JP5255881B2 - Non-contact power feeding device - Google Patents

Non-contact power feeding device Download PDF

Info

Publication number
JP5255881B2
JP5255881B2 JP2008085765A JP2008085765A JP5255881B2 JP 5255881 B2 JP5255881 B2 JP 5255881B2 JP 2008085765 A JP2008085765 A JP 2008085765A JP 2008085765 A JP2008085765 A JP 2008085765A JP 5255881 B2 JP5255881 B2 JP 5255881B2
Authority
JP
Japan
Prior art keywords
power receiving
coil
arm
power
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008085765A
Other languages
Japanese (ja)
Other versions
JP2009240121A (en
Inventor
浩一 寺裏
康 二畠
裕史 前田
智浩 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008085765A priority Critical patent/JP5255881B2/en
Publication of JP2009240121A publication Critical patent/JP2009240121A/en
Application granted granted Critical
Publication of JP5255881B2 publication Critical patent/JP5255881B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Description

本発明は、電磁誘導を利用して非接触とした状態における電力供給を行う非接触給電装置に関するものである。   The present invention relates to a non-contact power supply apparatus that supplies power in a non-contact state using electromagnetic induction.

従来より、電力が供給されて移動を行う移動体を駆動するための給電装置として、その移動体の移動方向に沿うように給電線を設けるとともに、給電線に供給される電力を給電線と非接触な関係で受電して移動体に供給を行う非接触給電装置が提供されている。このような非接触給電装置は、特許文献1の非接触給電設備のように、例えば、工場内の無人搬送車への電力供給を行うための給電設備などに利用される。   Conventionally, as a power feeding device for driving a moving body that moves by being supplied with electric power, a power feeding line is provided along the moving direction of the moving body, and the power supplied to the power feeding line is not connected to the power feeding line. There is provided a non-contact power feeding device that receives power in a contact relationship and supplies power to a moving body. Such a non-contact power supply device is used for, for example, a power supply facility for supplying power to an automatic guided vehicle in a factory, like the non-contact power supply facility of Patent Document 1.

一方、接触型の給電装置は、電源に接続されたレール上の固定接点に、電力供給する負荷に接続された可動接点を摺動させて、変位させる移動体への電力供給を行ため、接触型の給電装置では、固定接点からの漏電や接点間の接触不良などが発生する。それに対して、非接触給電装置では、電源側に接続された1次側と、負荷側に接続された2次側との間で接触することがないため、この接触型の給電装置において問題となる漏電や接触不良などの発生がない。   On the other hand, the contact-type power supply device supplies power to a moving body that is displaced by sliding a movable contact connected to a load that supplies power to a fixed contact on a rail connected to a power source. In a power supply device of a type, leakage from a fixed contact, poor contact between contacts, or the like occurs. On the other hand, in the non-contact power feeding device, there is no contact between the primary side connected to the power source side and the secondary side connected to the load side. There will be no leakage or poor contact.

このような非接触給電装置の構成を、図9の概略図により簡単に説明する。図9に示す非接触給電装置は、交流電源100より高周波となる交流電流が供給される給電線1と、給電線1の長手方向に沿って変位可能な不図示の移動体の負荷Zに電気的に接続される受電部2とを備える。受電部2は、給電線1を流れる高周波電流に基づく電磁誘導により誘導電流が流れるコイル21と、このコイル21が外周面に巻かれた腕部22とこの腕部22を連結する連結部23とによって形成されるコア20とを有する。   The configuration of such a non-contact power supply apparatus will be briefly described with reference to the schematic diagram of FIG. The non-contact power supply apparatus shown in FIG. 9 is electrically connected to a power supply line 1 to which an alternating current having a high frequency is supplied from the AC power supply 100 and a load Z of a moving body (not shown) that can be displaced along the longitudinal direction of the power supply line 1. The power receiving unit 2 is connected to the power supply. The power receiving unit 2 includes a coil 21 through which an induction current flows by electromagnetic induction based on a high-frequency current flowing through the feeder line 1, an arm unit 22 around which the coil 21 is wound, and a connecting unit 23 that connects the arm unit 22. And the core 20 formed by the above.

そして、コア20が、給電線1の外周を腕部22と連結部23とで囲むように設置されることで、高周波電流(例えば10kHz)が流れることにより発生する給電線1の外周側に磁界の向きに沿って、コア20による磁気回路が形成される。このように給電線1の外周にコア20による磁気回路が形成されることで、給電線1の外周側に発生する磁束がコア20内に収束される。   The core 20 is installed so as to surround the outer periphery of the feeder line 1 with the arm part 22 and the connecting part 23, so that a magnetic field is generated on the outer periphery side of the feeder line 1 that is generated when a high-frequency current (for example, 10 kHz) flows. A magnetic circuit is formed by the core 20 along the direction of. As described above, the magnetic circuit formed by the core 20 is formed on the outer periphery of the feeder line 1, so that the magnetic flux generated on the outer periphery side of the feeder line 1 is converged in the core 20.

よって、コア20の腕部22に巻回されたコイル21に電流が誘起して、不図示の移動体のモータや制御回路などで構成される負荷Zに供給される。このとき、コイル21で発生した電流は、負荷Z側に設けられた電力変換回路で電力変換された後に負荷Zに供給されることで、安定した電力が負荷Zに供給される。このように構成される非接触給電装置において、給電線1を流れる高周波電流に基づく電磁誘導により受電動作を行う受電部2では、その受電効率を高めるために、コア20及びコイル21に対して様々な設計が成されている。   Therefore, a current is induced in the coil 21 wound around the arm portion 22 of the core 20 and is supplied to a load Z constituted by a motor or a control circuit of a moving body (not shown). At this time, the current generated in the coil 21 is converted into power by a power conversion circuit provided on the load Z side and then supplied to the load Z, so that stable power is supplied to the load Z. In the non-contact power feeding apparatus configured as described above, the power receiving unit 2 that performs a power receiving operation by electromagnetic induction based on a high-frequency current flowing through the power supply line 1 has various functions with respect to the core 20 and the coil 21 in order to increase the power receiving efficiency. The design is made.

又、特許文献2の非接触給電装置では、往復させた給電線の間にコイルが巻回されたコアが設置される構成としたときに、給電線の間隔が広くなって、給電線によるインダクタンスが大きくならないように、コイルの巻回させる位置を決定している。具体的には、コアの腕部を連結する連結部側にコイルを設置することにより、給電線とコイルとの構造的な干渉を防ぐことができ、その結果、コアの腕部を挟む給電線の間隔を狭くする。
特開2001−309502号公報 特開2002−152901号公報
Further, in the non-contact power supply device of Patent Document 2, when a core in which a coil is wound is installed between the reciprocating power supply lines, the interval between the power supply lines becomes wide, and the inductance due to the power supply lines is increased. The position where the coil is wound is determined so as not to increase. Specifically, by installing the coil on the side of the connecting part that connects the arm part of the core, structural interference between the power supply line and the coil can be prevented, and as a result, the power supply line sandwiching the arm part of the core Reduce the interval.
JP 2001-309502 A JP 2002-152901 A

このような非接触給電装置は、その施工を簡単なものとするため、受電部を構成するコアが、給電線の周方向に周回させた環形状の一部を切り欠いた形状とされる。そのため、特許文献2に記載されるように、コアの切り欠かれた部分(図9の構成においては、腕部22の連結部23側の逆側の端部間の空隙部分に相当する)に漏れ磁束が発生する。よって、コアに対するコイルの設置位置によっては、この漏れ磁束による影響が多きくなり、結果、受電部における受電効率の低下を招いてしまう。   In order to simplify the construction of such a non-contact power feeding device, the core constituting the power receiving unit has a shape in which a part of the ring shape that is circulated in the circumferential direction of the power feeding line is cut out. Therefore, as described in Patent Document 2, the core is notched (corresponding to a gap between the opposite ends of the connecting portion 23 side of the arm portion 22 in the configuration of FIG. 9). Leakage magnetic flux is generated. Therefore, depending on the installation position of the coil with respect to the core, the influence of the leakage magnetic flux is increased, and as a result, the power receiving efficiency in the power receiving unit is reduced.

このような問題を鑑みて、本発明は、コアの切欠部分で発生する漏れ磁束による損失を抑制した受電部を備える非接触給電装置を提案することを目的とする。   In view of such a problem, an object of the present invention is to propose a non-contact power feeding device including a power receiving unit in which loss due to leakage magnetic flux generated at a notch portion of a core is suppressed.

上記目的を達成するために、本発明の非接触給電装置は、交流電源に接続されて高周波となる交流電流が供給される給電線と、該給電線の外周で非接触な状態に設置される受電部とを備え、前記受電部が前記給電線との電磁誘導により受電した電力を前記受電部に接続された負荷に供給する非接触給電装置において、前記受電部が、前記給電線を囲む位置に設置される複数の腕部と、前記腕部の一方の端部に接続されて前記腕部を連結する連結部とで構成されるコアと、前記腕部の少なくとも1つに設けられ、当該腕部の外周に巻回された巻線により構成される受電用コイルと、を有し、前記腕部のうちの前記受電用コイルが設置された第1腕部の端部に、該第1腕部に対して前記給電線を挟んで設置される第2腕部に向かって延びた脚部を設けるとともに、前記第1腕部における前記第2腕部に向かう高さ方向に対して、前記脚部の前記第2腕部側の端部の高さを、前記受電用コイルを構成する前記巻線の高さよりも高くし、前記給電線の設置位置を、前記コアの前記腕部と前記連結部とで構成される環形状の中心付近とし、前記第1腕部の長手方向において、前記受電用コイルの巻線が、前記脚部に対してスペースを空けないように隣接して設置され、前記受電用コイルを構成する前記巻線の前記連結部側の位置を決定する仕切り板を、前記第1腕部の長手方向に平行に変位可能に備えることを特徴とする。In order to achieve the above object, a non-contact power supply device according to the present invention is installed in a non-contact state on a power supply line connected to an AC power source and supplied with an alternating current having a high frequency, and on the outer periphery of the power supply line. A non-contact power supply apparatus that supplies power received by electromagnetic induction with the power supply line to a load connected to the power reception unit, wherein the power reception unit surrounds the power supply line A core composed of a plurality of arm portions installed on one end of the arm portion and a connecting portion connected to one end portion of the arm portion to connect the arm portion; and provided in at least one of the arm portions, A power receiving coil constituted by a winding wound around the outer periphery of the arm portion, and the first arm portion at which the power receiving coil is installed among the arm portions is provided with the first coil. A leg portion extending toward the second arm portion that is installed across the power supply line with respect to the arm portion. And the height of the end portion of the leg portion on the second arm portion side with respect to the height direction of the first arm portion toward the second arm portion is the winding that constitutes the power receiving coil. The power receiving line is positioned higher than the height of the line, and the power supply line is located near the center of the ring shape formed by the arm part and the connecting part of the core. A partition plate is disposed adjacent to the leg portion so as not to leave a space with respect to the leg portion, and determines a position of the winding constituting the power receiving coil on the connecting portion side; The first arm portion is provided so as to be displaceable parallel to the longitudinal direction of the first arm portion.

このとき、1本の前記給電線を挟んで2本の前記腕部が設置される場合、前記腕部と前記結合部とによって、前記コアがC字形状となる。そして、2本の前記腕部の内の一方のみを、前記受電用コイルと前記脚部が設けられる前記第1腕部としてもよいし、2本の前記腕部両方を前記第1腕部としてもよい。   At this time, when the two arm portions are installed across the one feeder line, the core portion is formed in a C shape by the arm portion and the coupling portion. And only one of the two arm portions may be the first arm portion provided with the power receiving coil and the leg portion, or both of the two arm portions may be the first arm portion. Also good.

又、並んで設置された3本の前記腕部が2本の前記給電線を挟んだ構成とし、2本の前記給電部それぞれに逆の方向に流れる電流が流れるものとしてもよい。この場合、前記腕部と前記結合部とによって前記コアがE字形状となる。そして、3本の前記腕部の内、その中心に設置されるものを前記第1腕部としてもよいし、3本の前記腕部全てを前記第1腕部としてもよい。   Further, the three arm portions installed side by side may be configured to sandwich the two feeding lines, and a current flowing in the opposite direction may flow through each of the two feeding portions. In this case, the core is formed in an E shape by the arm portion and the coupling portion. Of the three arms, the one installed at the center may be the first arm, or all three arms may be the first arm.

このように構成される非接触給電装置では、前記第1腕部の前記脚部側に構成される前記コアのギャップにおける漏れ磁束による影響を、前記受電用コイルの前記脚部側の巻線が受けにくくなり、その受電効率を高めることができる。 In the non-contact power feeding device configured as described above, the influence of the leakage magnetic flux in the gap of the core configured on the leg side of the first arm portion is determined by the winding on the leg portion side of the power receiving coil. It becomes difficult to receive, and the power receiving efficiency can be improved.

又、前記第1腕部における前記受電用コイルの前記巻線と前記連結部との間隙に、その間隙を埋めるスペーサーが設置されるものとしてもよい。   In addition, a spacer that fills the gap may be installed in the gap between the winding of the power receiving coil and the connecting portion in the first arm portion.

更に、上述の非接触給電装置において、前記第1腕部における前記受電用コイルと前記連結部との間の外周面に巻回させた巻線によって、前記受電用コイルの受電動作による電流量を検出する検出用コイルを構成するものとしてもよい。そして、検出用コイルによって検出された電流に基づいて、前記受電用コイルによって負荷に供給される電流量を予測し、負荷の過電流保護を行うものとしてもよい。   Furthermore, in the above-described non-contact power feeding device, the amount of current due to the power receiving operation of the power receiving coil is reduced by the winding wound around the outer peripheral surface between the power receiving coil and the connecting portion in the first arm portion. A detection coil to be detected may be configured. Then, based on the current detected by the detection coil, the amount of current supplied to the load by the power receiving coil may be predicted to perform overcurrent protection of the load.

本発明によると、受電用コイルが設けられる第1腕部の端部に脚部を構成することで、受電部を構成するコアに設けられたギャップの幅を短くすることができ、このギャップにおける漏れ磁束の広がりを低減することができる。又、この脚部を、受電用コイルを構成する巻線よりも高い位置まで延ばした形状とすることで、脚部の端部からの漏れ磁束が受電用コイルに与える影響を低減することができる。よって、この受電部における給電線からの受電効率を高めることができる。   According to the present invention, by configuring the leg portion at the end of the first arm portion where the power receiving coil is provided, the width of the gap provided in the core constituting the power receiving portion can be shortened. The spread of leakage magnetic flux can be reduced. In addition, by forming the leg portion in a shape extending to a position higher than the winding constituting the power receiving coil, the influence of the leakage magnetic flux from the end portion of the leg portion on the power receiving coil can be reduced. . Therefore, the power receiving efficiency from the power supply line in the power receiving unit can be increased.

<第1の実施形態>
本発明における第1の実施形態の非接触給電装置について、図面を参照して説明する。図1は、本実施形態の非接触給電装置の構成を示す概略断面図である。尚、図1に示す非接触給電装置における構成部分において、図9に示す非接触給電装置における構成部分と同一の部分については、同一の符号を付す。
<First Embodiment>
A contactless power supply device according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing the configuration of the contactless power feeding device of the present embodiment. In addition, in the component part in the non-contact electric power feeder shown in FIG. 1, the same code | symbol is attached | subjected about the part same as the component part in the non-contact electric power feeder shown in FIG.

図1に示すように、本実施形態の非接触給電装置は、高周波となる交流電流が供給される給電線1と、この給電線1の外周側を囲むように設置される受電部2とで構成される。そして、受電部2は、給電線1の外周に形成される磁束を収束させる磁気回路を構成するコア20と、負荷側に接続された電線を巻回して構成されるコイル21とを備える。このコイル21は、特許請求の範囲における「受電用コイル」に相当する。又、コア20は、給電線1を中心として対称に配置されるL字形状となる2本の腕部22と、この2本の腕部22のそれぞれの端部を接続する連結部23とを備え、フェライトや珪素鋼などの磁性材料によりC字形状に構成される。   As shown in FIG. 1, the contactless power supply device of the present embodiment includes a power supply line 1 to which an alternating current having a high frequency is supplied and a power receiving unit 2 that is installed so as to surround the outer peripheral side of the power supply line 1. Composed. And the power receiving part 2 is equipped with the core 20 which comprises the magnetic circuit which converges the magnetic flux formed in the outer periphery of the feeder 1, and the coil 21 comprised by winding the electric wire connected to the load side. The coil 21 corresponds to a “power receiving coil” in the claims. In addition, the core 20 includes two arm portions 22 that are L-shaped and arranged symmetrically with respect to the power supply line 1, and a connecting portion 23 that connects the end portions of the two arm portions 22. It is configured in a C shape by a magnetic material such as ferrite or silicon steel.

2本の腕部22はそれぞれ、連結部23との接続された端部と逆側の端部に、給電線1を挟んで対向する逆側の腕部22の端部に向かって延びた脚部24を有することで、L字形状に構成される。この腕部22それぞれの端部に設けられる脚部24は、連結部23と平行な方向に延びるように形成されるとともに、その間に間隙が設けられる。このように構成されることで、コア20は、給電線1の外周を囲む環形状の一部を切り欠いた形状となる。又、コア20の腕部22及び連結部23で構成される環形状の中心付近に、給電線1が配置される。   Each of the two arm portions 22 is a leg extending toward the end portion of the opposite arm portion 22 opposite to the end portion on the opposite side to the end portion connected to the connecting portion 23 with the feeder 1 interposed therebetween. By having the part 24, it is configured in an L shape. The leg portions 24 provided at the end portions of the arm portions 22 are formed so as to extend in a direction parallel to the connecting portion 23, and a gap is provided therebetween. By being configured in this manner, the core 20 has a shape in which a part of an annular shape surrounding the outer periphery of the feeder line 1 is cut out. Further, the feeder line 1 is disposed near the center of the ring shape formed by the arm portion 22 and the connecting portion 23 of the core 20.

そして、このコア20における環形状を切り欠く間隙は、腕部22における脚部24の間に設けられるため、この間隙の幅を、給電部1を挟んで設置される腕部22の間隔よりも狭くなる。このように、腕部22において、連結部23との接続部分と逆側となる端部に、脚部24が設けられることで、コア20による磁気回路における間隙(ギャップ)dの幅が狭くなるため、この間隙が原因となるコイル21側への漏れ磁束の量を抑制できる。即ち、脚部24の端部間をつなぐように磁束が形成されるため、この脚部24の端部が近づくことで、脚部24同士が延びた方向に磁束が形成されやすく、コイル21側へ広がる漏れ磁束の量を低減できる。   And since the gap | interval which cuts off the ring shape in this core 20 is provided between the leg parts 24 in the arm part 22, the width | variety of this gap | interval is larger than the space | interval of the arm part 22 installed on both sides of the electric power feeding part 1. Narrow. As described above, in the arm portion 22, the leg portion 24 is provided at the end portion opposite to the connection portion with the connecting portion 23, thereby narrowing the width of the gap (gap) d in the magnetic circuit formed by the core 20. Therefore, the amount of leakage magnetic flux toward the coil 21 caused by this gap can be suppressed. That is, since the magnetic flux is formed so as to connect between the end portions of the leg portions 24, the end portions of the leg portions 24 approach each other, so that the magnetic flux is easily formed in the direction in which the leg portions 24 extend, and the coil 21 side The amount of leakage magnetic flux that spreads out can be reduced.

一方、このコア20の腕部22のそれぞれに設けられるコイル21は、環柱形状となるボビン25と、このボビン25の外周面に巻回される導線による巻線26とによって構成される。このコイル21は、環柱形状を構成するために設けられたボビン25の穴に腕部22が挿入されることで、腕部22における連結部23と脚部24との間の外周面に、巻線26を巻回した構造に等しい状態とすることができる。又、巻線26は、ボビン25の長手方向に向かって巻数に応じて重なるように、ボビン25の外周面に巻回されることで、ボビン25の外周面に垂直な方向に対する巻線26による高さが制限される。   On the other hand, the coil 21 provided in each of the arm portions 22 of the core 20 includes a bobbin 25 having a circular column shape and a winding 26 formed of a conductive wire wound around the outer peripheral surface of the bobbin 25. The coil 21 has an arm 22 inserted into a hole in a bobbin 25 provided to form an annular column shape, so that an outer peripheral surface of the arm 22 between the connecting portion 23 and the leg 24 is A state equivalent to a structure in which the winding 26 is wound can be obtained. In addition, the winding 26 is wound around the outer peripheral surface of the bobbin 25 so as to overlap in the longitudinal direction of the bobbin 25 according to the number of turns, and thereby the winding 26 is directed in a direction perpendicular to the outer peripheral surface of the bobbin 25. Height is limited.

このように構成される受電部2における脚部24と巻線26との関係について、以下に説明する。腕部22の給電線1に対向する面を基準面としたとき、図1に示すように、この基準面からの脚部24の端部までの高さがH1となり、基準面からの巻線26の高さがH2となる。このとき、脚部24の高さH1が、巻線26の高さH2よりも高くなるように、脚部24を形成する。即ち、腕部22と連結部23と脚部24とによって構成される溝部分の高さよりも、巻線26の高さが低くなるように、受電部2が構成される。   The relationship between the leg part 24 and the coil | winding 26 in the power receiving part 2 comprised in this way is demonstrated below. When the surface of the arm portion 22 facing the feeder line 1 is used as a reference surface, as shown in FIG. 1, the height from the reference surface to the end of the leg portion 24 is H1, and the winding from the reference surface is The height of 26 is H2. At this time, the leg portion 24 is formed so that the height H1 of the leg portion 24 is higher than the height H2 of the winding 26. That is, the power receiving unit 2 is configured such that the height of the winding 26 is lower than the height of the groove portion formed by the arm portion 22, the connecting portion 23, and the leg portion 24.

このように構成されることで、コイル21の巻線26は、脚部24の端部から給電線1側に広がる漏れ磁束のうち、更に腕部22にむかって広がる磁束によって影響されることとなる。そして、この腕部22に向かって広がる磁束の量は少ないため、巻線26に与える影響を抑制することができる。これにより、コイル21において、コア20に構成されるギャップにより発生する漏れ磁束の影響が抑制されるため、コイル21を構成する巻線26の抵抗値の上昇を防ぎ、その受電効率を高めることができる。   By being configured in this way, the winding 26 of the coil 21 is influenced by the magnetic flux spreading toward the arm portion 22 out of the leakage magnetic flux spreading from the end of the leg portion 24 toward the feeder line 1 side. Become. Since the amount of magnetic flux spreading toward the arm portion 22 is small, the influence on the winding 26 can be suppressed. Thereby, in the coil 21, since the influence of the leakage magnetic flux generated by the gap formed in the core 20 is suppressed, an increase in the resistance value of the winding 26 constituting the coil 21 can be prevented and the power receiving efficiency can be increased. it can.

又、このように構成される非接触給電装置における概略的な回路構成を、図2のブロック図に示す。図2に示すように、交流電源100と接続された給電線1を1次側とし、この1次側となる給電線1に対して受電部2に構成されるコイル21が2次側コイルとして働く。そして、この2次側コイルとなるコイル21と接続されたブリッジ回路などで構成された整流回路101と、整流回路101からの出力を平滑化する平滑化回路102とを、コイル21と負荷Zとの間に備える。   A schematic circuit configuration of the non-contact power feeding apparatus configured as described above is shown in the block diagram of FIG. As shown in FIG. 2, the power supply line 1 connected to the AC power supply 100 is the primary side, and the coil 21 configured in the power receiving unit 2 with respect to the power supply line 1 serving as the primary side is the secondary side coil. work. Then, the rectifier circuit 101 configured by a bridge circuit connected to the coil 21 serving as the secondary coil, and the smoothing circuit 102 that smoothes the output from the rectifier circuit 101, the coil 21 and the load Z Prepare in between.

即ち、交流電源100からの高周波電流が与えられる給電線1との電磁誘導により、コイル21に交流電流が発生し、整流回路101に供給される。整流回路101では、コイル21から供給される交流電流を整流することで、直流電源により動作する負荷Zへの電源供給が可能となるように、交流電流を直流電流に変換する。そして、この整流回路101で直流に変換されると、平滑化回路102による平滑化が成されることによって、一定電圧となる電力を負荷Zに供給することができる。   That is, an alternating current is generated in the coil 21 and supplied to the rectifier circuit 101 by electromagnetic induction with the power supply line 1 to which a high frequency current from the alternating current power supply 100 is applied. The rectifier circuit 101 rectifies the alternating current supplied from the coil 21 to convert the alternating current into a direct current so that power can be supplied to the load Z operated by the direct current power supply. Then, when converted into direct current by the rectifier circuit 101, smoothing by the smoothing circuit 102 is performed, so that power having a constant voltage can be supplied to the load Z.

尚、本実施形態において、1本の給電線1を挟む2本の腕部22それぞれに対して、コイル21が設けられるものとしたが、一方の腕部22にコイル21が設けられるものとしてもよい。このとき、コイル21が設けられる腕部22には、その高さH1が巻線26の高さH2よりも高くなるような脚部24が設けられる。   In the present embodiment, the coil 21 is provided for each of the two arm portions 22 sandwiching the single feeder 1, but the coil 21 may be provided on one arm portion 22. Good. At this time, the arm portion 22 provided with the coil 21 is provided with a leg portion 24 whose height H1 is higher than the height H2 of the winding 26.

又、非接触給電装置を、図3(a)又は図3(b)に示すような、受電部2におけるコア20によって2本の給電線1それぞれを囲んだ構成としてもよい。この図3(a)及び図3(b)の概略断面図に示すように、コア20が、3本の腕部22を連結部23によって連結することで、E字形状とされる。このとき、2本の給電線1のそれぞれが、2本の腕部22によって挟まれるとともに、中央に配置される1本の腕部22が、2本の給電線1によって挟まれる。   Further, the non-contact power feeding device may have a configuration in which each of the two power feeding lines 1 is surrounded by the core 20 in the power receiving unit 2 as illustrated in FIG. 3A or 3B. As shown in the schematic cross-sectional views of FIGS. 3A and 3B, the core 20 is formed in an E shape by connecting the three arm portions 22 with a connecting portion 23. At this time, each of the two power supply lines 1 is sandwiched between the two arm portions 22, and one arm portion 22 disposed in the center is sandwiched between the two power supply wires 1.

このように構成されるとき、2本の給電線1それぞれによる中央に配置される腕部22への磁界の向きを同一方向とするため、2本の給電線1それぞれを流れる高周波の交流電流は、その流れる向きが逆となるように逆位相の電流とされる。そして、図3(a)の構成では、中央に配置される腕部22にのみ、コイル21が設置され、図3(b)の構成では、3本の全ての腕部22にコイル21が設置される。   When configured in this way, in order to make the direction of the magnetic field to the arm part 22 arranged in the center by each of the two power supply lines 1 the same direction, the high-frequency alternating current flowing through each of the two power supply lines 1 is , The current flows in the opposite phase so that the flow direction is reversed. In the configuration of FIG. 3A, the coil 21 is installed only on the arm portion 22 arranged at the center, and in the configuration of FIG. 3B, the coil 21 is installed on all three arm portions 22. Is done.

このように構成されるとき、本実施形態による効果を得るために、図3(a)及び図3(b)のいずれの構成においても、中央に配置される腕部22は、連結部23の逆側となる端部において、その両側の腕部22に向かって延びた2つの脚部24が設けられることで、その断面がT字形状となる。又、コア20を構成する3本の腕部22の内、両側に配置される腕部22は、図3(b)のようにコイル21が設置される場合は、図1に示す腕部22と同様、その端部に脚部24が設けられたL字形状となる。尚、図3(a)のように、コイル21が設置されない腕部22が両側に設置される場合において、この両側の腕部22を、脚部24のない形状としてもよい。   When configured in this way, in order to obtain the effect according to the present embodiment, the arm portion 22 disposed in the center in either of the configurations of FIG. 3A and FIG. At the opposite end, two leg portions 24 extending toward the arm portions 22 on both sides thereof are provided, so that the cross section becomes a T-shape. Further, among the three arm portions 22 constituting the core 20, the arm portions 22 arranged on both sides of the arm portion 22 shown in FIG. 1 when the coil 21 is installed as shown in FIG. As in the case of L, the leg portion 24 is provided with a leg portion 24 at the end thereof. As shown in FIG. 3A, when the arm portions 22 where the coil 21 is not installed are installed on both sides, the arm portions 22 on both sides may have a shape without the leg portions 24.

<第2の実施形態>
本発明における第2の実施形態の非接触給電装置について、図面を参照して説明する。図4は、本実施形態の非接触給電装置の構成を示す概略断面図である。尚、図4において、図1に示す構成と同一の部分については同一の符号を付して、その詳細な説明は省略する。
<Second Embodiment>
The non-contact electric power feeder of 2nd Embodiment in this invention is demonstrated with reference to drawings. FIG. 4 is a schematic cross-sectional view showing the configuration of the contactless power feeding device of the present embodiment. In FIG. 4, the same components as those shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

図4に示すように、本実施形態の非接触給電装置は、第1の実施形態の非接触給電装置(図1参照)と異なり、腕部22において、コイル21を構成する巻線26を脚部24側に設置した構成となる。即ち、腕部22における巻線26と連結部23との間隔S1を広げることにより、腕部22における巻線26と脚部24との間隔S2が狭まった構成となる。その他の構成については、第1の実施形態と同様となるため、その詳細な説明については、第1の実施形態を参照とするものとし、本実施形態では省略する。   As shown in FIG. 4, the contactless power supply device of this embodiment differs from the contactless power supply device (see FIG. 1) of the first embodiment in that the arm 26 has a winding 26 constituting the coil 21 as a leg. It becomes the structure installed in the part 24 side. That is, by increasing the interval S1 between the winding 26 and the connecting portion 23 in the arm portion 22, the interval S2 between the winding 26 and the leg portion 24 in the arm portion 22 is reduced. Since other configurations are the same as those of the first embodiment, the detailed description thereof is referred to the first embodiment, and is omitted in the present embodiment.

このように、本実施形態の非接触給電装置は、巻線26によるコイル21の脚部24側の端部を脚部24に近づけた構成とするため、脚部24の端部からギャップに発生する磁束によるコイル21への影響を低減させることができる。即ち、コイル21を構成する巻線26は、コア20により形成される磁気回路の一部となる。そして、巻線26の脚部24側の端部と脚部24との間隔S2を短くすることにより、巻線26と脚部24との間の空間による領域を小さくして、脚部24からの漏れ磁束が回り込む領域を小さくすることができる。   As described above, the contactless power supply device according to the present embodiment has a configuration in which the end of the coil 21 on the leg 24 side of the coil 21 by the winding 26 is close to the leg 24, and thus occurs in the gap from the end of the leg 24. The influence on the coil 21 by the magnetic flux to be performed can be reduced. That is, the winding 26 constituting the coil 21 becomes a part of the magnetic circuit formed by the core 20. Then, by shortening the distance S2 between the end of the winding 26 on the leg 24 side and the leg 24, the space due to the space between the winding 26 and the leg 24 is reduced. It is possible to reduce the area where the leakage magnetic flux of the magnetic flux flows.

この漏れ磁束が回り込む空間が小さくなることによって、巻線26の脚部24側への漏れ磁束の回り込みが低減されるため、コイル21への脚部24からの漏れ磁束による影響を抑制できる。よって、本実施形態の構成とすることで、第1の実施形態の構成よりも更に、受電部2における受電効率を高めることができる。尚、この脚部24からの漏れ磁束によるコイル21への影響をできるだけ抑止するために、巻線26の脚部24側の端部と脚部24との間隔S2を0とすることが好ましい。   By reducing the space in which the leakage magnetic flux wraps around, the leakage magnetic flux wraps around the leg 24 side of the winding 26 is reduced, so that the influence of the leakage magnetic flux from the leg 24 on the coil 21 can be suppressed. Therefore, with the configuration of the present embodiment, the power receiving efficiency in the power receiving unit 2 can be further increased than the configuration of the first embodiment. In order to suppress the influence of leakage magnetic flux from the leg 24 on the coil 21 as much as possible, it is preferable to set the interval S2 between the end of the winding 26 on the leg 24 side and the leg 24 to zero.

このようにコイル21を構成する巻線26の設置位置を規制するために、例えば、図4に示すように、巻線26の連結部23側の端面と当接させた仕切り板27を備えた構成としてもよい。その中心にボビン25を貫通させる穴が形成された環形状の仕切り板27を利用することで、腕部22の長手方向に対する巻線26によるコイル21の設置位置が決定される。このとき、仕切り板27がボビン25に固定されることで、巻線26と連結部23との間隔S1を広げて巻線26と脚部24との間の隙間を狭めるように、脚部24と仕切り板27とによって挟んで、コイル21を構成する巻線26を固定できる。   In order to regulate the installation position of the winding 26 constituting the coil 21 as described above, for example, as shown in FIG. 4, a partition plate 27 is provided in contact with the end surface of the winding 26 on the connecting portion 23 side. It is good also as a structure. The installation position of the coil 21 by the winding 26 with respect to the longitudinal direction of the arm portion 22 is determined by using the ring-shaped partition plate 27 in which a hole through which the bobbin 25 passes is formed at the center. At this time, the partition plate 27 is fixed to the bobbin 25, so that the gap S1 between the winding 26 and the connecting portion 23 is widened and the gap between the winding 26 and the leg portion 24 is narrowed. The winding 26 constituting the coil 21 can be fixed by being sandwiched by the partition plate 27.

尚、この巻線26の連結部23側の位置を決定する仕切り板27が、腕部22の長手方向に対してスライド可能な構成としてもよい。このとき、例えば、仕切り板27の穴部分の内周面を係止するための溝を、ボビン25の長手方向に複数並べて設置することで、仕切り板27を腕部22の長手方向において最適な位置で固定させることができる。即ち、ボビン25に対して、その長手方向に仕切り板27を移動させるとき、コイル21を構成する巻線26の長さに応じて、その最適な位置に対応する溝に仕切り板27の穴の内周部分を嵌合することで、仕切り板27をボビン25に係止させる。   The partition plate 27 that determines the position of the winding 26 on the connecting portion 23 side may be configured to be slidable in the longitudinal direction of the arm portion 22. At this time, for example, by arranging a plurality of grooves for locking the inner peripheral surface of the hole portion of the partition plate 27 in the longitudinal direction of the bobbin 25, the partition plate 27 is optimal in the longitudinal direction of the arm portion 22. Can be fixed in position. That is, when the partition plate 27 is moved in the longitudinal direction with respect to the bobbin 25, the hole of the partition plate 27 is formed in the groove corresponding to the optimum position according to the length of the winding 26 constituting the coil 21. The partition plate 27 is locked to the bobbin 25 by fitting the inner peripheral portion.

この仕切り板27をボビン25に係止させる構造を設けることで、巻線26と脚部24との距離を最短とする位置に巻線26を固定するために、仕切り板27をボビン25に固定することができる。尚、この仕切り板27をボビン25に係止させる構造については、ボビン25の外周面に溝を設けた例を挙げて説明したが、この溝を設けた構造に限定されるものではなく、仕切り板27を腕部22の長手方向に対してスライドさせたときに係止できる構造であれば、他の構造を利用してもよい。   By providing a structure for locking the partition plate 27 to the bobbin 25, the partition plate 27 is fixed to the bobbin 25 in order to fix the winding 26 at a position where the distance between the winding 26 and the leg portion 24 is the shortest. can do. The structure for locking the partition plate 27 to the bobbin 25 has been described by taking an example in which a groove is provided on the outer peripheral surface of the bobbin 25. However, the structure is not limited to the structure provided with the groove. Other structures may be used as long as the structure can be locked when the plate 27 is slid with respect to the longitudinal direction of the arm portion 22.

又、図6に示す構成のように、図5の仕切り板27の代わりに、巻線26と連結部23との両方に当接するスペーサー28を利用することで、巻線26の連結部23側の位置を決定するものとしてもよい。スペーサー28は、図5の仕切り板27と同様、その中心にボビン25を貫通させる穴が形成された環形状の断面を備えた構成で、この環形状の断面を腕部22の長手方向に連続させた環柱形状として構成される。   Further, as in the configuration shown in FIG. 6, instead of the partition plate 27 of FIG. 5, by using a spacer 28 that abuts both the winding 26 and the connecting portion 23, the connecting portion 23 side of the winding 26 is used. It is good also as what determines the position of. Like the partition plate 27 in FIG. 5, the spacer 28 has a ring-shaped cross-section in which a hole that penetrates the bobbin 25 is formed at the center thereof, and the ring-shaped cross-section is continuous in the longitudinal direction of the arm portion 22. It is configured as an annular column shape.

このように巻線26の連結部23側の位置を決定するスペーサー28は、その腕部22の長手方向に沿った長さを、コイル21を構成する巻線26と連結部23との間隔S1と等しい長さとする。このとき、長さS1となるスペーサー28を、巻線26と連結部23との間に設置することで、巻線26の連結部23側の位置を決定するものとしてもよい。又、長さS1/n(nは自然数)となるスペーサー28を、巻線26と連結部23との間にn枚だけ設置することで、巻線26の連結部23側の位置を決定するものとしてもよい。   In this way, the spacer 28 that determines the position of the winding 26 on the connection portion 23 side has a length along the longitudinal direction of the arm portion 22, and the interval S 1 between the winding 26 constituting the coil 21 and the connection portion 23. Is the same length as At this time, the spacer 28 having the length S1 may be installed between the winding 26 and the connecting portion 23 to determine the position of the winding 26 on the connecting portion 23 side. Further, by installing only n spacers 28 having a length S1 / n (n is a natural number) between the winding 26 and the connecting portion 23, the position of the winding 26 on the connecting portion 23 side is determined. It may be a thing.

尚、図5及び図6のそれぞれで巻線26の位置を決定するために利用する仕切り板27及びスペーサー28はそれぞれ、給電線1により発生する磁界に対して影響を与えないようにするため、非磁性体によって構成されることが好ましい。そして、電気的な影響も避けるために、この仕切り板27及びスペーサー28はそれぞれ、絶縁物によって構成されることが望ましい。   In order to prevent the partition plate 27 and the spacer 28 used to determine the position of the winding 26 in each of FIGS. 5 and 6 from affecting the magnetic field generated by the feeder 1, respectively. It is preferably composed of a non-magnetic material. And in order to avoid an electrical influence, it is desirable that each of the partition plate 27 and the spacer 28 is made of an insulator.

又、本実施形態においても、第1の実施形態と同様、全ての腕部22にコイル21が設けられた構成でなくてもよいし、図3(a)又は図3(b)に示すようなE字形状のコア20を備えた受電部2に適用するものとしてもよい。このとき、本実施形態では、巻線26によるコイル21が設けられた腕部22に対して、上述したように、連結部23と巻線26との間の間隔を広げて、脚部24と巻線26との間隔を狭めるように、巻線26が巻回される。   Also in this embodiment, as in the first embodiment, it is not necessary to have a configuration in which the coils 21 are provided on all the arm portions 22, or as shown in FIG. 3 (a) or FIG. 3 (b). The power receiving unit 2 including the E-shaped core 20 may be applied. At this time, in this embodiment, with respect to the arm portion 22 provided with the coil 21 by the winding 26, as described above, the interval between the connecting portion 23 and the winding 26 is widened, The winding 26 is wound so as to narrow the distance from the winding 26.

<第3の実施形態>
本発明における第3の実施形態の非接触給電装置について、図面を参照して説明する。図7は、本実施形態の非接触給電装置の構成を示す概略断面図である。尚、図7において、図5に示す構成と同一の部分については同一の符号を付して、その詳細な説明は省略する。
<Third Embodiment>
The non-contact electric power feeder of 3rd Embodiment in this invention is demonstrated with reference to drawings. FIG. 7 is a schematic cross-sectional view showing the configuration of the non-contact power feeding device of the present embodiment. In FIG. 7, the same components as those shown in FIG. 5 are denoted by the same reference numerals, and detailed description thereof is omitted.

図7に示すように、本実施形態の非接触給電装置は、第2の実施形態の非接触給電装置(図5参照)と異なり、腕部22において、仕切り板27と連結板23との間に、電流検出用のコイル21aを構成する巻線26aを設置した構成となる。即ち、第2の実施形態のように、仕切り板27により巻線26と連結部23との間にS1となる間隔を設けたとき、この間隔に対応するボビン25の外周面の領域に巻線26aを巻回して、コイル21aを構成する。その他の構成については、第2の実施形態と同様となるため、その詳細な説明については、第2の実施形態を参照とするものとし、本実施形態では省略する。   As shown in FIG. 7, the contactless power supply device of the present embodiment is different from the contactless power supply device (see FIG. 5) of the second embodiment in the arm portion 22 between the partition plate 27 and the connecting plate 23. In addition, the winding 26a constituting the current detection coil 21a is installed. That is, when the space | interval used as S1 is provided between the coil | winding 26 and the connection part 23 by the partition plate 27 like 2nd Embodiment, it winds in the area | region of the outer peripheral surface of the bobbin 25 corresponding to this space | interval. A coil 21a is formed by winding 26a. Since other configurations are the same as those of the second embodiment, the detailed description thereof will be referred to the second embodiment and will be omitted in this embodiment.

よって、図7に示す非接触給電装置は、ボビン25の外周面において、仕切り板27を挟んで、脚部24側に巻線26が巻回されて受電用のコイル21が構成されるとともに、連結部23側に巻線26aが巻回されて電流検出用のコイル21aが構成される。即ち、コイル21aが、特許請求の範囲における「検出用コイル」に相当する。尚、このコイル21aを構成する巻線26aの巻数は、腕部22の長手方向の長さとコイル21を構成する巻線26の巻数によって決定される。   Therefore, in the non-contact power feeding device shown in FIG. 7, the winding 26 is wound on the leg portion 24 side with the partition plate 27 sandwiched on the outer peripheral surface of the bobbin 25, and the power receiving coil 21 is configured. A coil 26a for current detection is configured by winding a winding 26a on the connecting portion 23 side. That is, the coil 21a corresponds to the “detection coil” in the claims. Note that the number of turns of the winding 26 a constituting the coil 21 a is determined by the length in the longitudinal direction of the arm portion 22 and the number of turns of the winding 26 constituting the coil 21.

このように構成する非接触給電装置において、第2の実施形態で説明したように、仕切り板27をボビン25の外周面に固着された構成としてもよいし、仕切り板27をボビン25の長手方向にスライド可能な構成としてもよい。そして、この仕切り板27は、第2の実施形態における仕切り板27及びスペーサー28と同様、受電部2に対して発生する磁界に影響を及ぼさないようにするために、非磁性体によって構成される。又、電気的な影響も避けるために、仕切り板27が絶縁物によって構成されることが望ましい   In the non-contact power feeding apparatus configured as described above, as described in the second embodiment, the partition plate 27 may be fixed to the outer peripheral surface of the bobbin 25, or the partition plate 27 may be configured in the longitudinal direction of the bobbin 25. It is good also as a structure which can be slid. And this partition plate 27 is comprised with a nonmagnetic material so that it may not affect the magnetic field which generate | occur | produces with respect to the power receiving part 2, like the partition plate 27 and the spacer 28 in 2nd Embodiment. . Moreover, in order to avoid an electrical influence, it is desirable that the partition plate 27 is made of an insulator.

更に、仕切り板27をボビン25の長手方向にスライド可能としたとき、第2の実施形態と同様、この仕切り板27がボビン25の外周面に係止されて任意の位置で固定可能な構成としてもよい。又、本実施形態では、巻線26,26aによって仕切り板27が挟まれた構成となるため、スライド可能な仕切り板27によって巻線26のボビン25の長手方向に対する位置を決定した後、巻線26aを巻回して仕切り板27が固定されるものとしてもよい。   Further, when the partition plate 27 is slidable in the longitudinal direction of the bobbin 25, as in the second embodiment, the partition plate 27 is locked to the outer peripheral surface of the bobbin 25 and can be fixed at an arbitrary position. Also good. In this embodiment, since the partition plate 27 is sandwiched between the windings 26 and 26a, the position of the winding 26 with respect to the longitudinal direction of the bobbin 25 is determined by the slidable partition plate 27, and then the winding is performed. The partition plate 27 may be fixed by winding 26a.

又、このように構成される非接触給電装置における概略的な回路構成を、図8のブロック図に示す。尚、図8において、図2に示す構成と同一の部分については同一の符号を付して、その詳細な説明は省略する。   A schematic circuit configuration of the non-contact power feeding apparatus configured as described above is shown in a block diagram of FIG. In FIG. 8, the same components as those shown in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.

図8に示すように、本実施形態の非接触給電装置は、図2の構成に対して、電流検知用に設置されたコイル21aから供給される電流を電圧信号に変換する電流/電圧変換回路103と、電流/電圧変換回路103からの電圧信号が入力されて閾値電圧Vthと比較を行う比較器104と、比較器104からの出力に基づいて平滑化回路102から負荷Zへ供給する電流量の制限を行う過電流保護回路105とを追加した構成となる。   As shown in FIG. 8, the contactless power supply device of the present embodiment is a current / voltage conversion circuit that converts a current supplied from a coil 21 a installed for current detection into a voltage signal with respect to the configuration of FIG. 2. 103, a comparator 104 that receives the voltage signal from the current / voltage conversion circuit 103 and compares it with the threshold voltage Vth, and an amount of current supplied from the smoothing circuit 102 to the load Z based on the output from the comparator 104 The overcurrent protection circuit 105 for limiting the above is added.

このように構成することで、第1の実施形態で説明したように、交流電源100からの高周波電流が与えられる給電線1との電磁誘導により、コイル21に交流電流が発生するとき、同様に、コイル21aにも交流電流が発生する。そして、コイル21で発生した交流電流は、整流回路101で整流した後に平滑化回路102で平滑化されることで、過電流保護回路105を介して負荷Zへ直流電源が供給される。   With this configuration, as described in the first embodiment, when an alternating current is generated in the coil 21 due to electromagnetic induction with the power supply line 1 to which a high-frequency current from the alternating current power supply 100 is applied, similarly. An alternating current is also generated in the coil 21a. The alternating current generated in the coil 21 is rectified by the rectifier circuit 101 and then smoothed by the smoothing circuit 102, so that direct current power is supplied to the load Z via the overcurrent protection circuit 105.

一方、コイル21aで発生した交流電流は、電流/電圧変換回路103に与えられると、整流及び平滑化が成されることによって、所定時間毎に積分した電圧値に相当する電圧信号が取得され、比較器104に出力される。比較器104では、電流/電圧変換回路103からの電圧信号による電圧値と閾値電圧Vthを比較し、電流/電圧変換回路103からの電圧信号が閾値電圧Vthよりも大きくなったときに、過電流保護回路105を機能させるための信号を出力する。   On the other hand, when the alternating current generated in the coil 21a is supplied to the current / voltage conversion circuit 103, a voltage signal corresponding to a voltage value integrated every predetermined time is obtained by rectification and smoothing. It is output to the comparator 104. The comparator 104 compares the voltage value based on the voltage signal from the current / voltage conversion circuit 103 with the threshold voltage Vth, and when the voltage signal from the current / voltage conversion circuit 103 becomes larger than the threshold voltage Vth, the overcurrent A signal for causing the protection circuit 105 to function is output.

即ち、給電線1に対して受電部2の受電した電力が大きくなると、コイル21によって発生した交流電流の電流量が大きくなるとともに、コイル21aによって発生した交流電流の電流量が大きくなる。このとき、コイル21からの交流電流が、整流回路101及び平滑化回路102で変換された直流電源は、その電圧値が一定となる一方で、電力増加によって電流値が増加する。そのため、負荷Zに供給する電流量が大きくなり、負荷Zに供給する電流が過電流となってしまう。   That is, when the power received by the power receiving unit 2 with respect to the power supply line 1 increases, the amount of alternating current generated by the coil 21 increases and the amount of alternating current generated by the coil 21a increases. At this time, the direct current power source in which the alternating current from the coil 21 is converted by the rectifier circuit 101 and the smoothing circuit 102 has a constant voltage value, but the current value increases as the power increases. Therefore, the amount of current supplied to the load Z increases, and the current supplied to the load Z becomes an overcurrent.

このような負荷Zへの過電流を防ぐために、過電流保護回路105を、例えば、抵抗などによって負荷Zと並列となる並列回路により構成する。よって、上述のようにして、電流/電圧変換回路103からの電圧信号が大きくなり、比較器104より信号が過電流保護回路105に与えられたとき、この過電流保護回路105内で構成される並列回路を負荷Zと電気的に接続する。   In order to prevent such an overcurrent to the load Z, the overcurrent protection circuit 105 is configured by a parallel circuit that is in parallel with the load Z by a resistor or the like, for example. Therefore, as described above, when the voltage signal from the current / voltage conversion circuit 103 increases and a signal is given from the comparator 104 to the overcurrent protection circuit 105, the overcurrent protection circuit 105 is configured. The parallel circuit is electrically connected to the load Z.

そして、この過電流保護回路105が動作することで、負荷Zに与える電圧を一定に保持した状態で、平滑化回路102から出力する電流の一部を過電流保護回路105側に流すことで、負荷Zに供給する電流が過電流となることを防ぐ。この図8のように構成するとき、比較器104の代わりに、電流/電圧変換回路103からの電圧信号による電圧値と閾値電圧との差分を求める差動増幅回路を設置しても構わない。このとき、この差動増幅回路からの差分値によって、過電流保護回路105を構成する並列回路内の抵抗の抵抗値を変更する構成とすることで、コイル21により受電される電力が変動した場合においても、負荷Zに供給する電流量を一定に保つことができる。   Then, by operating this overcurrent protection circuit 105, in a state where the voltage applied to the load Z is kept constant, a part of the current output from the smoothing circuit 102 is caused to flow to the overcurrent protection circuit 105 side, This prevents the current supplied to the load Z from becoming an overcurrent. When configured as shown in FIG. 8, a differential amplifier circuit that obtains the difference between the voltage value based on the voltage signal from the current / voltage conversion circuit 103 and the threshold voltage may be installed instead of the comparator 104. At this time, when the power received by the coil 21 is changed by changing the resistance value of the resistor in the parallel circuit constituting the overcurrent protection circuit 105 according to the difference value from the differential amplifier circuit. In this case, the amount of current supplied to the load Z can be kept constant.

尚、本実施形態においても、第1及び第2の実施形態と同様、全ての腕部22にコイル21が設けられた構成でなくてもよいし、図3(a)又は図3(b)に示すようなE字形状のコア20を備えた受電部2に適用するものとしてもよい。このとき、本実施形態では、第2の実施形態と同様、巻線26によるコイル21が設けられた腕部22に対して、上述したように、連結部23との間隔が広がるように巻線26を巻回し、この巻線26と連結部23の間に巻線26aを巻回してコイル21aを形成する。   In this embodiment as well, as in the first and second embodiments, the configuration may not be such that all the arm portions 22 are provided with the coils 21, or FIG. 3 (a) or FIG. 3 (b). It is good also as what is applied to the power receiving part 2 provided with the E-shaped core 20 as shown in FIG. At this time, in the present embodiment, as in the second embodiment, the arm portion 22 provided with the coil 21 by the winding wire 26 is wound so that the distance from the connecting portion 23 is widened as described above. 26 is wound, and a winding 26a is wound between the winding 26 and the connecting portion 23 to form a coil 21a.

このとき、コイル21が設けられる腕部22のそれぞれに、巻線26aによるコイル21aを設けるものとしてもよいし、コイル21が設けられる腕部22の一部に、巻線26aによるコイル21aを設けるものとしてもよい。又、コイル21が設けられる腕部22のそれぞれに、巻線26aによるコイル21aが設けられた場合は、複数のコイル21それぞれについて、その供給する電流量を、そのコイル21と同じ腕部22に設けられたコイル21aによって検出することができる。   At this time, each of the arm portions 22 provided with the coils 21 may be provided with a coil 21a constituted by the winding 26a, or a portion of the arm portion 22 provided with the coil 21 is provided with a coil 21a constituted by the winding 26a. It may be a thing. In addition, when each of the arm portions 22 provided with the coils 21 is provided with the coil 21a by the winding 26a, the amount of current supplied to each of the plurality of coils 21 is supplied to the same arm portion 22 as the coil 21. It can be detected by the provided coil 21a.

本発明は、電力により動力を取得して駆動する移動体に対して、その電力を供給するために給電線を用いた非接触給電装置に適用することができる。   INDUSTRIAL APPLICABILITY The present invention can be applied to a non-contact power supply apparatus that uses a power supply line to supply power to a moving body that acquires power using electric power and drives it.

は、本発明の第1の実施形態の非接触給電装置の構成を示す概略断面図である。These are schematic sectional drawings which show the structure of the non-contact electric power feeder of the 1st Embodiment of this invention. は、図1の非接触給電装置の回路構成を示すブロック図である。These are block diagrams which show the circuit structure of the non-contact electric power feeder of FIG. は、2本の給電線を用いた非接触給電装置の構成を示し、(a)は、1本の腕部にコイルが設けられた構成例による概略断面図であり、(b)は、全ての腕部にコイルが設けられた構成例による概略断面図である。Shows a configuration of a non-contact power supply device using two power supply lines, (a) is a schematic cross-sectional view of a configuration example in which a coil is provided on one arm part, (b) is all It is a schematic sectional drawing by the structural example by which the coil was provided in the arm part. は、本発明の第2の実施形態の非接触給電装置の構成を示す概略断面図である。These are schematic sectional drawings which show the structure of the non-contact electric power feeder of the 2nd Embodiment of this invention. は、図4の非接触給電装置に仕切り板を用いた構成例を示す概略断面図である。These are schematic sectional drawings which show the structural example which used the partition plate for the non-contact electric power feeder of FIG. は、図4の非接触給電装置にスペーサーを用いた構成例を示す概略断面図である。These are schematic sectional drawings which show the structural example which used the spacer for the non-contact electric power feeder of FIG. は、本発明の第3の実施形態の非接触給電装置の構成を示す概略断面図である。These are schematic sectional drawings which show the structure of the non-contact electric power feeder of the 3rd Embodiment of this invention. は、図7の非接触給電装置の回路構成を示すブロック図である。These are block diagrams which show the circuit structure of the non-contact electric power feeder of FIG. は、非接触給電装置の全体の構成を示す概略斜視図である。These are the schematic perspective views which show the structure of the whole non-contact electric power feeder.

符号の説明Explanation of symbols

1 給電線
2 受電部
20 コア
21,21a コイル
22 腕部
23 連結部
24 脚部
25 ボビン
26,26a 巻線
27 仕切り板
28 スペーサー
100 交流電源
101 整流回路
102 平滑化回路
103 電流/電圧変換回路
104 比較器
105 過電流保護回路
DESCRIPTION OF SYMBOLS 1 Feed line 2 Power receiving part 20 Core 21 and 21a Coil 22 Arm part 23 Connection part 24 Leg part 25 Bobbin 26 and 26a Winding 27 Partition plate 28 Spacer 100 AC power supply 101 Rectifier circuit 102 Smoothing circuit 103 Current / voltage conversion circuit 104 Comparator 105 Overcurrent protection circuit

Claims (3)

交流電源に接続されて高周波となる交流電流が供給される給電線と、該給電線の外周で非接触な状態に設置される受電部とを備え、前記受電部が前記給電線との電磁誘導により受電した電力を前記受電部に接続された負荷に供給する非接触給電装置において、
前記受電部が、
前記給電線を囲む位置に設置される複数の腕部と、前記腕部の一方の端部に接続されて前記腕部を連結する連結部とで構成されるコアと、
前記腕部の少なくとも1つに設けられ、当該腕部の外周に巻回された巻線により構成される受電用コイルと、
を有し、
前記腕部のうちの前記受電用コイルが設置された第1腕部の端部に、該第1腕部に対して前記給電線を挟んで設置される第2腕部に向かって延びた脚部を設けるとともに、
前記第1腕部における前記第2腕部に向かう高さ方向に対して、前記脚部の前記第2腕部側の端部の高さを、前記受電用コイルを構成する前記巻線の高さよりも高くし、
前記給電線の設置位置を、前記コアの前記腕部と前記連結部とで構成される環形状の中心付近とし、
前記第1腕部の長手方向において、前記受電用コイルの巻線が、前記脚部に対してスペースを空けないように隣接して設置され、
前記受電用コイルを構成する前記巻線の前記連結部側の位置を決定する仕切り板を、前記第1腕部の長手方向に平行に変位可能に備えることを特徴とする非接触給電装置。
A power supply line connected to an AC power supply and supplied with an alternating current having a high frequency, and a power receiving unit installed in a non-contact state on the outer periphery of the power supply line, the power receiving unit electromagnetic induction with the power supply line In the non-contact power feeding device that supplies the power received by the power receiving unit connected to the power receiving unit,
The power receiving unit is
A core composed of a plurality of arm portions installed at positions surrounding the power supply line, and a connecting portion connected to one end portion of the arm portion and connecting the arm portion;
A power receiving coil that is provided on at least one of the arm portions and includes a winding wound around an outer periphery of the arm portion;
Have
A leg extending toward the second arm portion installed on the end portion of the first arm portion where the power receiving coil of the arm portions is installed with the power supply line sandwiched with respect to the first arm portion. And providing a part
The height of the end of the leg on the second arm portion side with respect to the height direction of the first arm toward the second arm is the height of the winding constituting the power receiving coil. Higher than
The installation position of the feeder line is set near the center of an annular shape constituted by the arm portion and the connecting portion of the core,
In the longitudinal direction of the first arm portion, the winding of the power receiving coil is installed adjacent to the leg portion so as not to leave a space,
A non-contact power feeding device comprising: a partition plate for determining a position of the winding constituting the power receiving coil on the side of the connecting portion so as to be displaceable in parallel with a longitudinal direction of the first arm portion .
請求項1において、
前記第1腕部における前記受電用コイルと前記連結部との間の外周面に巻回させた巻線によって、前記受電用コイルの受電動作による電流量を検出する検出用コイルを構成することを特徴とする非接触給電装置。
In claim 1,
A detection coil for detecting a current amount due to a power receiving operation of the power receiving coil is configured by a winding wound around an outer peripheral surface between the power receiving coil and the connecting portion in the first arm portion. A non-contact power feeding device.
請求項1において、
前記第1腕部における前記受電用コイルの前記巻線と前記連結部との間隙に、その間隙を埋めるスペーサーが設置されることを特徴とする非接触給電装置。
In claim 1,
A contactless power feeding device according to claim 1, wherein a spacer for filling the gap is provided in a gap between the winding of the power receiving coil and the connecting portion in the first arm portion.
JP2008085765A 2008-03-28 2008-03-28 Non-contact power feeding device Active JP5255881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008085765A JP5255881B2 (en) 2008-03-28 2008-03-28 Non-contact power feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008085765A JP5255881B2 (en) 2008-03-28 2008-03-28 Non-contact power feeding device

Publications (2)

Publication Number Publication Date
JP2009240121A JP2009240121A (en) 2009-10-15
JP5255881B2 true JP5255881B2 (en) 2013-08-07

Family

ID=41253393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008085765A Active JP5255881B2 (en) 2008-03-28 2008-03-28 Non-contact power feeding device

Country Status (1)

Country Link
JP (1) JP5255881B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10692640B2 (en) 2015-09-24 2020-06-23 Fuji Corporation Non-contact power feeding coil and non-contact power feeding system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011166931A (en) * 2010-02-09 2011-08-25 Toyota Motor Corp Power receiving device and vehicle with the same
JP5857204B2 (en) * 2011-11-24 2016-02-10 パナソニックIpマネジメント株式会社 Non-contact power feeding device
US20130314188A1 (en) * 2012-05-04 2013-11-28 Ionel Jitaru Magnetic Structure for Large Air Gap

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108002U (en) * 1984-12-20 1986-07-09
JP2548415B2 (en) * 1990-01-08 1996-10-30 シャープ株式会社 Power supply
JPH1189004A (en) * 1997-09-11 1999-03-30 Toyota Autom Loom Works Ltd Power receiving equipment in moving body, and moving body
JP3033824B1 (en) * 1998-11-11 2000-04-17 株式会社豊田自動織機製作所 Power receiving core for wireless power transfer
JP3770047B2 (en) * 2000-04-28 2006-04-26 株式会社ダイフク Pickup coil and manufacturing method thereof
JP2002075743A (en) * 2000-08-23 2002-03-15 Sony Corp Variable inductance coil, high voltage generating device, and device and method for selecting transformer
JP2003333769A (en) * 2002-05-13 2003-11-21 High Frequency Heattreat Co Ltd Converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10692640B2 (en) 2015-09-24 2020-06-23 Fuji Corporation Non-contact power feeding coil and non-contact power feeding system

Also Published As

Publication number Publication date
JP2009240121A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
EP3761329B1 (en) Coil module, wireless charging emission device, wireless charging receiving device, wireless charging system and mobile terminal
EP3035349B1 (en) A transformer
US9984817B2 (en) Coil for wireless power transmission and wireless power transmission apparatus
JP6154835B2 (en) Non-contact power supply device
US9355770B2 (en) Transformer with improved power handling capacity
JP5118418B2 (en) Non-contact power feeding device
JP5255881B2 (en) Non-contact power feeding device
EP2771891B1 (en) Inductive component and use
JP2015106581A (en) Power transmission coil unit and wireless power transmission device
JP2019071719A (en) Wireless power supply system for mobile
EP2827484B1 (en) Dc-dc converter
US11340267B2 (en) Current detection device having a current transformer with a common coil section
CN109804441B (en) Transformer and power converter provided with same
CN105846680B (en) Transformer and switching power supply device
JP2010171225A (en) Transformer and switching power supply
JP5276393B2 (en) Non-contact power feeding device
JP4165523B2 (en) Contactless power supply
US10381151B2 (en) Transformer using coupling coil
JP5297129B2 (en) Non-contact power feeding device
US9672974B2 (en) Magnetic component and power transfer device
EP3572846B1 (en) High power transformer and transmitter for geophysical measurements
US9991749B2 (en) Coil unit, wireless power feeding device, wireless power receiving device, and wireless power transmission device
JP6235418B2 (en) Switching power transformer
JP6604250B2 (en) Coil for wireless power transmission, wireless power feeding system, wireless power receiving system and wireless power transmission system
US10262789B2 (en) Transformer and switched-mode power supply apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130422

R150 Certificate of patent or registration of utility model

Ref document number: 5255881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3