルは、電解質膜の一面側にアノード電極層を形成し、他面側にカソード電極層を形成してなる膜−電極接合体を備えている。又、前記アノード電極層及びカソード電極層には、ガス流路形成部材(コレクタ)を介して水素ガス等の燃料ガスと空気等の酸化剤ガスが供給されることにより、膜−電極接合体に電極反応が生じて発電される。発電された電気はコレクタ及び板状のセパレータを介して外部に出力される。   Conventionally, as a polymer electrolyte fuel cell, what was indicated by patent documents 1 is proposed. This fuel cell is composed of a fuel cell stack in which power generation cells are stacked. The power generation cell includes a membrane-electrode assembly in which an anode electrode layer is formed on one side of an electrolyte membrane and a cathode electrode layer is formed on the other side. Further, the anode electrode layer and the cathode electrode layer are supplied with a fuel gas such as hydrogen gas and an oxidant gas such as air via a gas flow path forming member (collector), thereby forming a membrane-electrode assembly. An electrode reaction occurs to generate electricity. The generated electricity is output to the outside through a collector and a plate-like separator.

前記両ガス流路形成部材には、燃料ガス及び酸化剤ガスをアノード電極層及びカソード電極層に効率良く供給する能力が要求される。このため、特許文献1には改良されたガス流路形成部材が開示されている。このガス流路形成部材は、所定形状を有する多数の小さな貫通孔が形成された金属薄板よりなるラスカットメタルにより成形されている。このラスカットメタルは、例えば、板厚が0.1mm程度のステンレス板に対してラスカット加工を施すことにより、略六角形状の貫通孔が網目状に成形されている。又、網目状の六角貫通孔を形成している部分、つまりリング部(ストランド)が順次重なるように連結されて、その断面形状が階段状となっている。
特開2007−87768号公報
Both the gas flow path forming members are required to have an ability to efficiently supply the fuel gas and the oxidant gas to the anode electrode layer and the cathode electrode layer. For this reason, Patent Document 1 discloses an improved gas flow path forming member. This gas flow path forming member is formed of a lath cut metal made of a thin metal plate in which a large number of small through holes having a predetermined shape are formed. In this lath cut metal, for example, a substantially hexagonal through hole is formed in a mesh shape by performing a lath cut process on a stainless steel plate having a thickness of about 0.1 mm. Moreover, the part which forms the mesh-shaped hexagonal through-hole, ie, the ring part (strand), is connected so that it may overlap one another, and the cross-sectional shape is stepped.
JP 2007-87768 A

燃料電池スタックを構成する発電セルは、前記両電極層の表面と前記ガス流路形成部材との間に導電性を有する繊維により形成されたカーボンペーパーよりなるガス拡散層が介在されている。このガス拡散層の微細な隙間を燃料ガス及び酸化剤ガスが通過する間にそれぞれ効率良く拡散されて各電極層に燃料ガス及び酸化剤ガスがそれぞれ適正に供給されるようになっている。又、発電セルは、両ガス拡散層とガス流路形成部材との電気的接触を適正に行うため、次の構成が採られている。複数の発電セルが積層されて燃料電池スタックが構成される。この際、単一の発電セルの上下二枚のセパレータが僅かに接近する方向に押圧されて、ガス流路形成部材がガス拡散層に押圧されるようになっている。このため、従来のガス流路形成部材を用いると、次のような現象が生じる。即ち。図17に示すように、例えばアノード電極層17に接合されたガス拡散層19と、セパレータ23との間にガス流路形成部材21が介在された状態において、セパレータ23が図面の下方に押圧される。すると、ガス流路形成部材21の接触部29がガス拡散層19に強く押し付けられる。このため、接触部29が図18に示すように、ガス拡散層19に食い込むので、次のような問題があった。   In the power generation cell constituting the fuel cell stack, a gas diffusion layer made of carbon paper formed of conductive fibers is interposed between the surfaces of both electrode layers and the gas flow path forming member. The fuel gas and the oxidant gas are efficiently diffused while the fuel gas and the oxidant gas pass through the minute gaps of the gas diffusion layer, and the fuel gas and the oxidant gas are appropriately supplied to each electrode layer. Further, the power generation cell has the following configuration in order to properly make electrical contact between both gas diffusion layers and the gas flow path forming member. A plurality of power generation cells are stacked to form a fuel cell stack. At this time, the upper and lower two separators of the single power generation cell are pressed in a slightly approaching direction, and the gas flow path forming member is pressed against the gas diffusion layer. For this reason, when the conventional gas flow path forming member is used, the following phenomenon occurs. That is. As shown in FIG. 17, for example, in a state where the gas flow path forming member 21 is interposed between the gas diffusion layer 19 bonded to the anode electrode layer 17 and the separator 23, the separator 23 is pressed downward in the drawing. The Then, the contact portion 29 of the gas flow path forming member 21 is strongly pressed against the gas diffusion layer 19. For this reason, since the contact part 29 bites into the gas diffusion layer 19 as shown in FIG. 18, there is the following problem.

前記ガス拡散層19の一部が前記接触部29により切断破壊されて、ガス拡散層としての機能が低下する。又、ガス流路形成部材21のガス流路にガス拡散層の一部が侵入して、その有効面積が減少する。このため、燃料ガスの圧力損失が増加するので、燃料ガスの供給量が低下して、発電効率が低下するという問題があった。又、切断されたガス拡散層のカーボン繊維が燃料ガスにより流されてガス流路形成部材の毛細管状の狭いガス流路に付着して目詰まりが生じ、このため、燃料ガスの流れが阻害されて発電効率が低下する。さらに、各発電セル毎に前記ガス流路形成部材21の接触部29の食い込み量にバラツキが生じて、発電電圧の安定性が低下するという問題もあった。   A part of the gas diffusion layer 19 is cut and broken by the contact portion 29, and the function as the gas diffusion layer is lowered. Further, a part of the gas diffusion layer enters the gas flow path of the gas flow path forming member 21, and the effective area is reduced. For this reason, since the pressure loss of the fuel gas increases, there is a problem that the amount of fuel gas supplied decreases and the power generation efficiency decreases. Further, the cut carbon fibers of the gas diffusion layer are caused to flow by the fuel gas and adhere to the capillary narrow gas flow path of the gas flow path forming member, resulting in clogging, which impedes the flow of the fuel gas. This reduces power generation efficiency. Further, there is a problem that the amount of biting of the contact portion 29 of the gas flow path forming member 21 varies for each power generation cell, and the stability of the power generation voltage decreases.

一方、図8に示すように、下部に位置する第1剪断型33には剪断刃33bのみを形成し、上部に位置する第2剪断型34には、凹部34bと凸部34aを交互に形成したラスカット成形装置を用いて、金属薄板からラスカットメタルを成形する方法も採られていた。この場合には、後に詳述するが、一回の第2剪断型34の昇降動作によって前記凹部34bにより金属薄板に成形される半リング部が凸部34aによって成形される半リング部によって下方に変位され、凹部34bと対応するラスカットメタル(ガス流路形成部材21)の半リング部に屈曲平面部が形成される。そして、図19に示すように、ガス拡散層19に接触されるガス流路形成部材21の接触部29に形成された屈曲平面部29aがガス拡散層19に面接触される。従って、前述した接触部29の食い込みに起因する問題を解消することができる。しかし、一回の前記第2剪断型34の昇降動作により前記屈曲平面部29aが幅広く形成されることによりガス流路形成部材21の厚さT寸法が低減されて、ガス流路の有効面積が低減され、発電効率が低下するという問題があった。   On the other hand, as shown in FIG. 8, only the shearing blade 33b is formed in the first shearing die 33 located in the lower portion, and the concave portions 34b and the convex portions 34a are alternately formed in the second shearing die 34 located in the upper portion. A method of forming a lath cut metal from a thin metal plate using the lath cut molding apparatus was also employed. In this case, as will be described in detail later, the half ring portion formed on the metal thin plate by the concave portion 34b is moved downward by the half ring portion formed by the convex portion 34a. The bent flat part is formed in the half ring part of the lath cut metal (gas flow path forming member 21) corresponding to the recessed part 34b. As shown in FIG. 19, the bent flat portion 29 a formed in the contact portion 29 of the gas flow path forming member 21 that is in contact with the gas diffusion layer 19 is in surface contact with the gas diffusion layer 19. Therefore, the problem caused by the biting of the contact portion 29 described above can be solved. However, since the bent flat portion 29a is formed widely by one raising / lowering operation of the second shearing die 34, the thickness T dimension of the gas flow path forming member 21 is reduced, and the effective area of the gas flow path is increased. There is a problem that the power generation efficiency is reduced.

本発明は、上記従来の技術に存する問題点を解消して、ガス流路形成部材の接触部がガス拡散層等よりなるガス拡散層に食い込むことを抑制することができ、燃料電池の発電効率を向上できる発電セルに用いるガス流路形成部材及びその製造方法を提供することにある。   The present invention solves the above-mentioned problems in the prior art, and can suppress the contact portion of the gas flow path forming member from biting into the gas diffusion layer made of the gas diffusion layer, etc. An object of the present invention is to provide a gas flow path forming member used in a power generation cell capable of improving the efficiency and a manufacturing method thereof.

上記問題点を解決するために、請求項1に記載の発明は、電極構造体の電極層に形成されたガス拡散層と、セパレータとの間にガス流路形成部材を介在し、該ガス流路形成部材に形成されたガス流路によって前記電極層に燃料ガス又は酸化剤ガスを供給するとともに、前記電極層における電極反応によって発電するように構成された燃料電池の発電セルに用いるガス流路形成部材において、前記ガス流路形成部材を、所定の形状の貫通孔を有する多数のリング部が連結板部によって連結されて網目状に形成された金属薄板製のラスカットメタルにより形成し、前記リング部のうち前記ガス拡散層の表面と接触する接触部に該ガス拡散層に面接触される屈曲平面部を形成し、該屈曲平面部及び前記リング部の連結板部の間に前記連結板部と同一平面上に位置するように非屈曲平面部を形成し、前記屈曲平面部と非屈曲平面部は、ラスカット成形装置により塑性変形させることで成形されたものであり、複数のリング部が連結板部で連結された構成が、非屈曲平面部及び屈曲平面部と、非屈曲平面部及び屈曲平面部の両側に接続された傾斜板部からなる第1の半リング部を有し、隣接する第1の半リング部の傾斜板部同士が、連結板部で接続された複数の第1の半リング部を有する第1の部分と、非屈曲平面部及び屈曲平面部と、非屈曲平面部及び屈曲平面部の両側に接続された傾斜板部からなる第2の半リング部を有し、隣接する第2の半リング部の傾斜板部同士が、連結板部で接続された複数の第2の半リング部を有する第2の部分とを有し、第1の部分と、第2の部分は、第1の半リング部に対して、第2の半リング部が半ピッチずれた状態で配置され、第1の部分の連結板部と、第2の部分の半リング部の非屈曲平面部が、同一の平面を形成するように接続された構成であることを要旨とする。 In order to solve the above problems, the invention according to claim 1 is characterized in that a gas flow path forming member is interposed between the gas diffusion layer formed in the electrode layer of the electrode structure and the separator, and the gas flow A gas flow path used in a power generation cell of a fuel cell configured to supply a fuel gas or an oxidant gas to the electrode layer through a gas flow path formed in a path forming member and generate power by an electrode reaction in the electrode layer In the forming member, the gas flow path forming member is formed of a lath cut metal made of a thin metal plate in which a large number of ring portions having through holes of a predetermined shape are connected by a connecting plate portion, and the ring is formed. Forming a bent flat surface portion in surface contact with the gas diffusion layer at a contact portion in contact with the surface of the gas diffusion layer, and connecting the plate portion between the bent flat portion and the connecting plate portion of the ring portion. Same as Forming a non-bent flat portion so as to be positioned on a surface, the bent flat portion and the non-bending plane unit state, and are not molded by plastic deformation by Rasukatto molding device, a plurality of ring portions connecting plate The structure connected by the portion has a first half ring portion composed of a non-bending flat portion and a bending flat portion, and inclined plate portions connected to both sides of the non-bending flat portion and the bending flat portion, and adjacent first A first portion having a plurality of first half-ring portions connected by connecting plate portions, a non-bending flat portion, a bending flat portion, a non-bending flat portion, and A plurality of second half ring portions each having a second half ring portion made of an inclined plate portion connected to both sides of the bent plane portion, wherein the inclined plate portions of the adjacent second half ring portions are connected by a connecting plate portion. A second portion having a half ring portion, wherein the first portion and the second portion are the first portion The second half ring part is arranged with a half pitch deviation with respect to the ring part, and the connecting plate part of the first part and the non-bent flat part of the half ring part of the second part are in the same plane. The gist of the present invention is that the components are connected so as to form .

請求項2に記載の発明は、請求項1において、前記各リング部は、ガスの流路方向から見て五角形状又は六角形状に成形されていることを要旨とする。
請求項3に記載の発明は、請求項1又は2に記載の燃料電池の発電セルに用いるガス流路形成部材の製造方法において、直線状の剪断刃を有する第1剪断型と、凹部と凸部を所定のピッチで複数箇所に形成するとともに、前記各凸部に前記剪断刃と協働して、金属薄板に複数の切り込みを形成する剪断刃を設けた第2剪断型とを用いて、金属薄板を第1送り量で前記第1剪断型の剪断刃よりも前記第2剪断型側に突出するように送り込んだ状態で、金属薄板の端部に対し前記屈曲平面部を含む半リング部を成形する第1の工程と、上記第1の工程の後に、金属薄板を第2送り量で前記第1剪断型の剪断刃よりも前記第2剪断型側に突出するように送り込んだ状態で、金属薄板に対し前記非屈曲平面部を含む半リング部を成形する第2の工程と、上記第2の工程の後に、金属薄板を第1送り量で前記第1剪断型の剪断刃よりも前記第2剪断型側に突出するように送り込んだ状態で、前記第2剪断型を前記金属薄板の送り方向と直交する方向にオフセットさせて、金属薄板の端部に対し前記屈曲平面部を含む半リング部を成形する第3の工程と、上記第3の工程の後に、金属薄板を第2送り量で前記第1剪断型の剪断刃よりも前記第2剪断型側に突出するように送り込んだ状態で、金属薄板に対し前記非屈曲平面部を含む半リング部を成形する第4の工程と、上記第1及び第2の工程と、第3及び第4の工程を交互に繰り返し行い、金属薄板に対し貫通孔を有するリング部を網目状に多数箇所に成形してラスカットメタルを成形する工程と、を含むことを要旨とする。
The gist of a second aspect of the present invention is that, in the first aspect, each of the ring portions is formed in a pentagonal shape or a hexagonal shape as viewed from the gas flow path direction.
According to a third aspect of the present invention, there is provided a method for producing a gas flow path forming member used in the power generation cell of the fuel cell according to the first or second aspect, wherein the first shearing type having a linear shearing blade, the concave portion and the convex shape are provided. Using a second shearing die provided with a shearing blade for forming a plurality of cuts in a thin metal plate in cooperation with the shearing blade at each convex portion at a plurality of locations at a predetermined pitch, A half ring portion including the bent flat portion with respect to an end portion of the metal thin plate in a state in which the metal thin plate is fed at a first feed amount so as to protrude from the first shearing type shearing blade to the second shearing type side. After the first step and the first step, the metal thin plate is fed in a second feed amount so as to protrude from the first shear type shear blade toward the second shear type side. A second step of forming a half ring part including the non-bent flat part with respect to the metal thin plate; After the second step, in fed's state so as to protrude the metal thin plate to said second shearing side of the shear blade of the first shearing at a first feed amount, the metal the second shearing A third step of forming a half ring portion including the bent flat portion with respect to an end portion of the thin metal plate by offsetting in a direction orthogonal to the feeding direction of the thin plate, and after the third step, the thin metal plate is A fourth ring for forming the half ring portion including the non-bent flat portion with respect to the metal thin plate in a state where the feed blade is fed so as to protrude to the second shear die side with respect to the first shear die shear blade at two feed amounts. The process, the first and second steps, and the third and fourth steps are alternately repeated, and a ring portion having a through hole is formed in a mesh shape at a large number of locations on a thin metal plate, thereby forming a lath cut metal. Including the step of performing.

請求項4に記載の発明は、請求項3において、前記第2の工程が連続して複数回行われ、第4の工程が連続して複数回行われることを要旨とする。
(作用)
この発明は、ガス流路形成部材の貫通孔を形成するリング部の外周縁のうちカーボンペーパー等のガス拡散層と接触する接触部に屈曲平面部が形成されているので、ガス拡散層の表面に対し、前記屈曲平面部が面接触される。このため、ガス拡散層に接触部が食い込むことはなく、ガス拡散層の破壊が防止されるとともに、ガス流路形成部材のガス通路に破壊されたガス拡散層が侵入してガス通路の有効面積が減少することはない。
The gist of the invention described in claim 4 is that, in claim 3, the second step is continuously performed a plurality of times, and the fourth step is continuously performed a plurality of times.
(Function)
In this invention, since the bent flat portion is formed in the contact portion that comes into contact with the gas diffusion layer such as carbon paper in the outer peripheral edge of the ring portion that forms the through hole of the gas flow path forming member, the surface of the gas diffusion layer On the other hand, the bent flat portion is brought into surface contact. For this reason, the contact portion does not bite into the gas diffusion layer, the destruction of the gas diffusion layer is prevented, and the destroyed gas diffusion layer enters the gas passage of the gas flow path forming member and the effective area of the gas passage Will not decrease.

又、この発明は前記屈曲平面部と非屈曲平面部を二回のラスカット加工により成形するようにしたので、一回のラスカット加工によりリング部の幅方向の全域に幅広い屈曲平面部を成形する構造と比較して、屈曲平面部の形成幅を小さくし、その分、ガス流路形成部材の厚さ寸法を大きくすることができ、ガス流路の有効面積を増大し、発電効率を向上することができる。   In addition, since the present invention is such that the bent flat portion and the non-bent flat portion are formed by twice the lath cut processing, a wide bent flat portion is formed in the entire width direction of the ring portion by a single lath cut processing. Compared with the above, the formation width of the bent flat portion can be reduced, and the thickness dimension of the gas flow path forming member can be increased correspondingly, the effective area of the gas flow path can be increased, and the power generation efficiency can be improved. Can do.

本発明によれば、ガス流路形成部材の接触部がカーボンペーパー等よりなるガス拡散層に食い込むことを抑制することができるとともに、ガス流路形成部材の厚さ寸法を大きくすることができ、ガス流路の有効面積を増大し、燃料電池の発電効率を向上できる。   According to the present invention, the contact portion of the gas flow path forming member can be prevented from biting into the gas diffusion layer made of carbon paper or the like, and the thickness dimension of the gas flow path forming member can be increased. The effective area of the gas channel can be increased, and the power generation efficiency of the fuel cell can be improved.

以下、本発明を具体化した一実施形態を図1〜図16に従って説明する。
この実施形態の固体高分子型の燃料電池スタック11は、図1に示すように多数の発電セル12を積層して構成されている。
Hereinafter, an embodiment embodying the present invention will be described with reference to FIGS.
The polymer electrolyte fuel cell stack 11 of this embodiment is formed by stacking a large number of power generation cells 12 as shown in FIG.

前記発電セル12は、図1及び図2に示すように、四角枠状をなし、それぞれ燃料ガス通路空間S1及び酸化剤ガス通路空間S2を有する合成ゴム(又は合成樹脂)製の第1,第2フレーム13,14と、両フレーム13,14間に配設される電極構造体としてのMEA15(Membrane−Electrode−Assembly: 膜−電極接合体)とを備えている。又、前記発電セル12は、前記燃料ガス通路空間S1に収容された金属よりなる第1ガス流路形成部材21と、前記酸化剤ガス通路空間S2に収容された金属よりなる第2ガス流路形成部材22とを備えている。さらに、前記発電セル12は、前記フレーム13及び第1ガス流路形成部材21の図示上面に接着された平板室状のチタン又はチタン合金よりなる第1セパレータ23と、前記フレーム14及び第2ガス流路形成部材22の図示下面に接着されたチタン又はチタン合金よりなる第2セパレータ24とを備えている。図2においては、前記ガス流路形成部材21,22の構成は平板状に簡略化して図示されている。   As shown in FIGS. 1 and 2, the power generation cell 12 has a rectangular frame shape, and includes first and first synthetic rubber (or synthetic resin) first and second fuel gas passage spaces S1 and oxidant gas passage spaces S2. Two frames 13 and 14 and MEA 15 (Membrane-Electrode-Assembly) as an electrode structure disposed between the frames 13 and 14 are provided. The power generation cell 12 includes a first gas flow path forming member 21 made of metal housed in the fuel gas passage space S1 and a second gas flow path made of metal housed in the oxidant gas passage space S2. And a forming member 22. Further, the power generation cell 12 includes a first separator 23 made of titanium or a titanium alloy having a flat chamber shape bonded to the upper surface of the frame 13 and the first gas flow path forming member 21, and the frame 14 and the second gas. A second separator 24 made of titanium or a titanium alloy bonded to the lower surface of the flow path forming member 22 is provided. In FIG. 2, the configuration of the gas flow path forming members 21 and 22 is shown in a simplified form as a flat plate.

前記第1フレーム13の対向する平行な二辺には、それぞれ長孔状のガス通路13a,13bが形成されている。前記第2フレーム14の対向する平行な二辺には、それぞれガス通路14a,14bが形成されている。前記ガス通路13a,13bと、ガス通路14a,14bとは、互いに対応されない辺に形成されている。   On the two opposite parallel sides of the first frame 13, long hole-shaped gas passages 13 a and 13 b are formed, respectively. Gas passages 14a and 14b are formed in two opposite parallel sides of the second frame 14, respectively. The gas passages 13a and 13b and the gas passages 14a and 14b are formed on sides that do not correspond to each other.

前記MEA15は、図1及び図2に示すように電解質膜16と、該電解質膜16の図示上面及び下面に対し所定の触媒を積層して形成されたアノード電極層17及びカソード電極層18と、前記両電極層17、18の表面にぞれぞれ接着された導電性を有する例えばカーボンペーパーよりなるガス拡散層19,20とにより構成されている。   The MEA 15 includes an electrolyte membrane 16 as shown in FIGS. 1 and 2, an anode electrode layer 17 and a cathode electrode layer 18 formed by laminating a predetermined catalyst on the upper and lower surfaces of the electrolyte membrane 16 shown in the drawing, The electrode layers 17 and 18 are composed of gas diffusion layers 19 and 20 made of, for example, carbon paper having electrical conductivity bonded to the surfaces of the electrode layers 17 and 18, respectively.

第1,第2セパレータ23,24の直交する二辺には、ガス導入口23a,24aが形成され、他の直交する二辺には、ガス導出口23b,24bが形成されている。
図3に示すように、前記第1,第2ガス流路形成部材21,22は、板厚が0.1mm程度の金属製のラスカットメタル25(以下、単にラスメタルという)によって形成されている。前記ラスメタル25には、図4に示すように略六角形状の貫通孔26が千鳥状に多数箇所に成形されている。前記貫通孔26を形成している部分をリング部27といい、これらのリング部27が連結板部28(図3のドットを施した部分)によって順次重なるように連結されている。
Gas inlets 23a and 24a are formed on two orthogonal sides of the first and second separators 23 and 24, and gas outlets 23b and 24b are formed on the other two orthogonal sides.
As shown in FIG. 3, the first and second gas flow path forming members 21 and 22 are formed of a metal lath cut metal 25 (hereinafter simply referred to as a lath metal) having a plate thickness of about 0.1 mm. As shown in FIG. 4, the lath metal 25 has substantially hexagonal through holes 26 formed in a staggered manner at a large number of locations. A portion where the through hole 26 is formed is called a ring portion 27, and these ring portions 27 are connected so as to sequentially overlap each other by a connecting plate portion 28 (portions given with dots in FIG. 3).

図3及び図4に示すように、前記リング部27の図示上側の半リング部R1は、左右一対の第1傾斜板部27aと、両傾斜板部27aの上端部に一体に架橋連結された第1平板部27bとにより構成されている。前記リング部27の図示下側の半リング部R2は、左右一対の第2傾斜板部27cと、両第2傾斜板部27cの下端部に一体に架橋連結された第2平板部27dとにより構成されている。   As shown in FIGS. 3 and 4, the upper half ring portion R1 of the ring portion 27 is integrally connected to the pair of left and right first inclined plate portions 27a and the upper end portions of both inclined plate portions 27a. It is comprised by the 1st flat plate part 27b. The lower half ring portion R2 in the figure of the ring portion 27 is composed of a pair of left and right second inclined plate portions 27c and a second flat plate portion 27d integrally connected to the lower ends of both the second inclined plate portions 27c. It is configured.

図3に示すように、前記連結板部28は前記リング部27の第2平板部27dと同じ板部となっている。前記リング部27の第1平板部27bの前記連結板部28(平板部27d)と反対側の端部には、前記ガス拡散層19の表面に接触される第1接触部29となっている。前記第1接触部29には前記屈曲平面部29aが形成され、屈曲平面部29aは、図5及び図6に示すように前記ガス拡散層19(20)に面接触されるようにしている。前記リング部27の前記第1平板部27bと連なる第2平板部27dの端部は、第1又は第2セパレータ23,24の内面に線接触される第2接触部30となっている。   As shown in FIG. 3, the connecting plate portion 28 is the same plate portion as the second flat plate portion 27 d of the ring portion 27. A first contact portion 29 that is in contact with the surface of the gas diffusion layer 19 is formed at an end portion of the first flat plate portion 27b of the ring portion 27 opposite to the connection plate portion 28 (flat plate portion 27d). . The bent flat portion 29a is formed in the first contact portion 29, and the bent flat portion 29a is in surface contact with the gas diffusion layer 19 (20) as shown in FIGS. An end portion of the second flat plate portion 27d connected to the first flat plate portion 27b of the ring portion 27 serves as a second contact portion 30 that is in line contact with the inner surface of the first or second separator 23, 24.

前記屈曲平面部29aと前記連結板部28(下側平板部27d)との間の第1平板部27bは、連結板部28と略同一平面上に位置する非屈曲平面部27fとなっている。図5に示すように、前記連結板部28(非屈曲平面部27f)に対する屈曲平面部29aの屈曲角αは、60〜70°の範囲に設定され、この実施形態では65°に設定されている。又、前記非屈曲平面部27fと屈曲平面部29aとにより第1平板部27bが形成されている。   A first flat plate portion 27b between the bent flat portion 29a and the connecting plate portion 28 (lower flat plate portion 27d) is a non-bending flat portion 27f located on the same plane as the connecting plate portion 28. . As shown in FIG. 5, the bending angle α of the bending plane portion 29a with respect to the connecting plate portion 28 (non-bending plane portion 27f) is set in a range of 60 to 70 °, and in this embodiment is set to 65 °. Yes. A first flat plate portion 27b is formed by the non-bending flat portion 27f and the bending flat portion 29a.

図1に示すように、前記第1,第2ガス流路形成部材21,22は、それぞれ第1,第2フレーム13,14の燃料ガス通路空間S1、酸化剤ガス通路空間S2内において、前記ガス拡散層19,20の表面と、第1,第2セパレータ23,24の内面とに接触されている。   As shown in FIG. 1, the first and second gas flow path forming members 21 and 22 are disposed in the fuel gas passage space S1 and the oxidant gas passage space S2 of the first and second frames 13 and 14, respectively. The surfaces of the gas diffusion layers 19 and 20 and the inner surfaces of the first and second separators 23 and 24 are in contact with each other.

図2に矢印G1で示すように、第1セパレータ23の一方のガス導入口23aから前記燃料ガス通路空間S1に導入された燃料ガスが一方のガス導出口23b、第2フレーム14のガス通路14b及び第2セパレータ24の一方のガス導出口24bに流れるように前記第1ガス流路形成部材21が収容されている。図2に矢印G2で示すように、第1セパレータ23の他方のガス導入口23aから前記第1フレーム13のガス通路13aを通して第2フレーム14の前記酸化剤ガス通路空間S2に導入された酸化剤ガスが第1フレーム13のガス通路13bを通して他方のガス導出口23b及び第2セパレータ24の他方のガス導出口24bに流れるように前記第2ガス流路形成部材22が収容されている。   As indicated by an arrow G1 in FIG. 2, the fuel gas introduced into the fuel gas passage space S1 from one gas inlet 23a of the first separator 23 is one gas outlet 23b and the gas passage 14b of the second frame 14. The first gas flow path forming member 21 is accommodated so as to flow to one gas outlet port 24 b of the second separator 24. As indicated by an arrow G2 in FIG. 2, the oxidant introduced into the oxidant gas passage space S2 of the second frame 14 from the other gas introduction port 23a of the first separator 23 through the gas passage 13a of the first frame 13. The second gas flow path forming member 22 is accommodated so that the gas flows through the gas passage 13b of the first frame 13 to the other gas outlet 23b and the other gas outlet 24b of the second separator 24.

この実施形態では、図1に示す第1フレーム13と電解質膜16との接触面及び第1フレーム13と第2フレーム14の接触面のガスのシールを図る観点から、第1及び第2フレーム13,14が合成ゴムにより成形されている。このため、発電セル12を積層して燃料電池スタック11を構成する際に、該スタック11の締結荷重により、第1,第2ガス流路形成部材21,22が第1,第2セパレータ23,24によってMEA15側に若干押圧された状態で組み付けられる。従って、第1ガス流路形成部材21の第1接触部29の屈曲平面部29aとガス拡散層19との面接触状態が適正に保持される。なお、第2ガス流路形成部材22側についてもガス流路形成部材21側の上記の構成と同様に構成されている。   In this embodiment, the first and second frames 13 are designed from the viewpoint of sealing the gas on the contact surface between the first frame 13 and the electrolyte membrane 16 and the contact surface between the first frame 13 and the second frame 14 shown in FIG. , 14 are formed of synthetic rubber. For this reason, when the fuel cell stack 11 is configured by stacking the power generation cells 12, the first and second gas flow path forming members 21 and 22 are connected to the first and second separators 23, 22 by the fastening load of the stack 11. 24 is assembled in a state of being slightly pressed to the MEA 15 side. Accordingly, the surface contact state between the bent flat surface portion 29 a of the first contact portion 29 of the first gas flow path forming member 21 and the gas diffusion layer 19 is appropriately maintained. The second gas flow path forming member 22 side is configured in the same manner as the above-described structure on the gas flow path forming member 21 side.

さて、燃料電池スタック11においては、積層された発電セル12間で、第1セパレータ23の一方のガス導入口23a及び第2セパレータ24の一方のガス導入口24aが第1フレーム13の燃料ガス通路空間S1及び第2フレーム14のガス通路14aを介して、全て連通された状態となり、燃料ガス(水素ガス)流通路が形成される。一方、第1セパレータ23の他方のガス導入口23a及び第2セパレータ24の他方のガス導入口24aが第1フレーム13のガス通路13b及び第2フレーム14の酸化剤ガス通路空間S2を介して、全て連通された状態となり、酸化剤ガス(空気)流通路が形成される。前記燃料ガス流通路及び酸化剤ガス流通路に供給された燃料ガス及び酸化剤ガスは、前記第1,第2ガス流路形成部材21,22によって、燃料ガス通路空間S1、酸化剤ガス通路空間S2内を均一に拡散して流れることになる。即ち、燃料ガス通路空間S1内における燃料ガスは、前記第1ガス流路形成部材21に形成された千鳥配置の多数の貫通孔26を通過することによって乱流となり、燃料ガスはガス通路空間S1内において均一に拡散した状態となる。燃料ガスがガス拡散層19を通過することによって適正に拡散されて、アノード電極層17に燃料ガスが均一に供給される。そして、燃料ガスと酸化剤ガスとの供給によりMEA15において電極反応が起こることによって発電される。発電セル12は、複数積層されているため、所望の出力が得られる。   In the fuel cell stack 11, between the stacked power generation cells 12, one gas introduction port 23 a of the first separator 23 and one gas introduction port 24 a of the second separator 24 are fuel gas passages of the first frame 13. Through the space S1 and the gas passage 14a of the second frame 14, all are in communication with each other, and a fuel gas (hydrogen gas) flow passage is formed. On the other hand, the other gas introduction port 23a of the first separator 23 and the other gas introduction port 24a of the second separator 24 pass through the gas passage 13b of the first frame 13 and the oxidant gas passage space S2 of the second frame 14, respectively. All are in communication with each other, and an oxidant gas (air) flow passage is formed. The fuel gas and the oxidant gas supplied to the fuel gas flow passage and the oxidant gas flow passage are supplied to the fuel gas passage space S1 and the oxidant gas passage space by the first and second gas flow passage forming members 21 and 22, respectively. It will flow uniformly in S2. That is, the fuel gas in the fuel gas passage space S1 becomes turbulent by passing through a large number of zigzag through holes 26 formed in the first gas flow path forming member 21, and the fuel gas is in the gas passage space S1. It is in a state of being uniformly diffused inside. The fuel gas is appropriately diffused by passing through the gas diffusion layer 19, and the fuel gas is uniformly supplied to the anode electrode layer 17. Electric power is generated by the electrode reaction occurring in the MEA 15 by supplying the fuel gas and the oxidant gas. Since a plurality of power generation cells 12 are stacked, a desired output can be obtained.

次に、前記第1,第2ガス流路形成部材21,22の製造方法に用いるラスカット成形装置について説明する。
前記第1ガス流路形成部材21は、図7に示すラスカット成形装置を用いて成形される。このラスカット成形装置は、金属薄板25Aを順次供給するための上下一対の送りローラ31を備えている。又、この成形装置は、薄板25Aに多数箇所に切れ目を入れるとともに切れ目と対応する金属薄板25Aを曲げ伸ばして塑性変形させる成形機構32を備えている。この成形機構32によって、前記金属薄板25Aに網目状をなす多数の六角形の貫通孔26(リング部27)が階段状に成形されてラスメタル25が成形される。
Next, a lath cut molding apparatus used in the method for manufacturing the first and second gas flow path forming members 21 and 22 will be described.
The first gas flow path forming member 21 is molded using a lath cut molding apparatus shown in FIG. This lath cut forming apparatus includes a pair of upper and lower feed rollers 31 for sequentially supplying the metal thin plates 25A. In addition, the forming apparatus includes a forming mechanism 32 that cuts the thin plate 25A at a large number of locations and bends and stretches the metal thin plate 25A corresponding to the cut so as to be plastically deformed. By this forming mechanism 32, a large number of hexagonal through holes 26 (ring portions 27) having a mesh shape are formed in the metal thin plate 25 </ b> A in a step shape, and the lath metal 25 is formed.

前記成形機構32は、図8に示すように、所定位置において、図示しない支持台に固定された第1剪断型33と、図示しない昇降機構及びオフセット機構により上下方向及び金属薄板25Aの送り方向と直交する幅方向(図7の紙面直交方向)に往復動可能な第2剪断型34とによって構成されている。前記第1剪断型33の金属薄板25Aを支持する上面33aの金属薄板25Aの送り方向下流側の縁部には、直線状の剪断刃33bが形成され、剪断刃33bの下方は平面状の位置規制面33cとなっている。   As shown in FIG. 8, the forming mechanism 32 includes, in a predetermined position, a first shear die 33 fixed to a support base (not shown), a vertical direction and a feeding direction of the metal thin plate 25A by an elevator mechanism and an offset mechanism (not shown). The second shearing die 34 is capable of reciprocating in the orthogonal width direction (direction orthogonal to the paper surface of FIG. 7). A straight shearing blade 33b is formed on an edge of the upper surface 33a that supports the thin metal plate 25A of the first shearing die 33 on the downstream side in the feed direction of the thin metal plate 25A, and the lower side of the shearing blade 33b is a planar position. It is a regulation surface 33c.

前記第2剪断型34の下部には、凸部34aと凹部34bが水平方向に所定のピッチで多数箇所に交互に形成されている。前記第2剪断型34の凸部34aの下端には水平成形面34cが形成され、凸部34aの左右両側には傾斜成形面34dが形成されている。前記凹部34bの左右両側面は、前記凸部34aの傾斜成形面34dと同じ成形面となっている。前記凹部34bの内頂面には、水平成形面34eが形成されている。前記成形面34c及び傾斜成形面34dの金属薄板25Aの送り方向の上流側の縁部には、前記第1剪断型33の剪断刃33bと協働して金属薄板25Aに切れ目を入れる逆台形状の剪断刃34fが形成されている。   On the lower portion of the second shearing die 34, convex portions 34a and concave portions 34b are alternately formed at a plurality of locations at a predetermined pitch in the horizontal direction. A horizontal molding surface 34c is formed at the lower end of the convex portion 34a of the second shear mold 34, and inclined molding surfaces 34d are formed on both the left and right sides of the convex portion 34a. The left and right side surfaces of the concave portion 34b are the same molding surfaces as the inclined molding surface 34d of the convex portion 34a. A horizontal molding surface 34e is formed on the inner top surface of the recess 34b. An inverted trapezoidal shape that cuts the thin metal plate 25A in cooperation with the shearing blade 33b of the first shearing die 33 at the upstream edge of the metal thin plate 25A in the feeding direction of the forming surface 34c and the inclined forming surface 34d. A shearing blade 34f is formed.

次に、前記のように構成された成形装置を用いて、ガス流路形成部材21を成形する方法を図9〜図16を中心に説明する。
図7に示す送りローラ31によって、図9(a)に示すように、金属薄板25Aが所定の第1送り量L1(例えば0.2mm)で、第1剪断型33の剪断刃33bよりも送り方向の下流側の成形領域の途中まで突出するように送られる。この状態で、第2剪断型34が第1剪断型33に向かって下降され、第1剪断型33の剪断刃33bと第2剪断型34の剪断刃34fによって、金属薄板25Aの一部を剪断して、多数の切れ目を形成する。次に、図10(a),(b)に示すように、第2剪断型34を、最下点位置まで下降させ、該第2剪断型34の凸部34aと接触している金属薄板25Aを下方に曲げ伸ばす。この凸部34aによって、曲げ伸ばされた部分は、図10(b)に示すように略逆台形状となる。反対に、前記凹部34bに入り込んだ金属薄板25Aは、略台形状となる。
Next, a method of forming the gas flow path forming member 21 using the forming apparatus configured as described above will be described with reference to FIGS.
By the feed roller 31 shown in FIG. 7, as shown in FIG. 9A, the thin metal plate 25A is fed at a predetermined first feed amount L1 (for example, 0.2 mm) more than the shear blade 33b of the first shear die 33. It is sent so as to protrude partway in the molding region on the downstream side in the direction. In this state, the second shear mold 34 is lowered toward the first shear mold 33, and a part of the thin metal plate 25A is sheared by the shear blade 33b of the first shear mold 33 and the shear blade 34f of the second shear mold 34. Thus, a large number of cuts are formed. Next, as shown in FIGS. 10A and 10B, the second shear die 34 is lowered to the lowest point position, and the metal thin plate 25A in contact with the convex portion 34a of the second shear die 34. Bend down and extend. A portion bent and stretched by the convex portion 34a has a substantially inverted trapezoidal shape as shown in FIG. On the contrary, the metal thin plate 25A that has entered the recess 34b has a substantially trapezoidal shape.

上記の第1の工程においては、前記リング部27の下側の半リング部R2を形成する第2平板部27d(連結板部28)は、図10(b)に示すように前記凸部34aの水平成形面34cによって下方に強制的に押し下げられるので、水平状態に成形される。ところが、凹部34bと対応する金属薄板25Aは第1剪断型33に前記凹部34bに入り込む凸部が設けられていないので、下方から強制的に押し込まれることはない。このため、凹部34bによって成形されるリング部27の上側の半リング部R1の第1平板部27bは、図10(a)に示すように、第1剪断型33の剪断刃33bを中心に下方に傾斜するように垂れ下り、水平の金属薄板25Aに対し屈曲角αの屈曲平面部29aが形成され、これが第1接触部29となる。その後、図11(a),(b)に示すように、第2剪断型34は、最下点位置から上方の原位置まで復帰する。   In the first step, the second flat plate portion 27d (the connecting plate portion 28) that forms the lower half ring portion R2 of the ring portion 27 has the convex portion 34a as shown in FIG. Since it is forced down by the horizontal molding surface 34c, it is molded in a horizontal state. However, since the metal thin plate 25A corresponding to the concave portion 34b is not provided with a convex portion that enters the concave portion 34b in the first shearing die 33, it is not forcedly pushed from below. For this reason, the first flat plate portion 27b of the upper half ring portion R1 of the ring portion 27 formed by the recess 34b is downward with respect to the shearing blade 33b of the first shearing die 33 as shown in FIG. The bent flat portion 29 a having a bending angle α is formed with respect to the horizontal metal thin plate 25 </ b> A, and this becomes the first contact portion 29. Thereafter, as shown in FIGS. 11A and 11B, the second shearing die 34 returns from the lowest point position to the upper original position.

続いて、図7に示す前記送りローラ31によって図11(a)に示すように金属薄板25Aが所定の第2送り量L2(例えば0.1mm)で、第1剪断型33の剪断刃33bよりも第2剪断型34側に突出するように送られる。この状態で、図12(a),(b)に示すように、第2剪断型34が左右方向にオフセットされない同じ位置において、再び下降され、金属薄板25Aの端縁にリング部27の上側の半リング部R1と下側の半リング部R2が成形される。このとき、上側の半リング部R1の第1平板部27bは、前記第1接触部29と同様にフリーの状態であるが、第1平板部27bの前記第2送り量L2が接触部29の第1送り量L1よりも小さい。このため、前記第1平板部27bが第1剪断型33の剪断刃33bの近傍に位置して、第2剪断型34の凹部34bの水平成形面34eに添い易くなり、下方へのダレが殆ど無くなる。このため、屈曲平面部29aの後側の第1平板部27bが図12(b)に示すように下方に垂れ下がることはなく、ほぼ水平状態に保持され、該第1平板部27bが非屈曲平面部27fとなる。この第2の工程により非屈曲平面部27fを含む半リング部R1,R2が成形される。   Subsequently, as shown in FIG. 11A, the metal thin plate 25A is moved by the feed roller 31 shown in FIG. 7 at a predetermined second feed amount L2 (for example, 0.1 mm) from the shearing blade 33b of the first shearing die 33. Is also fed so as to protrude to the second shearing die 34 side. In this state, as shown in FIGS. 12 (a) and 12 (b), the second shearing die 34 is lowered again at the same position where it is not offset in the left-right direction, and the upper edge of the ring portion 27 is placed on the edge of the metal thin plate 25A. Half ring part R1 and lower half ring part R2 are formed. At this time, the first flat plate portion 27b of the upper half ring portion R1 is in a free state like the first contact portion 29. However, the second feed amount L2 of the first flat plate portion 27b is equal to that of the contact portion 29. It is smaller than the first feed amount L1. For this reason, the first flat plate portion 27b is positioned in the vicinity of the shearing blade 33b of the first shearing die 33, and can easily follow the horizontal forming surface 34e of the recess 34b of the second shearing die 34, and the sagging downward is almost eliminated. Disappear. For this reason, the first flat plate portion 27b on the rear side of the bent flat portion 29a does not hang downward as shown in FIG. 12B, and is held in a substantially horizontal state, and the first flat plate portion 27b is not bent flat. Part 27f. By this second step, the half ring portions R1 and R2 including the non-bending flat portion 27f are formed.

上述のように、本来、一回の成形動作で形成される半リング部R1,R2を二回に分けて成形し、一回目に成形された前記屈曲平面部29aに続いて非屈曲平面部27fを成形するので、前記屈曲平面部29aの形成幅が一回のみで行う場合と比較して適正幅に抑制される。   As described above, the half ring portions R1 and R2 that are originally formed by one molding operation are molded in two steps, and the bent plane portion 29f that is molded the first time is followed by the non-bent plane portion 27f. Therefore, the formation width of the bent flat portion 29a is suppressed to an appropriate width as compared with the case where the formation is performed only once.

次に、図13(a)に示すように、前記第2剪断型34を上昇させて原位置に移動した後、金属薄板25Aを再び前記第1送り量L1だけ送り込む。又、前記第2剪断型34を図13(b)に示すように、リング部27の配列ピッチの例えば半ピッチだけ右方又は左方に移動した後、前述したように第2剪断型34を下降させて、金属薄板25Aを図14(a)(b)に示すように成形する。そして、前記半リング部R2の上側に半リング部R1を成形し半リング部R1の上側に半リング部R2を成形することにより、複数のリング部27を成形する。この第3の工程の後に、図15(a)(b)に示すように、前記第2剪断型34を前述したオフセット状態のままで、金属薄板25Aを第2送り量L2だけ送り、第2剪断型34を下降させて、図16(a)(b)に示すように、半リング部R1,R2を成形する。この第4の工程により非屈曲平面部27fを含む半リング部R1,R2が成形される。   Next, as shown in FIG. 13A, after the second shearing die 34 is raised and moved to the original position, the thin metal plate 25A is again fed by the first feed amount L1. Further, as shown in FIG. 13B, after moving the second shearing die 34 to the right or left by, for example, a half pitch of the arrangement pitch of the ring portions 27, the second shearing die 34 is moved as described above. The metal sheet 25A is lowered and formed as shown in FIGS. 14 (a) and 14 (b). A plurality of ring portions 27 are formed by forming a half ring portion R1 above the half ring portion R2 and forming a half ring portion R2 above the half ring portion R1. After this third step, as shown in FIGS. 15 (a) and 15 (b), the second thin plate 34 remains in the offset state as described above, and the thin metal plate 25A is fed by the second feed amount L2, and the second The shearing die 34 is lowered to mold the half ring portions R1 and R2 as shown in FIGS. By this fourth step, the half ring portions R1 and R2 including the non-bending flat portion 27f are formed.

その後、前述した第1及び第2の工程と、第3及び第4の工程とを交互に繰り返し行うことにより図3〜図5に示すようにラスメタル25が成形される。このラスメタル25には図3に示すように多数の網目状の貫通孔26を有するリング部27が千鳥状に形成される。   Thereafter, the lath metal 25 is formed as shown in FIGS. 3 to 5 by alternately repeating the first and second steps and the third and fourth steps described above. As shown in FIG. 3, the lath metal 25 is formed with a ring portion 27 having a large number of mesh-like through holes 26 in a staggered manner.

前記第2剪断型34の凸部34aに設けた剪断刃34fによって剪断されない金属薄板25Aは、ラスメタル25に切れ目が加工されない部分として残る。この切れ目なしの部分が連結板部28(第2平板部27d)となることによりリング部27は順次重なるように連結されて、ラスメタル25は、その断面形状が図3及び図5に示すような階段状に形成される。   The thin metal plate 25A that is not sheared by the shearing blade 34f provided on the convex portion 34a of the second shearing die 34 remains as a portion where the cut is not processed in the lath metal 25. The ring part 27 is connected so that it may overlap one another by the connection plate part 28 (second flat plate part 27d) being the unbroken part, and the cross-sectional shape of the lath metal 25 is as shown in FIG. 3 and FIG. It is formed in steps.

このようにして、ラスメタル25の製造が完了すると、このラスメタル25を所定寸法に切断することによって図1及び図2に示す第1,第2ガス流路形成部材21,22が形成される。   When the manufacture of the lath metal 25 is completed in this way, the first and second gas flow path forming members 21 and 22 shown in FIGS. 1 and 2 are formed by cutting the lath metal 25 into a predetermined dimension.

上記のように製造された第1ガス流路形成部材21は図1に示すように発電セル12に組み込まれた状態で、図6に示すように、ガス拡散層19の上面に第1ガス流路形成部材21の第1接触部29の屈曲平面部29aが面接触されるとともに、第2接触部30が第1セパレータ23の裏面に線接触される。   The first gas flow path forming member 21 manufactured as described above is incorporated in the power generation cell 12 as shown in FIG. 1, and the first gas flow path forming member 21 is formed on the upper surface of the gas diffusion layer 19 as shown in FIG. The bent flat surface portion 29 a of the first contact portion 29 of the path forming member 21 is in surface contact, and the second contact portion 30 is in line contact with the back surface of the first separator 23.

上記実施形態の第1,第2ガス流路形成部材21,22によれば、以下のような効果を得ることができる。
(1)上記実施形態では、第1,第2フレーム13,14の燃料ガス通路空間S1、酸化剤ガス通路空間S2に収容された第1,第2ガス流路形成部材21,22をラスメタル25により成形した。そして、ラスメタル25のリング部27の前記ガス拡散層19の表面に接触される第1接触部29に対し屈曲平面部29aを形成した。このため、繊維から形成されたガス拡散層19と第1接触部29との接触状態を面接触にすることができ、ガス拡散層19の表面に第1接触部29が食い込むことを抑制することができる。従って、第1及び第2ガス流路形成部材21,22の燃料ガス流路及び酸化剤ガス流路にガス拡散層19,20が侵入して、燃料ガス通路空間S1及び酸化剤ガス通路空間S2の有効断面積が低減されることを防止でき、燃料ガス及び酸化剤ガスの供給量が低減して発電効率が低下することを回避することができる。
According to the first and second gas flow path forming members 21 and 22 of the above embodiment, the following effects can be obtained.
(1) In the above embodiment, the first and second gas flow path forming members 21 and 22 housed in the fuel gas passage space S1 and the oxidant gas passage space S2 of the first and second frames 13 and 14 are replaced with the lath metal 25. Was molded by. Then, a bent flat portion 29 a was formed with respect to the first contact portion 29 that is in contact with the surface of the gas diffusion layer 19 of the ring portion 27 of the lath metal 25. For this reason, the contact state between the gas diffusion layer 19 formed from the fiber and the first contact portion 29 can be in surface contact, and the first contact portion 29 is prevented from biting into the surface of the gas diffusion layer 19. Can do. Accordingly, the gas diffusion layers 19 and 20 enter the fuel gas flow path and the oxidant gas flow path of the first and second gas flow path forming members 21 and 22, and the fuel gas passage space S1 and the oxidant gas passage space S2 It is possible to prevent the effective cross-sectional area from being reduced, and it is possible to avoid a reduction in power generation efficiency due to a decrease in the supply amount of fuel gas and oxidant gas.

又、第1接触部29がガス拡散層19,20に線接触される場合と比較して、ガス拡散層19,20と第1,第2ガス流路形成部材21,22との電気的な接続を適正に行い、ガス拡散層19,20から第1,第2ガス流路形成部材21,22への電気の流れが円滑になり、集電効率を向上することができる。さらに、第1接触部29が接触されるガス拡散層19,20の接触部の損傷を防止することができる。このため、ガス拡散層19,20を形成する例えばカーボンペーパーの切断されたカーボン繊維がガス流路形成部材21,22のガス通路に目詰まりするのを防止でき、発電性能を確保することができる。   Further, as compared with the case where the first contact portion 29 is in line contact with the gas diffusion layers 19, 20, the electrical connection between the gas diffusion layers 19, 20 and the first and second gas flow path forming members 21, 22 is achieved. By appropriately connecting, the flow of electricity from the gas diffusion layers 19 and 20 to the first and second gas flow path forming members 21 and 22 becomes smooth, and the current collection efficiency can be improved. Furthermore, damage to the contact portions of the gas diffusion layers 19 and 20 with which the first contact portion 29 is contacted can be prevented. For this reason, it is possible to prevent, for example, carbon fibers cut from the carbon paper forming the gas diffusion layers 19 and 20 from being clogged in the gas passages of the gas flow path forming members 21 and 22, and to ensure power generation performance. .

(2)上記実施形態では、本来、剪断刃33bの他は備えていない第1剪断型33と凸部34a及び凹部34bを備えた第2剪断型34により一回の工程で行うリング部27の半リング部R1,R2の成形をそれぞれ二工程で行うようにした。このため、図5に示すようよに、前記屈曲平面部29aの形成幅W1が狭くなり、ガス流路形成部材21の厚さT1の寸法を一回の工程で行う場合と比較して大きく設定することができ、ガス流路形成部材21内のガス流路の有効面積を確保して、ガスの供給を適正に行い、発電効率を向上することができる。仮に、半リング部R1,R2の成形を一回の工程で行うと、図5に二点鎖線で示すように、接触部29の屈曲平面部29aが形成幅W2が大きくなり、その分だけ該接触部29が下方に変位し、前記厚さT2が減少する。このため、ガス流路形成部材21のガス流路の有効面積が低減されて、発電効率が低減される。   (2) In the above embodiment, the ring portion 27 is formed in one step by the first shearing die 33 which is not originally provided except the shearing blade 33b and the second shearing die 34 having the convex portion 34a and the concave portion 34b. The half ring portions R1 and R2 were each formed in two steps. For this reason, as shown in FIG. 5, the formation width W1 of the bent flat portion 29a is narrowed, and the dimension of the thickness T1 of the gas flow path forming member 21 is set to be larger than that in a single step. Therefore, the effective area of the gas flow path in the gas flow path forming member 21 can be secured, the gas can be properly supplied, and the power generation efficiency can be improved. If the half ring portions R1 and R2 are molded in a single process, the bent flat portion 29a of the contact portion 29 has a larger formation width W2 as shown by the two-dot chain line in FIG. The contact portion 29 is displaced downward, and the thickness T2 decreases. For this reason, the effective area of the gas flow path of the gas flow path forming member 21 is reduced, and the power generation efficiency is reduced.

(3)上記実施形態では、平面部形成装置として、従来、製造された図7及び図8に示す簡素な構造の第1剪断型33及び第2剪断型34を用いるのみで良いため、成形装置を簡素化することができるとともに、リング部27の第1接触部29に対し屈曲平面部29aを容易に成形することができる。   (3) In the above-described embodiment, since it is only necessary to use the first shear mold 33 and the second shear mold 34 having a simple structure shown in FIGS. Can be simplified, and the bent flat portion 29 a can be easily formed with respect to the first contact portion 29 of the ring portion 27.

なお、上記実施形態は以下のように変更してもよい。
・図示しないが、前記第1剪断型33の前側面に対し前記第2剪断型34の凸部34aの水平成形面34cとの間で、金属薄板25Aを挟着する成形面を設けてもよい。この場合には、リング部27の第2平板部27dが湾曲するのを防止することができる。
In addition, you may change the said embodiment as follows.
Although not shown, a molding surface for sandwiching the metal thin plate 25A may be provided between the front side surface of the first shearing die 33 and the horizontal molding surface 34c of the convex portion 34a of the second shearing die 34. . In this case, the second flat plate portion 27d of the ring portion 27 can be prevented from being bent.

・図11及び図12に示す前記第2の工程及び図15及び図16に示す第4の工程を、それぞれ複数回に分けて行ってもよい。
・前記実施形態では、前記第2剪断型34の凸部及び凹部34a,34bの形成ピッチの半ピッチだけ該第2剪断型34を左右方向にオフセットして、半リング部R1,R2を成形するようにしたが、このオフセット量を適宜に変更してもよい。又、各リング部27を千鳥配置にしなくてもよい。
The second step shown in FIGS. 11 and 12 and the fourth step shown in FIGS. 15 and 16 may be performed in a plurality of times.
In the embodiment, the second shear mold 34 is offset in the left-right direction by a half pitch of the formation pitch of the convex portions and the concave portions 34a and 34b of the second shear mold 34, and the half ring portions R1 and R2 are formed. However, the offset amount may be changed as appropriate. Further, the ring portions 27 need not be arranged in a staggered manner.

・前記リング部27の形状を六角形状以外に例えば五角形状に成形してもよい。
・第1,第2ガス流路形成部材21,22の材料として、導電性を有する例えばステンレス板、アルミニウム、銅等の金属板を用いてもよい。
-You may shape the shape of the said ring part 27 to pentagonal shape other than hexagonal shape, for example.
-As a material of the 1st, 2nd gas flow path formation members 21 and 22, you may use metal plates, such as a stainless plate, aluminum, copper, etc. which have electroconductivity.

この発明の第1,第2ガス流路形成部材を備えた発電セルを積層した燃料電池スタックの一部省略縦断面図。FIG. 3 is a partially omitted vertical cross-sectional view of a fuel cell stack in which power generation cells including first and second gas flow path forming members of the present invention are stacked. 発電セルの構成部品を分離した状態の斜視図。The perspective view of the state which isolate | separated the component of the power generation cell. 発電セルに用いる第1ガス流路形成部材の部分拡大斜視図。The partial expansion perspective view of the 1st gas flow path formation member used for a power generation cell. 第1ガス流路形成部材の部分正面図。The partial front view of the 1st gas flow path formation member. 第1ガス流路形成部材の部分断面図。The fragmentary sectional view of the 1st gas channel formation member. ガス拡散層、第1ガス流路形成部材及び第1セパレータの積層状態の拡大部分断面図。The expanded fragmentary sectional view of the lamination | stacking state of a gas diffusion layer, the 1st gas flow path formation member, and a 1st separator. ラスメタルのラスカット成形装置を示す断面図。Sectional drawing which shows the lath metal lath cut molding apparatus. 第1剪断型及び第2剪断型の部分斜視図。The partial perspective view of a 1st shear type and a 2nd shear type. (a)はガス流路形成部材の製造工程を示す側断面図、(b)は同じく部分正面図。(A) is a sectional side view which shows the manufacturing process of a gas flow path formation member, (b) is a partial front view similarly. (a)はガス流路形成部材の製造工程を示す側断面図、(b)は同じく部分正面図。(A) is a sectional side view which shows the manufacturing process of a gas flow path formation member, (b) is a partial front view similarly. (a)はガス流路形成部材の製造工程を示す側断面図、(b)は同じく部分正面図。(A) is a sectional side view which shows the manufacturing process of a gas flow path formation member, (b) is a partial front view similarly. (a)はガス流路形成部材の製造工程を示す側断面図、(b)は同じく部分正面図。(A) is a sectional side view which shows the manufacturing process of a gas flow path formation member, (b) is a partial front view similarly. (a)はガス流路形成部材の製造工程を示す側断面図、(b)は同じく部分正面図。(A) is a sectional side view which shows the manufacturing process of a gas flow path formation member, (b) is a partial front view similarly. (a)はガス流路形成部材の製造工程を示す側断面図、(b)は同じく部分正面図。(A) is a sectional side view which shows the manufacturing process of a gas flow path formation member, (b) is a partial front view similarly. (a)はガス流路形成部材の製造工程を示す側断面図、(b)は同じく部分正面図。(A) is a sectional side view which shows the manufacturing process of a gas flow path formation member, (b) is a partial front view similarly. (a)はガス流路形成部材の製造工程を示す側断面図、(b)は同じく部分正面図。(A) is a sectional side view which shows the manufacturing process of a gas flow path formation member, (b) is a partial front view similarly. 従来の発電セルのガス拡散層、ガス流路形成部材及びセパレータの積層構造を示す断面図。Sectional drawing which shows the laminated structure of the gas diffusion layer of a conventional power generation cell, a gas flow path formation member, and a separator. ガス拡散層に対しセパレータが押し付けられた状態を示す断面図。Sectional drawing which shows the state by which the separator was pressed with respect to the gas diffusion layer. 従来の発電セルのガス拡散層、ガス流路形成部材及びセパレータの積層構造を示す断面図。Sectional drawing which shows the laminated structure of the gas diffusion layer of a conventional power generation cell, a gas flow path formation member, and a separator.

符号の説明Explanation of symbols

R1,R2…半リング部、27…リング部、12…発電セル、17…電極層、19,20…ガス拡散層、21,22…ガス流路形成部材、25…ラスカットメタル、25A…金属薄板、26…貫通孔、27f…非屈曲平面部、28…連結板部、29…接触部、29a…屈曲平面部、33…第1剪断型、33b,34f…剪断刃、34…第2剪断型、34a…凸部、34b…凹部。   R1, R2 ... half ring part, 27 ... ring part, 12 ... power generation cell, 17 ... electrode layer, 19, 20 ... gas diffusion layer, 21, 22 ... gas flow path forming member, 25 ... lath cut metal, 25A ... metal thin plate , 26 ... through-hole, 27 f ... non-bending flat part, 28 ... connecting plate part, 29 ... contact part, 29 a ... bending flat part, 33 ... first shearing type, 33b, 34f ... shearing blade, 34 ... second shearing type , 34a ... convex portion, 34b ... concave portion.

Claims (4)

電極構造体の電極層に形成されたガス拡散層と、セパレータとの間にガス流路形成部材を介在し、該ガス流路形成部材に形成されたガス流路によって前記電極層に燃料ガス又は酸化剤ガスを供給するとともに、前記電極層における電極反応によって発電するように構成された燃料電池の発電セルに用いるガス流路形成部材において、
前記ガス流路形成部材を、所定の形状の貫通孔を有する多数のリング部が連結板部によって連結されて網目状に形成された金属薄板製のラスカットメタルにより形成し、前記リング部のうち前記ガス拡散層の表面と接触する接触部に該ガス拡散層に面接触される屈曲平面部を形成し、該屈曲平面部及び前記リング部の連結板部の間に前記連結板部と同一平面上に位置するように非屈曲平面部を形成し、前記屈曲平面部と非屈曲平面部は、ラスカット成形装置により塑性変形させることで成形されたものであり、
複数のリング部が連結板部で連結された構成が、非屈曲平面部及び屈曲平面部と、非屈曲平面部及び屈曲平面部の両側に接続された傾斜板部からなる第1の半リング部を有し、隣接する第1の半リング部の傾斜板部同士が、連結板部で接続された複数の第1の半リング部を有する第1の部分と、非屈曲平面部及び屈曲平面部と、非屈曲平面部及び屈曲平面部の両側に接続された傾斜板部からなる第2の半リング部を有し、隣接する第2の半リング部の傾斜板部同士が、連結板部で接続された複数の第2の半リング部を有する第2の部分とを有し、第1の部分と、第2の部分は、第1の半リング部に対して、第2の半リング部が半ピッチずれた状態で配置され、第1の部分の連結板部と、第2の部分の半リング部の非屈曲平面部が、同一の平面を形成するように接続された構成であることを特徴とする燃料電池の発電セルに用いるガス流路形成部材。
A gas flow path forming member is interposed between the gas diffusion layer formed in the electrode layer of the electrode structure and the separator, and the fuel gas or the gas layer is formed in the electrode layer by the gas flow path formed in the gas flow path forming member. In the gas flow path forming member used for the power generation cell of the fuel cell configured to supply the oxidant gas and generate power by the electrode reaction in the electrode layer,
The gas flow path forming member is formed of a lath cut metal made of a thin metal plate formed by connecting a plurality of ring portions having through holes of a predetermined shape by a connecting plate portion, and the ring portion of the ring portion A bent flat portion that is in surface contact with the gas diffusion layer is formed at a contact portion that contacts the surface of the gas diffusion layer, and is flush with the connecting plate portion between the bent flat portion and the connecting plate portion of the ring portion. the non-bending flat portion formed so as to be located, the bent flat portion and the non-bending plane unit state, and are not molded by plastic deformation by Rasukatto molding device,
A structure in which a plurality of ring parts are connected by a connecting plate part includes a non-bending flat part and a bending flat part, and a first half ring part comprising inclined plate parts connected to both sides of the non-bending flat part and the bending flat part. A first portion having a plurality of first half-ring portions connected by connecting plate portions, and a non-bending plane portion and a bending plane portion. And a second half ring part composed of an inclined plate part connected to both sides of the non-bending flat part and the bent flat part, and the inclined plate parts of the adjacent second half ring parts are connected plate parts. A second portion having a plurality of second half-ring portions connected, the first portion and the second portion being a second half-ring portion relative to the first half-ring portion Are arranged in a state shifted by a half pitch, and the connecting plate portion of the first portion and the non-bending flat portion of the half ring portion of the second portion are the same plane. Gas flow path forming member used in the power generation cell of a fuel cell characterized by so as to form a connected structure.
請求項1において、前記各リング部は、ガスの流路方向から見て五角形状又は六角形状に成形されていることを特徴とする燃料電池の発電セルに用いるガス流路形成部材。 2. The gas flow path forming member used in a power generation cell of a fuel cell according to claim 1, wherein each of the ring portions is formed in a pentagonal shape or a hexagonal shape as viewed from a gas flow path direction. 請求項1又は2に記載の燃料電池の発電セルに用いるガス流路形成部材の製造方法において、
直線状の剪断刃を有する第1剪断型と、
凹部と凸部を所定のピッチで複数箇所に形成するとともに、前記各凸部に前記剪断刃と協働して、金属薄板に複数の切り込みを形成する剪断刃を設けた第2剪断型とを用いて、
金属薄板を第1送り量で前記第1剪断型の剪断刃よりも前記第2剪断型側に突出するように送り込んだ状態で、金属薄板の端部に対し前記屈曲平面部を含む半リング部を成形する第1の工程と、
上記第1の工程の後に、金属薄板を第2送り量で前記第1剪断型の剪断刃よりも前記第2剪断型側に突出するように送り込んだ状態で、金属薄板に対し前記非屈曲平面部を含む半リング部を成形する第2の工程と、
上記第2の工程の後に、金属薄板を第1送り量で前記第1剪断型の剪断刃よりも前記第2剪断型側に突出するように送り込んだ状態で、前記第2剪断型を前記金属薄板の送り方向と直交する方向にオフセットさせて、金属薄板の端部に対し前記屈曲平面部を含む半リング部を成形する第3の工程と、
上記第3の工程の後に、金属薄板を第2送り量で前記第1剪断型の剪断刃よりも前記第2剪断型側に突出するように送り込んだ状態で、金属薄板に対し前記非屈曲平面部を含む半リング部を成形する第4の工程と、
上記第1及び第2の工程と、第3及び第4の工程を交互に繰り返し行い、金属薄板に対し貫通孔を有するリング部を網目状に多数箇所に成形してラスカットメタルを成形する工程と、
を含むことを特徴とする燃料電池の発電セルに用いるガス流路形成部材の製造方法。
In the manufacturing method of the gas flow path formation member used for the power generation cell of the fuel cell according to claim 1 or 2,
A first shear type having a linear shear blade;
A second shearing die having a plurality of recesses and projections at a predetermined pitch and provided with a shearing blade for forming a plurality of cuts in the metal thin plate in cooperation with the shearing blade at each projection. make use of,
A half ring portion including the bent flat portion with respect to an end portion of the metal thin plate in a state in which the metal thin plate is fed at a first feed amount so as to protrude from the first shearing type shearing blade to the second shearing type side. A first step of molding
After the first step, the thin metal plate is fed to the metal thin plate with a second feed amount so as to protrude from the first shearing type shearing blade to the second shearing type side. A second step of forming a half ring part including the part;
After the second step, the metal plate is fed at a first feed amount so as to protrude from the first shearing type shearing blade toward the second shearing type, and the second shearing type is moved to the metal. A third step of forming a half ring part including the bent plane part with respect to an end part of the metal thin plate by offsetting in a direction perpendicular to the feeding direction of the thin plate;
After the third step, the non-bent flat surface of the metal thin plate is fed to the metal thin plate in a state where the metal thin plate is fed at a second feed amount so as to protrude from the first shearing type shearing blade to the second shearing type side. A fourth step of forming the half ring part including the part;
The above first and second steps and the third and fourth steps are alternately repeated, and a ring portion having through holes is formed in a mesh shape at a large number of locations on the metal thin plate, and a lath cut metal is formed; ,
The manufacturing method of the gas flow path formation member used for the power generation cell of a fuel cell characterized by including these.
請求項3において、前記第2の工程が連続して複数回行われ、第4の工程が連続して複数回行われることを特徴とする燃料電池の発電セルに用いるガス流路形成部材の製造方法。 4. A gas flow path forming member for use in a power generation cell of a fuel cell according to claim 3, wherein the second step is continuously performed a plurality of times, and the fourth step is continuously performed a plurality of times. Method.
JP2008270027A 2008-06-16 2008-10-20 Gas flow path forming member used for power generation cell of fuel cell and manufacturing method thereof Active JP5298758B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2008270027A JP5298758B2 (en) 2008-10-20 2008-10-20 Gas flow path forming member used for power generation cell of fuel cell and manufacturing method thereof
PCT/JP2009/058343 WO2010047142A1 (en) 2008-10-20 2009-04-28 Generator cell of a fuel cell and manufacturing method thereof
US12/867,268 US9160026B2 (en) 2008-06-16 2009-06-16 Gas flow passage forming member, method of manufacturing the gas flow passage forming member, and device for forming the gas flow passage forming member
PCT/JP2009/060954 WO2009154203A1 (en) 2008-06-16 2009-06-16 Gas flow passage forming member, method of manufacturing the gas flow passage forming member, and device for forming the gas flow passage forming member
CA2713192A CA2713192C (en) 2008-06-16 2009-06-16 Gas flow passage forming member, method of manufacturing the gas flow passage forming member, and device for forming the gas flow passage forming member
CN200980105900.XA CN101946349B (en) 2008-06-16 2009-06-16 Gas flow passage forming member, method of manufacturing the gas flow passage forming member, and device for forming the gas flow passage forming member
DE112009001377T DE112009001377T5 (en) 2008-06-16 2009-06-16 A gas flow path forming member, a method of manufacturing the gas flow path forming member, and a gas flow path forming member forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008270027A JP5298758B2 (en) 2008-10-20 2008-10-20 Gas flow path forming member used for power generation cell of fuel cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010153041A JP2010153041A (en) 2010-07-08
JP5298758B2 true JP5298758B2 (en) 2013-09-25

Family

ID=42119192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008270027A Active JP5298758B2 (en) 2008-06-16 2008-10-20 Gas flow path forming member used for power generation cell of fuel cell and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5298758B2 (en)
WO (1) WO2010047142A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113252A1 (en) 2009-03-31 2010-10-07 トヨタ車体 株式会社 Fuel battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254424A (en) * 1994-03-16 1995-10-03 Toshiba Corp Collector plate for molten carbonate fuel cell
JPH08138701A (en) * 1994-11-15 1996-05-31 Toshiba Corp Molten carbonate fuel cell
JP2007026812A (en) * 2005-07-14 2007-02-01 Toyota Auto Body Co Ltd Manufacturing method of gas flow passage forming material, gas flow passage forming material of metal separator for fuel cell, and through-hole forming device
JP4915070B2 (en) * 2005-09-22 2012-04-11 トヨタ車体株式会社 Fuel cell separator
JP4445934B2 (en) * 2006-02-10 2010-04-07 トヨタ車体株式会社 Method for forming gas diffusion layer for fuel cell
JP2008146947A (en) * 2006-12-07 2008-06-26 Toyota Motor Corp Gas diffusion member, its manufacturing method, and fuel cell using it
JP2008243394A (en) * 2007-03-26 2008-10-09 Toyota Motor Corp Manufacturing method of cell for fuel cell

Also Published As

Publication number Publication date
JP2010153041A (en) 2010-07-08
WO2010047142A1 (en) 2010-04-29

Similar Documents

Publication Publication Date Title
WO2010119584A1 (en) Gas channel forming member in fuel cell, method for manufacturing same, and device for molding same
US9160026B2 (en) Gas flow passage forming member, method of manufacturing the gas flow passage forming member, and device for forming the gas flow passage forming member
JP4678359B2 (en) Fuel cell
JP4915070B2 (en) Fuel cell separator
JP4400672B2 (en) Fuel cell separator and fuel cell
JP5621709B2 (en) Fuel cell, expanded metal for fuel cell, manufacturing apparatus and manufacturing method thereof
EP2544283B1 (en) Fuel cell
JP5169722B2 (en) Gas flow path forming member used for power generation cell of fuel cell, manufacturing method thereof and molding apparatus
JP2017199609A (en) Fuel cell
JP2006294404A (en) Fuel cell separator
US6833213B2 (en) Separator for a fuel cell
JP5298758B2 (en) Gas flow path forming member used for power generation cell of fuel cell and manufacturing method thereof
JP2009064688A (en) Fuel cell separator and molding method of collector constituting the separator
JP4639744B2 (en) Fuel cell
JP2006294329A (en) Separator for fuel cell
WO2009154203A1 (en) Gas flow passage forming member, method of manufacturing the gas flow passage forming member, and device for forming the gas flow passage forming member
JP2006331861A (en) Method and facility for manufacturing fuel cell
JP5126237B2 (en) Gas channel forming member, method for manufacturing gas channel forming member, and molding apparatus used for manufacturing gas channel forming member
JP2014032822A (en) Porous flow path plate, fuel cell, manufacturing method of porous flow path plate, and manufacturing method of fuel cell
JP4656841B2 (en) Fuel cell separator
JP2009026472A (en) Fuel battery cell
JP2012003857A (en) Fuel cell
JP2012212564A (en) Fuel cell separator and fuel cell
JP2008153019A (en) Manufacturing method for unit cell of fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100610

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R150 Certificate of patent or registration of utility model

Ref document number: 5298758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250