WO2010047142A1 - Generator cell of a fuel cell and manufacturing method thereof - Google Patents

Generator cell of a fuel cell and manufacturing method thereof Download PDF

Info

Publication number
WO2010047142A1
WO2010047142A1 PCT/JP2009/058343 JP2009058343W WO2010047142A1 WO 2010047142 A1 WO2010047142 A1 WO 2010047142A1 JP 2009058343 W JP2009058343 W JP 2009058343W WO 2010047142 A1 WO2010047142 A1 WO 2010047142A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
flow path
gas flow
power generation
processed
Prior art date
Application number
PCT/JP2009/058343
Other languages
French (fr)
Japanese (ja)
Inventor
諭 二見
橋本 圭二
Original Assignee
トヨタ車体 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ車体 株式会社 filed Critical トヨタ車体 株式会社
Priority to DE112009001377T priority Critical patent/DE112009001377T5/en
Priority to CA2713192A priority patent/CA2713192C/en
Priority to CN200980105900.XA priority patent/CN101946349B/en
Priority to US12/867,268 priority patent/US9160026B2/en
Priority to PCT/JP2009/060954 priority patent/WO2009154203A1/en
Priority to JP2009545749A priority patent/JP5126237B2/en
Publication of WO2010047142A1 publication Critical patent/WO2010047142A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a power generation cell of a fuel cell including a gas flow path forming member interposed between a gas diffusion layer and a separator, and a method for manufacturing the same.
  • Patent Document 1 As a polymer electrolyte fuel cell, one disclosed in Patent Document 1 has been proposed.
  • This fuel cell includes a fuel cell stack constituted by stacked power generation cells.
  • the power generation cell includes a membrane-electrode assembly.
  • the membrane-electrode assembly includes an electrolyte membrane, an anode layer formed on one surface of the electrolyte membrane, and a cathode formed on the other surface of the electrolyte membrane. It is composed of layers.
  • a fuel gas such as hydrogen gas and an oxidant gas such as air
  • a gas flow path forming member collector
  • a gas flow path forming member described in Patent Document 1 can be employed.
  • the gas flow path forming member is made of a lath cut metal formed of a thin metal plate, and a large number of small through holes are formed in a net shape in the lath cut metal.
  • This lath cut metal can be formed, for example, by performing lath cut processing on a stainless steel plate having a thickness of about 0.1 mm.
  • These through-holes are formed in a hexagonal shape, for example, and the portions forming the through-holes, that is, the ring portions (strands) are connected so as to sequentially overlap, and the cross-sectional shape becomes a stepped shape. ing. JP 2007-87768 A
  • FIG. 17 is a partial cross-sectional view of a power generation cell employing a conventional gas flow path forming member.
  • a gas flow path forming member 21 is interposed between the gas diffusion layer 19 joined to the anode layer 17 and the separator 23.
  • the separator 23 is pressed downward in the drawing, and the contact portion 29 of the gas flow path forming member 21 is strongly pressed against the gas diffusion layer 19.
  • the contact portion 29 may bite into the gas diffusion layer 19.
  • this lath cut molding apparatus has a first shearing die 33 in which only the shearing blade 33 b is formed, and the recesses 34 b and the projections 34 a are alternately positioned above the first shearing die 33.
  • a second shearing die 34 formed.
  • the following method has been adopted. That is, in one up / down operation of the second shearing die 34, the upper half ring portion and the lower half ring portion are alternately formed by the concave portion 34b and the convex portion 34a.
  • the upper half ring part formed by the concave part 34b hangs obliquely downward.
  • This hanging portion forms a bent flat portion 29 shown in FIG.
  • the bent flat portion 29 functions as the contact portion 29 of the gas flow path forming member 21 and is in surface contact with the gas diffusion layer 19.
  • the problem resulting from the biting of the contact portion 29 described above can be solved.
  • the bent flat portion 29a is formed in this way, there is a problem that the effective area of the gas flow path is reduced and the power generation efficiency is lowered because the thickness T of the gas flow path forming member 21 is reduced. there were.
  • the present invention eliminates the problems in the above-described conventional technology, suppresses the gas flow path forming member from biting into the gas diffusion layer, and improves the power generation efficiency of the fuel cell, and can improve the power generation efficiency of the fuel cell. And a manufacturing method thereof.
  • an electrode layer a gas diffusion layer formed on a surface of the electrode layer, a separator facing the gas diffusion layer, and the gas
  • a gas flow path forming member formed between the diffusion layer and the separator and having a gas flow path for supplying either the fuel gas or the oxidant gas to the electrode layer, and is generated in the electrode layer
  • the gas flow path forming member is constituted by a lath cut metal formed of a thin metal plate, and the gas flow path forming member has a plurality of through holes of a predetermined shape.
  • the ring part is formed in a mesh shape, and the ring part is formed with a bent flat part in surface contact with the surface of the gas diffusion layer, and between the bent flat part and the connecting plate part connecting the ring part.
  • Bent flat portion is formed, the a bent flat portion and the non-bending plane portion is power generation cell of a fuel cell is formed by a plurality of steps one after the Rasukatto molding apparatus is provided.
  • each of the ring portions is preferably formed in a pentagonal shape or a hexagonal shape.
  • the first shear die having a linear first shear blade, and a plurality of recesses and projections alternately formed at a predetermined interval are provided, and each of the projections is provided.
  • a second shearing die provided with a second shearing blade that forms a plurality of cuts in the metal thin plate in cooperation with the first shearing blade, along the feeding direction of the metal thin plate in the metal thin plate.
  • a plurality of first processed parts and second processed parts that are alternately positioned are sequentially processed, and the first processed part of the metal thin plate is in an intermediate forming position with respect to the first shear mold and the second shear mold.
  • a first step of forming a half ring portion including the bent plane portion with respect to the first processed portion and after the first step, the first processed portion is moved to the first processed portion.
  • the second shear mold is orthogonal to the feeding direction of the metal thin plate.
  • the first and second steps and the third and fourth steps Each other repeatedly performed, the manufacturing method of the power generation cell of a fuel cell and a step of molding the lath cut metal by molding the ring portion in a mesh shape with respect to the metal sheet is provided.
  • the second step and the fourth step are each performed a plurality of times.
  • the bent flat portion is formed in the contact portion that comes into contact with the gas diffusion layer such as carbon paper in the outer peripheral edge of the ring portion that forms the through hole of the gas flow path forming member, the surface of the gas diffusion layer On the other hand, the bent flat portion is brought into surface contact. For this reason, the contact portion does not bite into the gas diffusion layer, the destruction of the gas diffusion layer is prevented, and the destroyed gas diffusion layer enters the gas passage of the gas flow path forming member and the effective area of the gas passage Will not decrease.
  • the present invention is such that the bent flat portion and the non-bent flat portion are formed by twice the lath cut processing, a wide bent flat portion is formed in the entire width direction of the ring portion by a single lath cut processing. Compared to the above, the formation width of the bent flat portion can be reduced, and the thickness of the gas flow path forming member can be increased correspondingly, thereby increasing the effective area of the gas flow path and improving the power generation efficiency. it can.
  • the contact portion of the gas flow path forming member can be prevented from biting into the gas diffusion layer made of carbon paper or the like, and the thickness of the gas flow path forming member can be increased.
  • the effective area of the flow path can be increased and the power generation efficiency of the fuel cell can be improved.
  • (A) is a sectional side view which shows the manufacturing process of a gas flow path formation member
  • (b) is a front view which shows the manufacturing process.
  • (A) is a sectional side view which shows the manufacturing process of a gas flow path formation member
  • (b) is a front view which shows the manufacturing process.
  • (A) is a sectional side view which shows the manufacturing process of a gas flow path formation member
  • (b) is a front view which shows the manufacturing process.
  • (A) is a sectional side view which shows the manufacturing process of a gas flow path formation member
  • (b) is a front view which shows the manufacturing process.
  • (A) is a sectional side view which shows the manufacturing process of a gas flow path formation member
  • (b) is a front view which shows the manufacturing process.
  • (A) is a sectional side view which shows the manufacturing process of a gas flow path formation member
  • (b) is a front view which shows the manufacturing process.
  • (A) is a sectional side view which shows the manufacturing process of a gas flow path formation member
  • (b) is a front view which shows the manufacturing process.
  • (A) is a sectional side view which shows the manufacturing process of a gas flow path formation member
  • (b) is a front view which shows the manufacturing process.
  • Sectional drawing which shows the laminated structure of the gas diffusion layer of a conventional power generation cell, a gas flow path formation member, and a separator.
  • the fuel cell stack 11 of the present embodiment is a solid polymer type and includes a large number of stacked power generation cells 12.
  • the power generation cell 12 has a square frame shape, first and second frames 13 and 14 made of synthetic rubber (or synthetic resin), and an MEA 15 (Membrane-) as an electrode structure. Electrode-Assembly: capsule-electrode assembly).
  • the first frame 13 defines a fuel gas passage space S1 inside thereof, and the second frame 14 defines an oxidant gas passage space S2 inside thereof.
  • the MEA 15 is disposed between the frames 13 and 14.
  • the power generation cell 12 includes a metal first gas flow path forming member 21 housed in the fuel gas passage space S1, and a metal second gas flow path forming member 22 housed in the oxidant gas passage space S2. It has. Further, the power generation cell 12 includes a flat plate-like first separator 23 and a second separator 24 made of titanium or a titanium alloy. The first separator 23 is bonded to the upper surfaces of the first frame 13 and the first gas flow path forming member 21 in the drawing. The second separator 24 is bonded to the lower surface of the second frame 14 and the second gas flow path forming member 22 in the drawing. In FIG. 2, the configuration of the gas flow path forming members 21 and 22 is shown in a simplified form as a flat plate.
  • elongated hole gas passages 13a and 13b are formed, respectively.
  • Gas passages 14a and 14b are formed in two sides 141 and 142 orthogonal to the sides 131 and 132 in the second frame 14, respectively.
  • the MEA 15 includes an electrolyte membrane 16, an anode layer 17 and a cathode layer 18, and gas diffusion layers 19 and 20 made of, for example, carbon paper having conductivity.
  • the anode layer 17 is formed of a catalyst laminated on the anode side surface of the electrolyte membrane 16, that is, the upper surface in the drawing
  • the cathode layer 18 is a catalyst laminated on the cathode side surface of the electrolyte membrane 16, that is, the lower surface in the drawing. Is formed by.
  • the gas diffusion layers 19 and 20 are bonded to the surfaces of the electrode layers 17 and 18, respectively.
  • gas inlets 231a and 232a are formed on two sides corresponding to the side 131 of the first frame 13 and the side 141 of the second frame 14, and gas outlets 231b and 231b are formed on the other two sides. 232b is formed.
  • gas inlets 241a and 242a are formed on two sides corresponding to the gas inlets 231a and 232a, and gas outlets 241b and 242b are formed on the other two sides.
  • the first and second gas flow path forming members 21 and 22 have the same configuration and are formed of a lath cut metal 25 (hereinafter simply referred to as a lath metal) having a plate thickness of about 0.1 mm. ing.
  • a lath metal a lath cut metal 25
  • the lath metal 25 is formed so that a large number of substantially hexagonal through holes 26 meander.
  • the ring portions 27 forming these through-holes 26 are connected so as to be sequentially overlapped by a connecting plate portion 28 (the portion given the dots in FIG. 3).
  • the upper half ring portion R1 of the ring portion 27 is composed of a pair of first inclined plate portion 27a and first flat plate portion 27b.
  • the pair of first inclined plate portions 27a are opposed to each other, and the first flat plate portion 27b is formed integrally with the inclined plate portion 27a so as to be bridged with the upper end portions of both inclined plate portions 27a.
  • the lower half ring portion R2 of the ring portion 27 in the figure is composed of a pair of second inclined plate portions 27c and a second flat plate portion 27d.
  • the pair of second inclined plate portions 27c face each other, and the second flat plate portion 27d is formed integrally with the inclined plate portion 27c so as to be bridged with the upper end portions of both inclined plate portions 27c.
  • the connecting plate portion 28 is the same plate portion as the second flat plate portion 27 d of the ring portion 27.
  • a first contact portion 29 that faces the second flat plate portion 27 d of the ring portion 27 is formed on the first flat plate portion 27 b of each ring portion 27.
  • the first contact portion 29 comes into contact with the surface of the gas diffusion layer 19.
  • a bent flat portion 29a is formed in the first contact portion 29, and the bent flat portion 29a is in surface contact with the gas diffusion layer 19 (20) as shown in FIGS. Yes.
  • a second contact portion 30 is formed on the second flat plate portion 27 d of each ring portion 27 so as to face the first flat plate portion 27 b of the ring portion 27.
  • the second contact portion 30 comes into line contact with the inner surfaces of the first or second separators 23 and 24.
  • the first flat plate part 27b is formed with a non-bending flat part 27f located on the same plane as the connecting plate part 28. .
  • the first flat plate portion 27b is formed by the non-bent flat portion 27f and the bent flat portion 29a.
  • the bending angle ⁇ of the bending plane portion 29a with respect to the connecting plate portion 28 (non-bending plane portion 27f) can be set in a range of 60 to 70 °. In the present embodiment, the bending angle ⁇ is set to 65 °.
  • the first and second gas flow path forming members 21 and 22 are accommodated in the fuel gas passage space S1 and the oxidant gas passage space S2 of the first and second frames 13 and 14, respectively.
  • the surfaces of the gas diffusion layers 19 and 20 are in contact with the inner surfaces of the first and second separators 23 and 24.
  • the fuel gas introduced into the fuel gas passage space S1 from the gas introduction port 232a of the first separator 23 by the first gas flow path forming member 21 is the gas outlet port 232b or The gas flows to the gas passage 14b of the two frames 14 and the gas outlet 242b of the second separator 24.
  • the agent gas flows through the gas passage 13 b of the first frame 13 to the gas outlet 231 b or the gas outlet 241 b of the second separator 24.
  • the first and second frames 13 and 14 are formed of synthetic rubber. Therefore, it is possible to improve the sealing performance against the gas at the contact portion between the first frame 13 and the electrolyte membrane 16 and the contact portion between the first frame 13 and the second frame 14.
  • the first and second gas flow path forming members 21 and 22 are caused to move to the first and second separators 23, 22 by the fastening load of the stack 11. 24 is assembled in a state of being slightly pressed to the MEA 15 side. Thereby, the surface contact state between the bent flat surface portion 29 a of the first contact portion 29 of the first gas flow path forming member 21 and the gas diffusion layer 19 is appropriately maintained.
  • the second gas flow path forming member 22 has a configuration according to the gas flow path forming member 21.
  • the gas introduction port 232 a of the first separator 23 and the gas introduction port 242 a of the second separator 24 of the stacked power generation cells 12 are connected to the fuel gas passage space S 1 and the second frame of the first frame 13. All are connected via 14 gas passages 14a.
  • a fuel gas (hydrogen gas) flow passage is formed by the gas introduction port 232a, the gas introduction port 242a, the passage space S1, and the gas passage 14a.
  • the gas inlet 231a of the first separator 23 and the gas inlet 241a of the second separator 24 are all connected via the gas passage 13a of the first frame 13 and the oxidant gas passage space S2 of the second frame 14. Yes.
  • the gas introduction port 231a, the gas introduction port 241a, the gas passage 13a, and the oxidant gas passage space S2 form an oxidant gas (air) flow passage.
  • the fuel gas and the oxidant gas supplied to the fuel gas flow path and the oxidant gas flow path are fed into the fuel gas path space S1 and the oxidant gas path space S2 by the first and second gas flow path forming members 21 and 22, respectively.
  • Uniformly diffuse For example, the fuel gas in the fuel gas passage space S1 becomes a turbulent flow by passing through a large number of through holes 26 formed in the first gas flow path forming member 21, and is uniformly diffused in the gas passage space S1. Become.
  • the fuel gas is further appropriately diffused by passing through the gas diffusion layer 19 and is uniformly supplied to the anode layer 17. Then, by supplying the fuel gas and the oxidant gas, an electrode reaction occurs in the MEA 15 and power generation is performed. Desired electric power is output from the fuel cell stack 11 including the plurality of stacked power generation cells 12.
  • FIG. 7 is a cross-sectional view showing this lath cut molding apparatus.
  • This lath cut forming apparatus includes a pair of feed rollers 31 that are provided one above the other for sequentially supplying the metal thin plates 25A.
  • the forming apparatus further includes a forming mechanism 32 that cuts the thin metal plate 25A and plastically deforms the thin metal plate 25A by bending and extending the thin metal plate 25A corresponding to the cut.
  • a large number of hexagonal through holes 26 (ring portions 27) having a mesh shape are formed in the metal thin plate 25 ⁇ / b> A in a step shape, and the lath metal 25 is formed.
  • the forming mechanism 32 includes a first shearing die 33 and a second shearing die 34.
  • the first shearing die 33 is fixed to a support base (not shown), and the second shearing die 34 is parallel to the vertical direction and the width direction of the metal thin plate 25A, that is, the rotation axis of the feed roller 31 by an elevator mechanism and an offset mechanism (not shown). It can reciprocate in the direction (direction perpendicular to the paper surface of FIG. 7).
  • the upper surface 33a of the first shearing die 33 functions as a surface that supports the thin metal plate 25A, and a linear first shearing blade is provided on an edge of the upper surface 33a that is located downstream in the feed direction H of the thin metal plate 25A.
  • 33b is formed.
  • a planar position regulating surface 33c is formed below the first shearing blade 33b.
  • a large number of convex portions 34 a are horizontally formed at a predetermined pitch D below the second shearing die 34.
  • a horizontal molding surface 34c is formed at the lower end of the convex portion 34a of the second shear mold 34, and inclined molding surfaces 34d are formed on the left and right sides of the convex portion 34a.
  • a horizontal molding surface 34e is formed between the inclined molding surfaces 34d of the two adjacent convex portions 34a.
  • the inclined molding surface 34d and the horizontal molding surface 34e define a plurality of concave portions 34b, and these concave portions 34b are alternately formed with the convex portions 34a.
  • An inverted trapezoidal second shearing blade 34f is formed on an edge portion of the forming surface 34c and the inclined forming surface 34d located on the upstream side in the feed direction H of the thin metal plate 25A.
  • the second shearing blade 34f can cut the metal thin plate 25A in cooperation with the first shearing blade 33b.
  • a method of the present embodiment for forming the gas flow path forming members 21 and 22 using the forming apparatus configured as described above will be described with reference to FIGS.
  • a plurality of first processed portions P1 and second processed portions P2 that are alternately positioned along the feeding direction H of the thin metal plate 25A in the thin metal plate 25A are sequentially processed.
  • the first step of this method first, as shown in FIG. 9A, the first processed portion P1 of the metal thin plate 25A is moved by the feed roller 31 (see FIG. 7) into the first shear die 33 and the second shear.
  • the mold 34 is sent to an intermediate molding position.
  • the metal thin plate 25A is fed to a position where the end protrudes from the first shearing blade 33b in the feed direction H by a predetermined first feed amount L1 (for example, 0.2 mm).
  • L1 for example, 0.2 mm
  • the second shearing die 34 descends toward the first shearing die 33, and a part of the first workpiece portion P1 is sheared by the first shearing blade 33b and the second shearing blade 34f, and a large number of them are sheared. A break is formed.
  • the second shearing die 34 descends to the lowest point position and comes into contact with the convex portion 34a of the second shearing die 34 in the metal thin plate 25A.
  • a portion curved and extended by the convex portion 34a in the metal thin plate 25A has a substantially inverted trapezoidal shape as shown in FIG.
  • a portion between the curved and extended portions enters the concave portion 34b and has a substantially trapezoidal shape.
  • the second flat plate portion 27d (connecting plate portion 28) that forms the lower half ring portion R2 of the ring portion 27 is formed horizontally as shown in FIG. 10B.
  • the surface 34c is pressed down and formed. Therefore, the second flat plate portion 27d is formed horizontally.
  • the upper half ring portion R1 of the ring portion 27 formed corresponding to the concave portion 34b is not pressed upward by a forming portion having a horizontal forming surface, such as the convex portion 34a. For this reason, as shown in FIG. 10A, the first flat plate portion 27b of the half ring portion R1 formed by the concave portion 34b hangs down so as to incline downward about the first shearing blade 33b.
  • a bent plane portion 29 a having a bending angle ⁇ with respect to the horizontal portion of the thin metal plate 25 A is formed, and this bent plane portion 29 a functions as the first contact portion 29.
  • the second shearing die 34 returns from the lowest point position to the upper original position.
  • the metal thin plate 25A is further moved in the feed direction H by the feed roller 31 (see FIG. 7) to a predetermined second feed amount L2 (for example, 0.1 mm).
  • L2 For example, 0.1 mm
  • the first processed portion P1 of the metal thin plate 25A is sent to the final processing position with respect to the first shearing die 33 and the second shearing die 34.
  • the second shearing die 34 is lowered again without being offset from the position in the first step in the width direction of the metal thin plate 25A.
  • the upper half ring portion R1 and the lower half ring portion R2 of the ring portion 27 are formed on the edge of the thin metal plate 25A.
  • the first flat plate portion 27 b of the upper half ring portion R ⁇ b> 1 is in a free state like the first contact portion 29.
  • the second feed amount L2 is set smaller than the first feed amount L1 described above, and the entire first flat plate portion 27b is located in the vicinity of the first shearing blade 33b. Therefore, the first flat plate portion 27b can easily follow the horizontal molding surface 34e of the concave portion 34b of the second shear mold 34.
  • the first flat plate portion 27b located on the rear side of the bent flat portion 29a hardly hangs down and is held in a substantially horizontal state.
  • the first flat plate portion 27b becomes a non-bent flat portion 27f.
  • the half ring portions R1 and R2 that are originally formed by a single molding operation are molded in two steps, and then the bent plane portion 29a formed at the first time is followed by a non-bend.
  • the flat portion 27f is formed.
  • the metal sheet 25A is moved from the upstream side in the feed direction H to the first.
  • the second processed part P2 adjacent to the first processed part P1 is sent to the intermediate forming position with respect to the first shear mold 33 and the second shear mold 34.
  • the thin metal plate 25A is again fed in the feed direction H by the first feed amount L1.
  • the half ring portion R1 is formed on the upper side of the half ring portion R2, and the half ring portion R2 is formed on the lower side of the half ring portion R1, thereby forming a plurality of ring portions 27.
  • the metal sheet 25A is further moved to the second feed amount L2 while the second shearing die 34 remains offset. Only sent. Accordingly, the second processed portion P2 is sent to the final processing position with respect to the first shearing die 33 and the second shearing die 34. As shown in FIGS. 16A and 16B, the second shearing die 34 is lowered, and the half ring portions R1 and R2 including the non-bending flat surface portion 27f are finally formed.
  • the parts P1 and P2 to be processed are alternately processed, and the lath metal 25 shown in FIGS. Is formed.
  • the lath metal 25 as shown in FIG. 3, a ring portion 27 having a large number of mesh-like through holes 26 is formed to meander.
  • the thin metal plate 25A that is not sheared by the second shearing blade 34f provided on the convex portion 34a of the second shearing die 34 remains as a portion where the cut is not processed in the lath metal 25.
  • This unbroken portion is the connecting plate portion 28 (second flat plate portion 27d). Accordingly, the ring portions 27 are connected so as to overlap one another, and the cross-sectional shape of the lath metal 25 is formed in a stepped shape as shown in FIGS. 3 and 5.
  • the lath metal 25 is cut into a predetermined dimension, and the first and second gas flow path forming members 21 and 22 shown in FIGS. 1 and 2 are formed.
  • the first gas flow path forming member 21 manufactured as described above is incorporated into the power generation cell 12 as shown in FIG. In this state, as shown in FIG. 6, the bent flat portion 29 a of the first contact portion 29 of the first gas flow path forming member 21 is in surface contact with the upper surface of the gas diffusion layer 19, and the second contact portion 30 is Line contact is made with the back surface of the first separator 23.
  • the first and second gas flow path forming members 21 and 22 housed in the fuel gas passage space S1 and the oxidant gas passage space S2 of the first and second frames 13 and 14 are the lath metal 25. It was molded by. A bent flat portion 29 a is formed in a portion of the ring portion 27 of the lath metal 25 that contacts the surfaces of the gas diffusion layers 19 and 20, that is, in the first contact portion 29. For this reason, the contact state between the gas diffusion layers 19 and 20 formed from the fibers and the first contact portion 29 can be in surface contact, and the first contact portion 29 bites into the surfaces of the gas diffusion layers 19 and 20. Can be suppressed.
  • the fuel gas passage space S1 and the oxidant are caused by the gas diffusion layers 19 and 20 entering the fuel gas passage and the oxidant gas passage of the first and second gas passage forming members 21, 22. It can suppress that the effective cross-sectional area of gas passage space S2 falls. As a result, it is possible to suppress a decrease in power generation efficiency due to a decrease in the supply amount of the fuel gas and the oxidant gas. Further, as compared with the case where the first contact portion 29 is in line contact with the gas diffusion layers 19, 20, the electrical connection between the gas diffusion layers 19, 20 and the first and second gas flow path forming members 21, 22 is achieved. The connection is made properly.
  • the flow of electricity from the gas diffusion layers 19 and 20 to the first and second gas flow path forming members 21 and 22 becomes smooth, and the current collection efficiency can be improved. Furthermore, damage to the portion in contact with the first contact portion 29 in the portions of the gas diffusion layers 19 and 20 can be prevented. Therefore, for example, carbon fibers in the carbon paper forming the gas diffusion layers 19 and 20 can be prevented from being cut and clogged in the gas passages of the gas flow path forming members 21 and 22, and power generation performance can be ensured. .
  • the ring portion 27 that is originally performed in a single step by the first shear die 33 having only the first shear blade 33b and the second shear die 34 having the convex portion 34a and the concave portion 34b.
  • the half ring portions R1 and R2 were formed in two steps. Thereby, as shown in FIG. 5, compared with the case where shaping
  • the thickness T1 can be set large. Therefore, the effective area of the gas flow path in the gas flow path forming member 21 can be secured, the gas can be properly supplied, and the power generation efficiency can be improved.
  • a molding surface that faces the horizontal molding surface 34c of the convex portion 34a of the second shearing mold 34 may be provided on the side surface of the first shearing mold 33 that is located downstream in the feed direction H of the thin metal plate 25A.
  • the forming surface formed on the first shearing die 33 and the horizontal forming surface 34c of the convex portion 34a sandwich the metal thin plate 25A, thereby the ring portion 27. It is possible to prevent the second flat plate portion 27d from being bent.
  • the second step shown in FIGS. 11 and 12 and the fourth step shown in FIGS. 15 and 16 may be performed in a plurality of times.
  • the second shearing die 34 is offset in the width direction of the metal thin plate 25A by half the pitch D of the convex portions and the concave portions 34a and 34b of the second shearing die 34, that is, the half pitch, and the half ring portion R1 , R2 is formed. You may change this offset amount suitably. Further, the ring portion 27 may not be arranged to meander.
  • the metal which has electroconductivity such as a stainless plate, aluminum, copper, can be adopted, for example.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

An MEA (15) is housed inside frames (13, 14). First and second gas flow path forming members (21, 22) are interposed between the anode layer (17) and the cathode layer (18) of the MEA (15) and the first and second separators (23, 24), which are secured by bonding to both the upper and lower surfaces of the frames (13,14). The gas flow path forming parts (21, 22) are formed from a lathe-cut metal (25) comprising thin sheet metal. A plurality of perforations having a prescribed shape is formed in a grid form and in a stepped form in the lathe-cut metal (25). Curved planar parts (29a) that contact the surfaces of gas diffusion layers (19, 20) are formed on rings (27), in which the respective perforations of the gas flow path forming parts (21, 22) are formed.

Description

燃料電池の発電セル及びその製造方法Fuel cell power generation cell and method of manufacturing the same
 本発明は、ガス拡散層とセパレータとの間に介在するガス流路形成部材を備える燃料電池の発電セル及びその製造方法に関する。 The present invention relates to a power generation cell of a fuel cell including a gas flow path forming member interposed between a gas diffusion layer and a separator, and a method for manufacturing the same.
 従来、固体高分子型の燃料電池として、特許文献1に開示されたものが提案されている。この燃料電池は、積層された発電セルによって構成された燃料電池スタックを備えている。発電セルは、膜-電極接合体を備えており、この膜-電極接合体は、電解質膜と、該電解質膜の一面に形成されたアノード層と、同電解質膜の他面に形成されたカソード層とにより構成されている。アノード層及びカソード層には、ガス流路形成部材(コレクタ)を介して水素ガス等の燃料ガスと空気等の酸化剤ガスとがそれぞれ供給されることにより、膜-電極接合体に電極反応が生じて発電が行われる。発電された電気は、コレクタ及び板状のセパレータを介して外部に出力される。 Conventionally, as a polymer electrolyte fuel cell, one disclosed in Patent Document 1 has been proposed. This fuel cell includes a fuel cell stack constituted by stacked power generation cells. The power generation cell includes a membrane-electrode assembly. The membrane-electrode assembly includes an electrolyte membrane, an anode layer formed on one surface of the electrolyte membrane, and a cathode formed on the other surface of the electrolyte membrane. It is composed of layers. By supplying a fuel gas such as hydrogen gas and an oxidant gas such as air to the anode layer and the cathode layer via a gas flow path forming member (collector), an electrode reaction occurs in the membrane-electrode assembly. It is generated and electricity is generated. The generated electricity is output to the outside through a collector and a plate-like separator.
 燃料ガス及び酸化剤ガスをアノード層及びカソード層に効率良く供給するために、例えば特許文献1に記載のガス流路形成部材を採用することができる。このガス流路形成部材は、金属薄板により成形されたラスカットメタルによって構成され、該ラスカットメタルには、多数の小さな貫通孔が網目状に形成されている。このラスカットメタルは、例えば、板厚が0.1mm程度のステンレス板に対してラスカット加工を施すことにより成形されることが可能である。それらの貫通孔は、例えば六角形等の形状に形成されており、貫通孔を形成している部分、つまりリング部(ストランド)が順次重なるように連結されて、その断面形状が階段状となっている。
特開2007-87768号公報
In order to efficiently supply the fuel gas and the oxidant gas to the anode layer and the cathode layer, for example, a gas flow path forming member described in Patent Document 1 can be employed. The gas flow path forming member is made of a lath cut metal formed of a thin metal plate, and a large number of small through holes are formed in a net shape in the lath cut metal. This lath cut metal can be formed, for example, by performing lath cut processing on a stainless steel plate having a thickness of about 0.1 mm. These through-holes are formed in a hexagonal shape, for example, and the portions forming the through-holes, that is, the ring portions (strands) are connected so as to sequentially overlap, and the cross-sectional shape becomes a stepped shape. ing.
JP 2007-87768 A
 燃料電池スタックを構成する発電セルにおいて、両電極層の表面とガス流路形成部材との間には、2つのガス拡散層がそれぞれ介在している。ガス拡散層は、導電性を有する繊維からなるカーボンペーパーによって形成されている。このガス拡散層には、微細な隙間が形成されており、燃料ガス及び酸化剤ガスは、これらの隙間を通過することによりそれぞれ効率良く拡散されて両電極層にそれぞれ適正に供給される。ここで、両ガス拡散層とガス流路形成部材との電気的接触を適正に行うため、複数の発電セルが積層される際に、各発電セルの上下二枚のセパレータが僅かに接近する方向に押圧されて、ガス流路形成部材がガス拡散層に押圧される。図17は、従来のガス流路形成部材を採用した発電セルの部分断面図である。図17に示すように、アノード層17に接合されたガス拡散層19とセパレータ23との間には、ガス流路形成部材21が介在されている。この状態において、上述のように上下二枚のセパレータが押圧されると、セパレータ23が図面の下方に押圧され、ガス流路形成部材21の接触部29がガス拡散層19に強く押し付けられる。これにより、図18に示すように、接触部29がガス拡散層19に食い込むおそれがある。 In the power generation cell constituting the fuel cell stack, two gas diffusion layers are interposed between the surfaces of both electrode layers and the gas flow path forming member. The gas diffusion layer is formed of carbon paper made of conductive fibers. Fine gaps are formed in the gas diffusion layer, and the fuel gas and the oxidant gas are efficiently diffused by passing through these gaps and are appropriately supplied to both electrode layers. Here, in order to properly make electrical contact between the gas diffusion layers and the gas flow path forming member, when a plurality of power generation cells are stacked, the direction in which the two upper and lower separators of each power generation cell slightly approach each other The gas flow path forming member is pressed against the gas diffusion layer. FIG. 17 is a partial cross-sectional view of a power generation cell employing a conventional gas flow path forming member. As shown in FIG. 17, a gas flow path forming member 21 is interposed between the gas diffusion layer 19 joined to the anode layer 17 and the separator 23. In this state, when the upper and lower separators are pressed as described above, the separator 23 is pressed downward in the drawing, and the contact portion 29 of the gas flow path forming member 21 is strongly pressed against the gas diffusion layer 19. Thereby, as shown in FIG. 18, the contact portion 29 may bite into the gas diffusion layer 19.
 このように接触部29がガス拡散層19に食い込むと、ガス拡散層19の一部が接触部29により切断破壊されて、ガス拡散層としての機能が低下する。ガス流路形成部材21のガス流路の一部がガス拡散層によって閉鎖されるため、同ガス流路の有効面積が減少する。これにより、燃料ガスの圧力損失が増加するため、燃料ガスの供給量が低下して、発電効率が低下するという問題もあった。又、ガス拡散層におけるカーボン繊維が切断されて燃料ガスにより流されると、この繊維がガス流路形成部材の狭いガス流路に付着し、ガス流路において目詰まりが生じることがある。このようにガス流路において目詰まりが生じると、燃料ガスの流れが阻害されて発電効率が低下する。さらに、各発電セルにおいてガス流路形成部材21の接触部29がガス拡散層19に食い込む量が異なるため、発電電圧の安定性が低下するという問題もあった。 When the contact part 29 bites into the gas diffusion layer 19 in this way, a part of the gas diffusion layer 19 is cut and broken by the contact part 29, and the function as the gas diffusion layer is lowered. Since a part of the gas flow path of the gas flow path forming member 21 is closed by the gas diffusion layer, the effective area of the gas flow path is reduced. Thereby, since the pressure loss of fuel gas increases, there also existed a problem that the supply amount of fuel gas fell and power generation efficiency fell. Further, when the carbon fiber in the gas diffusion layer is cut and flowed by the fuel gas, the fiber may adhere to the narrow gas flow path of the gas flow path forming member, and clogging may occur in the gas flow path. When clogging occurs in the gas flow path in this way, the flow of fuel gas is hindered and power generation efficiency decreases. Furthermore, since the amount of the contact portion 29 of the gas flow path forming member 21 biting into the gas diffusion layer 19 differs in each power generation cell, there is also a problem that the stability of the power generation voltage is lowered.
 上述の問題を解消するために、図8に示すラスカット成形装置が採用されていた。図8に示すように、このラスカット成形装置は、剪断刃33bのみが形成された第1剪断型33と、その第1剪断型33の上方に位置し、凹部34bと凸部34aとが交互に形成された第2剪断型34とを備えている。このラスカットを用いてラスカットメタルを成形する際に、以下の方法が採用されていた。即ち、一回の第2剪断型34の昇降動作において、凹部34b及び凸部34aにより、上側の半リング部と下側の半リング部とが交互に形成される。この場合、凸部34aによって形成される下側の半リング部が下方に変形することにより、凹部34bによって形成される上側の半リング部が斜め下方に垂れ下がる。この垂れ下がる部分は、図19に示す屈曲平面部29を形成している。屈曲平面部29は、ガス流路形成部材21の接触部29として機能し、ガス拡散層19に面接触している。これにより、前述した接触部29の食い込みに起因する問題を解消することができる。しかし、このように屈曲平面部29aを形成する場合には、ガス流路形成部材21の厚さTが小さくなることにより、ガス流路の有効面積が小さくなり、発電効率が低下するという問題があった。 In order to solve the above-mentioned problems, a lath cut molding apparatus shown in FIG. 8 was employed. As shown in FIG. 8, this lath cut molding apparatus has a first shearing die 33 in which only the shearing blade 33 b is formed, and the recesses 34 b and the projections 34 a are alternately positioned above the first shearing die 33. A second shearing die 34 formed. When forming a lath cut metal using this lath cut, the following method has been adopted. That is, in one up / down operation of the second shearing die 34, the upper half ring portion and the lower half ring portion are alternately formed by the concave portion 34b and the convex portion 34a. In this case, when the lower half ring part formed by the convex part 34a is deformed downward, the upper half ring part formed by the concave part 34b hangs obliquely downward. This hanging portion forms a bent flat portion 29 shown in FIG. The bent flat portion 29 functions as the contact portion 29 of the gas flow path forming member 21 and is in surface contact with the gas diffusion layer 19. Thereby, the problem resulting from the biting of the contact portion 29 described above can be solved. However, in the case where the bent flat portion 29a is formed in this way, there is a problem that the effective area of the gas flow path is reduced and the power generation efficiency is lowered because the thickness T of the gas flow path forming member 21 is reduced. there were.
 本発明は、上記従来の技術に存する問題点を解消して、ガス流路形成部材がガス拡散層に食い込むことを抑制するとともに、燃料電池の発電効率を向上させることのできる燃料電池の発電セル及びその製造方法を提供することにある。 The present invention eliminates the problems in the above-described conventional technology, suppresses the gas flow path forming member from biting into the gas diffusion layer, and improves the power generation efficiency of the fuel cell, and can improve the power generation efficiency of the fuel cell. And a manufacturing method thereof.
 上記問題点を解決するために、本発明の第1の態様によれば、電極層と、前記電極層の表面に形成されたガス拡散層と、前記ガス拡散層と対向するセパレータと、前記ガス拡散層と前記セパレータとの間に介在し、燃料ガス及び酸化剤ガスのいずれか一方を前記電極層に供給するガス流路が形成されたガス流路形成部材とを備え、前記電極層において生じる電極反応により発電を行う燃料電池の発電セルにおいて、前記ガス流路形成部材は、金属薄板により形成されたラスカットメタルによって構成され、同ガス流路形成部材には、所定形状の貫通孔を有する多数のリング部が網目状に形成され、前記リング部には、前記ガス拡散層の表面と面接触する屈曲平面部が形成され、該屈曲平面部と前記リング部を連結する連結板部との間には、非屈曲平面部が形成され、前記屈曲平面部と非屈曲平面部とは、ラスカット成形装置により前後して複数工程で成形される燃料電池の発電セルが提供される。 In order to solve the above problems, according to a first aspect of the present invention, an electrode layer, a gas diffusion layer formed on a surface of the electrode layer, a separator facing the gas diffusion layer, and the gas A gas flow path forming member formed between the diffusion layer and the separator and having a gas flow path for supplying either the fuel gas or the oxidant gas to the electrode layer, and is generated in the electrode layer In a power generation cell of a fuel cell that generates power by electrode reaction, the gas flow path forming member is constituted by a lath cut metal formed of a thin metal plate, and the gas flow path forming member has a plurality of through holes of a predetermined shape. The ring part is formed in a mesh shape, and the ring part is formed with a bent flat part in surface contact with the surface of the gas diffusion layer, and between the bent flat part and the connecting plate part connecting the ring part. Is Bent flat portion is formed, the a bent flat portion and the non-bending plane portion is power generation cell of a fuel cell is formed by a plurality of steps one after the Rasukatto molding apparatus is provided.
 また、本発明の燃料電池の発電セルにおいて、前記各リング部は、五角形状又は六角形状に成形されていることが好ましい。
 本発明の第2の形態において、直線状の第1剪断刃を有する第1剪断型と、所定の間隔を隔てて交互に形成された複数の凹部と凸部とを備え、前記各凸部に、前記第1剪断刃と協働して前記金属薄板に複数の切り込みを形成する第2剪断刃が設けられた第2剪断型とを用いて、前記金属薄板において同金属薄板の送り方向に沿って交互に位置する複数の第1被加工部分及び第2被加工部分を順次加工し、前記金属薄板の第1被加工部分を前記第1剪断型及び前記第2剪断型に対して中間成形位置にまで送った状態で、同第1被加工部分に対し前記屈曲平面部を含む半リング部を成形する第1の工程と、前記第1の工程の後に、前記第1被加工部分を前記第1剪断型及び前記第2剪断型に対して最終成形位置にまで更に送った状態で、同第1被加工部分に対し前記非屈曲平面部を含む半リング部を成形する第2の工程と、前記第2の工程の後に、前記金属薄板において同金属薄板の送り方向の上流側から前記第1被加工部分に隣接する第2被加工部分を前記第1剪断型及び前記第2剪断型に対して前記中間成形位置にまで送った状態で、前記第2剪断型を前記金属薄板の送り方向と直交する方向にオフセットさせて、前記第2被加工部分に対し前記屈曲平面部を含む半リング部を成形する第3の工程と、前記第3の工程の後に、前記第2被加工部分を前記第1剪断型及び前記第2剪断型に対して前記最終成形位置にまで更に送った状態で、同第2被加工部分に対し前記非屈曲平面部を含む半リング部を成形する第4の工程と、前記第1及び第2の工程と、前記第3及び第4の工程とを交互に繰り返し行い、前記金属薄板に対し前記リング部を網目状に成形して前記ラスカットメタルを成形する工程と、を含む燃料電池の発電セルの製造方法が提供される。
Moreover, in the power generation cell of the fuel cell according to the present invention, each of the ring portions is preferably formed in a pentagonal shape or a hexagonal shape.
In the second embodiment of the present invention, the first shear die having a linear first shear blade, and a plurality of recesses and projections alternately formed at a predetermined interval are provided, and each of the projections is provided. And a second shearing die provided with a second shearing blade that forms a plurality of cuts in the metal thin plate in cooperation with the first shearing blade, along the feeding direction of the metal thin plate in the metal thin plate. A plurality of first processed parts and second processed parts that are alternately positioned are sequentially processed, and the first processed part of the metal thin plate is in an intermediate forming position with respect to the first shear mold and the second shear mold. In a state where the first processed portion is sent to the first processed portion, a first step of forming a half ring portion including the bent plane portion with respect to the first processed portion, and after the first step, the first processed portion is moved to the first processed portion. With the first shear mold and the second shear mold further fed to the final molding position, A second step of forming a half ring portion including the non-bent flat portion with respect to a work part; and after the second step, the first workpiece from the upstream side in the feeding direction of the metal thin plate in the metal thin plate. In a state where the second processed part adjacent to the part is sent to the intermediate forming position with respect to the first shear mold and the second shear mold, the second shear mold is orthogonal to the feeding direction of the metal thin plate. A third step of forming a half ring portion including the bent flat portion with respect to the second processed portion by offsetting in the direction; and after the third step, the second processed portion is moved to the first processed portion. A fourth step of forming a half ring portion including the non-bent flat portion with respect to the second processed portion in a state where the second die is further sent to the final forming position with respect to the shear die and the second shear die; The first and second steps and the third and fourth steps Each other repeatedly performed, the manufacturing method of the power generation cell of a fuel cell and a step of molding the lath cut metal by molding the ring portion in a mesh shape with respect to the metal sheet is provided.
 また、本発明の燃料電池の発電セルの製造方法において、前記第2の工程及び前記第4の工程は、それぞれ複数回行われることが好ましい。
 (作用)
 この発明は、ガス流路形成部材の貫通孔を形成するリング部の外周縁のうちカーボンペーパー等のガス拡散層と接触する接触部に屈曲平面部が形成されているので、ガス拡散層の表面に対し、前記屈曲平面部が面接触される。このため、ガス拡散層に接触部が食い込むことはなく、ガス拡散層の破壊が防止されるとともに、ガス流路形成部材のガス通路に破壊されたガス拡散層が侵入してガス通路の有効面積が減少することはない。
In the method for manufacturing a power generation cell of a fuel cell according to the present invention, it is preferable that the second step and the fourth step are each performed a plurality of times.
(Function)
In this invention, since the bent flat portion is formed in the contact portion that comes into contact with the gas diffusion layer such as carbon paper in the outer peripheral edge of the ring portion that forms the through hole of the gas flow path forming member, the surface of the gas diffusion layer On the other hand, the bent flat portion is brought into surface contact. For this reason, the contact portion does not bite into the gas diffusion layer, the destruction of the gas diffusion layer is prevented, and the destroyed gas diffusion layer enters the gas passage of the gas flow path forming member and the effective area of the gas passage Will not decrease.
 又、この発明は前記屈曲平面部と非屈曲平面部を二回のラスカット加工により成形するようにしたので、一回のラスカット加工によりリング部の幅方向の全域に幅広い屈曲平面部を成形する構造と比較して、屈曲平面部の形成幅を小さくし、その分、ガス流路形成部材の厚さを大きくすることができ、ガス流路の有効面積を増大し、発電効率を向上することができる。 In addition, since the present invention is such that the bent flat portion and the non-bent flat portion are formed by twice the lath cut processing, a wide bent flat portion is formed in the entire width direction of the ring portion by a single lath cut processing. Compared to the above, the formation width of the bent flat portion can be reduced, and the thickness of the gas flow path forming member can be increased correspondingly, thereby increasing the effective area of the gas flow path and improving the power generation efficiency. it can.
 本発明によれば、ガス流路形成部材の接触部がカーボンペーパー等よりなるガス拡散層に食い込むことを抑制することができるとともに、ガス流路形成部材の厚さを大きくすることができ、ガス流路の有効面積を増大し、燃料電池の発電効率を向上できる。 According to the present invention, the contact portion of the gas flow path forming member can be prevented from biting into the gas diffusion layer made of carbon paper or the like, and the thickness of the gas flow path forming member can be increased. The effective area of the flow path can be increased and the power generation efficiency of the fuel cell can be improved.
本発明の発電セルが積層された燃料電池スタックの縦断面図。The longitudinal cross-sectional view of the fuel cell stack by which the electric power generation cell of this invention was laminated | stacked. 発電セルの分解斜視図。The exploded perspective view of a power generation cell. 発電セルに用いられる第1ガス流路形成部材の一部を示す拡大斜視図。The expanded perspective view which shows a part of 1st gas flow path formation member used for an electric power generation cell. 第1ガス流路形成部材の一部を示す正面図。The front view which shows a part of 1st gas flow path formation member. 第1ガス流路形成部材の一部を示す断面図。Sectional drawing which shows a part of 1st gas flow path formation member. ガス拡散層、第1ガス流路形成部材及び第1セパレータの積層状態を示す断面図。Sectional drawing which shows the lamination | stacking state of a gas diffusion layer, the 1st gas flow path formation member, and a 1st separator. ラスメタルのラスカット成形装置を示す断面図。Sectional drawing which shows the lath metal lath cut molding apparatus. 第1剪断型及び第2剪断型の一部を示す斜視図。The perspective view which shows a part of 1st shear type and 2nd shear type. (a)はガス流路形成部材の製造工程を示す側断面図、(b)は同製造工程を示す正面図。(A) is a sectional side view which shows the manufacturing process of a gas flow path formation member, (b) is a front view which shows the manufacturing process. (a)はガス流路形成部材の製造工程を示す側断面図、(b)は同製造工程を示す正面図。(A) is a sectional side view which shows the manufacturing process of a gas flow path formation member, (b) is a front view which shows the manufacturing process. (a)はガス流路形成部材の製造工程を示す側断面図、(b)は同製造工程を示す正面図。(A) is a sectional side view which shows the manufacturing process of a gas flow path formation member, (b) is a front view which shows the manufacturing process. (a)はガス流路形成部材の製造工程を示す側断面図、(b)は同製造工程を示す正面図。(A) is a sectional side view which shows the manufacturing process of a gas flow path formation member, (b) is a front view which shows the manufacturing process. (a)はガス流路形成部材の製造工程を示す側断面図、(b)は同製造工程を示す正面図。(A) is a sectional side view which shows the manufacturing process of a gas flow path formation member, (b) is a front view which shows the manufacturing process. (a)はガス流路形成部材の製造工程を示す側断面図、(b)は同製造工程を示す正面図。(A) is a sectional side view which shows the manufacturing process of a gas flow path formation member, (b) is a front view which shows the manufacturing process. (a)はガス流路形成部材の製造工程を示す側断面図、(b)は同製造工程を示す正面図。(A) is a sectional side view which shows the manufacturing process of a gas flow path formation member, (b) is a front view which shows the manufacturing process. (a)はガス流路形成部材の製造工程を示す側断面図、(b)は同製造工程を示す正面図。(A) is a sectional side view which shows the manufacturing process of a gas flow path formation member, (b) is a front view which shows the manufacturing process. 従来の発電セルのガス拡散層、ガス流路形成部材及びセパレータの積層構造を示す断面図。Sectional drawing which shows the laminated structure of the gas diffusion layer of a conventional power generation cell, a gas flow path formation member, and a separator. ガス拡散層に対しセパレータが押し付けられた状態を示す断面図。Sectional drawing which shows the state by which the separator was pressed with respect to the gas diffusion layer. 従来の発電セルのガス拡散層、ガス流路形成部材及びセパレータの積層構造を示す断面図。Sectional drawing which shows the laminated structure of the gas diffusion layer of a conventional power generation cell, a gas flow path formation member, and a separator.
 以下、本発明を具体化した一実施形態を図1~図16を参照して説明する。
 図1に示すように、本実施形態の燃料電池スタック11は、固体高分子型であり、積層された多数の発電セル12により構成されている。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, the fuel cell stack 11 of the present embodiment is a solid polymer type and includes a large number of stacked power generation cells 12.
 図1及び図2に示すように、発電セル12は、四角枠状をなし、合成ゴム(又は合成樹脂)製の第1,第2フレーム13,14と、電極構造体としてのMEA15(Membrane-Electrode-Assembly: 膜-電極接合体)とを備えている。第1フレーム13は、その内側に燃料ガスの通路空間S1を区画しており、第2フレーム14は、その内側に酸化剤ガスの通路空間S2を区画している。MEA15は、両フレーム13,14間に配設されている。 As shown in FIG. 1 and FIG. 2, the power generation cell 12 has a square frame shape, first and second frames 13 and 14 made of synthetic rubber (or synthetic resin), and an MEA 15 (Membrane-) as an electrode structure. Electrode-Assembly: capsule-electrode assembly). The first frame 13 defines a fuel gas passage space S1 inside thereof, and the second frame 14 defines an oxidant gas passage space S2 inside thereof. The MEA 15 is disposed between the frames 13 and 14.
 発電セル12は、燃料ガスの通路空間S1に収容された金属製の第1ガス流路形成部材21と、酸化剤ガス通路空間S2に収容された金属製の第2ガス流路形成部材22とを備えている。さらに、発電セル12は、チタン又はチタン合金よりなる平板状の第1セパレータ23及び第2セパレータ24を備えている。第1セパレータ23は、第1フレーム13及び第1ガス流路形成部材21の図示上面に接着されている。第2セパレータ24は、第2フレーム14及び第2ガス流路形成部材22の図示下面に接着されている。図2においては、ガス流路形成部材21,22の構成は平板状に簡略化されて示されている。 The power generation cell 12 includes a metal first gas flow path forming member 21 housed in the fuel gas passage space S1, and a metal second gas flow path forming member 22 housed in the oxidant gas passage space S2. It has. Further, the power generation cell 12 includes a flat plate-like first separator 23 and a second separator 24 made of titanium or a titanium alloy. The first separator 23 is bonded to the upper surfaces of the first frame 13 and the first gas flow path forming member 21 in the drawing. The second separator 24 is bonded to the lower surface of the second frame 14 and the second gas flow path forming member 22 in the drawing. In FIG. 2, the configuration of the gas flow path forming members 21 and 22 is shown in a simplified form as a flat plate.
 第1フレーム13の対向する二辺131,132には、それぞれ長孔状のガス通路13a,13bが形成されている。第2フレーム14において辺131,132と直交する二辺141,142には、それぞれガス通路14a,14bが形成されている。 In the two opposite sides 131 and 132 of the first frame 13, elongated hole gas passages 13a and 13b are formed, respectively. Gas passages 14a and 14b are formed in two sides 141 and 142 orthogonal to the sides 131 and 132 in the second frame 14, respectively.
 MEA15は、図1及び図2に示すように電解質膜16と、アノード層17及びカソード層18と、導電性を有する例えばカーボンペーパーよりなるガス拡散層19,20とにより構成されている。アノード層17は、電解質膜16のアノード側の面、即ち図示上面に積層された触媒により形成されており、カソード層18は、電解質膜16のカソード側の面、即ち図示下面に積層された触媒によって形成されている。ガス拡散層19,20は、電極層17,18の表面にそれぞれ接着されている。 As shown in FIGS. 1 and 2, the MEA 15 includes an electrolyte membrane 16, an anode layer 17 and a cathode layer 18, and gas diffusion layers 19 and 20 made of, for example, carbon paper having conductivity. The anode layer 17 is formed of a catalyst laminated on the anode side surface of the electrolyte membrane 16, that is, the upper surface in the drawing, and the cathode layer 18 is a catalyst laminated on the cathode side surface of the electrolyte membrane 16, that is, the lower surface in the drawing. Is formed by. The gas diffusion layers 19 and 20 are bonded to the surfaces of the electrode layers 17 and 18, respectively.
 第1セパレータ23において第1フレーム13の辺131及び第2フレーム14の辺141に対応する二辺には、ガス導入口231a,232aが形成され、他の二辺には、ガス導出口231b,232bが形成されている。第2セパレータ24においてガス導入口231a,232aに対応する二辺には、ガス導入口241a,242aが形成され、他の二辺には、ガス導出口241b,242bが形成されている。 In the first separator 23, gas inlets 231a and 232a are formed on two sides corresponding to the side 131 of the first frame 13 and the side 141 of the second frame 14, and gas outlets 231b and 231b are formed on the other two sides. 232b is formed. In the second separator 24, gas inlets 241a and 242a are formed on two sides corresponding to the gas inlets 231a and 232a, and gas outlets 241b and 242b are formed on the other two sides.
 図3に示すように、第1,第2ガス流路形成部材21,22は、同様の構成を有し、板厚が0.1mm程度のラスカットメタル25(以下、単にラスメタルという)によって形成されている。ラスメタル25には、図4に示すように、多数の略六角形状の貫通孔26が蛇行するように成形されている。これらの貫通孔26を形成しているリング部27は、連結板部28(図3のドットを施した部分)によって順次重なるように連結されている。 As shown in FIG. 3, the first and second gas flow path forming members 21 and 22 have the same configuration and are formed of a lath cut metal 25 (hereinafter simply referred to as a lath metal) having a plate thickness of about 0.1 mm. ing. As shown in FIG. 4, the lath metal 25 is formed so that a large number of substantially hexagonal through holes 26 meander. The ring portions 27 forming these through-holes 26 are connected so as to be sequentially overlapped by a connecting plate portion 28 (the portion given the dots in FIG. 3).
 図3及び図4に示すように、リング部27の図示上側の半リング部R1は、一対の第1傾斜板部27aと第1平板部27bとにより構成されている。一対の第1傾斜板部27aは、互いに対向しており、第1平板部27bは、両傾斜板部27aの上端部に架橋するように同傾斜板部27aと一体に形成されている。リング部27の図示下側の半リング部R2は、一対の第2傾斜板部27cと第2平板部27dとにより構成されている。一対の第2傾斜板部27cは、互いに対向しており、第2平板部27dは、両傾斜板部27cの上端部に架橋するように同傾斜板部27cと一体に形成されている。 3 and 4, the upper half ring portion R1 of the ring portion 27 is composed of a pair of first inclined plate portion 27a and first flat plate portion 27b. The pair of first inclined plate portions 27a are opposed to each other, and the first flat plate portion 27b is formed integrally with the inclined plate portion 27a so as to be bridged with the upper end portions of both inclined plate portions 27a. The lower half ring portion R2 of the ring portion 27 in the figure is composed of a pair of second inclined plate portions 27c and a second flat plate portion 27d. The pair of second inclined plate portions 27c face each other, and the second flat plate portion 27d is formed integrally with the inclined plate portion 27c so as to be bridged with the upper end portions of both inclined plate portions 27c.
 図3に示すように、連結板部28はリング部27の第2平板部27dと同じ板部となっている。各リング部27の第1平板部27bには、同リング部27の第2平板部27dに対向する第1接触部29が形成されている。発電セル12が組み付けられたときに、この第1接触部29は、ガス拡散層19の表面に接触する状態になる。具体的には、第1接触部29には屈曲平面部29aが形成されており、この屈曲平面部29aは、図5及び図6に示すようにガス拡散層19(20)に面接触している。各リング部27の第2平板部27dには、同リング部27の第1平板部27bに対向する第2接触部30が形成されている。発電セル12が組み付けられたときに、この第2接触部30は、第1又は第2セパレータ23,24の内面に線接触する状態になる。 As shown in FIG. 3, the connecting plate portion 28 is the same plate portion as the second flat plate portion 27 d of the ring portion 27. A first contact portion 29 that faces the second flat plate portion 27 d of the ring portion 27 is formed on the first flat plate portion 27 b of each ring portion 27. When the power generation cell 12 is assembled, the first contact portion 29 comes into contact with the surface of the gas diffusion layer 19. Specifically, a bent flat portion 29a is formed in the first contact portion 29, and the bent flat portion 29a is in surface contact with the gas diffusion layer 19 (20) as shown in FIGS. Yes. A second contact portion 30 is formed on the second flat plate portion 27 d of each ring portion 27 so as to face the first flat plate portion 27 b of the ring portion 27. When the power generation cell 12 is assembled, the second contact portion 30 comes into line contact with the inner surfaces of the first or second separators 23 and 24.
 屈曲平面部29aと連結板部28(下側平板部27d)との間において第1平板部27bには、連結板部28と略同一平面上に位置する非屈曲平面部27fが形成されている。第1平板部27bは、この非屈曲平面部27fと屈曲平面部29aとにより形成されている。図5に示すように、連結板部28(非屈曲平面部27f)に対する屈曲平面部29aの屈曲角αは、60~70°の範囲に設定可能である。本実施形態では、屈曲角αは65°に設定されている。 Between the bent flat part 29a and the connecting plate part 28 (lower flat plate part 27d), the first flat plate part 27b is formed with a non-bending flat part 27f located on the same plane as the connecting plate part 28. . The first flat plate portion 27b is formed by the non-bent flat portion 27f and the bent flat portion 29a. As shown in FIG. 5, the bending angle α of the bending plane portion 29a with respect to the connecting plate portion 28 (non-bending plane portion 27f) can be set in a range of 60 to 70 °. In the present embodiment, the bending angle α is set to 65 °.
 図1に示すように、第1,第2ガス流路形成部材21,22は、第1,第2フレーム13,14の燃料ガス通路空間S1、酸化剤ガス通路空間S2内に収容されており、ガス拡散層19,20の表面と、第1,第2セパレータ23,24の内面とに接触している。 As shown in FIG. 1, the first and second gas flow path forming members 21 and 22 are accommodated in the fuel gas passage space S1 and the oxidant gas passage space S2 of the first and second frames 13 and 14, respectively. The surfaces of the gas diffusion layers 19 and 20 are in contact with the inner surfaces of the first and second separators 23 and 24.
 図2に矢印G1で示すように、第1ガス流路形成部材21により、第1セパレータ23のガス導入口232aから燃料ガス通路空間S1に導入された燃料ガスは、ガス導出口232b、又は第2フレーム14のガス通路14b及び第2セパレータ24のガス導出口242bに流れる。図2に矢印G2で示すように、第2ガス流路形成部材22により、第1セパレータ23のガス導入口231aから第1フレーム13のガス通路13aを通して酸化剤ガス通路空間S2に導入された酸化剤ガスは、第1フレーム13のガス通路13bを通してガス導出口231b、又は第2セパレータ24のガス導出口241bに流れる。 As indicated by an arrow G1 in FIG. 2, the fuel gas introduced into the fuel gas passage space S1 from the gas introduction port 232a of the first separator 23 by the first gas flow path forming member 21 is the gas outlet port 232b or The gas flows to the gas passage 14b of the two frames 14 and the gas outlet 242b of the second separator 24. As shown by an arrow G2 in FIG. 2, the oxidation introduced into the oxidant gas passage space S2 by the second gas passage forming member 22 from the gas introduction port 231a of the first separator 23 through the gas passage 13a of the first frame 13. The agent gas flows through the gas passage 13 b of the first frame 13 to the gas outlet 231 b or the gas outlet 241 b of the second separator 24.
 本実施形態では、第1及び第2フレーム13,14は合成ゴムにより成形されている。従って、第1フレーム13と電解質膜16との接触部、並びに第1フレーム13と第2フレーム14の接触部のガスに対するシール性の向上を図ることができる。ここで、発電セル12を積層して燃料電池スタック11を構成する際に、該スタック11の締結荷重により、第1,第2ガス流路形成部材21,22が第1,第2セパレータ23,24によってMEA15側に若干押圧された状態で組み付けられる。これにより、第1ガス流路形成部材21の第1接触部29の屈曲平面部29aとガス拡散層19との面接触状態が適正に保持される。第2ガス流路形成部材22は、ガス流路形成部材21に準じる構成を有している。 In the present embodiment, the first and second frames 13 and 14 are formed of synthetic rubber. Therefore, it is possible to improve the sealing performance against the gas at the contact portion between the first frame 13 and the electrolyte membrane 16 and the contact portion between the first frame 13 and the second frame 14. Here, when the fuel cell stack 11 is configured by laminating the power generation cells 12, the first and second gas flow path forming members 21 and 22 are caused to move to the first and second separators 23, 22 by the fastening load of the stack 11. 24 is assembled in a state of being slightly pressed to the MEA 15 side. Thereby, the surface contact state between the bent flat surface portion 29 a of the first contact portion 29 of the first gas flow path forming member 21 and the gas diffusion layer 19 is appropriately maintained. The second gas flow path forming member 22 has a configuration according to the gas flow path forming member 21.
 燃料電池スタック11においては、積層された発電セル12の第1セパレータ23のガス導入口232aと第2セパレータ24のガス導入口242aとは、第1フレーム13の燃料ガス通路空間S1及び第2フレーム14のガス通路14aを介して、全て連通されている。これらのガス導入口232a、ガス導入口242a、通路空間S1及びガス通路14aにより、燃料ガス(水素ガス)流通路が形成されている。第1セパレータ23のガス導入口231aと第2セパレータ24のガス導入口241aとは、第1フレーム13のガス通路13a及び第2フレーム14の酸化剤ガス通路空間S2を介して、全て連通されている。これらのガス導入口231a、ガス導入口241a、ガス通路13a及び酸化剤ガス通路空間S2により、酸化剤ガス(空気)流通路が形成されている。燃料ガス流通路及び酸化剤ガス流通路に供給された燃料ガス及び酸化剤ガスは、第1,第2ガス流路形成部材21,22によって、燃料ガス通路空間S1、酸化剤ガス通路空間S2内において均一に拡散される。例えば燃料ガス通路空間S1内における燃料ガスは、第1ガス流路形成部材21に形成された多数の貫通孔26を通過することによって乱流となり、ガス通路空間S1内において均一に拡散した状態となる。この燃料ガスは、ガス拡散層19を通過することによって更に適正に拡散され、アノード層17に均一に供給される。そして、燃料ガスと酸化剤ガスとが供給されることにより、MEA15において電極反応が発生し、発電が行われる。積層された複数の発電セル12によって構成された燃料電池スタック11から、所望の電力が出力される。 In the fuel cell stack 11, the gas introduction port 232 a of the first separator 23 and the gas introduction port 242 a of the second separator 24 of the stacked power generation cells 12 are connected to the fuel gas passage space S 1 and the second frame of the first frame 13. All are connected via 14 gas passages 14a. A fuel gas (hydrogen gas) flow passage is formed by the gas introduction port 232a, the gas introduction port 242a, the passage space S1, and the gas passage 14a. The gas inlet 231a of the first separator 23 and the gas inlet 241a of the second separator 24 are all connected via the gas passage 13a of the first frame 13 and the oxidant gas passage space S2 of the second frame 14. Yes. The gas introduction port 231a, the gas introduction port 241a, the gas passage 13a, and the oxidant gas passage space S2 form an oxidant gas (air) flow passage. The fuel gas and the oxidant gas supplied to the fuel gas flow path and the oxidant gas flow path are fed into the fuel gas path space S1 and the oxidant gas path space S2 by the first and second gas flow path forming members 21 and 22, respectively. Uniformly diffuse. For example, the fuel gas in the fuel gas passage space S1 becomes a turbulent flow by passing through a large number of through holes 26 formed in the first gas flow path forming member 21, and is uniformly diffused in the gas passage space S1. Become. The fuel gas is further appropriately diffused by passing through the gas diffusion layer 19 and is uniformly supplied to the anode layer 17. Then, by supplying the fuel gas and the oxidant gas, an electrode reaction occurs in the MEA 15 and power generation is performed. Desired electric power is output from the fuel cell stack 11 including the plurality of stacked power generation cells 12.
 次に、第1,第2ガス流路形成部材21,22を成形するためのラスカット成形装置について説明する。
 図7は、このラスカット成形装置を示す断面図である。このラスカット成形装置は、上下に設けられて金属薄板25Aを順次供給するための一対の送りローラ31を備えている。この成形装置は、金属薄板25Aに切れ目を入れるとともに、その切れ目と対応して金属薄板25Aを湾曲及び延伸させて塑性変形させる成形機構32を更に備えている。この成形機構32によって、金属薄板25Aに網目状をなす多数の六角形の貫通孔26(リング部27)が階段状に成形され、ラスメタル25が成形される。
Next, a lath cut molding apparatus for molding the first and second gas flow path forming members 21 and 22 will be described.
FIG. 7 is a cross-sectional view showing this lath cut molding apparatus. This lath cut forming apparatus includes a pair of feed rollers 31 that are provided one above the other for sequentially supplying the metal thin plates 25A. The forming apparatus further includes a forming mechanism 32 that cuts the thin metal plate 25A and plastically deforms the thin metal plate 25A by bending and extending the thin metal plate 25A corresponding to the cut. By this forming mechanism 32, a large number of hexagonal through holes 26 (ring portions 27) having a mesh shape are formed in the metal thin plate 25 </ b> A in a step shape, and the lath metal 25 is formed.
 図8に示すように、成形機構32は、第1剪断型33と、第2剪断型34とによって構成されている。第1剪断型33は、図示しない支持台に固定され、第2剪断型34は、図示しない昇降機構及びオフセット機構により、上下及び金属薄板25Aの幅方向、即ち送りローラ31の回転軸に平行な方向(図7の紙面直交方向)に往復動することができる。第1剪断型33の上面33aは、金属薄板25Aを支持する面として機能し、この上面33aにおいて金属薄板25Aの送り方向Hの下流側に位置する縁部には、直線状の第1剪断刃33bが形成されている。第1剪断刃33bの下方は、平面状の位置規制面33cが形成されている。 As shown in FIG. 8, the forming mechanism 32 includes a first shearing die 33 and a second shearing die 34. The first shearing die 33 is fixed to a support base (not shown), and the second shearing die 34 is parallel to the vertical direction and the width direction of the metal thin plate 25A, that is, the rotation axis of the feed roller 31 by an elevator mechanism and an offset mechanism (not shown). It can reciprocate in the direction (direction perpendicular to the paper surface of FIG. 7). The upper surface 33a of the first shearing die 33 functions as a surface that supports the thin metal plate 25A, and a linear first shearing blade is provided on an edge of the upper surface 33a that is located downstream in the feed direction H of the thin metal plate 25A. 33b is formed. A planar position regulating surface 33c is formed below the first shearing blade 33b.
 第2剪断型34の下部には、多数の凸部34aが水平に所定のピッチDで形成されている。第2剪断型34の凸部34aの下端には水平成形面34cが形成され、凸部34aの左右には傾斜成形面34dが形成されている。隣接する2つの凸部34aの傾斜成形面34dの間には、水平成形面34eが形成されている。これらの傾斜成形面34d及び水平成形面34eにより、複数の凹部34bが区画され、これらの凹部34bは、凸部34aと交互に形成されている。成形面34c及び傾斜成形面34dにおいて金属薄板25Aの送り方向Hの上流側に位置する縁部には、逆台形状の第2剪断刃34fが形成されている。この第2剪断刃34fは、第1剪断刃33bと協働して金属薄板25Aに切れ目を入れることができる。 A large number of convex portions 34 a are horizontally formed at a predetermined pitch D below the second shearing die 34. A horizontal molding surface 34c is formed at the lower end of the convex portion 34a of the second shear mold 34, and inclined molding surfaces 34d are formed on the left and right sides of the convex portion 34a. A horizontal molding surface 34e is formed between the inclined molding surfaces 34d of the two adjacent convex portions 34a. The inclined molding surface 34d and the horizontal molding surface 34e define a plurality of concave portions 34b, and these concave portions 34b are alternately formed with the convex portions 34a. An inverted trapezoidal second shearing blade 34f is formed on an edge portion of the forming surface 34c and the inclined forming surface 34d located on the upstream side in the feed direction H of the thin metal plate 25A. The second shearing blade 34f can cut the metal thin plate 25A in cooperation with the first shearing blade 33b.
 次に、このように構成された成形装置を用いてガス流路形成部材21,22を成形する本実施形態の方法について、図9~図16を併せ参照して説明する。
 本実施形態の方法では、金属薄板25Aにおいて同金属薄板25Aの送り方向Hに沿って交互に位置する複数の第1被加工部分P1及び第2被加工部分P2を順次加工する。この方法の第1の工程ではまず、図9(a)に示すように、送りローラ31(図7参照)によって、金属薄板25Aの第1被加工部分P1が第1剪断型33及び第2剪断型34に対して中間成形位置にまで送られる。本実施形態では、金属薄板25Aは、その端部が第1剪断刃33bから送り方向Hに向かって所定の第1送り量L1(例えば0.2mm)だけ突出する位置にまで送られる。この状態で、第2剪断型34が第1剪断型33に向かって下降し、第1剪断刃33bと第2剪断刃34fとによって、その第1被加工部分P1の一部が剪断され、多数の切れ目が形成される。次に、図10(a),(b)に示すように、第2剪断型34が、最下点位置まで下降し、金属薄板25Aにおいて該第2剪断型34の凸部34aと接触している部分が下方に湾曲及び延伸される。金属薄板25Aにおいて凸部34aによって湾曲及び延伸された部分は、図10(b)に示すように略逆台形状となる。一方、この湾曲及び延伸された部分の間の部分は、凹部34bに入り込んで略台形状となる。
Next, a method of the present embodiment for forming the gas flow path forming members 21 and 22 using the forming apparatus configured as described above will be described with reference to FIGS.
In the method of the present embodiment, a plurality of first processed portions P1 and second processed portions P2 that are alternately positioned along the feeding direction H of the thin metal plate 25A in the thin metal plate 25A are sequentially processed. In the first step of this method, first, as shown in FIG. 9A, the first processed portion P1 of the metal thin plate 25A is moved by the feed roller 31 (see FIG. 7) into the first shear die 33 and the second shear. The mold 34 is sent to an intermediate molding position. In the present embodiment, the metal thin plate 25A is fed to a position where the end protrudes from the first shearing blade 33b in the feed direction H by a predetermined first feed amount L1 (for example, 0.2 mm). In this state, the second shearing die 34 descends toward the first shearing die 33, and a part of the first workpiece portion P1 is sheared by the first shearing blade 33b and the second shearing blade 34f, and a large number of them are sheared. A break is formed. Next, as shown in FIGS. 10A and 10B, the second shearing die 34 descends to the lowest point position and comes into contact with the convex portion 34a of the second shearing die 34 in the metal thin plate 25A. The part where it is bent and extended downward. A portion curved and extended by the convex portion 34a in the metal thin plate 25A has a substantially inverted trapezoidal shape as shown in FIG. On the other hand, a portion between the curved and extended portions enters the concave portion 34b and has a substantially trapezoidal shape.
 この第1の工程においては、リング部27の下側の半リング部R2を形成する第2平板部27d(連結板部28)は、図10(b)に示すように凸部34aの水平成形面34cによって下方に押し下げられて成形されている。そのため、同第2平板部27dは、水平に成形される。一方、凹部34bに対応して成形されるリング部27の上側の半リング部R1は、凸部34aのような、水平成形面を有する形成部によって上方に押圧されない。このため、凹部34bによって成形される半リング部R1の第1平板部27bは、図10(a)に示すように、第1剪断刃33bを中心に下方に傾斜するように垂れ下がる。これにより、金属薄板25Aの水平部分に対し屈曲角αを有する屈曲平面部29aが形成され、この屈曲平面部29aは、第1接触部29として機能する。その後、図11(a),(b)に示すように、第2剪断型34は、最下点位置から上方の原位置まで復帰する。 In this first step, the second flat plate portion 27d (connecting plate portion 28) that forms the lower half ring portion R2 of the ring portion 27 is formed horizontally as shown in FIG. 10B. The surface 34c is pressed down and formed. Therefore, the second flat plate portion 27d is formed horizontally. On the other hand, the upper half ring portion R1 of the ring portion 27 formed corresponding to the concave portion 34b is not pressed upward by a forming portion having a horizontal forming surface, such as the convex portion 34a. For this reason, as shown in FIG. 10A, the first flat plate portion 27b of the half ring portion R1 formed by the concave portion 34b hangs down so as to incline downward about the first shearing blade 33b. As a result, a bent plane portion 29 a having a bending angle α with respect to the horizontal portion of the thin metal plate 25 A is formed, and this bent plane portion 29 a functions as the first contact portion 29. Thereafter, as shown in FIGS. 11A and 11B, the second shearing die 34 returns from the lowest point position to the upper original position.
 続いて、この方法の第2の工程では、図11(a)に示すように、送りローラ31(図7参照)によって金属薄板25Aが送り方向Hに向かって更に所定の第2送り量L2(例えば0.1mm)突出するように送られる。これにより、金属薄板25Aの第1被加工部分P1は、第1剪断型33及び第2剪断型34に対して最終加工位置に送られる。この状態で、図12(a),(b)に示すように、第2剪断型34が第1の工程における位置から金属薄板25Aの幅方向にオフセットされずに再び下降する。金属薄板25Aの端縁にリング部27の上側の半リング部R1と下側の半リング部R2が成形される。このとき、上側の半リング部R1の第1平板部27bは、第1接触部29と同様にフリーの状態にある。第2送り量L2は、上述の第1送り量L1よりも小さく設定され、第1平板部27bの全体が第1剪断刃33bの近傍に位置している。そのため、第1平板部27bは、第2剪断型34の凹部34bの水平成形面34eに添い易くなる。その結果、図12(a)に示すように、屈曲平面部29aの後側に位置する第1平板部27bが下方に垂れ下がることは殆どなく、ほぼ水平状態に保持されている。第1平板部27bは、非屈曲平面部27fとなる。この第2の工程により、非屈曲平面部27fを含む半リング部R1,R2が最終的に成形される。 Subsequently, in the second step of this method, as shown in FIG. 11A, the metal thin plate 25A is further moved in the feed direction H by the feed roller 31 (see FIG. 7) to a predetermined second feed amount L2 ( For example, 0.1 mm). Thus, the first processed portion P1 of the metal thin plate 25A is sent to the final processing position with respect to the first shearing die 33 and the second shearing die 34. In this state, as shown in FIGS. 12A and 12B, the second shearing die 34 is lowered again without being offset from the position in the first step in the width direction of the metal thin plate 25A. The upper half ring portion R1 and the lower half ring portion R2 of the ring portion 27 are formed on the edge of the thin metal plate 25A. At this time, the first flat plate portion 27 b of the upper half ring portion R <b> 1 is in a free state like the first contact portion 29. The second feed amount L2 is set smaller than the first feed amount L1 described above, and the entire first flat plate portion 27b is located in the vicinity of the first shearing blade 33b. Therefore, the first flat plate portion 27b can easily follow the horizontal molding surface 34e of the concave portion 34b of the second shear mold 34. As a result, as shown in FIG. 12A, the first flat plate portion 27b located on the rear side of the bent flat portion 29a hardly hangs down and is held in a substantially horizontal state. The first flat plate portion 27b becomes a non-bent flat portion 27f. By this second step, the half ring portions R1 and R2 including the non-bending flat surface portion 27f are finally formed.
 上述のように、本実施形態では、本来一回の成形動作で形成される半リング部R1,R2を二回に分けて成形し、一回目に成形された屈曲平面部29aに続いて非屈曲平面部27fを成形する。これにより、半リング部R1,R2の成形を一回の成形動作のみで行う場合と比較して、屈曲平面部29aの形成幅を小さくして適切な幅に形成することができる。 As described above, in the present embodiment, the half ring portions R1 and R2 that are originally formed by a single molding operation are molded in two steps, and then the bent plane portion 29a formed at the first time is followed by a non-bend. The flat portion 27f is formed. Thereby, compared with the case where shaping | molding of half ring part R1, R2 is performed only by one shaping | molding operation | movement, the formation width | variety of the bending plane part 29a can be made small, and it can form in an appropriate width | variety.
 次に、この方法の第3の工程では、図13(a)に示すように、第2剪断型34が上昇して原位置に移動した後、金属薄板25Aにおいて送り方向Hの上流側から第1被加工部分P1に隣接する第2被加工部分P2が第1剪断型33及び第2剪断型34に対して中間成形位置にまで送られる。換言すれば、金属薄板25Aが再び送り方向Hへ第1送り量L1だけ送られる。そして、図13(b)に示すように、第2剪断型34は、金属薄板25Aの幅方向に沿ってリング部27の配列ピッチDの半分(半ピッチ)だけオフセットした後に下降し、第2被加工部分P2が図14(a),(b)に示すように成形される。そして、半リング部R2の上側に半リング部R1が成形され、半リング部R1の下側に半リング部R2が成形されることにより、複数のリング部27が成形される。 Next, in the third step of this method, as shown in FIG. 13A, after the second shearing die 34 is lifted and moved to the original position, the metal sheet 25A is moved from the upstream side in the feed direction H to the first. The second processed part P2 adjacent to the first processed part P1 is sent to the intermediate forming position with respect to the first shear mold 33 and the second shear mold 34. In other words, the thin metal plate 25A is again fed in the feed direction H by the first feed amount L1. And as shown in FIG.13 (b), the 2nd shear type | mold 34 descend | falls after offset by the half (half pitch) of the arrangement pitch D of the ring part 27 along the width direction of the metal thin plate 25A, and 2nd The part P2 to be processed is formed as shown in FIGS. 14 (a) and 14 (b). Then, the half ring portion R1 is formed on the upper side of the half ring portion R2, and the half ring portion R2 is formed on the lower side of the half ring portion R1, thereby forming a plurality of ring portions 27.
 次に、この方法の第4の工程では、図15(a),(b)に示すように、第2剪断型34がオフセットされた状態のままで、金属薄板25Aが更に第2送り量L2だけ送られる。これにより、第2被加工部分P2は、第1剪断型33及び第2剪断型34に対して最終加工位置に送られる。図16(a),(b)に示すように、第2剪断型34が下降し、非屈曲平面部27fを含む半リング部R1,R2が最終的に成形される。 Next, in the fourth step of this method, as shown in FIGS. 15 (a) and 15 (b), the metal sheet 25A is further moved to the second feed amount L2 while the second shearing die 34 remains offset. Only sent. Accordingly, the second processed portion P2 is sent to the final processing position with respect to the first shearing die 33 and the second shearing die 34. As shown in FIGS. 16A and 16B, the second shearing die 34 is lowered, and the half ring portions R1 and R2 including the non-bending flat surface portion 27f are finally formed.
 その後、前述した第1及び第2の工程と、第3及び第4の工程とを交互に繰り返し行うことにより、被加工部分P1,P2が交互に加工され、図3~図5に示すラスメタル25が成形される。このラスメタル25には、図3に示すように多数の網目状の貫通孔26を有するリング部27が蛇行するように形成される。 Thereafter, by alternately repeating the first and second steps and the third and fourth steps described above, the parts P1 and P2 to be processed are alternately processed, and the lath metal 25 shown in FIGS. Is formed. In the lath metal 25, as shown in FIG. 3, a ring portion 27 having a large number of mesh-like through holes 26 is formed to meander.
 第2剪断型34の凸部34aに設けた第2剪断刃34fによって剪断されない金属薄板25Aは、ラスメタル25に切れ目が加工されない部分として残る。この切れ目なしの部分は、連結板部28(第2平板部27d)となる。これにより、リング部27は順次重なるように連結されて、ラスメタル25の断面形状が図3及び図5に示すような階段状に形成される。 The thin metal plate 25A that is not sheared by the second shearing blade 34f provided on the convex portion 34a of the second shearing die 34 remains as a portion where the cut is not processed in the lath metal 25. This unbroken portion is the connecting plate portion 28 (second flat plate portion 27d). Accordingly, the ring portions 27 are connected so as to overlap one another, and the cross-sectional shape of the lath metal 25 is formed in a stepped shape as shown in FIGS. 3 and 5.
 このようにして、ラスメタル25の製造が完了した後に、このラスメタル25を所定寸法に切断され、図1及び図2に示す第1,第2ガス流路形成部材21,22が形成される。 Thus, after the manufacture of the lath metal 25 is completed, the lath metal 25 is cut into a predetermined dimension, and the first and second gas flow path forming members 21 and 22 shown in FIGS. 1 and 2 are formed.
 上記のように製造された第1ガス流路形成部材21は、図1に示すように発電セル12に組み込まれる。この状態においては、図6に示すように、ガス拡散層19の上面に第1ガス流路形成部材21の第1接触部29の屈曲平面部29aが面接触するとともに、第2接触部30が第1セパレータ23の裏面に線接触している。 The first gas flow path forming member 21 manufactured as described above is incorporated into the power generation cell 12 as shown in FIG. In this state, as shown in FIG. 6, the bent flat portion 29 a of the first contact portion 29 of the first gas flow path forming member 21 is in surface contact with the upper surface of the gas diffusion layer 19, and the second contact portion 30 is Line contact is made with the back surface of the first separator 23.
 上記実施形態によれば、以下のような効果を得ることができる。
 (1)上記実施形態では、第1,第2フレーム13,14の燃料ガス通路空間S1、酸化剤ガス通路空間S2に収容された第1,第2ガス流路形成部材21,22はラスメタル25により成形された。ラスメタル25のリング部27においてガス拡散層19,20の表面に接触する部分、即ち第1接触部29には、屈曲平面部29aが形成された。このため、繊維から形成されたガス拡散層19,20と第1接触部29との接触状態を面接触にすることができ、ガス拡散層19,20の表面に第1接触部29が食い込むことを抑制することができる。従って、第1及び第2ガス流路形成部材21,22の燃料ガス流路及び酸化剤ガス流路にガス拡散層19,20が侵入することに起因して、燃料ガス通路空間S1及び酸化剤ガス通路空間S2の有効断面積が低下することを抑制することができる。その結果、燃料ガス及び酸化剤ガスの供給量が低下して発電効率が低下することを抑制することができる。又、第1接触部29がガス拡散層19,20に線接触される場合と比較して、ガス拡散層19,20と第1,第2ガス流路形成部材21,22との電気的な接続が適正に行われる。従って、ガス拡散層19,20から第1,第2ガス流路形成部材21,22への電気の流れが円滑になり、集電効率を向上させることができる。さらに、ガス拡散層19,20の部分において第1接触部29と接触する部分の損傷を防止することができる。このため、ガス拡散層19,20を形成する例えばカーボンペーパーにおけるカーボン繊維が切断されてガス流路形成部材21,22のガス通路に目詰まりすることを抑制し、発電性能を確保することができる。
According to the above embodiment, the following effects can be obtained.
(1) In the above embodiment, the first and second gas flow path forming members 21 and 22 housed in the fuel gas passage space S1 and the oxidant gas passage space S2 of the first and second frames 13 and 14 are the lath metal 25. It was molded by. A bent flat portion 29 a is formed in a portion of the ring portion 27 of the lath metal 25 that contacts the surfaces of the gas diffusion layers 19 and 20, that is, in the first contact portion 29. For this reason, the contact state between the gas diffusion layers 19 and 20 formed from the fibers and the first contact portion 29 can be in surface contact, and the first contact portion 29 bites into the surfaces of the gas diffusion layers 19 and 20. Can be suppressed. Therefore, the fuel gas passage space S1 and the oxidant are caused by the gas diffusion layers 19 and 20 entering the fuel gas passage and the oxidant gas passage of the first and second gas passage forming members 21, 22. It can suppress that the effective cross-sectional area of gas passage space S2 falls. As a result, it is possible to suppress a decrease in power generation efficiency due to a decrease in the supply amount of the fuel gas and the oxidant gas. Further, as compared with the case where the first contact portion 29 is in line contact with the gas diffusion layers 19, 20, the electrical connection between the gas diffusion layers 19, 20 and the first and second gas flow path forming members 21, 22 is achieved. The connection is made properly. Therefore, the flow of electricity from the gas diffusion layers 19 and 20 to the first and second gas flow path forming members 21 and 22 becomes smooth, and the current collection efficiency can be improved. Furthermore, damage to the portion in contact with the first contact portion 29 in the portions of the gas diffusion layers 19 and 20 can be prevented. Therefore, for example, carbon fibers in the carbon paper forming the gas diffusion layers 19 and 20 can be prevented from being cut and clogged in the gas passages of the gas flow path forming members 21 and 22, and power generation performance can be ensured. .
 (2)上記実施形態では、本来、第1剪断刃33bのみを有する第1剪断型33と、凸部34a及び凹部34bを備える第2剪断型34とにより、一回の工程で行うリング部27の半リング部R1,R2の成形を二工程で行うようにした。これにより、図5に示すように、半リング部R1,R2の成形を一回の工程で行う場合と比較して、屈曲平面部29aの形成幅W1を小さくし、ガス流路形成部材21の厚さT1を大きく設定することができる。従って、ガス流路形成部材21内のガス流路の有効面積を確保して、ガスの供給を適正に行い、発電効率を向上することができる。 (2) In the above embodiment, the ring portion 27 that is originally performed in a single step by the first shear die 33 having only the first shear blade 33b and the second shear die 34 having the convex portion 34a and the concave portion 34b. The half ring portions R1 and R2 were formed in two steps. Thereby, as shown in FIG. 5, compared with the case where shaping | molding of half ring part R1, R2 is performed at one process, the formation width W1 of the bending plane part 29a is made small, and the gas flow path formation member 21 of FIG. The thickness T1 can be set large. Therefore, the effective area of the gas flow path in the gas flow path forming member 21 can be secured, the gas can be properly supplied, and the power generation efficiency can be improved.
 (3)上記実施形態では、ラスカット形成装置として、図7及び図8に示す簡素な構造を有する従来の装置を使用することができるため、成形装置を簡素化することができるとともに、リング部27の第1接触部29において屈曲平面部29aを容易に成形することができる。 (3) In the above embodiment, since the conventional apparatus having the simple structure shown in FIGS. 7 and 8 can be used as the lath cut forming apparatus, the molding apparatus can be simplified and the ring portion 27 can be simplified. In the first contact portion 29, the bent flat portion 29a can be easily formed.
 なお、上記実施形態は以下のように変更してもよい。
 ・第1剪断型33において金属薄板25Aの送り方向Hの下流側に位置する側面に、第2剪断型34の凸部34aの水平成形面34cと対向する成形面を設けてもよい。この場合には、第2剪断型34が下降する際に、第1剪断型33に形成された成形面と凸部34aの水平成形面34cとが金属薄板25Aを挟持することにより、リング部27の第2平板部27dが湾曲することを防止することができる。
In addition, you may change the said embodiment as follows.
A molding surface that faces the horizontal molding surface 34c of the convex portion 34a of the second shearing mold 34 may be provided on the side surface of the first shearing mold 33 that is located downstream in the feed direction H of the thin metal plate 25A. In this case, when the second shearing die 34 is lowered, the forming surface formed on the first shearing die 33 and the horizontal forming surface 34c of the convex portion 34a sandwich the metal thin plate 25A, thereby the ring portion 27. It is possible to prevent the second flat plate portion 27d from being bent.
 ・図11,12に示す第2の工程と、図15,16に示す第4の工程とを、それぞれ複数回に分けて行ってもよい。
 ・上記実施形態では、第2剪断型34の凸部及び凹部34a,34bのピッチDの半分、即ち半ピッチだけ第2剪断型34を金属薄板25Aの幅方向にオフセットして、半リング部R1,R2を成形するようにしている。このオフセット量を適宜に変更してもよい。又、リング部27が蛇行するように配置されなくてもよい。
The second step shown in FIGS. 11 and 12 and the fourth step shown in FIGS. 15 and 16 may be performed in a plurality of times.
In the above embodiment, the second shearing die 34 is offset in the width direction of the metal thin plate 25A by half the pitch D of the convex portions and the concave portions 34a and 34b of the second shearing die 34, that is, the half pitch, and the half ring portion R1 , R2 is formed. You may change this offset amount suitably. Further, the ring portion 27 may not be arranged to meander.
 ・リング部27の形状を例えば五角形状等、六角形状以外の形状に成形してもよい。
 ・第1,第2ガス流路形成部材21,22の材料として、例えばステンレス板、アルミニウム、銅等、導電性を有する金属を採用することができる。
-You may shape the shape of the ring part 27 in shapes other than hexagonal shape, such as a pentagonal shape.
-As a material of the 1st, 2nd gas flow path formation members 21 and 22, the metal which has electroconductivity, such as a stainless plate, aluminum, copper, can be adopted, for example.

Claims (4)

  1.  電極層と、
     前記電極層の表面に形成されたガス拡散層と、
     前記ガス拡散層と対向するセパレータと、
     前記ガス拡散層と前記セパレータとの間に介在し、燃料ガス及び酸化剤ガスのいずれか一方を前記電極層に供給するガス流路が形成されたガス流路形成部材とを備え、
     前記電極層において生じる電極反応により発電を行う燃料電池の発電セルにおいて、
     前記ガス流路形成部材は、金属薄板により形成されたラスカットメタルによって構成され、同ガス流路形成部材には、所定形状の貫通孔を有する多数のリング部が網目状に形成され、
     前記リング部には、前記ガス拡散層の表面と面接触する屈曲平面部が形成され、該屈曲平面部と前記リング部を連結する連結板部との間には、非屈曲平面部が形成され、
     前記屈曲平面部と非屈曲平面部とは、ラスカット成形装置により前後して複数工程で成形される
     ことを特徴とする燃料電池の発電セル。
    An electrode layer;
    A gas diffusion layer formed on the surface of the electrode layer;
    A separator facing the gas diffusion layer;
    A gas flow path forming member formed between the gas diffusion layer and the separator and formed with a gas flow path for supplying any one of a fuel gas and an oxidant gas to the electrode layer;
    In a power generation cell of a fuel cell that generates power by an electrode reaction occurring in the electrode layer,
    The gas flow path forming member is constituted by a lath cut metal formed of a thin metal plate, and the gas flow path forming member has a plurality of ring portions having through holes of a predetermined shape formed in a mesh shape,
    The ring part is formed with a bent plane part in surface contact with the surface of the gas diffusion layer, and a non-bent plane part is formed between the bent plane part and the connecting plate part connecting the ring part. ,
    The bent flat portion and the non-bent flat portion are formed in a plurality of steps before and after the lath cut forming apparatus.
  2.  請求項1に記載の燃料電池の発電セルにおいて、
     前記各リング部は、五角形状又は六角形状に成形されている
     ことを特徴とする燃料電池の発電セル。
    The power generation cell of the fuel cell according to claim 1,
    Each said ring part is shape | molded in the pentagon shape or the hexagon shape. The power generation cell of the fuel cell characterized by the above-mentioned.
  3.  請求項1又は2に記載の燃料電池の発電セルの製造方法において、
     直線状の第1剪断刃を有する第1剪断型と、
     所定の間隔を隔てて交互に形成された複数の凹部と凸部とを備え、前記各凸部に、前記第1剪断刃と協働して前記金属薄板に複数の切り込みを形成する第2剪断刃が設けられた第2剪断型とを用いて、前記金属薄板において同金属薄板の送り方向に沿って交互に位置する複数の第1被加工部分及び第2被加工部分を順次加工し、
     前記金属薄板の第1被加工部分を前記第1剪断型及び前記第2剪断型に対して中間成形位置にまで送った状態で、同第1被加工部分に対し前記屈曲平面部を含む半リング部を成形する第1の工程と、
     前記第1の工程の後に、前記第1被加工部分を前記第1剪断型及び前記第2剪断型に対して最終成形位置にまで更に送った状態で、同第1被加工部分に対し前記非屈曲平面部を含む半リング部を成形する第2の工程と、
     前記第2の工程の後に、前記金属薄板において同金属薄板の送り方向の上流側から前記第1被加工部分に隣接する第2被加工部分を前記第1剪断型及び前記第2剪断型に対して前記中間成形位置にまで送った状態で、前記第2剪断型を前記金属薄板の送り方向と直交する方向にオフセットさせて、前記第2被加工部分に対し前記屈曲平面部を含む半リング部を成形する第3の工程と、
     前記第3の工程の後に、前記第2被加工部分を前記第1剪断型及び前記第2剪断型に対して前記最終成形位置にまで更に送った状態で、同第2被加工部分に対し前記非屈曲平面部を含む半リング部を成形する第4の工程と、
     前記第1及び第2の工程と、前記第3及び第4の工程とを交互に繰り返し行い、前記金属薄板に対し前記リング部を網目状に成形して前記ラスカットメタルを成形する工程と、を含む
     ことを特徴とする燃料電池の発電セルの製造方法。
    In the manufacturing method of the power generation cell of the fuel cell according to claim 1 or 2,
    A first shear type having a linear first shear blade;
    A second shear comprising a plurality of recesses and projections alternately formed at a predetermined interval, and forming a plurality of cuts in the metal thin plate in cooperation with the first shearing blade at each projection; Using a second shearing die provided with a blade, sequentially processing a plurality of first processed parts and second processed parts located alternately along the feeding direction of the thin metal sheet in the thin metal sheet,
    A half ring including the bent plane portion with respect to the first processed portion in a state where the first processed portion of the metal thin plate is sent to the intermediate forming position with respect to the first and second shearing dies. A first step of forming the part;
    After the first step, in the state where the first processed portion is further sent to the final forming position with respect to the first and second shearing molds, A second step of forming a half ring part including a bent plane part;
    After the second step, the second processed part adjacent to the first processed part from the upstream side in the feeding direction of the thin metal sheet is moved with respect to the first shear mold and the second shear mold after the second step. The second ring is offset in the direction perpendicular to the feeding direction of the thin metal plate in a state where the second shearing die is fed to the intermediate forming position, and the half ring part including the bent plane part with respect to the second processed part. A third step of molding
    After the third step, the second processed part is further sent to the final forming position with respect to the first shearing mold and the second shearing mold, and the second processed part is moved to the second processed part. A fourth step of forming a half ring part including a non-bent flat part;
    The steps of alternately performing the first and second steps and the third and fourth steps, forming the ring portion into a mesh shape with respect to the metal thin plate, and forming the lath cut metal, A method for producing a power generation cell of a fuel cell, comprising:
  4.  請求項3に記載の燃料電池の発電セルの製造方法において、
     前記第2の工程及び前記第4の工程は、それぞれ複数回行われる
     ことを特徴とする燃料電池の発電セルの製造方法。
    In the manufacturing method of the power generation cell of the fuel cell according to claim 3,
    Each of the second step and the fourth step is performed a plurality of times. A method for manufacturing a power generation cell of a fuel cell.
PCT/JP2009/058343 2008-06-16 2009-04-28 Generator cell of a fuel cell and manufacturing method thereof WO2010047142A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE112009001377T DE112009001377T5 (en) 2008-06-16 2009-06-16 A gas flow path forming member, a method of manufacturing the gas flow path forming member, and a gas flow path forming member forming apparatus
CA2713192A CA2713192C (en) 2008-06-16 2009-06-16 Gas flow passage forming member, method of manufacturing the gas flow passage forming member, and device for forming the gas flow passage forming member
CN200980105900.XA CN101946349B (en) 2008-06-16 2009-06-16 Gas flow passage forming member, method of manufacturing the gas flow passage forming member, and device for forming the gas flow passage forming member
US12/867,268 US9160026B2 (en) 2008-06-16 2009-06-16 Gas flow passage forming member, method of manufacturing the gas flow passage forming member, and device for forming the gas flow passage forming member
PCT/JP2009/060954 WO2009154203A1 (en) 2008-06-16 2009-06-16 Gas flow passage forming member, method of manufacturing the gas flow passage forming member, and device for forming the gas flow passage forming member
JP2009545749A JP5126237B2 (en) 2008-06-16 2009-06-16 Gas channel forming member, method for manufacturing gas channel forming member, and molding apparatus used for manufacturing gas channel forming member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008270027A JP5298758B2 (en) 2008-10-20 2008-10-20 Gas flow path forming member used for power generation cell of fuel cell and manufacturing method thereof
JP2008-270027 2008-10-20

Publications (1)

Publication Number Publication Date
WO2010047142A1 true WO2010047142A1 (en) 2010-04-29

Family

ID=42119192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058343 WO2010047142A1 (en) 2008-06-16 2009-04-28 Generator cell of a fuel cell and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5298758B2 (en)
WO (1) WO2010047142A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113252A1 (en) 2009-03-31 2010-10-07 トヨタ車体 株式会社 Fuel battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254424A (en) * 1994-03-16 1995-10-03 Toshiba Corp Collector plate for molten carbonate fuel cell
JPH08138701A (en) * 1994-11-15 1996-05-31 Toshiba Corp Molten carbonate fuel cell
JP2007026812A (en) * 2005-07-14 2007-02-01 Toyota Auto Body Co Ltd Manufacturing method of gas flow passage forming material, gas flow passage forming material of metal separator for fuel cell, and through-hole forming device
JP2007087768A (en) * 2005-09-22 2007-04-05 Toyota Auto Body Co Ltd Separator for fuel cell
JP2007214020A (en) * 2006-02-10 2007-08-23 Toyota Auto Body Co Ltd Forming method of gas diffusion layer for fuel cell
JP2008146947A (en) * 2006-12-07 2008-06-26 Toyota Motor Corp Gas diffusion member, its manufacturing method, and fuel cell using it
JP2008243394A (en) * 2007-03-26 2008-10-09 Toyota Motor Corp Manufacturing method of cell for fuel cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254424A (en) * 1994-03-16 1995-10-03 Toshiba Corp Collector plate for molten carbonate fuel cell
JPH08138701A (en) * 1994-11-15 1996-05-31 Toshiba Corp Molten carbonate fuel cell
JP2007026812A (en) * 2005-07-14 2007-02-01 Toyota Auto Body Co Ltd Manufacturing method of gas flow passage forming material, gas flow passage forming material of metal separator for fuel cell, and through-hole forming device
JP2007087768A (en) * 2005-09-22 2007-04-05 Toyota Auto Body Co Ltd Separator for fuel cell
JP2007214020A (en) * 2006-02-10 2007-08-23 Toyota Auto Body Co Ltd Forming method of gas diffusion layer for fuel cell
JP2008146947A (en) * 2006-12-07 2008-06-26 Toyota Motor Corp Gas diffusion member, its manufacturing method, and fuel cell using it
JP2008243394A (en) * 2007-03-26 2008-10-09 Toyota Motor Corp Manufacturing method of cell for fuel cell

Also Published As

Publication number Publication date
JP2010153041A (en) 2010-07-08
JP5298758B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
JP5287453B2 (en) Gas flow path forming member used in fuel cell, manufacturing method thereof and molding apparatus
JP4915070B2 (en) Fuel cell separator
US9160026B2 (en) Gas flow passage forming member, method of manufacturing the gas flow passage forming member, and device for forming the gas flow passage forming member
JP4678359B2 (en) Fuel cell
JP5381647B2 (en) Fuel cell separator and method for producing the same
CA2703255C (en) Separator for fuel cell and fuel cell
JP2012226981A (en) Fuel cell and method for producing the same
EP2012384A1 (en) Fuel cell stack
EP2544283B1 (en) Fuel cell
JP7355040B2 (en) Porous metal sheets, fuel cells and water electrolyzers
JP5169722B2 (en) Gas flow path forming member used for power generation cell of fuel cell, manufacturing method thereof and molding apparatus
JP2006294404A (en) Fuel cell separator
JP5343532B2 (en) Fuel cell and fuel cell stack manufacturing method
KR101860613B1 (en) Flat member for fuel cell and method for manufacturing flat member
JP2007026810A (en) Manufacturing method and shaping method of passage forming material, passage forming material of metal separator for fuel cell, and forming die
JP5262149B2 (en) Manufacturing method and manufacturing apparatus for metal separator for fuel cell
WO2010047142A1 (en) Generator cell of a fuel cell and manufacturing method thereof
JP2009064688A (en) Fuel cell separator and molding method of collector constituting the separator
JP4639744B2 (en) Fuel cell
WO2009154203A1 (en) Gas flow passage forming member, method of manufacturing the gas flow passage forming member, and device for forming the gas flow passage forming member
DE112005002829T5 (en) fuel cell
JP2006331861A (en) Method and facility for manufacturing fuel cell
JP4388389B2 (en) Method for producing metal separator for fuel cell
JP2011181442A (en) Method and apparatus for manufacturing gas passage forming member for fuel cell, and method for manufacturing fuel cell
JP5126237B2 (en) Gas channel forming member, method for manufacturing gas channel forming member, and molding apparatus used for manufacturing gas channel forming member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09821842

Country of ref document: EP

Kind code of ref document: A1