JP5297129B2 - Non-contact power feeding device - Google Patents

Non-contact power feeding device Download PDF

Info

Publication number
JP5297129B2
JP5297129B2 JP2008242929A JP2008242929A JP5297129B2 JP 5297129 B2 JP5297129 B2 JP 5297129B2 JP 2008242929 A JP2008242929 A JP 2008242929A JP 2008242929 A JP2008242929 A JP 2008242929A JP 5297129 B2 JP5297129 B2 JP 5297129B2
Authority
JP
Japan
Prior art keywords
core
winding
power supply
coil
pickup unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008242929A
Other languages
Japanese (ja)
Other versions
JP2010075018A (en
Inventor
康 二畠
裕史 前田
浩一 寺裏
洋治 遠藤
幸博 松信
政人 土岐
信次 原
堀  宏展
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008242929A priority Critical patent/JP5297129B2/en
Priority to PCT/IB2009/006874 priority patent/WO2010032116A1/en
Priority to CN200980137080.2A priority patent/CN102159423B/en
Priority to KR1020117006742A priority patent/KR101258003B1/en
Priority to TW98131774A priority patent/TWI397236B/en
Publication of JP2010075018A publication Critical patent/JP2010075018A/en
Application granted granted Critical
Publication of JP5297129B2 publication Critical patent/JP5297129B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Description

本発明は、高周波電流が流れる給電線と誘導結合されるピックアップ部を備え、ピックアップ部に誘起される誘導起電力によって負荷に給電する非接触給電装置に関するものである。   The present invention relates to a non-contact power supply apparatus that includes a pickup unit that is inductively coupled to a power supply line through which a high-frequency current flows, and that supplies power to a load by an induced electromotive force induced in the pickup unit.

この種の非接触給電装置として、電源装置から高周波電流が供給される誘導線路が移動体の移動線路に沿ってループ状に敷設され、移動体に搭載されて誘導線路に誘導結合されたピックアップ部に誘起される誘導起電力によって負荷(移動体を移動させる電動機)に給電するものがある(例えば、特許文献1参照)。   As this type of non-contact power feeding device, a pickup line in which a high-frequency current is supplied from a power supply device is laid in a loop along the moving line of the moving body, and is mounted on the moving body and inductively coupled to the induction line In some cases, power is supplied to a load (an electric motor that moves a moving body) by an induced electromotive force induced by (see, for example, Patent Document 1).

ピックアップ部は、誘導線路を周方向に沿って囲む角筒状のコアと、コアに巻線を巻回してなるコイルとを有し、誘導線路の周囲に生じる磁束の大半がコア内を通ることでコイルに誘起される誘導起電力を高くしている。
特開平11−192866号公報
The pickup unit has a rectangular tube-shaped core surrounding the induction line along the circumferential direction, and a coil formed by winding a winding around the core, and most of the magnetic flux generated around the induction line passes through the core. Thus, the induced electromotive force induced in the coil is increased.
Japanese Patent Application Laid-Open No. 11-192866

ところで、特許文献1に記載されている従来例のピックアップ部においては、コアに巻線が多層巻きされることでコイルが形成されているが、巻線を多層巻きした場合、近接効果によって巻線の高周波抵抗が増大して電力伝達の効率化が低下してしまう虞がある。   By the way, in the pickup part of the conventional example described in Patent Document 1, a coil is formed by winding a winding around the core. There is a risk that the high frequency resistance of the power supply increases and the efficiency of power transmission decreases.

本発明は上記事情に鑑みて為されたものであり、その目的は、コイルの高周波抵抗を低減して電力伝達の効率を向上することができる非接触給電装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a non-contact power feeding device that can reduce the high-frequency resistance of a coil and improve the efficiency of power transmission.

請求項1の発明は、上記目的を達成するために、高周波電流が流れる給電線と誘導結合されるピックアップ部を備え、ピックアップ部に誘起される誘導起電力によって負荷に給電する非接触給電装置において、ピックアップ部は、給電線を周方向に沿って囲む筒状のコアと、コアに巻線を巻回してなるコイルと、コアの外側を囲む磁気シールド体とを有し、コアは、少なくとも給電線が径方向に通過可能である開口溝が給電線の軸方向に沿って設けられ、内周面及び外周面の双方が曲面で構成され且つ軸方向に交差する断面形状が略C形に形成され、さらに、開口溝を挟んで対向する両端部が、当該両端部を除く部位よりも、軸方向に沿った断面の面積が大きく且つ磁気シールド体の外側にはみ出さないように形成されており、コイルは、コアに対して巻線が単層巻きされてなることを特徴とする。 In order to achieve the above object, a first aspect of the present invention provides a non-contact power feeding device that includes a pickup unit that is inductively coupled to a feeder line through which a high-frequency current flows, and that feeds a load by induced electromotive force induced in the pickup unit The pickup unit includes a cylindrical core surrounding the power supply line along the circumferential direction, a coil formed by winding a winding around the core, and a magnetic shield body surrounding the outside of the core. An opening groove through which the electric wire can pass in the radial direction is provided along the axial direction of the feeder line, both the inner peripheral surface and the outer peripheral surface are formed by curved surfaces, and the cross-sectional shape intersecting the axial direction is formed in a substantially C shape. Furthermore, both ends facing each other across the opening groove are formed so that the area of the cross section along the axial direction is larger than the portion excluding the both ends and does not protrude outside the magnetic shield body. , coils, co Windings, characterized in that formed by single-layer winding respect.

請求項1の発明によれば、コアに対して巻線が単層巻きされることでコイルが形成されているので、巻線が多層巻きされる場合と比較してコイルの高周波抵抗を低減して電力伝達の効率を向上することができる。また、コアの内周面及び外周面が何れも複数の平面を突き合わせて構成されている場合と比較して、コアの外に漏れる磁束を減らし、その結果、給電線からピックアップ部への電力伝達の効率が向上し且つ給電量を増大することができる。さらに、コアの外に漏れる磁束をさらに減らすことができるとともに、コアの両端部における磁気抵抗を相対的に低減し、開口溝からコアの外に漏れる磁束を減らすことができる。しかも、コアやコイルへの外部磁界の影響を抑えて損失を低減することができる。 According to the first aspect of the present invention, since the coil is formed by winding the winding on the core in a single layer, the high frequency resistance of the coil is reduced compared to the case where the winding is wound in multiple layers. Thus, the efficiency of power transmission can be improved. Also, compared to the case where the inner peripheral surface and the outer peripheral surface of the core are both configured by abutting a plurality of flat surfaces, the magnetic flux leaking out of the core is reduced, and as a result, power is transferred from the feeder to the pickup unit. Efficiency can be improved and the amount of power supply can be increased. Furthermore, the magnetic flux leaking out of the core can be further reduced, the magnetic resistance at both ends of the core can be relatively reduced, and the magnetic flux leaking out of the core from the opening groove can be reduced. Moreover, the loss can be reduced by suppressing the influence of the external magnetic field on the core and the coil.

本発明によれば、コイルの高周波抵抗を低減して電力伝達の効率を向上することができる。   According to the present invention, the high-frequency resistance of the coil can be reduced and the efficiency of power transmission can be improved.

以下、図面を参照して本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施形態の非接触給電装置は、図3(a)に示すようにループ状に設置された給電線100と、給電線100に高周波電流を流す高周波電源110と、給電線100と誘導結合されるピックアップ部1とを備え、ピックアップ部1から負荷(例えば、インバータ並びにモータ)111に給電するものである。   The contactless power supply device according to the present embodiment is inductively coupled to a power supply line 100 installed in a loop shape as shown in FIG. 3A, a high-frequency power source 110 that supplies a high-frequency current to the power supply line 100, and the power supply line 100. The pickup unit 1 supplies power to the load (for example, an inverter and a motor) 111 from the pickup unit 1.

給電線100は、図3(b)に示すように円筒形状の内管部101と、内管部101の外側に配置された円筒形状の外管部102と、内管部101と外管部102を互いに同心となるように連結する連結部103とが金属板を曲げ加工することで一体に形成された導体を、角筒状の合成樹脂成形品からなる絶縁体104で被覆して構成されている。すなわち、高周波電流が流れる給電線においては、導体の材料(金属板)が有する電気抵抗以外に表皮効果と近接効果による抵抗(高周波抵抗)が存在するが、図3(b)に示す二重管構造の導体を給電線100に用いれば、円柱形状の導体に比較して高周波抵抗を低減し且つ損失を減少させることができる。   As shown in FIG. 3B, the power supply line 100 includes a cylindrical inner tube portion 101, a cylindrical outer tube portion 102 disposed outside the inner tube portion 101, an inner tube portion 101, and an outer tube portion. The connecting part 103 that connects the two parts 102 so as to be concentric with each other is formed by coating a conductor integrally formed by bending a metal plate with an insulator 104 made of a synthetic resin molded product having a rectangular tube shape. ing. That is, in the feeder line through which high-frequency current flows, there is resistance (high-frequency resistance) due to the skin effect and proximity effect in addition to the electrical resistance of the conductor material (metal plate), but the double tube shown in FIG. If a conductor having a structure is used for the feeder line 100, high-frequency resistance can be reduced and loss can be reduced as compared with a cylindrical conductor.

ピックアップ部1は、コア2、コイル3、ボビン4、磁気シールド体5、受電回路部6を有している。受電回路部6は、コイル3とともに共振回路を形成するコンデンサ、コイル3並びにコンデンサの共振回路から出力される共振電圧を定電圧化する定電圧回路などを有している。   The pickup unit 1 includes a core 2, a coil 3, a bobbin 4, a magnetic shield body 5, and a power receiving circuit unit 6. The power receiving circuit unit 6 includes a capacitor that forms a resonance circuit together with the coil 3, a constant voltage circuit that makes the resonance voltage output from the resonance circuit of the coil 3 and the capacitor constant, and the like.

コア2は、図1(a)に示すように内周面及び外周面の双方が曲面(円筒面)で構成され且つ軸方向(紙面に垂直な方向)に交差する断面形状が略C形に形成されている。ここで、開口溝2aを挟んで対向するコア2の両端部20,20は、コア2の当該両端部20を除く部位(以下、「胴体部」と呼ぶ。)21よりも、軸方向に沿った断面の面積が大きく形成されている。 As shown in FIG. 1 (a), the core 2 has both an inner peripheral surface and an outer peripheral surface formed by curved surfaces (cylindrical surfaces), and the cross-sectional shape intersecting the axial direction (direction perpendicular to the paper surface) is substantially C-shaped. Is formed. Here, both end portions 20 and 20 of the core 2 facing each other with the opening groove 2a sandwiched between the end portions 20 of the core 2 excluding the both end portions 20 (hereinafter referred to as “ body portion”) 21 are along the axial direction. The area of the cross section is large.

ボビン4は、円弧状に湾曲した角筒形状の合成樹脂成形品からなり、軸方向の両端部に外鍔40が設けられている。尚、コア2は開口溝2aと反対側の箇所で胴体部21が二分割されており、それぞれの胴体部21,21にボビン4,4が外挿された後に胴体部21,21の端部同士が接合されることによって、図1(a)に示すコア2が構成されている。 The bobbin 4 is formed of a rectangular tube-shaped synthetic resin molded product that is curved in an arc shape, and outer casings 40 are provided at both ends in the axial direction. The core 2 is an end of the body 21 after the body portion 21 at a point between the open groove 2a opposite side is divided into two parts, the bobbin 4, 4 to each of the body portions 21 and 21 were extrapolated The cores 2 shown in FIG. 1 (a) are configured by joining together.

コイル3は、絶縁被覆を有する巻線がボビン4,4に単層巻きされることで形成されている。尚、コア2の端部20胴体部21との段差が巻線の直径よりも大きく設定されており、コイル3がコア2の端部20よりも外側にはみ出さないようになっている。このようにコイル3がコア2の端部20よりも外側にはみ出さないことにより、コイル3の端部からコア2の端部20の外へ漏れる磁束を減らすことができる。 The coil 3 is formed by winding a winding having an insulating coating around the bobbins 4 and 4 in a single layer. The step between the end 20 of the core 2 and the body 21 is set larger than the diameter of the winding so that the coil 3 does not protrude beyond the end 20 of the core 2. Thus, since the coil 3 does not protrude outside the end portion 20 of the core 2, magnetic flux leaking from the end portion of the coil 3 to the outside of the end portion 20 of the core 2 can be reduced.

磁気シールド体5は、高透磁率である金属磁性材料により略円筒形状に形成されてコア2並びにコイル3に外挿される。但し、磁気シールド体5にはコア2の開口溝2aと連通する溝5aが軸方向に沿って設けられている。   The magnetic shield body 5 is formed in a substantially cylindrical shape by a metal magnetic material having a high magnetic permeability, and is extrapolated to the core 2 and the coil 3. However, the magnetic shield body 5 is provided with a groove 5a communicating with the opening groove 2a of the core 2 along the axial direction.

而して、従来例のように巻線を多層巻きしてコイルを形成した場合、近接効果によって巻線の高周波抵抗が増大して電力伝達の効率化が低下してしまう虞がある。これに対して本実施形態では、コア2に対して巻線を単層巻きしてコイル3を形成しているので、巻線が多層巻きされる場合と比較してコイル3の高周波抵抗を低減し、ひいては電力伝達の効率を向上することができる。   Thus, when a coil is formed by winding a plurality of windings as in the conventional example, the proximity effect may increase the high-frequency resistance of the winding and reduce the efficiency of power transmission. On the other hand, in this embodiment, since the coil 3 is formed by winding a single layer of the winding around the core 2, the high frequency resistance of the coil 3 is reduced compared to the case where the winding is wound in multiple layers. As a result, the efficiency of power transmission can be improved.

ところで、特許文献1に記載されている従来例のピックアップ部においては、断面形状コ字形のコアが用いられている。このようにコアの内周面及び外周面が何れも複数の平面を突き合わせて構成されている場合、平面と平面の境界部分(角の部分)において磁束の一部がコアの外に漏れてしまうことにより、給電線からピックアップ部への電力伝達の効率が低下してしまうという問題がある。   By the way, in the pickup part of the conventional example described in Patent Document 1, a core having a U-shaped cross section is used. In this way, when the inner peripheral surface and the outer peripheral surface of the core are both configured by abutting a plurality of planes, a part of the magnetic flux leaks out of the core at the boundary portion (corner portion) between the plane and the plane. As a result, there is a problem in that the efficiency of power transmission from the feeder line to the pickup unit is reduced.

すなわち、開口溝2aを通してコア2の内側に配置される給電線100に高周波電流が流れると、給電線100を中心とする同心円上に高周波磁界(磁束φ)が発生し、磁束φの大半がコア2内を周方向に沿って通過する。このとき、従来例のようにコア2’の内周面及び外周面が何れも複数の平面を突き合わせて構成されている場合、つまり、断面形状が略コ字形のコア2’の場合、図1(c)に示すように平面と平面の境界部分(角の部分)において磁束φの一部がコア2’の外に漏れてしまう。   That is, when a high frequency current flows through the opening groove 2a to the power supply line 100 disposed inside the core 2, a high frequency magnetic field (magnetic flux φ) is generated on a concentric circle centering on the power supply line 100, and most of the magnetic flux φ is the core. 2 passes along the circumferential direction. At this time, when the inner peripheral surface and the outer peripheral surface of the core 2 ′ are both configured by abutting a plurality of planes as in the conventional example, that is, when the core 2 ′ has a substantially U-shaped cross section, FIG. As shown in (c), a part of the magnetic flux φ leaks out of the core 2 ′ at the boundary portion (corner portion) between the flat surfaces.

一方、本実施形態におけるコア2は、内周面及び外周面の双方が曲面で構成され且つ軸方向に交差する断面形状が略C形に形成されているので、図1(b)に示すように開口溝2a以外の部分から外部に漏れる磁束φが殆ど生じない。そのため、図1(c)に示す従来例のコア2’と比較して給電線100からピックアップ部1への電力伝達の効率が向上し且つ給電量を増大することができる。尚、本実施形態ではコア2の内周面及び外周面の双方を曲面で構成しているが、例えば、図2(a)に示すように外周面のみを曲面で構成してもよいし、あるいは図2(b)に示すように内周面のみを曲面で構成してもよく、これら何れの形状のコア2であっても、内周面及び外周面が何れも複数の平面を突き合わせて構成されている従来例のコア2’に比べれば、開口溝2a以外の部分から外部に漏れる磁束φを低減することが可能である。但し、これら2種類のコア2に対して本実施形態のコア2が最も電力伝達の効率が高くなることは明らかである。   On the other hand, the core 2 in the present embodiment has both an inner peripheral surface and an outer peripheral surface formed of curved surfaces, and a cross-sectional shape that intersects the axial direction is formed in a substantially C shape. The magnetic flux φ leaking to the outside from the portion other than the opening groove 2a is hardly generated. Therefore, compared with the conventional core 2 ′ shown in FIG. 1C, the efficiency of power transmission from the power supply line 100 to the pickup unit 1 can be improved and the power supply amount can be increased. In the present embodiment, both the inner peripheral surface and the outer peripheral surface of the core 2 are configured with curved surfaces, but for example, only the outer peripheral surface may be configured with a curved surface as shown in FIG. Alternatively, as shown in FIG. 2 (b), only the inner peripheral surface may be configured by a curved surface, and the inner peripheral surface and the outer peripheral surface are abutted with a plurality of planes in any of these shapes of the core 2. Compared to the conventional core 2 ′ that is configured, it is possible to reduce the magnetic flux φ leaked to the outside from a portion other than the opening groove 2a. However, it is clear that the core 2 of the present embodiment has the highest power transmission efficiency with respect to these two types of cores 2.

ところで、高周波電源110に対する往きと戻りの2本の給電線100のうちの一方の給電線100がコア2の内側に配置され、他方の給電線100がピックアップ部1の近傍に配置されている場合、当該他方の給電線100の周囲に生じる磁束がコア2内を通過する磁束φと打ち消しあい、その結果、ピックアップ部1の電力伝達の効率が低下してしまう虞がある。これに対して本実施形態では、コア2並びにコイル3が磁気シールド体5で覆われて磁気シールドされているので、上述のようにコア2内を通過する磁束φが外部の磁界(磁束)で打ち消されるのを防ぐことができ、その結果、損失を低減することができる。   By the way, in the case where one of the two feed lines 100 going back and forth to the high frequency power supply 110 is arranged inside the core 2 and the other feed line 100 is arranged in the vicinity of the pickup unit 1. The magnetic flux generated around the other power supply line 100 cancels out with the magnetic flux φ passing through the core 2, and as a result, the power transmission efficiency of the pickup unit 1 may be reduced. On the other hand, in this embodiment, since the core 2 and the coil 3 are covered with the magnetic shield body 5 and are magnetically shielded, the magnetic flux φ passing through the core 2 is an external magnetic field (magnetic flux) as described above. It is possible to prevent cancellation, and as a result, loss can be reduced.

また、本実施形態では給電線100への装着と離脱が容易に行えるようにピックアップ部1のコア2に開口溝2aを設けているが、この開口溝2aの部分(ギャップ)においては磁気回路の磁気抵抗が大幅に増大してしまう。そこで本実施形態では、開口溝2aを挟んで対向するコア2の両端部20,20をコア2の当該両端部20を除く胴体部21よりも、軸方向に沿った断面の面積を大きく形成することにより、コア2の両端部20,20における磁気抵抗を胴体部21と比較して相対的に低減し、開口溝2aからコア2の外に漏れる磁束を減らすようにしている。 In the present embodiment, the opening groove 2a is provided in the core 2 of the pickup unit 1 so that the power supply line 100 can be easily attached to and detached from the feeder line 100. However, the portion (gap) of the opening groove 2a has a magnetic circuit. The magnetic resistance is greatly increased. Therefore, in the present embodiment, both end portions 20 and 20 of the core 2 facing each other across the opening groove 2a are formed to have a larger cross-sectional area along the axial direction than the body portion 21 excluding the both end portions 20 of the core 2. Thus, the magnetic resistance at both ends 20 and 20 of the core 2 is relatively reduced as compared with the body portion 21, and the magnetic flux leaking out of the core 2 from the opening groove 2a is reduced.

本発明の実施形態を示し、(a)は一部省略したピックアップ部の断面図、(b)は同上におけるコア内を通過する磁束の説明図、(c)は従来例におけるコア内を通過する磁束の説明図である。1A and 1B show an embodiment of the present invention, in which FIG. 1A is a cross-sectional view of a pickup unit partially omitted, FIG. 1B is an explanatory diagram of magnetic flux passing through the core in the above, and FIG. It is explanatory drawing of magnetic flux. (a),(b)は同上におけるコアの別の構成を示す平面図である。(A), (b) is a top view which shows another structure of the core in the same as the above. (a)は同上の全体構成図、(b)は同上における給電線の断面図である。(A) is a whole block diagram same as the above, (b) is sectional drawing of the feeder in the same as the above.

符号の説明Explanation of symbols

1 ピックアップ部
2 コア
2a 開口溝
3 コイル
1 Pickup part 2 Core 2a Opening groove 3 Coil

Claims (1)

高周波電流が流れる給電線と誘導結合されるピックアップ部を備え、ピックアップ部に誘起される誘導起電力によって負荷に給電する非接触給電装置において、
ピックアップ部は、給電線を周方向に沿って囲む筒状のコアと、コアに巻線を巻回してなるコイルと、コアの外側を囲む磁気シールド体とを有し、
コアは、少なくとも給電線が径方向に通過可能である開口溝が給電線の軸方向に沿って設けられ、内周面及び外周面の双方が曲面で構成され且つ軸方向に交差する断面形状が略C形に形成され、さらに、開口溝を挟んで対向する両端部が、当該両端部を除く部位よりも、軸方向に沿った断面の面積が大きく且つ磁気シールド体の外側にはみ出さないように形成されており、
コイルは、コアに対して巻線が単層巻きされてなることを特徴とする非接触給電装置
In a non-contact power supply apparatus that includes a pickup unit that is inductively coupled to a power supply line through which a high-frequency current flows, and that supplies power to a load by an induced electromotive force induced in the pickup unit.
The pickup unit has a cylindrical core surrounding the power supply line along the circumferential direction, a coil formed by winding a winding around the core, and a magnetic shield body surrounding the outside of the core ,
The core has an opening groove through which at least the feed line can pass in the radial direction is provided along the axial direction of the feed line, and both the inner peripheral surface and the outer peripheral surface are formed of curved surfaces and have a cross-sectional shape that intersects the axial direction. Further, both ends facing each other across the opening groove have a larger cross-sectional area along the axial direction and do not protrude outside the magnetic shield body. Is formed,
The non-contact power feeding device, wherein the coil is formed by winding a single layer of a winding around a core .
JP2008242929A 2008-09-22 2008-09-22 Non-contact power feeding device Active JP5297129B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008242929A JP5297129B2 (en) 2008-09-22 2008-09-22 Non-contact power feeding device
PCT/IB2009/006874 WO2010032116A1 (en) 2008-09-22 2009-09-18 Contactless power supply system
CN200980137080.2A CN102159423B (en) 2008-09-22 2009-09-18 Contactless power supply system
KR1020117006742A KR101258003B1 (en) 2008-09-22 2009-09-18 Contactless power supply system
TW98131774A TWI397236B (en) 2008-09-22 2009-09-21 Contactless power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008242929A JP5297129B2 (en) 2008-09-22 2008-09-22 Non-contact power feeding device

Publications (2)

Publication Number Publication Date
JP2010075018A JP2010075018A (en) 2010-04-02
JP5297129B2 true JP5297129B2 (en) 2013-09-25

Family

ID=42206273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008242929A Active JP5297129B2 (en) 2008-09-22 2008-09-22 Non-contact power feeding device

Country Status (1)

Country Link
JP (1) JP5297129B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8659477B2 (en) 2008-10-09 2014-02-25 Panasonic Corporation Base station device and distance measuring method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102823304A (en) 2010-03-29 2012-12-12 京瓷株式会社 Low power base station, and communication control method
WO2013039500A1 (en) 2011-09-15 2013-03-21 Intel Corporation Coil techniques

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108002A (en) * 1984-10-30 1986-05-26 Hitachi Metals Ltd Separation type disc wheel
US5301096A (en) * 1991-09-27 1994-04-05 Electric Power Research Institute Submersible contactless power delivery system
JPH0837121A (en) * 1994-07-26 1996-02-06 Matsushita Electric Works Ltd Power supply device
JP3907166B2 (en) * 2001-08-09 2007-04-18 本田技研工業株式会社 Electric small vehicle charging system
JP4712254B2 (en) * 2001-09-28 2011-06-29 株式会社イトーキ Power receiving core and power supply system for moving body
JP2006141115A (en) * 2004-11-11 2006-06-01 Asyst Shinko Inc Power supplying apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8659477B2 (en) 2008-10-09 2014-02-25 Panasonic Corporation Base station device and distance measuring method

Also Published As

Publication number Publication date
JP2010075018A (en) 2010-04-02

Similar Documents

Publication Publication Date Title
CN107004496B (en) Power receiving device and power transmission device
EP1717826B1 (en) Transformer
JP6471489B2 (en) Bobbin for coil component and method for manufacturing coil component
KR101003933B1 (en) Transformer core comprising magnetic shielding
JP5297129B2 (en) Non-contact power feeding device
JP2017017874A (en) Coil device
JP5276393B2 (en) Non-contact power feeding device
TWI397236B (en) Contactless power supply system
JP2007324380A (en) Common-mode choke coil for high-frequency waves
JP5635729B2 (en) Non-contact power feeding device
WO2014119294A1 (en) Contactless-power-transfer-device coil and contactless power-transfer device
JP5480483B2 (en) Non-contact power feeding device
JP5255881B2 (en) Non-contact power feeding device
JP2012023079A (en) Reactor
JP6548080B2 (en) Magnetic component and power transmission device
JP2007201206A (en) Ferrite core and inductance element
US11075031B2 (en) Inductor and inductor arrangement
JP2012020655A (en) Power line retractor
JP5179305B2 (en) Non-contact power feeding device
JP2018081960A (en) Coil unit and non-contact power supply system
JP6302365B2 (en) Coil device for non-contact power supply
JP2023120852A (en) Non-contact power transmission device
JP6599148B2 (en) coil
JP2003115415A (en) Non-contact feeding device
JP2008218754A (en) Transformer

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100716

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130614

R150 Certificate of patent or registration of utility model

Ref document number: 5297129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150