JP5296249B1 - Dragonfly blade-like blades, J-shaped cross-section blades, and J-shaped back-to-back blades used for rotor blades with shrouds, linear blowers, and linear wind power generators - Google Patents

Dragonfly blade-like blades, J-shaped cross-section blades, and J-shaped back-to-back blades used for rotor blades with shrouds, linear blowers, and linear wind power generators Download PDF

Info

Publication number
JP5296249B1
JP5296249B1 JP2012183117A JP2012183117A JP5296249B1 JP 5296249 B1 JP5296249 B1 JP 5296249B1 JP 2012183117 A JP2012183117 A JP 2012183117A JP 2012183117 A JP2012183117 A JP 2012183117A JP 5296249 B1 JP5296249 B1 JP 5296249B1
Authority
JP
Japan
Prior art keywords
blade
blades
section
kick
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012183117A
Other languages
Japanese (ja)
Other versions
JP2014040168A (en
Inventor
快堂 池田
Original Assignee
快堂 池田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 快堂 池田 filed Critical 快堂 池田
Priority to JP2012183117A priority Critical patent/JP5296249B1/en
Priority to PCT/JP2013/069365 priority patent/WO2014030465A1/en
Application granted granted Critical
Publication of JP5296249B1 publication Critical patent/JP5296249B1/en
Publication of JP2014040168A publication Critical patent/JP2014040168A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/46Blades
    • B64C27/467Aerodynamic features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/46Blades
    • B64C27/473Constructional features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/20Rotorcraft characterised by having shrouded rotors, e.g. flying platforms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

【課題】シュラウド付回転翼機やリニア送風機やリニア風力発電機用の大きな直径の回転翼の製造は、これまで方法では製作そのものが困難であるか、製作できたとしても、極めて高価なものとなって販売を困難にした。
【解決手段】踏み面111と蹴上げ面112とスロープ(傾斜面)113とから翼幅(翼弦)方向の断面が階段状になるように構成されるトンボの羽根様羽根や、トンボの羽根様の羽根を構成する踏み面を除いて蹴り込み長付きの蹴上げ面とスロープ(傾斜面)のみで構成したJ字型断面の羽根や、J字型断面の羽根の2枚を背中合わせで構成したJ字型背中合わせ断面の羽根のいずれかでシュラウド付回転翼機やリニア送風機やリニア風力発電機用の回転翼とする。
【選択図】図7
PROBLEM TO BE SOLVED: To manufacture a large-diameter rotor blade for a rotor blade with a shroud, a linear blower, or a linear wind power generator, it is difficult to manufacture by the conventional method, or even if it can be manufactured, it is extremely expensive. It became difficult to sell.
A dragonfly blade-like blade or a dragonfly blade-like blade configured such that a cross section in a blade width (chord) direction is stepped from a tread surface 111, a kick-up surface 112, and a slope (inclined surface) 113 J-shaped cross-section blades composed of a kick-up surface with a kick-in length and a slope (inclined surface), excluding the treads that make up the blades, and J-shaped cross-section blades composed of two back-to-back blades One of the blades of the back-to-back cross section is a rotor blade for a shroud rotor blade, a linear blower, or a linear wind power generator.
[Selection] Figure 7

Description

地形地物や機体車体などのプラットホームに対して静止していて電機子か界磁磁石かの少なくともいずれか一方を配設したシュラウドと、シュラウドに対して回転して界磁磁石か電機子かの少なくともいずれか一方を配設した回転ダクトとの組合せで構成するシュラウド付回転翼やリニア送風機やリニア風力発電機において用いられる羽根を製作する際に、製作が容易で堅固で軽量で巨大化可能でかつ安価にすることができる羽根としてのトンボの羽根様の羽根やJ字型断面の羽根やJ字型背中合わせ断面の羽根に関する。
A shroud that is stationary with respect to a platform such as a terrain feature or a fuselage and has at least one of an armature or a field magnet, and a shroud that rotates with respect to the shroud to determine whether it is a field magnet or an armature When manufacturing blades used in rotating blades with a shroud, linear blowers, and linear wind power generators that are configured in combination with a rotating duct with at least one of them, they are easy to manufacture, robust, lightweight, and can be enlarged The present invention also relates to a dragonfly blade-like blade, a J-shaped cross-section blade, and a J-shaped back-to-back blade.

地形地物や機体車体などのプラットホームに対して静止していて電機子か界磁磁石かの少なくともいずれか一方を配設したシュラウドと、シュラウドに対して回転して界磁磁石か電機子かの少なくともいずれか一方を配設した回転ダクトとの組合せで構成するシュラウド付回転翼やリニア送風機やリニア風力発電機においては、その駆動部や発電部は直径方向に10cm程度の幅を占有する。このため、仮に直径を20cm程度でシュラウド付回転翼やリニア送風機やリニア風力発電機を製作しようとすれば、羽根の専有部分が0%となって、シュラウド付回転翼やリニア送風機やリニア風力発電機の実現はできなくなる。逆に、仮に直径を200mとし、駆動部もしくは発電部の占有幅を10cm、回転軸の直径を20cmとすれば、羽根の占有率は99.8%となって効率的なシュラウド付回転翼やリニア送風機やリニア風力発電機を構成することができる。 A shroud that is stationary with respect to a platform such as a terrain feature or a fuselage and has at least one of an armature or a field magnet, and a shroud that rotates with respect to the shroud to determine whether it is a field magnet or an armature In a rotor blade with a shroud, a linear blower, or a linear wind power generator that is configured by a combination with a rotating duct in which at least one of them is disposed, the driving unit and the power generating unit occupy a width of about 10 cm in the diameter direction. For this reason, if an attempt is made to produce a rotor blade with a shroud, a linear blower, or a linear wind power generator with a diameter of about 20 cm, the exclusive portion of the blade becomes 0%, and the rotor blade with a shroud, the linear blower, or the linear wind power generator. The machine cannot be realized. On the other hand, if the diameter is 200 m, the occupied width of the drive unit or the power generation unit is 10 cm, and the diameter of the rotating shaft is 20 cm, the occupancy rate of the blade is 99.8%. A linear blower or a linear wind power generator can be configured.

ヘリコプター等で使用される揚力羽根と、送風機等で使用される抗力羽根とは、直径を増加すると揚力や送風量は、いずれも直径の約2乗倍で増加する。しかしながら、揚力羽根や抗力羽根を羽根の中心部の回転軸に接続した動力で回転させるためには、必要とする動力パワーは、揚力羽根では直径の約3乗倍で増加し、抗力羽根では直径の4〜5乗倍で増加する。このため、現時点での実用可能な強力な動力を世界中から探したとしても、ヘリコプターのような揚力羽根でターボシャフトエンジンを用いても直径約30m、送風機のような抗力羽根で電動機で約8m、内燃機関を用いても約12mが製作の限界であって、それ以上の直径のヘリコプターや送風機は、動力不足から実現が極めて困難であった。また、風を受けて羽根が回転して発電する風力発電装置では、直径を大きくすれば、発電量が約2乗倍で増加するが、羽根の強度を直径の約3乗倍で強化する必要が生じて重量が増加し、例えば、プロペラ型風力発電装置のように羽根やナセル等の重量物を1本支柱のみで支える構造物においては、製作できる直径は、支柱の強度の限界から概ね100m程度であった。 Lifting blades used in helicopters and the like and drag blades used in blowers and the like increase the diameter and the amount of airflow by about the square of the diameter. However, in order to rotate the lift blade and the drag blade with the power connected to the rotation shaft at the center of the blade, the required power is increased by about the cube of the diameter of the lift blade, and the diameter of the drag blade is increased. Increases by a factor of 4-5. For this reason, even if a powerful power that can be used at present is searched from all over the world, a lift blade such as a helicopter has a diameter of about 30 m even if a turboshaft engine is used, and a drag blade such as a blower is about 8 m with a motor. Even if an internal combustion engine is used, about 12 m is the limit of production, and helicopters and blowers having diameters larger than that are extremely difficult to realize due to insufficient power. In addition, in a wind turbine generator that generates power by receiving wind and rotating blades, increasing the diameter increases the amount of power generation by about a factor of two, but the strength of the blades needs to be strengthened by a factor of about the cube of the diameter. For example, in a structure that supports a heavy object such as a blade or a nacelle with only one support such as a propeller type wind power generator, the diameter that can be manufactured is approximately 100 m from the limit of the strength of the support. It was about.

これに対し、翼端部に駆動部を有するシュラウド付回転翼やリニア送風機は、直径が大きくなることによる揚力の増加や風量の増加は、従来型のヘリコプターや送風機と同じように直径の約2乗倍で増加するのに、必要とする動力のパワーは、直径の増加量とほぼ同じか、1.5乗程度の増加で済む。このため、シュラウド付回転翼では、直径が30mを超える揚力羽根も、リニア送風機では、直径が10mを超える抗力羽根も、駆動部の必要動力的には製作容易である。また、リニア風力発電機においては、装置の周囲を回転しないシュラウドが覆っていることから、このシュラウドに複数の支柱を取り付けて地形地物に固定することによって、羽根等の重量物を支える際の問題がなく、巨大な直径のリニア風力発電機の製作が容易である。 On the other hand, in a rotor blade with a shroud and a linear blower having a drive unit at the blade tip, an increase in lift and an increase in air volume due to an increase in diameter are about 2 mm in diameter, as in conventional helicopters and blowers. In order to increase by multiplication, the required power of the power is almost the same as the increase in diameter, or an increase of about 1.5 power. For this reason, both the lift blades having a diameter exceeding 30 m in the rotor blade with the shroud and the drag blades having a diameter exceeding 10 m in the linear blower can be easily manufactured in terms of the required power of the drive unit. Moreover, in a linear wind power generator, since a shroud that does not rotate is covered around the device, a plurality of support columns are attached to the shroud and fixed to a terrain feature to support heavy objects such as blades. There is no problem and it is easy to manufacture a linear wind generator with a huge diameter.

このようにシュラウド付回転翼やリニア送風機やリニア風力発電機は、従来型のヘリコプターや送風機やプロペラ型風力発電装置に比べ、直径が大きなときほど、その利点を発揮できる特性を有する。しかしながら、その動力や発電に電機子と界磁磁石との組合せによる駆動部や発電部を羽根の翼端部で構成しようとすると、以下に述べる5つの問題点があって、大きな直径のシュラウド付回転翼やリニア送風機やリニア風力発電機の製作は、そう簡単ではない。 As described above, the rotor blade with a shroud, the linear blower, and the linear wind power generator have characteristics that the advantages can be exhibited as the diameter is larger than that of the conventional helicopter, blower, or propeller type wind power generator. However, if the drive unit or power generation unit, which is a combination of an armature and a field magnet, is configured with the blade tip of the blade for power or power generation, there are the following five problems, and there is a large diameter shroud attached. Manufacturing rotor blades, linear blowers, and linear wind power generators is not so easy.

羽根の直径が極めて大きな、例えば、直径200mの羽根でシュラウド付回転翼やリニア送風機やリニア風力発電機をシュラウド側の電機子と回転ダクト側の界磁磁石との組合せで作ろうとすると、まず1番目に、回転ダクトや羽根が温度変化や遠心力の影響で、直径方向すなわちラジアル方向に伸縮することからの影響が出る。特に、電機子と界磁磁石との間隙(空隙)が直径方向に対向するラジアルギャップを採用すると、シュラウド側の電機子と回転ダクト側の界磁磁石とが近づきすぎて衝突したり、安全率を取ったために間隙(空隙)が大きすぎて駆動力や発電量が十分に上がらない問題を生じる。この電機子と界磁磁石との間隙(空隙)を回転ダクトや羽根の伸縮があっても適切に保持することは、特許文献4や特許文献11に開示した電機子と界磁磁石との対向方向を回転軸と平行するアキシャルギャップにすることによって問題が解消された。しかしながら2番目に、電機子と界磁磁石との対向方式をアキシャルギャップとしても、シュラウド付回転翼やリニア送風機やリニア風力発電機に外乱等による応力が生じた場合には、界磁磁石を配設した回転ダクトが一時的にアキシャル方向に動くことがある。そうすると電機子と界磁磁石とのギャップは大きくても5mm程度、小さな場合では1mm以下であることから、衝突する可能性がある。回転ダクトや羽根に生じたアキシャル方向の応力が電機子と界磁磁石とを衝突させることを防止する仕組みとしては、特許文献4の間隙保持用ベアリングや特許文献1のカムフォロアが、シュラウドと回転ダクトとの間を縮めるような外力に抗して間隔を最終的に保持するので、電機子と界磁磁石との間隙(空隙)は衝突しないように維持される。けれども3番目に、直径が200mにもなるシュラウド付回転翼やリニア送風機やリニア風力発電機は、そもそも高い真円度を維持してこのような大きな直径のシュラウドや回転ダクトを製作できるか、との問題がある。この問題については、特許文献2や特許文献3での巨大巻き車に薄板帯を巻く方法が開示されていて、解決可能である。さらに4番目として、電機子をトロイダルコアコイルとして構成する場合には、直径200mにも及ぶコア用の巻鉄芯を従来の方法では製作でないが、特許文献2や特許文献3の巨大巻き車にケイ素鋼やアモルファスの薄板帯を巻き付けることによって、巨大な巻鉄芯の製作も可能となり、問題が解消されている。 When a blade with a very large blade diameter, for example, a blade with a diameter of 200 m, is used to make a shroud-equipped rotor blade, a linear blower, or a linear wind power generator with a combination of an armature on the shroud side and a field magnet on the rotary duct side, Second, rotating ducts and blades are affected by temperature changes and centrifugal force, causing expansion and contraction in the diameter direction, that is, in the radial direction. In particular, when a radial gap is used in which the gap between the armature and the field magnet faces in the diametrical direction, the armature on the shroud side and the field magnet on the rotating duct side come too close to each other, and the safety factor As a result, the gap (gap) is too large and the driving force and power generation amount do not increase sufficiently. The gap (gap) between the armature and the field magnet is appropriately maintained even when the rotary duct or the blades are expanded or contracted, because the armature and the field magnet disclosed in Patent Literature 4 and Patent Literature 11 are opposed to each other. The problem was solved by making the direction an axial gap parallel to the axis of rotation. However, secondly, even if the opposing method of the armature and the field magnet is an axial gap, if stress due to disturbance occurs on the rotor blade with a shroud, the linear blower, or the linear wind power generator, the field magnet is arranged. The installed rotating duct may temporarily move in the axial direction. Then, since the gap between the armature and the field magnet is about 5 mm at the maximum, or 1 mm or less in the small case, there is a possibility of collision. As a mechanism for preventing the axial stress generated in the rotating duct and blades from colliding with the armature and the field magnet, the gap holding bearing of Patent Document 4 and the cam follower of Patent Document 1 are configured with a shroud and the rotating duct. Since the distance is finally maintained against an external force that shrinks the gap between the armature and the field magnet, the gap (air gap) between the armature and the field magnet is maintained so as not to collide. But thirdly, shrouded rotor blades, linear blowers, and linear wind power generators with diameters as large as 200 meters can maintain such high roundness and produce shrouds and rotating ducts with such large diameters. There is a problem. About this problem, the method of winding a thin strip around a giant winding wheel in Patent Document 2 or Patent Document 3 is disclosed and can be solved. Fourth, when the armature is configured as a toroidal core coil, a wound core for a core having a diameter of 200 m is not manufactured by a conventional method. By winding silicon steel or amorphous thin strip, it is possible to manufacture a huge wound iron core, and the problem is solved.

以上、5つの問題点のうち4つについては解決済みではあっても、大きな直径のシュラウド付回転翼やリニア送風機やリニア風力発電機に使用する羽根の製作においては、解決を要する5番目の問題が存在する。すなわち、シュラウド付回転翼やリニア送風機やリニア風力発電機の羽根の直径が最大で2〜3mまでであれば、板状樹脂が得られるので、アクリルやポリカーボネートの板状樹脂を貼り合わせてみたり、木型や金型を作ってからFRPで製作できても、それ以上の直径の羽根は、直径の増加が羽根の厚み等にも体積として影響を与えて3乗倍で重量が増加することや、大きな金型の製作費が急上昇することから、飛行に供するシュラウド付回転翼では、羽根の重量が問題となり、地上に据え付けて重量的には問題がないリニア送風機やリニア風力発電機では、羽根が非常に高価なものとなって、実際に製作しても販売でき得る金額に抑えることは、極めて困難があった。 As mentioned above, even though four of the five problems have already been solved, the fifth problem that needs to be solved in the manufacture of blades for use in large diameter rotor blades with shrouds, linear blowers, and linear wind power generators Exists. That is, if the blade diameter of the rotor blade with shroud, linear blower, or linear wind power generator is 2 to 3 m at maximum, a plate-like resin can be obtained. Even if it can be manufactured by FRP after making a wooden mold or mold, blades larger than that will increase the weight by 3 times the increase in diameter will affect the thickness of the blade as a volume. Also, because the production cost of large molds rises sharply, the rotor blades with shrouds used for flight have a problem with the weight of the blades, and in linear blowers and linear wind power generators that are installed on the ground and have no weight problems, Since the blades are very expensive, it has been extremely difficult to reduce the amount of blades that can be sold even if they are actually manufactured.

ところが特許文献5や特許文献10や特許文献22や非特許文献1のトンボの羽根の断面は、ほぼ同一の厚みで凸梁(とっぱり)や階段状の断面の凹凸(おうとつ)があるにもかかわらず、迎角を0°〜15°にして空気に対して失速速度以上の速度を維持して動かしてやると十分な揚力を発生する。また、トンボの羽根様の一定の厚みと凸梁や階段状の断面を有する羽根の迎角を20°〜75°にした扇風機を試作してみると、十分な風量を発生する。このような概ね一定の厚みと凸梁や階段状の断面を有するトンボの羽根は、凸梁や階段状に折り曲がった部分が、羽根が長尺方向で折れることを防止して羽根の強度を増している。よって、直径が極く小さな場合には、トンボの羽根様の断面を持つ羽根の翼根部分を回転軸に取付固定して、従来からのヘリコプターや送風機やプロペラ型風力発電装置は製造可能である。しかしながら、従来からの立体的な断面を持つ羽根に比べれば、トンボの羽根様の断面を有する羽根は脆弱で折れ易く、羽根の取付固定が回転軸での片支持のみであって翼端部は空中に開放している従来からのヘリコプターや送風機やプロペラ型風力発電装置においては、大きな直径のトンボの羽根様の断面を有する羽根を有効に用いることはできない。 However, the cross-sections of the dragonfly blades of Patent Document 5, Patent Document 10, Patent Document 22, and Non-Patent Document 1 are substantially the same thickness, and have a convex beam (after all) and a step-shaped cross-section unevenness (diaper). Nevertheless, if the angle of attack is 0 ° to 15 ° and the air is maintained while moving at a speed higher than the stall speed, sufficient lift is generated. Further, when a prototype of a fan in which the blades having a certain thickness like a dragonfly blade and the angle of attack of a blade having a convex beam or a stepped cross section is set to 20 ° to 75 ° is produced, a sufficient air volume is generated. The blade of a dragonfly having such a substantially constant thickness and a convex beam or a stepped cross section prevents the blade from bending in the long direction by preventing the bent portion of the convex beam or the stepped shape from being elongated. It is increasing. Therefore, when the diameter is extremely small, a conventional helicopter, blower, or propeller type wind power generator can be manufactured by attaching and fixing the blade root portion of the blade having a blade-like cross section of the dragonfly to the rotating shaft. . However, compared with a conventional blade having a three-dimensional cross section, a blade having a dragonfly blade-like cross section is fragile and easy to break, and the blade is fixed and fixed only on one side of the rotating shaft. In conventional helicopters, blowers, and propeller-type wind power generators that are open to the air, blades having a blade-like cross section of a large diameter dragonfly cannot be used effectively.

特許文献16は、羽根の表面の翼長方向に凹部となる溝を形成して騒音低減効果を企図したものであって、羽根の表面の翼長方向に凸部となる凸梁を付けたトンボの羽根とは異なるものの、翼長方向の強度を溝が補強する可能性がある。また、特許文献17は、ディンプルコアや波板コアを挟み込んだ複層構造を有して、特許文献18は積層構造を有している。いずれもトンボの羽根のような厚みのない羽根において、軽くて折れ難い羽根を製造する際の参考となる。 Patent Document 16 is intended to reduce the noise by forming a groove that becomes a recess in the blade length direction on the surface of the blade, and includes a dragonfly with a convex beam that becomes a protrusion in the blade length direction on the surface of the blade. Although it is different from the blades, the groove may reinforce the strength in the blade length direction. Patent Document 17 has a multilayer structure in which a dimple core or a corrugated core is sandwiched, and Patent Document 18 has a laminated structure. Any of these is a reference when producing a light and difficult-to-break blade such as a blade of a dragonfly.

特許文献13は、垂直軸風車に一般的に用いられる高周速比・低トルクの揚力羽根の後縁部の回転軸側を部分的に切り欠くことによって、前縁部に空洞を形成し、低周速比・高トルクの抗力羽根としての効果をも併せ持たせたものである。このため羽根は、翼幅(翼弦)方向の断面が概ねJ字型の輪郭でかたどられた皮のみの羽根(以下、「J字型断面の羽根」という)であって、アルミ板や鋼板などの厚みが一定の薄板を曲げるだけで成型が可能である。特許文献8も垂直軸風車であって、特許文献13は切り欠き部分が回転軸側であったのに対して、特許文献8は切り欠き部分を円周の外側に有するものであって、特許文献13と同様の効果がある。この翼幅(翼弦)方向の断面も概ねJ字型をしているためJ字型断面の羽根と呼称する。このJ字型断面の羽根の形状は、トンボの羽根とは異なるものの、厚みが一定の鋼板で羽根を作った場合の翼長方向の強度を保つ上での参考となる。 Patent Document 13 forms a cavity in the front edge by partially cutting out the rotating shaft side of the rear edge of the high-speed ratio / low-torque lift blade generally used for vertical axis wind turbines, It also has the effect as a drag blade with low peripheral speed ratio and high torque. For this reason, the blade is a skin-only blade whose cross section in the wing width (chord) direction is roughly shaped with a J-shaped outline (hereinafter referred to as a “J-shaped cross-section blade”), and is made of an aluminum plate or a steel plate. Molding is possible simply by bending a thin plate with a constant thickness. Patent Document 8 is also a vertical axis wind turbine, and Patent Document 13 has a notch portion on the rotating shaft side, whereas Patent Document 8 has a notch portion outside the circumference. The same effect as in Reference 13 is obtained. Since the cross section in the blade width (chord) direction is also generally J-shaped, it is referred to as a blade having a J-shaped cross section. The shape of the J-shaped blade is different from that of the dragonfly blade, but is a reference for maintaining the strength in the blade length direction when the blade is made of a steel plate having a constant thickness.

特許文献9や特許文献12や特許文献15や特許文献20や特許文献21や特許文献23は、水平軸風車に用いられアルミ板や鋼板などの厚みが一定の薄板を曲げるだけで成型して、翼長方向の一部や全域の翼幅(翼弦)方向の断面がJ字型断面またはU字型断面となる羽根を有している。このうち、特許文献12や特許文献20や特許文献21や特許文献23は、翼長方向の回転軸に近い一部分のみにJ字型断面を有し、他の部分は、ほぼ平坦な薄板一枚のみの羽根となるため、片支持であってはもちろんのこと、特許文献11の回転ダクトや円環と組み合わせて両支持にしたとしても、翼長方向の強度を強化できないので直径が巨大となる風車の構成はできない。 Patent Literature 9, Patent Literature 12, Patent Literature 15, Patent Literature 20, Patent Literature 21, and Patent Literature 23 are formed by simply bending a thin plate having a constant thickness such as an aluminum plate or a steel plate used for a horizontal axis wind turbine. It has a blade whose cross section in the blade width direction (blade chord) direction is a J-shaped cross section or a U-shaped cross section. Among these, Patent Document 12, Patent Document 20, Patent Document 21, and Patent Document 23 have a J-shaped cross section only in a part close to the rotation axis in the blade length direction, and the other part is a substantially flat thin plate. Therefore, even if it is combined with the rotating duct or the annular ring of Patent Document 11 and used as both supports, the strength in the blade length direction cannot be strengthened, resulting in a large diameter. A windmill cannot be configured.

これらに対し、特許文献9と特許文献15とは、翼長方向の全域において翼幅(翼弦)方向の断面がJ字型断面もしくはU字型断面をしていて、片支持であっても翼長方向に折れることを防止できている。しかしながら、特許文献9と特許文献15の風車の特徴は、風車の中心部付近の風量をJ字型断面やU字型断面の前縁部内側の凹部(空洞)部分に誘導して回転する風車の遠心力で先端部へ導き、先端部から風車の円周の接線方向へ噴出させて回転速度を増加させることにある。このため、特許文献9の図7を除くJ字型断面やU字型断面を有する羽根の翼長方向は、全て途中で屈曲もしくは湾曲していて、J字型断面もしくはU字型断面の凹部(空洞)部分を流れる風量を先端部に集めて吹き出す仕組みを有している。このような発明の目的や主旨を実現するためには、先端部が円周の接線方向に開放されていている必要がある。したがって、特許文献11の回転ダクトや円環のようなものを付ければ、せっかく噴出させた噴出口の周辺の空気の流れが回転ダクトや円環に当たると噴出した力を減殺したり無効にする。よって、羽根に回転ダクトや円環と組み合わせて用いることはできない。 On the other hand, in Patent Document 9 and Patent Document 15, even if the cross section in the blade width (chord) direction has a J-shaped cross section or a U-shaped cross section in the entire region in the blade length direction, It can be prevented from breaking in the blade length direction. However, the wind turbines of Patent Document 9 and Patent Document 15 are characterized in that the wind turbine rotates by guiding the air volume in the vicinity of the center of the wind turbine to the concave (cavity) portion inside the front edge of the J-shaped section or U-shaped section. It is to guide to the tip part by the centrifugal force of this, and to eject from the tip part in the tangential direction of the circumference of the windmill to increase the rotation speed. For this reason, all the blade length directions of the blades having the J-shaped cross section and the U-shaped cross section excluding FIG. 7 of Patent Document 9 are bent or curved in the middle, and the concave portion of the J-shaped cross section or the U-shaped cross section. It has a mechanism that collects and blows off the amount of air flowing through the (hollow) part at the tip. In order to realize the object and gist of such an invention, the tip end portion needs to be open in the tangential direction of the circumference. Therefore, if a rotating duct or a ring like the one disclosed in Patent Document 11 is attached, if the air flow around the spouted outlet hits the rotating duct or the ring, the jetted force is reduced or invalidated. Therefore, the blade cannot be used in combination with a rotating duct or a ring.

また、特許文献9には、翼長方向の形状が細長ストレートであって翼長方向の途中には、屈曲や湾曲を有しない図7の記載がある。そして、特許文献9の請求項7や明細書の段落13には、「細長直線状であって前記凹部の先端部が塞がれているもの」との記載があって、特許文献11の回転ダクトや円環との組合せが可能なようにも見える。しかしながら、特許文献9の図7を詳細に見ると、実線と破線とで記述されている風量の流れが集約される先端部には、図2(a)、(b)や図5や図6に図示された羽根の翼長方向での屈曲部や湾曲部に代わるものとして、先端に小さな湾曲部を有している。したがって、J字型断面やU字型断面の羽根の凹部(空洞)内を遠心力で回転軸から翼端方向へ流れる風量を、この先端の小さな湾曲部で円周方向へと変換していることが解る。よって、ここでいう「前記凹部の先端部が塞がれている」ということは、翼長方向の強度を強化するための両支持をいうのではなくて、先端部へ遠心力で誘導した風量を拡散してしまうのではなくて、先端部に溜めてから円周方向へ噴出させることを意味している。さらに特許文献9に記載された「前記凹部の先端部が塞がれているもの」をより厳密に理解すれば、「塞ぐ」範囲は、先端部の凹部(空洞)部分のみであって、他の部分は開放しておくことが特許文献9を成立させるための必要条件であることが解り、また、図7の先端部の図示内容を詳細に見ると、先端の凹部(空洞)部分以外は明確に開放された図となっていて、開放されていることを図示からも確認できる。このことから、当業者が特許文献9の発明の目的や主旨を踏まえて特許文献9の図7を見た場合には、特許文献9の請求項7や明細書の段落13に記載された「前記凹部の先端部が塞がれているもの」の「塞ぐ」範囲は、翼端の凹部(空洞)部分の先端真上部分のみであって、「塞ぐ」範囲が翼端の翼幅(翼弦)の長さやそれを超える長さであってはならないことが理解でき、まして、全周を「塞ぐ」ことは、特許文献9の発明の目的や主旨と反して噴出する空気の流れを減殺したり無効にすることになる。よって、目的や主旨を踏まえた上で特許文献9の図7と特許文献11とを併せ見た場合には、当業者といえども、特許文献9の図7と特許文献11の回転ダクトとの組合せを容易に想起できた、とは言えない。 Further, in Patent Document 9, there is a description of FIG. 7 in which the shape in the blade length direction is an elongated straight, and there is no bending or bending in the middle of the blade length direction. Further, in claim 7 of patent document 9 and paragraph 13 of the specification, there is a description that “it is an elongated straight line and the tip of the recess is blocked”, and the rotation of patent document 11 It seems that it can be combined with ducts and rings. However, when FIG. 7 of Patent Document 9 is viewed in detail, the tip portion where the flow of the air flow described by the solid line and the broken line is gathered is shown in FIGS. 2 (a), 2 (b), FIG. 5 and FIG. As a substitute for the bent portion or curved portion in the blade length direction of the blade shown in Fig. 1, the tip has a small curved portion. Therefore, the amount of air flowing from the rotary shaft to the blade tip direction by centrifugal force in the recesses (cavities) of the blades of the J-shaped section or U-shaped section is converted into the circumferential direction by this small curved portion at the tip. I understand that. Therefore, the phrase “the tip of the recess is closed” here does not mean both supports for strengthening the strength in the blade length direction, but the air volume induced by the centrifugal force to the tip. Is not diffused, but is accumulated at the tip and then ejected in the circumferential direction. Furthermore, if “strictly comprehending the“ end where the tip of the recess is blocked ”” described in Patent Document 9 is understood, the “closed” range is only the recess (cavity) portion of the tip, It is understood that it is a necessary condition to establish Patent Document 9 to keep the part of FIG. 7 open, and when the details of the illustration of the tip part of FIG. The figure is clearly opened, and it can be confirmed from the figure that it is opened. From this, when a person skilled in the art looks at FIG. 7 of Patent Document 9 in view of the purpose and gist of the invention of Patent Document 9, it is described in claim 7 of Patent Document 9 and paragraph 13 of the specification. The “closing” range of “the tip portion of the recess is blocked” is only the portion directly above the tip of the recess (cavity) portion of the blade tip, and the “closing” range is the blade width of the blade tip (blade blade). It can be understood that the length of the string should not be longer than that, and “blocking” the entire circumference reduces the flow of the air that blows out contrary to the purpose and gist of the invention of Patent Document 9. Or disable it. Therefore, when considering FIG. 7 of Patent Document 9 and Patent Document 11 in consideration of the purpose and the gist, even those skilled in the art can understand the relationship between FIG. 7 of Patent Document 9 and the rotating duct of Patent Document 11. It cannot be said that the combination was easily recalled.

特許文献14や特許文献7の図18には、羽根の翼長方向の途中を円環で保持したように見える風車の記載がある。このような際にトンボの羽根様の羽根やJ字型断面の羽根を用いる場合には、円環の内側にトンボの羽根様の羽根やJ字型断面の羽根を用いて、円環の外側には通常の羽根を用いるというようなハイブリッド化する際の参考となる。 In FIG. 18 of Patent Document 14 and Patent Document 7, there is a description of a windmill that seems to be held in the middle of the blade length direction of the blade with a ring. In such a case, when using a dragonfly blade-like blade or a J-shaped cross-section blade, use a dragonfly blade-like blade or a J-shaped cross-section blade on the inside of the ring, Is a reference when using a normal blade to make a hybrid.

通常、シュラウド付回転翼やリニア送風機やリニア風力発電機では、回転軸と回転ダクトとの間を羽根か羽根と伴に回転する梁(以下、「回転ビーム」という)かの少なくともいずれか一方を用いて架橋する。よって、羽根または回転ビームは、その羽根や回転ビームが有する剛性で回転ダクトを支えることになるので、直径を大きくすることに伴い剛性確保のため、重量が大きく増加する。これに対し、特許文献6や特許文献19や非特許文献2は、回転軸と回転ダクトとの間の架橋を、羽根や回転ビームの剛性に依存することをやめ、自転車と同様にハブとスポークとリムとから成る部品で風車を構成する。自転車においてのスポークは4本1組で用いられ、ハブとリムとの間を規制するが、特許文献19は、当該文献中に記載した風車専用として2本のスポークを1本のU字型にまとめ、2本1組のスポークとすることにより、風車に取り付ける羽根の形状や迎角をほぼ均一となるようにしている。特許文献6と非特許文献2とは、従来からの自転車の車輪と全く同様のハブと4本1組のスポークとリムとから成るため、取り付ける羽根には捻り下げ効果が出るが、捻り下げ効果をそのまま利用して迎角が異なる複数の羽根で風車を構成している。従来のように回転軸と回転ダクトとを架橋する際に羽根の剛性を利用する場合には、相当程度の肉厚を有する強固な部材での羽根の作製が必要であった。このため、損傷が出た場合の羽根の交換は、容易ではない。しかし、ハブとスポークとリムとから成る特許文献6や特許文献19や非特許文献2では、軽くて薄い合成樹脂などで羽根を作製でき、また、羽根の翼根を回転軸へ、羽根の翼端を回転ダクトの内周部へ取付固定する必要も無い。よって、羽根に損傷を生じた場合の羽根の交換は、これまでは一大事であったが、特許文献6や特許文献19や非特許文献2では、羽根の途中交換や部分交換を容易にしている。特に、特許文献6では、帆と同様の布材を張った羽根を使用していて、部分的に取り外すことも可能で交換が極めて容易である。特許文献6と特許文献19とは、風車を風力発電に用いる場合の発電機の位置は不明であるが、非特許文献2は、特許文献4や特許文献11と同様、先端部に発電部が構成され、リムの片側にソリ板状の永久磁石と、これに対向するリムの片側のアキシャル方向に配設した電機子との組合せで発電している。これらスポークを用いた方式は、羽根そのものを改良する方向とは異なるが、シュラウド付回転翼やリニア送風機やリニア風力発電機を軽量化し、かつ堅固にする際の技術として参考となる。
Normally, in a rotor blade with a shroud, a linear blower, or a linear wind power generator, at least one of a rotating beam and a rotating beam (hereinafter referred to as a “rotating beam”) between the rotating shaft and the rotating duct is used. Use to crosslink. Therefore, since the blade or the rotating beam supports the rotating duct with the rigidity of the blade or the rotating beam, the weight increases greatly in order to secure the rigidity as the diameter is increased. On the other hand, Patent Document 6, Patent Document 19, and Non-Patent Document 2 stop the bridge between the rotating shaft and the rotating duct from depending on the rigidity of the blades and the rotating beam, and the hub and spoke as in the bicycle. A windmill is made up of parts consisting of a rim and a rim. Spokes in a bicycle are used as a set of four, and the space between the hub and the rim is regulated. However, Patent Document 19 describes that two spokes are dedicated to the windmill described in the document in a single U-shape. In summary, by making two sets of spokes, the shape and angle of attack of the blades attached to the wind turbine are made substantially uniform. Patent Document 6 and Non-Patent Document 2 are composed of a hub exactly the same as a conventional bicycle wheel, a set of four spokes, and a rim. The windmill is composed of a plurality of blades having different angles of attack using the same. When utilizing the rigidity of the blades when bridging the rotating shaft and the rotating duct as in the prior art, it is necessary to produce the blades with a strong member having a considerable thickness. For this reason, it is not easy to replace the blades when damage occurs. However, in Patent Document 6, Patent Document 19, and Non-Patent Document 2 comprising a hub, a spoke, and a rim, a blade can be manufactured with a light and thin synthetic resin, and the blade root of the blade is used as a rotating shaft. There is no need to attach and fix the end to the inner periphery of the rotating duct. Therefore, the replacement of the blade when the blade is damaged has been important until now. However, in Patent Document 6, Patent Document 19, and Non-Patent Document 2, it is easy to replace the blade in the middle or partially. . In particular, Patent Document 6 uses a blade with a cloth material similar to that of a sail, and can be partially removed and is extremely easy to replace. In Patent Document 6 and Patent Document 19, the position of the generator when the windmill is used for wind power generation is unknown, but Non-Patent Document 2 is similar to Patent Document 4 and Patent Document 11 in that the power generation unit is at the tip. Power generation is performed by a combination of a sled plate-like permanent magnet on one side of the rim and an armature disposed in the axial direction on one side of the rim opposite to the permanent magnet. Although the method using these spokes is different from the direction of improving the blade itself, it is useful as a technique for reducing and solidifying the rotor blade with a shroud, the linear blower, and the linear wind power generator.

特開2012−117373号公報 :カムフォロア;JP, 2012-117373, A: A cam follower; 特開2009−196227号公報 :薄板帯;JP 2009-196227 A: strips; 特許第4053584号公報 :薄板帯;Patent No. 4053584 gazette: sheet strip; 特許第3946755号公報 :間隙保持用ベアリング;Japanese Patent No. 3946755: Bearing for holding a gap; 特開2007−205359号公報 :トンボの羽根;JP, 2007-205359, A: Dragonfly blade; 特開2007−127113号公報 :自転車の車輪様の風車;JP 2007-127113 A: A windmill like a bicycle wheel; 特開2006−219981号公報 :翼長の途中固定の羽根;JP, 2006-219981, A: A blade fixed in the middle of a blade length; 特開2006−037753号公報 :垂直軸逆J字型断面の羽根;JP, 2006-037753, A: A vertical axis inverted J-shaped cross-section blade; 特開2005−061233号公報 :水平軸全域J字型断面の羽根;JP, 2005-061233, A: A blade of a J-shaped section across the horizontal axis; 特開2005−030317号公報 :トンボの羽根;JP, 2005-030317, A: Dragonfly blade; 特許第3595988号公報 :回転ダクト方式シュラウド付回転翼;Japanese Patent No. 3595988: Rotary vane with rotating duct type shroud; 特開2004−340108号公報 :水平軸J字型断面の羽根;JP, 2004-340108, A: A blade of a horizontal axis J-shaped section; 特許第3451085号公報 :垂直軸J字型断面の羽根;Patent 3451085 gazette: Vertical axis J-shaped cross-section blade; 特開2002−147336号公報 :翼長の途中固定の羽根;JP, 2002-147336, A: A blade fixed on the way of a wing length; 特開2001−32761号公報 :水平軸全域J字型断面の羽根;JP 2001-32761 A: A blade having a J-shaped cross section across the horizontal axis; 特開平5−340392号公報 :低騒音プロペラファン;JP-A-5-340392: low noise propeller fan; 特開平5−052101号公報 :中空ファン動翼;JP-A-5-052101: Hollow fan blades; 特開昭60−113096号公報 :積層羽根;JP-A-60-113096: Laminated blades; 米国特許第03942839号公報 :自転車の車輪様の風車;US Pat. No. 03942839: Bicycle wheel-like windmill; 実用新案登録第3038364号公報:水平軸一部J字型断面の羽根;Utility model registration No. 3038364 gazette: Horizontal axis partially J-shaped blades; 実用新案登録第3029106号公報:水平軸一部J字型断面の羽根;Utility Model Registration No. 3029106: Blades with a partial J-shaped horizontal axis; 実開昭58−64895号公報 :トンボの羽根;Japanese Utility Model Publication No. 58-64895: Dragonfly blades; 実開昭54−4942号公報 :水平軸一部J字型断面の羽根;Japanese Utility Model Laid-Open No. 54-4942: Horizontal axis partially J-shaped blades;

三菱重工業株式会社航空宇宙事業本部”飛行機の形を読んでみませんか? その6 飛行機の形、生物の形”、[online]、[平成24年1月6日検索]、インターネット<http://www.mhi.co.jp/aero/intoroduction/story/design/chapter6.html>Mitsubishi Heavy Industries, Ltd. Aerospace Business Headquarters “Why don't you read the shape of an airplane? Part 6: The shape of an airplane, the shape of a living thing”, [online], [Search January 6, 2012], Internet <http: // www. mhi. co. jp / aero / introduction / story / design / chapter6. html> TAM Energy LLC”TAM Wind Turbins”、[online]、[平成24年3月2日検索]、インターネット<http://www.tamenergy.com/>TAM Energy LLC “TAM Wind Turbins”, [online], [March 2, 2012 search], Internet <http: // www. Tamergy. com />

シュラウド付回転翼やリニア送風機やリニア風力発電機を製作する上での5つの問題点のうち、1番目の回転ダクトや羽根の伸縮から電機子と界磁磁石との衝突を防止するためには、電機子と界磁磁石との対向方向をアキシャル方向とすることで解決し、2番目の装置への外乱等からアキシャル方向からの応力による電機子と界磁磁石との間隙(空隙)保持は、間隙保持用ベアリングやカムフォロアによって解決し、3番目の真円度の高いシュラウドや回転ダクトの製造は、巨大巻き車に薄板帯を巻いて作る方法で解決し、4番目の巨大なトロイダルコアコイル用の巻鉄芯も、巨大巻き車にケイ素鋼やアモルファスの薄板帯を巻いて作ることで解決した。しかしながら、従来からの方法では、製作そのものが困難であるか、製作できたとしても、極めて高価なものとなって販売を困難にしていた大きな直径を形成する回転翼の製造は、5番目の課題として残った。
In order to prevent the collision between the armature and the field magnet from the expansion and contraction of the first rotating duct and blades, among the five problems in manufacturing a rotor blade with a shroud, a linear blower and a linear wind power generator The gap between the armature and the field magnet is maintained by the stress in the axial direction due to disturbance to the second device, etc., by making the opposing direction of the armature and the field magnet the axial direction. Solved by a gap-bearing bearing and cam follower, the production of the third highly rounded shroud and rotating duct was solved by a method of winding a thin strip around a giant winding wheel, and the fourth giant toroidal core coil. The wound iron core was also solved by winding a giant steel wheel with silicon steel or amorphous strip. However, with the conventional method, the manufacture itself is difficult, or even if it can be manufactured, the manufacture of a rotor blade that forms a large diameter, which is extremely expensive and difficult to sell, is the fifth issue. Remained as.

本発明では、特許文献5や特許文献10や特許文献22や非特許文献1にあるようなトンボの羽根に着目した。トンボの羽根は、翼幅(翼弦)方向の厚みが一定であるにもかかわらず、翼長方向に簡単には折れない。その折れない訳は、特許文献5や特許文献10に記載があるように羽根の翼幅(翼弦)方向は概ね一定の厚みであっても、所々に翼長方向へ延びる葉脈状の凸梁があることと、また、特許文献22や非特許文献1から概ね推測できるように、あたかも階段の踏み面と蹴上げ面とから成る段々状の構造物のように折れ曲がった部分とから構成されていること、とが理由であることが解る。よって、一定の厚みの鋼板であっても、一定の厚みの所々に翼長方向へ伸延する凸梁か階段状に折れ曲がった部分かの少なくともいずれか一方を構成できれば、例えば、一定厚の鋼板を横長に切り抜いて、断面が階段状となるように溶接したり蝶番のように丸棒と組み合わせれば、翼長方向に簡単には折れない軽量の羽根を構成することができる。また、薄い鋼板を階段状にプレスして何枚かを重ね合わせても折れにくい軽量な羽根を構成することもできる。薄い鋼板を重ね合わす場合には、特許文献2や特許文献3に記載されたメッシュを入れて軽量化することも、特許文献17に記載されたディンプルや波板などの凹凸形状やハニカム形状をプレスして羽根を強化することも、特許文献18に記載された積層も容易である。さらに、長尺物であった場合には、従来は原材料の長さが足らなくて、所々をつないで長尺物とする必要があったが、今回のように一定厚の鋼板でも製作可能である場合には、製鉄所から2〜3mm厚程度のコイルとして出荷された帯状(ストリップ)鋼板をそのまま展開して用いることによって、羽根の長尺方向の長さが100mでも1kmでも2kmでも、途中で繋ぐことなく製作することができ、価格も抑えることができる。しかも、このような回転する長尺物の羽根を中央の回転軸だけの片支持では取付固定することはできないが、シュラウド付回転翼やリニア送風機やリニア風力発電機は、羽根の翼根部分を回転軸へ、羽根の翼端部分を回転ダクトの内周部へと2ヵ所で、要すれば翼長方向の任意の場所を含めて複数箇所で取付固定を行うと、厚みのない羽根であっても長尺方向の強度を維持することが容易である。よって、5番目としての回転翼に関する問題の解決には、翼幅方向の厚みが概ね一定で、所々に翼長方向へ伸延する凸梁か翼長方向へ伸延する凹凸形状か階段の建築上の呼称で言えば踏み面と蹴上げ面との階段状の構造物かの少なくともいずれか一方を有していてトンボの羽根様の断面を特徴とする羽根(以下、「トンボの羽根様の羽根」という)を準備し、トンボの羽根様の羽根の翼根部分を回転軸に取付固定し、トンボの羽根様の羽根の翼端部分を回転ダクトの内周部に取付固定して、シュラウド付回転翼やリニア送風機やリニア風力発電機用の回転翼とすることによって、巨大な直径であっても強固に製作することができる。 In the present invention, attention is paid to the dragonfly blade as in Patent Document 5, Patent Document 10, Patent Document 22, and Non-Patent Document 1. The dragonfly blades do not easily fold in the blade length direction, even though the thickness in the blade width (chord) direction is constant. The reason why it does not break is that, as described in Patent Document 5 and Patent Document 10, even if the blade width (chord) direction of the blade is approximately constant thickness, the vein-shaped convex beam extending in the blade length direction in some places And, as can be generally inferred from Patent Document 22 and Non-Patent Document 1, it is composed of a bent portion like a stepped structure composed of a stepped surface and a raised surface of a staircase. It is understood that this is the reason. Therefore, even if a steel plate having a constant thickness can be formed, for example, a steel plate having a constant thickness can be formed as long as at least one of a convex beam extending in the blade length direction and a portion bent in a staircase shape can be formed. If it is cut out horizontally and welded so that the cross section has a stepped shape or combined with a round bar like a hinge, a lightweight blade that cannot be easily broken in the blade length direction can be constructed. In addition, it is possible to form a lightweight blade that is difficult to break even if a thin steel plate is pressed in a step shape and several sheets are stacked. When superposing thin steel plates, the mesh described in Patent Document 2 and Patent Document 3 can be used to reduce the weight, or the uneven shape and honeycomb shape such as dimples and corrugated sheets described in Patent Document 17 can be pressed. Thus, the blades can be strengthened, and the lamination described in Patent Document 18 is easy. Furthermore, in the case of a long object, the length of the raw material was insufficient in the past, and it was necessary to connect the parts to make a long object. In some cases, the strip-shaped steel sheet shipped as a coil with a thickness of about 2 to 3 mm from the steel works is used as it is, so that the length in the longitudinal direction of the blade is 100 m, 1 km or 2 km. Can be produced without connecting, and the price can be reduced. In addition, such a rotating blade of a long object cannot be mounted and fixed by a single support of only the central rotating shaft. However, a rotating blade with a shroud, a linear blower, or a linear wind power generator has a blade root portion of the blade. If the blade is attached to the rotating shaft at two locations, including the blade tip on the inner periphery of the rotating duct, and if necessary, at multiple locations including any location in the blade length direction, the blade has no thickness. However, it is easy to maintain the strength in the longitudinal direction. Therefore, in order to solve the fifth problem related to the rotor blade, the thickness in the blade width direction is generally constant, and the convex beam extending in the blade length direction or the uneven shape extending in the blade length direction or the staircase construction In other words, a blade having at least one of a stepped structure of a tread surface and a kick-up surface and characterized by a dragonfly blade-like cross section (hereinafter referred to as a dragonfly blade-like blade) ), And fix and fix the blade root part of the dragonfly blade-like blade to the rotating shaft, and attach and fix the blade tip part of the dragonfly blade-like blade to the inner periphery of the rotating duct. By using a rotary blade for a linear blower or a linear wind power generator, even a large diameter can be produced firmly.

しかしながら、特許文献5や特許文献10のように葉脈状の複雑な構造や、特許文献22や非特許文献1のような多数の階段状の断面で構成する構造では、加工賃の上昇があって安価にすることはできない。よって、羽根の翼長方向の強度を極端に落とすことなく、トンボの羽根様の羽根としての揚力や抗力を発揮できる最小限の組合せを簡易な実験結果を踏まえて構成すると実際のトンボの羽根をより簡素化した構造でも、揚力羽根や抗力羽根を構成できる。その構造は、踏み面が1つ、蹴上げ面が1つ、スロープ(傾斜面)が1つのわずか3つの面だけでの構成だが、羽根の迎角を変えたり羽根の進行方向から各面を並べる順序や各面の長さを変えることによって揚力羽根としても抗力羽根としても用いることができる。 However, in a complicated structure like a vein like Patent Document 5 and Patent Document 10 and a structure composed of a large number of step-like cross sections like Patent Document 22 and Non-Patent Document 1, there is an increase in processing cost. It cannot be made cheap. Therefore, if the minimum combination that can exert lift and drag as a blade like a dragonfly without excessively reducing the strength of the blade in the blade length direction is configured based on simple experimental results, the actual dragonfly blade Even with a more simplified structure, lift blades and drag blades can be configured. Its structure is composed of only three surfaces, one tread surface, one kick surface, and one slope (inclined surface). However, the angle of attack of the blades is changed, and each surface is arranged from the traveling direction of the blades. It can be used as a lift blade or a drag blade by changing the order or the length of each surface.

このような踏み面1つ、蹴上げ面1つ、スロープ(傾斜面)1つの構造は、平板をプレスするか、折り曲げることによっても、当初から一体化して一気に構成することができる。しかしながら、本願においては、踏み面1つ、蹴上げ面1つが1組となる概L字型の断面を有するように成型した薄板と、蹴上げ面1つ、スロープ(傾斜面)1つが1組となる概L字型の断面を有するように成型した薄板との2組の部品ブロックに分ける。この2つの部品ブロックを互いに1個ずつ、あるいは複数個ずつ蹴上げ面の部分で重ね合わせ、接着、溶着、溶接、爆着、ボルト締めの少なくともいずれか1つの方法で固定して、蹴上げ面を構成する薄板の枚数が、他の踏み面やスロープ(傾斜面)を構成する薄板の枚数よりも必ず1枚以上多くなる構造とすることによって、羽根全体が軽いまま羽根の翼長方向の強度を強化すると共に、工作が容易なことから安価に製作することができる。 Such a structure of one tread surface, one kick surface, and one slope (inclined surface) can be integrated at a stretch from the beginning by pressing or bending a flat plate. However, in the present application, a pair of a thin plate molded so as to have an approximately L-shaped cross section with one tread surface and one kick surface, one kick surface, and one slope (inclined surface). It is divided into two sets of component blocks, a thin plate molded so as to have an approximately L-shaped cross section. The two parts blocks are overlapped one by one or several at the part of the kick-up surface and fixed by at least one of bonding, welding, welding, explosive bonding, and bolting to form the kick-up surface Strengthen the blade in the blade length direction while keeping the entire blade light by making the number of thin plates to be at least one more than the number of thin plates that make up other treads and slopes (inclined surfaces) In addition, it can be manufactured at low cost because it is easy to work.

トンボの羽根様の羽根の方は、同一の形状で送風用の羽根にも風力発電の風受用の羽根にも兼用できる。しかし、風力発電に限定してさらに安価に製作する場合であれば、トンボの羽根様の羽根での複数枚の蹴上げ面が重なり合って羽根の翼長方向の強度を高める効果はなくなるが、蹴り込み長付きの蹴上げ面1つとスロープ(傾斜面)1つとの計2面のみからJ字型断面を構成する羽根(以下、「J字型断面の羽根」という)を構成できるので、価格的にはさらに有利である。
The dragonfly blades have the same shape, and can be used both as blowing blades and wind receiving blades for wind power generation. However, if it is limited to wind power generation and manufactured at a lower cost, the effect of increasing the strength of the blade in the blade length direction will be lost due to the overlap of the multiple kick-up surfaces of the blades of the dragonfly. A blade that constitutes a J-shaped cross section (hereinafter referred to as “blade with a J-shaped cross section”) can be constructed from only two surfaces, one long kick-up surface and one slope (inclined surface). Further advantageous.

羽根の翼幅(翼弦)方向が概ね一定の厚みであって、翼長方向へ伸延する踏み面と蹴上げ面とスロープ(傾斜面)との階段状の構造を有するトンボの羽根様の羽根で、シュラウド付回転翼やリニア送風機やリニア風力発電機を製作すると、数百メートルを超えるような大きなあるいは巨大な直径のシュラウド付回転翼やリニア送風機やリニア風力発電機を容易にかつ安価に作ることができる。また、蹴り込み長付きの蹴上げ面とスロープ(傾斜面)とから構成されたJ字型断面の羽根やJ字型断面の羽根を2枚背中合わせで組み合わせた羽根(以下、「J字型背中合わせ断面の羽根」という)で、リニア風力発電機を製作すると、数百メートルを超えるような大きなあるいは巨大な直径のリニア風力発電機を容易にかつ安価に作ることができるので、直径を大きくしても製作費の上昇を抑えることができる。
A dragonfly blade-like blade with a stepped structure consisting of a tread surface, a kick-up surface, and a slope (inclined surface) extending in the blade length direction with a generally constant thickness in the blade width (chord) direction of the blade. Making a rotor blade with a shroud, a linear blower, or a linear wind power generator makes it easy and cheap to make a rotor blade with a shroud, a linear blower, or a linear wind power generator with a large or huge diameter exceeding several hundred meters. Can do. Also, a J-shaped cross-section blade composed of a kick-up surface with a kick-in length and a slope (inclined surface) or a blade combining two J-shaped cross-section blades back to back (hereinafter referred to as “J-shaped back-to-back cross section”). If you make a linear wind generator, you can easily and inexpensively make a linear wind generator with a large or huge diameter exceeding several hundred meters. An increase in production costs can be suppressed.

(A)図は、シュラウド側に電機子を配設し、回転ダクト側に界磁磁石を配設して、電機子と界磁磁石とがアキシャル方向で対向している場合の翼端部分の断面図である。回転ダクトや羽根に加わる外圧から耐えて電機子と界磁磁石との間隙(空隙)を維持するために、電機子の端部に装着した間隙保持用ベアリングを用いた一例である。また、シュラウド側に界磁磁石を配設し、回転ダクト側に電機子を配設した場合は、電機子の移動に伴い間隙保持用ベアリングは回転ダクト側に配設する。 (B)図は、シュラウド側に電機子を配設し、回転ダクト側に界磁磁石を配設して、電機子と界磁磁石とがアキシャル方向で対向している場合の翼端部分の断面図である。回転ダクトや羽根に加わる外圧から耐えて電機子と界磁磁石との間隙(空隙)を維持するために、シュラウドの内周部(内壁)に取り付けたカムフォロアを用いた一例である。また、シュラウド側に界磁磁石を配設し、回転ダクト側に電機子を配設した場合は、カムフォロアは電機子とは独立した装置ではあるが、前記(A)と同様移動させて、回転ダクトの外周部(外壁)にカムフォロアを配設する。(A) In the figure, the armature is arranged on the shroud side, the field magnet is arranged on the rotating duct side, and the blade tip portion when the armature and the field magnet are opposed in the axial direction is shown. It is sectional drawing. In order to withstand the external pressure applied to the rotating duct and blades and maintain the gap (gap) between the armature and the field magnet, this is an example using a gap holding bearing attached to the end of the armature. Further, when the field magnet is disposed on the shroud side and the armature is disposed on the rotating duct side, the gap holding bearing is disposed on the rotating duct side as the armature moves. (B) The figure shows the blade tip when the armature is disposed on the shroud side, the field magnet is disposed on the rotating duct side, and the armature and the field magnet face each other in the axial direction. It is sectional drawing. This is an example using a cam follower attached to the inner peripheral portion (inner wall) of the shroud in order to withstand the external pressure applied to the rotating duct and blades and maintain the gap (air gap) between the armature and the field magnet. Also, when a field magnet is arranged on the shroud side and an armature is arranged on the rotating duct side, the cam follower is a device independent of the armature, but it can be moved and rotated in the same manner as in (A) above. A cam follower is disposed on the outer periphery (outer wall) of the duct. (A)図は、巨大な円環やシュラウドや回転ダクトや巻鉄芯を作製する際に、巨大巻き車に薄板帯を巻き付けて真円度の高い円環やシュラウドや回転ダクトや巻鉄芯を作製する場合の平面図である。 (B)図は、巨大な円環やシュラウドや回転ダクトや巻鉄芯を作製する際に、巨大巻き車に薄板帯を巻き付けて真円度の高い円環やシュラウドや回転ダクトや巻鉄芯を作製する場合の側面図である。(A) The figure shows a large circular ring, shroud, rotating duct, and wound iron core. It is a top view in the case of producing. (B) The figure shows a large circular ring, shroud, rotating duct, and wound iron core when a thin strip is wrapped around a huge winding wheel when making a huge ring, shroud, rotating duct, and wound core. It is a side view in the case of producing. (A)図は、翼幅(翼弦)方向の厚みが概ね一定のトンボの羽根様の羽根の一部分の構成要素を表す断面図である。トンボの羽根様の羽根には、踏み面上に翼長方向へ伸延する凸梁が付いていて翼長方向で折れることを防止している例である。 (B)図は、翼幅(翼弦)方向の厚みが概ね一定のトンボの羽根様の羽根の一部分の構成要素を表す断面図である。トンボの羽根様の羽根は、踏み面と蹴上げ面とから組み合わさって階段構造を成し翼長方向で折れることを防止している例である。この例では、踏み面と蹴上げ面との成す角度は、90°であって、この場合は階段でいう蹴り込み長を有しない。 (C)図は、翼幅(翼弦)方向の厚みが概ね一定のトンボの羽根様の羽根の一部分の構成要素を表す断面図である。トンボの羽根様の羽根は、踏み面と蹴上げ面とから組み合わさって階段構造を成し翼長方向で折れることを防止している例である。この例では、踏み面と蹴上げ面との成す角度は、90°よりも小さくて、階段でいう蹴り込み長の部分を有している。 (D)図は、翼幅(翼弦)方向の厚みが概ね一定のトンボの羽根様の羽根の一部分の構成要素を表す断面図である。トンボの羽根様の羽根は、踏み面と蹴上げ面とから組み合わさって階段構造を成し翼長方向で折れることを防止している例である。この例では、蹴上げ面がく字型に入り込んでいる例であり、その凹部(空洞)が蹴り込み長となる。 (E)図は、翼幅(翼弦)方向の厚みが概ね一定のトンボの羽根様の羽根の一部分の構成要素を表す断面図である。トンボの羽根様の羽根は、踏み面と蹴上げ面とから組み合わさって階段構造を成し翼長方向で折れることを防止している例である。この例では、蹴上げ面が円弧の形状を成している例であり、円弧の凹部(空洞)が蹴り込み長となる。FIG. 4A is a cross-sectional view showing components of a part of a blade-like blade of a dragonfly having a substantially constant thickness in the blade width (chord) direction. The dragonfly blade-like blade is an example in which a convex beam extending in the blade length direction is attached to the tread surface to prevent the blade from breaking in the blade length direction. FIG. 4B is a cross-sectional view showing components of a part of a blade-like blade of a dragonfly having a substantially constant thickness in the blade width (chord) direction. A dragonfly blade-like blade is an example in which a tread structure is combined with a tread surface and a kick-up surface to prevent folding in the blade length direction. In this example, the angle formed by the tread surface and the kicking surface is 90 °, and in this case, it does not have a kicking length referred to as a staircase. FIG. 4C is a cross-sectional view showing constituent elements of a part of a blade-like blade of a dragonfly with a substantially constant thickness in the blade width (chord) direction. A dragonfly blade-like blade is an example in which a tread structure is combined with a tread surface and a kick-up surface to prevent folding in the blade length direction. In this example, the angle formed by the tread surface and the kicking surface is smaller than 90 °, and has a portion of the kicking length referred to as a staircase. FIG. 4D is a cross-sectional view showing constituent elements of a part of a blade-like blade of a dragonfly having a substantially constant thickness in the blade width (chord) direction. A dragonfly blade-like blade is an example in which a tread structure is combined with a tread surface and a kick-up surface to prevent folding in the blade length direction. In this example, the kick-up surface is in the shape of a square, and the concave portion (cavity) is the kick length. FIG. 5E is a cross-sectional view showing constituent elements of a part of a blade-like blade of a dragonfly having a substantially constant thickness in the blade width (chord) direction. A dragonfly blade-like blade is an example in which a tread structure is combined with a tread surface and a kick-up surface to prevent folding in the blade length direction. In this example, the kick-up surface is an arc shape, and the concave portion (cavity) of the arc is the kicking length. (A)図は、踏み面と蹴上げ面とスロープ(傾斜面)とから成るトンボの羽根様の羽根の断面図の一例である。 (B)図は、踏み面と蹴上げ面とスロープ(傾斜面)とから成るトンボの羽根様の羽根の断面図で、踏み面は、翼長方向へ伸延する凸梁で強化した一例である。 (C)図は、踏み面と蹴上げ面とスロープ(傾斜面)とから成るトンボの羽根様の羽根の断面図で、踏み面を翼長方向へ伸延する凹凸形状で構成した一例である。記載の凹凸形状は波板だが、凹凸形状は(a)三角形状や(b)四角形状や(c)山形形状とすることもできる。(A) is an example of a cross-sectional view of a dragonfly blade-like blade comprising a tread surface, a kick-up surface, and a slope (inclined surface). (B) is a sectional view of a dragonfly blade-like blade comprising a tread surface, a kick-up surface, and a slope (inclined surface), and the tread surface is an example reinforced with a convex beam extending in the blade length direction. FIG. 4C is a sectional view of a dragonfly blade-like blade comprising a tread surface, a kick-up surface, and a slope (inclined surface), and is an example in which the tread surface is formed in an uneven shape extending in the blade length direction. Although the described uneven shape is a corrugated sheet, the uneven shape may be (a) a triangular shape, (b) a square shape, or (c) a mountain shape. (A)図は断面図で、踏み面と蹴上げ面とスロープ(傾斜面)とから成るトンボの羽根様の羽根のうち、負圧側にフラットな形状の踏み面を、正圧側に翼長方向へ伸延する凹凸形状の踏み板面とを、貼り付け強化した一例である。 (B)図は断面図で、踏み面と蹴上げ面とスロープ(傾斜面)とから成るトンボの羽根様の羽根のうち、負圧側に翼長方向へ伸延する凹凸形状の踏み面を、正圧側にフラットな形状の踏み面とを、貼り付け強化した一例である。 (C)図は断面図で、踏み面と蹴上げ面とスロープ(傾斜面)とから成るトンボの羽根様の羽根のうち、負圧側、正圧側の両面をフラットな形状の踏み面で構成し、フラットな形状の踏み面で翼長方向へ伸延する凹凸形状の踏み板面をサンドウィッチ状に挟み込んで強化した一例である。(A) The figure is a cross-sectional view. Of the blades of a dragonfly consisting of a tread surface, a kick-up surface, and a slope (inclined surface), a flat tread surface on the negative pressure side and a wing length direction on the positive pressure side It is an example which stuck and strengthened the uneven | corrugated shaped tread board surface to extend. (B) The figure is a cross-sectional view. Of the blade-like blades of a dragonfly consisting of a tread surface, a kick-up surface and a slope (inclined surface), the uneven tread surface extending in the blade length direction toward the negative pressure side is shown on the positive pressure side. This is an example in which a flat tread surface is attached and strengthened. (C) The figure is a cross-sectional view. Of the blade-like blades of a dragonfly consisting of a tread surface, a kick-up surface, and a slope (inclined surface), both the negative pressure side and the positive pressure side are constituted by flat tread surfaces, This is an example in which a concavo-convex tread surface extending in the blade length direction with a flat tread surface is sandwiched and strengthened. 図は、翼幅(翼弦)方向の厚みが概ね一定の薄板を断面が踏み面と蹴上げ面との組合せだ概L字型を成すようにした1組と、蹴上げ面とスロープ(傾斜面)との組合せが概L字型を成すようにした1組とを準備した場合のそれぞれの断面図である。簡単な実験によると、踏み面と蹴上げ面との成す角度は75°〜100°、蹴上げ面とスロープ(傾斜面)との成す角度は90°〜115°が適切である。また、翼幅(翼弦)の長さをW、踏み面の長さをT、スロープ(傾斜面)の長さをS、蹴上げ面の高さをKとすると、それぞれの長さの配分は、T=0.2W〜0.4W、S=0.6W〜0.8W、K=0.1T〜2Tであるときに蹴上げ面の部分を結合して一体化すると揚力羽根や抗力羽根を構成できる。The figure shows a pair of thin plates with a generally constant thickness in the wing span (chord) direction, with a cross-section consisting of a tread surface and a kick surface, and an approximately L shape, and a kick surface and slope (inclined surface). FIG. 6 is a cross-sectional view of each of a pair of a pair and a pair of which is substantially L-shaped. According to a simple experiment, it is appropriate that the angle between the tread surface and the kicking surface is 75 ° to 100 °, and the angle between the kicking surface and the slope (inclined surface) is 90 ° to 115 °. Also, if the length of the wing width (chord) is W, the length of the tread is T, the length of the slope (inclined surface) is S, and the height of the kicking surface is K, the distribution of each length is , T = 0.2W ~ 0.4W, S = 0.6W ~ 0.8W, K = 0.1T ~ 2T it can. (A)図は、翼幅(翼弦)方向の厚みが概ね一定の薄板を断面が踏み面と蹴上げ面との組合せだ概L字型を成すようにした1組と、蹴上げ面とスロープ(傾斜面)との組合せが概L字型を成すようにした1組とを準備した場合のそれぞれの断面図である。 (B)図は、断面が概L字型をした踏み面と蹴上げ面との組合せの1組と、断面が概L字型をした蹴上げ面とスロープ(傾斜面)との組合せの1組とを、お互いに蹴上げ面同志で接続した場合の一例である。蹴上げ面が2枚となって強化されているのが分かる。 (C)図は、断面が概L字型をした踏み面と蹴上げ面との組合せの2組と、断面が概L字型をした蹴上げ面とスロープ(傾斜面)との組合せの1組とを、お互いに蹴上げ面同志で接続した場合の一例である。蹴上げ面が3枚となって強化されているのが分かる。 (D)図は、断面が概L字型をした踏み面と蹴上げ面との組合せの2組と、断面が概L字型をした蹴上げ面とスロープ(傾斜面)との組合せの2組とを、お互いに蹴上げ面同志で接続した場合の一例である。蹴上げ面が4枚となって強化されているのが分かる。(A) The figure shows a pair of thin plates having a substantially constant thickness in the wing span (chord) direction, the cross-section of which is a combination of a tread surface and a kick surface, and a kick surface and a slope ( It is each sectional drawing at the time of preparing 1 set so that the combination with an inclined surface) may form a substantially L shape. (B) The figure shows one set of a combination of a tread surface and a kick-up surface having a substantially L-shaped cross section, and one set of a combination of a kick-up surface and a slope (inclined surface) having a substantially L-shaped cross section. Is an example in which the members are connected to each other by the kicking surfaces. It can be seen that the kicking surface has been strengthened with two. (C) The figure shows two sets of a combination of a tread surface and a kicking surface whose cross section is generally L-shaped, and one pair of a combination of a kick surface and a slope (inclined surface) whose cross section is generally L-shaped. Is an example in which the members are connected to each other by the kicking surfaces. It can be seen that the kicking surface has been strengthened with three. (D) The figure shows two sets of a combination of a tread surface and a kick-up surface having a substantially L-shaped cross section, and two combinations of a kick-up surface and a slope (inclined surface) having a substantially L-shaped cross section. Is an example in which the members are connected to each other by the kicking surfaces. It can be seen that the kicking surface has been strengthened with four. (A)図は、翼幅(翼弦)方向の厚みが概ね一定の薄板を断面が踏み面と蹴上げ面との組合せだ概L字型を成すようにした2組と、蹴上げ面とスロープ(傾斜面)との組合せが概L字型を成すようにした1組とを互いに蹴上げ面で接合して一体化した場合の一例である。迎角をスロープ(傾斜面)が羽根の進行方向に成す角度とすれば、15°の場合である。 (B)図は、トンボの羽根様の羽根を揚力羽根とした場合の一例である。羽根の迎角を0°〜15°の間で、比較的速い速度で黒矢印の方向へ動かすと、白抜き二重線矢印で示した揚力を発生する。 (C)図は、トンボの羽根様の羽根を抗力羽根とした場合の一例である。羽根の迎角を20°〜75°の間で、比較的ゆっくりした速度であっても黒矢印の方向へ動かすと、白抜き二重線矢印で示した抗力を発生する。(A) The figure shows two sets of thin plates having a substantially uniform thickness in the wing span (chord) direction, the cross section of which is a combination of a tread surface and a kick surface, and an approximately L-shape, a kick surface and a slope ( This is an example of a case where a pair with a slanted surface) is formed in a generally L shape and joined together by a kick-up surface. If the angle of attack is an angle formed by the slope (inclined surface) in the traveling direction of the blade, the angle is 15 °. (B) A figure is an example at the time of using the blade | wing of a dragonfly as a lift blade | wing. If the angle of attack of the blade is moved in the direction of the black arrow at a relatively high speed between 0 ° and 15 °, the lift indicated by the white double line arrow is generated. (C) The figure is an example in which a blade like a dragonfly is a drag blade. If the angle of attack of the blade is between 20 ° and 75 °, even if it is moved at a relatively slow speed in the direction of the black arrow, the drag indicated by the white double line arrow is generated. (A)図は、翼幅(翼弦)方向の厚みが概ね一定の薄板を断面が踏み面と蹴上げ面との組合せだ概L字型を成すようにした2組と、蹴上げ面とスロープ(傾斜面)との組合せが概L字型を成すようにした1組とを互いに蹴上げ面で接合して一体化した場合の一例である。迎角をスロープ(傾斜面)が羽根の進行方向に成す角度とすれば、15°の場合である。 (B)図は、トンボの羽根様の羽根を揚力羽根とした場合の一例である。羽根の迎角を0°〜15°の間で、比較的速い速度の白矢印方向からの風を受けると、羽根は吸引されて黒矢印の方向へ動くようになる。 (C)図は、トンボの羽根様の羽根を抗力羽根とした場合の一例である。羽根の迎角を20°〜75°の間で、比較的ゆっくりした速度であっても白矢印の方向からの風を受けると、羽根は押されて黒矢印の方向へ動くようになる。(A) The figure shows two sets of thin plates having a substantially uniform thickness in the wing span (chord) direction, the cross section of which is a combination of a tread surface and a kick surface, and an approximately L-shape, a kick surface and a slope ( This is an example of a case where a pair with a slanted surface) is formed in a generally L shape and joined together by a kick-up surface. If the angle of attack is an angle formed by the slope (inclined surface) in the traveling direction of the blade, the angle is 15 °. (B) A figure is an example at the time of using the blade | wing of a dragonfly as a lift blade | wing. When the angle of attack of the blade is between 0 ° and 15 °, when the wind from the direction of the white arrow at a relatively high speed is received, the blade is sucked and moves in the direction of the black arrow. (C) The figure is an example in which a blade like a dragonfly is a drag blade. Even when the angle of attack of the blade is between 20 ° and 75 °, even when the wind is received from the direction of the white arrow even at a relatively slow speed, the blade is pushed and moved in the direction of the black arrow. (A)図は、翼幅(翼弦)方向の厚みが概ね一定の薄板を断面が踏み面と蹴上げ面との組合せだ概L字型を成すようにした2組と、蹴上げ面とスロープ(傾斜面)との組合せが概L字型を成すようにした1組とを互いに蹴上げ面で接合して一体化し、迎角を20°〜75°として抗力羽根とした場合のトンボの羽根様の羽根の一例である。この状態で白矢印方向から風を受けると、羽根は黒矢印方向に動くので、リニア風力発電機の羽根として用いることができる。 (B)図は、、翼幅(翼弦)方向の厚みが概ね一定の薄板を断面が踏み面と蹴上げ面との組合せだ概L字型を成すようにした2組と、蹴上げ面とスロープ(傾斜面)との組合せが概L字型を成すようにした1組とを互いに蹴上げ面で接合して一体化し、迎角を20°〜75°として抗力羽根とした場合のトンボの羽根様の羽根の一例である。この状態で羽根を黒矢印の方向へ動かしてやると、白矢印方向へ風を送ることができるので、リニア送風機として用いることができる。前(A)項の結果と併せ用いると、この場合の抗力羽根は、迎角の変更をしなくてもそのままでリニア風力発電機にも、リニア送風機にも用いることができることを意味している。(A) The figure shows two sets of thin plates having a substantially uniform thickness in the wing span (chord) direction, the cross section of which is a combination of a tread surface and a kick surface, and an approximately L-shape, a kick surface and a slope ( A pair of dragonfly blades in the case of a combination of a slanted surface) and a pair of L-shaped joints joined together by a kick-up surface to form a drag blade with an angle of attack of 20 ° to 75 °. It is an example of a blade | wing. In this state, when the wind is received from the direction of the white arrow, the blade moves in the direction of the black arrow, so that it can be used as a blade of a linear wind power generator. (B) The figure shows two sets of thin plates with a substantially constant thickness in the wing span (chord) direction, the cross-section of which is a combination of a tread surface and a kick surface, and an approximately L-shape, a kick surface and a slope. A pair of dragonfly blades with a combination of (inclined surface) and an L-shaped combination joined together by a kick-up surface and a drag blade with an angle of attack of 20 ° to 75 ° It is an example of a blade | wing. If the blade is moved in the direction of the black arrow in this state, the wind can be sent in the direction of the white arrow, so that it can be used as a linear blower. When used in combination with the result of the previous (A) term, the drag blade in this case means that it can be used as it is for a linear wind power generator or a linear blower without changing the angle of attack. . (A)図は、トンボの羽根様の羽根から踏み面を外し、蹴り込み長付きの蹴上げ面とスロープ(傾斜面)とだけとして、翼幅(翼弦)方向の断面が概J字型断面の羽根となる場合の一例である。J字型断面の羽根で水平軸風車を構成してJ字型断面の切り欠き部分を風上に向けると、羽根は黒矢印方向へ回転する。(a)蹴り込み長付の蹴上げ面と踏み面との組合せ、(b)く字型となる蹴上げ面と踏み面との組合せ、(c)円弧となる蹴上げ面と踏み面との組合せ、の3つとなる。 (B)図は、2枚のJ字型断面の羽根の前縁部と前縁部、後縁部と後縁部とが重なるように背中合わせで構成したJ字型背中合わせ断面の羽根を水平軸風車に取り付けて、J字型背中合わせ断面の羽根の一方の切り欠き部分を風上に正対させると、羽根は黒矢印方向に回転する。また、J字型背中合わせ断面の羽根を構成する2つのJ字型断面の羽根の関係は、(a−1)、(b−1)、(c−1)のように背中合わせで貼り付けて構成しても良いし、(a−2)、(b−2)、(c−2)のように離して空間を空けても良いし、(a−3)、(b−3)、(c−3)のように空いた空間に補強材を入れて補強しても良い。(A) The figure shows a roughly J-shaped cross section in the wing span (chord) direction, with the tread surface removed from the wing of the dragonfly and only the kick-up surface with a kick-in length and a slope (inclined surface). It is an example in the case of becoming a wing. When a horizontal axis wind turbine is composed of blades having a J-shaped cross section and the notch portion of the J-shaped cross section is directed to the windward, the blades rotate in the direction of the black arrow. (A) a combination of a kick-up surface with a kick-in length and a tread surface, (b) a combination of a kick-up surface and a tread surface that form a square shape, and (c) a combination of a kick-up surface and a tread surface that form an arc. There will be three. (B) The figure shows a J-shaped back-to-back section of a blade that is configured back-to-back so that the leading and trailing edges of the two J-shaped sections and the trailing and trailing edges overlap. When attached to the windmill and one notch portion of the blade of the J-shaped back-to-back cross section is directly opposed to the windward, the blade rotates in the direction of the black arrow. In addition, the relationship between the two J-shaped cross-section blades that make up the J-shaped back-to-back section blades is affixed back to back as in (a-1), (b-1), and (c-1). It is also possible to leave a space as shown in (a-2), (b-2), (c-2), (a-3), (b-3), (c You may reinforce by putting a reinforcing material in the empty space as in 3). (A)図は、トンボの羽根様の羽根のa−a’部分の断面図である。 (B)図は、トンボの羽根様の羽根の平面図で、翼根部分を回転軸に取付固定し、翼端部分を回転ダクトの内周部に取付固定する。 (C)図は、回転ダクトの内周部にJ字型断面の羽根を取付固定してリニア風力発電機用の回転翼を構成した平面図の一例である。 (D)図は、J字型断面の羽根やJ字型背中合わせ断面の羽根のa−a’部分の断面図である。 (E)図は、J字型背中合わせ断面の羽根の後縁部の両面にある切り欠きの一方の方向から見た場合の平面図である。(a)は、J字型背中合わせ断面の羽根の通常の例である。(b)は、J字型断面の羽根が高速で回転しても異音の発生がほとんど無いのに対し、J字型背中合わせ断面の羽根の方は異音を発生することがあるので、切り欠き方向の端部や羽根の後端部を三角形や波形を入れたシェブロンノズルやV字型やU字型の切り込みを入れたノッチノズルと同様の形状にすることによって、異音の低下を図った例である。FIG. 4A is a cross-sectional view of the a-a ′ portion of a dragonfly blade-like blade. FIG. 4B is a plan view of a dragonfly blade-like blade, in which the blade root portion is attached and fixed to the rotating shaft, and the blade tip portion is fixedly attached to the inner peripheral portion of the rotating duct. FIG. 5C is an example of a plan view in which a blade of a linear wind power generator is configured by attaching and fixing a blade having a J-shaped cross section to the inner peripheral portion of the rotating duct. FIG. 4D is a cross-sectional view of the a-a ′ portion of a J-shaped cross-section blade and a J-shaped back-to-back cross-section blade. (E) is a plan view when viewed from one direction of notches on both sides of the trailing edge of a J-shaped back-to-back cross section. (A) is a normal example of the blade | wing of a J-shaped back-to-back cross section. (B) shows that there is almost no abnormal noise even when the blades with the J-shaped section rotate at high speed, whereas the blades with the J-shaped back-to-back section may generate abnormal noise. By making the end part in the notch direction and the rear end part of the blade the same shape as a chevron nozzle with a triangle or corrugation and a notch nozzle with a V-shaped or U-shaped cut, the noise was reduced. It is an example. (A)図は、トンボの羽根様の羽根の揚力羽根を用いた直径200m程度のシュラウド付回転翼を8基備えた空中空母の一例である。 (B)図は、トンボの羽根様の羽根の揚力羽根を用いた直径18m程度のシュラウド付回転翼を12基備えた空中フェリーの一例である。(A) The figure is an example of an empty hollow carrier provided with eight shroud-equipped rotor blades having a diameter of about 200 m using lift blades of dragonfly blade-like blades. (B) The figure is an example of an air ferry provided with 12 shroud rotary blades having a diameter of about 18 m using lift blades of dragonfly blade-like blades. 図は、茶畑においてトンボの羽根様の羽根の直径9mの抗力羽根を用い、通常は、リニア風力発電機として発電していて、冬季で風がなく霜が降りそうな場合には、茶畑全体に届く程度の風量を送風して霜害を防止するリニア送風機の一例である。The figure shows a dragonfly blade-like blade with a diameter of 9m in a tea plantation. Usually, it is generating power as a linear wind power generator. It is an example of the linear blower which blows the air volume of the grade which reaches and prevents frost damage. 図は、風の通り道となる渓谷においてトンボの羽根様の羽根かJ字型断面の羽根かJ字型背中合わせ断面の羽根かのいずれかを直径約1kmの抗力羽根として用い、トロイダルコアコイルを用いた直流発電機として、水の電気分解によって水素と酸素とを製造するリニア風力発電機の一例である。The figure shows the use of a toroidal core coil, using either dragonfly blades, J-shaped blades or J-shaped back-to-back blades as drag blades with a diameter of about 1 km in the valley where the wind passes. It is an example of a linear wind power generator that produces hydrogen and oxygen by electrolysis of water as a direct current generator.

本発明を図面で説明する場合には、図4の記載のように前縁部が必ず踏み面(111)であって、複数の踏み面(111)と複数の蹴上げ面(112)とから成り、その蹴上げ面(112)のうちの大部分が蹴り込み長(114)付で、後縁部が必ずスロープ(傾斜面)(113)である段々構造で、トンボの羽根様の羽根(110)を代表させる。また、蹴り込み長(114)がない蹴上げ面(112)との組合せや、く字型に折り曲がった蹴上げ面(112)との組合せや、円弧である蹴上げ面(112)との組合せや、翼長方向へ伸延する凸梁(118)との組合せや、翼長方向へ伸延する凹凸形状(119)との組合せの場合のトンボの羽根様の羽根(110)も、羽根としての機能や翼長方向の強度は、ほぼ同様なので、差異がある場合にのみ追加説明を行う。 When the present invention is described with reference to the drawings, as shown in FIG. 4, the front edge portion is always a tread surface (111), and includes a plurality of tread surfaces (111) and a plurality of kick-up surfaces (112). In the stepped structure, most of the kick-up surface (112) is provided with a kick-in length (114), and the rear edge portion is always a slope (inclined surface) (113). To represent. In addition, a combination with a kicking surface (112) having no kick length (114), a combination with a kicking surface (112) bent into a square shape, a combination with a kicking surface (112) that is an arc, The combination of the convex beam (118) extending in the blade length direction and the combination of the concavo-convex shape (119) extending in the blade length direction, the blade-like blade (110) of the dragonfly also has a function as a blade. Since the strength in the long direction is almost the same, additional explanation will be given only when there is a difference.

本発明のトンボの羽根様の羽根(110)を最小限の構成要素に分けると、踏み面(111)と凸梁(118)だけで構成した場合は図3(A)となり、翼幅(翼弦)方向の断面が階段状を成す場合には図3(B)〜(E)となる。断面が階段状になる(B)〜(E)のうち、(C)〜(E)は、蹴り込み長(114)を有する。 When the blade-like blade (110) of the dragonfly of the present invention is divided into the minimum components, when it is composed only of the tread surface (111) and the convex beam (118), it becomes FIG. When the cross section in the (string) direction is stepped, the result is as shown in FIGS. Among (B) to (E) whose cross sections are stepped, (C) to (E) have a kick length (114).

本発明でのトンボの羽根様の羽根(110)の翼長方向の強化策としては、図4(A)のように複数の踏み面(111)や蹴上げ面(112)を組み合わせることによって折れにくい羽根を構成することができる。さらに折れ難くするためには図4(B)のような凸梁(118)を組み合わせたり、図4(C)のような踏み面(111)を凹凸形状(119)にすることによって強化できる。図5の(A)〜(C)は、全ての踏み面(111)を凹凸形状(119)で強化した場合を示している。 As a reinforcing measure in the blade length direction of the dragonfly blade-like blade (110) in the present invention, it is difficult to break by combining a plurality of tread surfaces (111) and kick-up surfaces (112) as shown in FIG. A blade can be constructed. In order to make it harder to break, it can be strengthened by combining convex beams (118) as shown in FIG. 4B or making the tread surface (111) as shown in FIG. 5A to 5C show a case where all the tread surfaces (111) are reinforced with the uneven shape (119).

本発明では、シュラウド付回転翼(10)やリニア送風機(20)やリニア風力発電機(30)に用いる羽根が、大きなあるいは巨大な直径となっても安価に製造できることを目指している。このため、図4や図5で示したトンボの羽根様の羽根(110)を最小限の要素にして踏み面(111)、蹴上げ面(112)、スロープ(傾斜面)(113)の各1コのみで構成したとしても、図8〜図10のような簡単な実験によって揚力羽根も抗力羽根になることを確認できている。このため、まず、図6のような概ね一定の厚さを有する薄板で翼幅(翼弦)方向に概L字型断面を形成するような踏み面(111)と蹴上げ面(112)とからなる1組を構成する。次に、同様にして薄板から翼幅(翼弦)方向に概L字型断面を形成するような蹴上げ面(112)とスロープ(傾斜面)とからなる1組とを構成する。踏み面(111)と蹴上げ面(112)との組や蹴上げ面(112)とスロープ(傾斜面)(113)との組を概L字型断面に構成することは、折り曲げてもプレスしても溶接しても蝶番状にしても容易に形成できる。 In the present invention, the blades used in the rotor blades with shrouds (10), the linear blower (20), and the linear wind power generator (30) are aimed to be manufactured inexpensively even if they have large or huge diameters. Therefore, each of the tread surface (111), the kicking surface (112), and the slope (inclined surface) (113) with the wings (110) of the dragonfly shown in FIGS. Even if it is configured only with a cage, it has been confirmed that the lift blade is also a drag blade by a simple experiment as shown in FIGS. For this reason, first, from a tread surface (111) and a kick surface (112) that form a substantially L-shaped cross section in the wing width (chord) direction with a thin plate having a substantially constant thickness as shown in FIG. Constitutes one set. Next, in the same manner, a set of a kick-up surface (112) and a slope (inclined surface) that form an approximately L-shaped cross section in the blade width (chord) direction from the thin plate is formed. The pair of the tread surface (111) and the kick surface (112) and the pair of the kick surface (112) and the slope (inclined surface) (113) are formed in an approximately L-shaped cross section. Can be easily formed by welding or hinge-shaped.

本発明の図6で準備した概L字型断面を有する踏み面(111)と蹴上げ面(112)との組と、蹴上げ面(112)とスロープ(傾斜面)(113)との組は、それぞれ1組ずつを組み合わせて図7(B)のように蹴上げ面(112)同志を重ねて接続することができる。すると踏み面(111)やスロープ(傾斜面)(113)は、各1枚の薄板から構成されているが、蹴上げ面(112)は、必ず1枚多い2枚から構成されるようになって、羽根全体の重量増加を最小限にして羽根の翼長方向の強化を図ることができる。 A pair of a tread surface (111) and a kick surface (112) having a substantially L-shaped cross section prepared in FIG. 6 of the present invention, and a pair of a kick surface (112) and a slope (inclined surface) (113) are: Each pair can be combined and the kick-up surfaces (112) can be connected together as shown in FIG. 7B. Then, the tread surface (111) and the slope (inclined surface) (113) are each composed of one thin plate, but the kicking surface (112) is always composed of two more sheets. The blade can be strengthened in the blade length direction while minimizing the increase in the weight of the entire blade.

本発明で準備した概L字型断面を有する踏み面(111)と蹴上げ面(112)との組と、蹴上げ面(112)とスロープ(傾斜面)(113)との組は、それぞれ複数準備して図7(C)〜(D)のように組み合わせ、さらに翼長方向の強化を図ることができる。この場合においても、蹴上げ面(112)を構成する薄板の枚数は、隣接する踏み面(111)やスロープ(傾斜面)(113)の薄板の枚数よりも必ず1枚以上多くなるので、羽根全体の重量増加を最小限にして、翼長方向を折れにくくすることに寄与することができる。なお、それぞれの蹴上げ面(112)同志を接続する方法としては、接着剤による接着や溶接や爆薬の破裂時の衝撃による爆着やボルトによる接続などを単独、もしくは組み合わせて用いることができる。 A plurality of pairs of a tread surface (111) and a kick surface (112) having a substantially L-shaped cross section prepared in the present invention and a plurality of pairs of a kick surface (112) and a slope (inclined surface) (113) are prepared. Thus, the combinations as shown in FIGS. 7C to 7D can be further strengthened in the blade length direction. Even in this case, the number of the thin plates constituting the kick-up surface (112) is always at least one more than the number of the adjacent tread surfaces (111) and slopes (inclined surfaces) (113). This can contribute to making the blade length direction difficult to break by minimizing the increase in the weight of the blade. In addition, as a method for connecting the respective kicking surfaces (112), adhesion by an adhesive, welding, explosive adhesion by explosion, connection by bolts, or the like can be used alone or in combination.

図8(A)や図9(A)のように、いま、トンボの羽根様の羽根(110)の翼幅(翼弦)の長さをW、踏み面(111)の長さをT、スロープ(傾斜面)(113)の長さをS、蹴上げ面(112)の高さ(長さ)をKとするとき、傾斜面の角度を迎角として、T=0.25W、S=0.75W、K=0.8T、迎角15°とすると、同じ形状のトンボの羽根様の羽根(110)であっても、迎角を変更することによって、揚力羽根としても抗力羽根としても用いることができる。図8は、シュラウド付回転翼(10)やリニア送風機(20)の場合であるが、図8(B)のように迎角を0°〜15°の間にしてシュラウド付回転翼(10)に取り付けて羽根を黒矢印の方向へ失速速度以上の速度で回転させると、揚力羽根としてシュラウド付回転翼(10)に用いたとき、白抜き二重線矢印の方向に揚力を発生することができる。また、迎角を20°〜75°の間で黒矢印の方向に回転させて運用すると、抗力羽根としてリニア送風機(20)に用いたとき、風を白矢印方向に送ることができる。また、充分な駆動パワーがある場合には、シュラウド付回転翼(10)に用いことも可能であって、この場合は消費するエネルギー量は揚力羽根の4〜5倍に大きくなるが、揚力羽根のような吸引音や衝撃音が発生しない静粛なシュラウド付回転翼(10)を構成することも可能である。 As shown in FIGS. 8A and 9A, the wing width (chord) length of the wings (110) of the dragonfly is W, the length of the tread (111) is T, When the length of the slope (inclined surface) (113) is S and the height (length) of the raised surface (112) is K, the angle of the inclined surface is the angle of attack, and T = 0.25W, S = 0 .75W, K = 0.8T, angle of attack 15 °, even dragonfly blade-like blades (110) of the same shape can be used as lift blades and drag blades by changing the angle of attack be able to. FIG. 8 shows the case of the rotor blade with shroud (10) and the linear blower (20), but the rotor blade with shroud (10) with an angle of attack between 0 ° and 15 ° as shown in FIG. 8B. When the blade is rotated in the direction of the black arrow at a speed equal to or greater than the stall speed, lift force may be generated in the direction of the white double line arrow when the blade is used as a lifting blade on the rotor blade with shroud (10). it can. When the angle of attack is rotated between 20 ° and 75 ° in the direction of the black arrow, the wind can be sent in the direction of the white arrow when used in the linear blower (20) as a drag blade. In addition, when there is sufficient driving power, it can be used for the rotor blade with shroud (10). In this case, the amount of energy consumed is four to five times that of the lift blade, but the lift blade It is also possible to configure a silent shroud-equipped rotor blade (10) that does not generate suction sound or impact sound.

図9は、白矢印方向あら風を受けるリニア風力発電機(30)の場合であって図8と同様に同一の形状のトンボの羽根様の羽根(110)の迎角を変えることによって、揚力羽根にも抗力羽根にも用いることができる。水平軸風車に取り付けて風上に正対させ、迎角を0°〜15°にすると、風の速度がある程度速い場合には、揚力羽根として風車を速い速度で回転させることができる。また、迎角を20°〜75°の間にすると、かなりの弱い風でも抗力羽根としてゆっくりと回転することができ、トルクも充分に発揮できる。リニア風力発電機(30)は、発電部を翼端部に有するため、羽根の回転がゆっくりであっても充分な電力を発生できる。したがって、通常、リニア風力発電機(30)には、回転速度は遅いものの、発生トルクが大きい抗力羽根としてトンボの羽根様の羽根(110)の方を用いることが多い。 FIG. 9 shows a case of a linear wind power generator (30) that receives wind in the direction of the white arrow, and lift force is obtained by changing the angle of attack of the blade-like blade (110) of the same shape as in FIG. It can be used for both vanes and drag vanes. If the wind turbine is attached to a horizontal axis wind turbine so as to face the wind and the angle of attack is 0 ° to 15 °, the wind turbine can be rotated as a lift blade at a high speed when the wind speed is somewhat high. Further, when the angle of attack is between 20 ° and 75 °, even a very weak wind can be rotated slowly as a drag blade, and the torque can be sufficiently exhibited. Since the linear wind power generator (30) has the power generation unit at the blade tip, it can generate sufficient power even if the blades rotate slowly. Therefore, in general, the linear wind power generator (30) often uses the dragonfly blade-like blade (110) as a drag blade with a large generated torque although the rotation speed is low.

図10は、リニア送風機(20)の場合に、トンボの羽根様の羽根(110)の取付角度をあえてリニア風力発電機(30)と同様な取付角度で構成した例である。そうするとこのリニア送風機(20)は、風上に正対させて図10(A)のように白矢印方向から風を受けると、風車は黒矢印の方向に回転して翼端部で発電することができる。さらに、羽根の取付角度をそのままで図10(B)のように黒矢印方向に羽根を回転させると、白矢印方向に送風することが可能である。よって、このような運用をする場合には、羽根の向きを変える装置が不要であることから、価格を抑えて風力発電機と送風機とを兼ね備えたリニア送風機(20)を構成することができる。 FIG. 10 is an example in which, in the case of the linear blower (20), the attachment angle of the dragonfly blade-like blade (110) is set to be the same as that of the linear wind power generator (30). Then, when this linear blower (20) faces the windward and receives wind from the direction of the white arrow as shown in FIG. 10 (A), the windmill rotates in the direction of the black arrow and generates electricity at the blade tip. Can do. Furthermore, if the blades are rotated in the black arrow direction as shown in FIG. 10B with the blade mounting angle as it is, it is possible to blow in the white arrow direction. Therefore, when such an operation is performed, a device for changing the direction of the blades is not necessary, so that a linear blower (20) having both a wind power generator and a blower can be configured at a reduced price.

トンボの羽根様の羽根(110)を構成する踏み面(111)、蹴上げ面(112)、スロープ(傾斜面)(130)から、踏み面(111)を除去し、蹴り込み長(114)のある蹴上げ面(112)とスロープ(傾斜面)(113)のみとすると、図11(A)のようにJ字型断面の羽根(130)となって、リニア風力発電機(30)に用いることができる。J字型断面の羽根(130)は、翼長方向の全域で正面から受けた風をJ字型断面の蹴り込み長の空洞部分に溜めたら直ちに翼長軸と直交する方向に流すことができるので、大きなトルコを発生できる。また、トンボの羽根様の羽根(110)に比べると踏み面(111)がないことと、蹴上げ面(112)が少なくなることによって翼長方向の強さが低減するが、翼根部分を回転軸に翼端部分を回転ダクト(100)や円環に接続して両支持とするので翼長方向で羽根が折れることは少なくなる。 The tread surface (111) is removed from the tread surface (111), the kick-up surface (112), and the slope (inclined surface) (130) constituting the blade (110) of the dragonfly, and the kick length (114) If there is only a certain lifting surface (112) and slope (inclined surface) (113), it becomes a blade (130) having a J-shaped cross section as shown in FIG. 11 (A) and used for the linear wind power generator (30). Can do. The blade (130) having a J-shaped cross section can flow in a direction perpendicular to the blade longitudinal axis as soon as the wind received from the front in the entire blade length direction is collected in the hollow portion of the kick-shaped length of the J-shaped cross section. So you can generate a big Turkey. Also, compared to the dragonfly blade-like blade (110), the strength in the blade length direction is reduced by the absence of the tread surface (111) and the riser surface (112), but the blade root portion is rotated. Since the blade tip portion is connected to the rotating duct (100) or the ring to support both shafts, the blades are less likely to break in the blade length direction.

J字型断面の羽根(130)は、図11(B)のように2つのJ字型断面の羽根(130)を背中合わせにして一体化するとJ字型背中合わせ断面の羽根(140)にすることができる。J字型背中合わせ断面の羽根(140)をリニア風力発電機(30)に用いると、風上に正対した場合の回り方は、J字型断面の羽根(130)よりもかなり落ちるが、水平軸風車でありながら、全周のどの方向から風を受けても風車が回転する特徴がある。リニア風力発電機(30)は、通常、俯仰装置を有していて、強風時には風車面を垂直位置から水平位置に90°変換する。この場合、風車は垂直軸風車として発電を継続できるが、特にJ字型背中合わせ断面の羽根(140)は、垂直軸風車としても発電量が多い。また、J字型背中合わせ断面の羽根(140)は、J字型断面の羽根(130)の2本分で回転ダクト(100)を支えるので、巨大な直径であっても堅固なリニア風力発電機(30)を構成することができる。 The blade (130) having a J-shaped cross section is formed as a blade (140) having a J-shaped back-to-back cross section when the two blades (130) having the J-shaped cross section are integrated back to back as shown in FIG. Can do. When the J-shaped back-to-back blades (140) are used in the linear wind power generator (30), the direction when facing the windward is considerably lower than the J-shaped blades (130). Although it is an axial windmill, it has a feature that the windmill rotates regardless of the wind direction from all directions. The linear wind power generator (30) usually has an uplifting device, and converts the windmill surface by 90 ° from a vertical position to a horizontal position during a strong wind. In this case, although the wind turbine can continue to generate power as a vertical axis wind turbine, the blade (140) having a J-shaped back-to-back cross section generates much power even as a vertical axis wind turbine. Also, the J-shaped back-to-back blades (140) support the rotating duct (100) with two J-shaped cross-section blades (130). (30) can be configured.

トンボの羽根様の羽根(110)やJ字型断面の羽根(130)やJ字型背中合わせ断面の羽根(140)は、図12に示した通り、翼根部分を回転軸に、翼端部分を回転ダクト(100)に取付固定して両支持で用いることから翼長方向の強度が維持できるので、大きなあるいは巨大な直径を有するシュラウド付回転翼(10)やリニア送風機(20)やリニア風力発電機(30)を容易に構成することができる。 A dragonfly blade-like blade (110), a blade with a J-shaped cross section (130), and a blade with a J-shaped back-to-back cross section (140), as shown in FIG. Since the strength in the blade length direction can be maintained since the blade is attached and fixed to the rotary duct (100) and used for both supports, the rotor blade with shroud (10), the linear blower (20) and the linear wind turbine having a large or huge diameter. The generator (30) can be easily configured.

トンボの羽根様の羽根(110)を揚力羽根としてシュラウド付回転翼(10)に用いると、図13のような巨大なあるいは大きな直径のシュラウド付回転翼(10)で空中空母や空中フェリーを構成することができる。 When a blade like a dragonfly blade (110) is used as a lifting blade for a rotor blade with a shroud (10), a huge or large diameter rotor blade with a shroud (10) as shown in FIG. 13 constitutes an air hollow carrier or an air ferry. can do.

トンボの羽根様の羽根(110)を抗力羽根としてリニア送風機(20)やリニア風力発電機(30)用いると、風力発電と送風とを兼ね備えることができる図14のリニア送風機(20)や、図15の渓谷を跨ぐほどの巨大な直径のリニア風力発電機(30)を構成することができる。 When the linear fan (20) and the linear wind power generator (30) are used as the drag blades (110) as the drag blades, the linear fan (20) of FIG. 14 that can combine wind power generation and air blowing, and FIG. A linear wind power generator (30) with a huge diameter enough to straddle 15 canyons can be constructed.

J字型断面の羽根(130)やJ字型背中合わせ断面の羽根(140)を用いると、渓谷を跨ぐほどの巨大な直径のリニア風力発電機(30)を構成することができる。
Using a J-shaped cross-section blade (130) or a J-shaped back-to-back cross-section blade (140), a linear wind power generator (30) having a huge diameter enough to straddle a valley can be configured.

図7〜図10及び図12〜図14は、概ね厚みが一定の薄板を折り曲げるか、プレスするか、溶接するか、蝶番状にして連結するかの少なくともいずれか1つの方法で、踏み面や蹴上げ面やスロープ(傾斜面)を構成して翼幅(翼弦)方向が階段状を成す羽根とし、翼根部分を回転軸に取付固定し、翼端部分を回転ダクトや円環に取付固定した両支持の羽根を有するシュラウド付回転翼やリニア送風機やリニア風力発電機に用いるトンボの羽根様の羽根において、翼長方向に蹴上げ面を構成する薄板の枚数が、翼幅(翼弦)方向で隣接する踏み面やスロープ(傾斜面)の枚数よりも、必ず1枚以上多いことを特徴とするトンボの羽根様の羽根の実施例である。 FIGS. 7 to 10 and FIGS. 12 to 14 show that a tread surface or a tread surface is formed by at least one method of bending, pressing, welding, or connecting in a hinge-like manner. The blade surface (blade chord) direction is configured as a blade with a kick-up surface and a slope (inclined surface), and the blade root is attached and fixed to the rotating shaft, and the blade tip is attached and fixed to the rotating duct and ring In the blades of shrouds and blades like dragonflies used in linear blowers and linear wind power generators with both supported blades, the number of thin plates constituting the lifting surface in the blade length direction is the blade width (chord) direction. This is an embodiment of a dragonfly blade-like blade characterized by having at least one more than the number of adjacent tread surfaces and slopes (inclined surfaces).

図11、図12、図15は、実施例1のトンボの羽根様の羽根を構成する踏み面、蹴上げ面、スロープ(傾斜面)のうちの踏み面を除去して、蹴り込み長付きの蹴上げ面とスロープ(傾斜面)との組合せのみとして、翼幅(翼弦)方向の断面が概J字型になる羽根(以下、「J字型断面の羽根」という)の翼根部分を回転軸に取付固定し、翼端部分を回転ダクトや円環に取付固定して構成したか、J字型断面の羽根を2枚背中合わせにして一体化した羽根(以下、「J字型背中合わせ断面の羽根」という)の翼根部分を回転軸に取付固定し、翼端部分を回転ダクトや円環に取付固定して構成したかの少なくともいずれか一方の羽根を有することを特徴としたリニア風力発電機の実施例である。
11, 12, and 15 show a stepping surface, a kicking surface, and a slope (inclined surface) that constitute the blades of the dragonfly of the first embodiment, and a kicking length with a kicking length is removed. The blade root part of the blade (hereinafter referred to as “blade with J-shaped cross section”) whose cross section in the blade width (chord) direction is approximately J-shaped is used only as a combination of a surface and a slope (inclined surface). Or a blade with a wing tip attached to and fixed to a rotating duct or an annulus, or a blade with two J-shaped cross-section blades back-to-back (hereinafter referred to as a “J-shaped back-to-back cross-section blade”). And the blade root portion is attached and fixed to a rotating shaft, and the blade tip portion is attached and fixed to a rotating duct or a ring. This is an example.

本発明に記載したトンボの羽根様の羽根やJ字型断面の羽根やJ字型背中合わせ断面の羽根は、巨大で堅固な羽根が容易にかつ安価で製作できるばかりでなく、大量生産、連続生産も可能である。よって、そのような巨大な直径のトンボの羽根様の羽根を用いてシュラウド付回転翼を作れば、例えば、空中空母や空中フェリーなどの新たな航空機製造が可能となる。また、大きな直径のトンボの羽根様の羽根を用いれば、例えば、冬季において広域に渡る茶畑の無風時の霜害を防止し、通常は風力により発電を継続するリニア送風機を製作できる。さらに、極めて巨大な直径のトンボの羽根様の羽根かJ字型断面の羽根かJ字型背中合わせ断面の羽根かのいずれか一方を用いた風車を作れば、例えば、風の通り道となる渓谷をスッポリと覆い尽くすほどの極めて巨大なリニア風力発電機を作ることができ、電力事情が厳しい地域でも新たな産業を興すことができる。
The dragonfly blade-like blades, J-shaped cross-section blades and J-shaped back-to-back cross-section blades described in the present invention can be manufactured easily and inexpensively, as well as mass production and continuous production. Is also possible. Therefore, if a rotor blade with a shroud is made by using such a huge dragonfly blade-like blade, a new aircraft such as an air hollow carrier or an air ferry can be manufactured. In addition, if a large-diameter dragonfly blade-like blade is used, for example, a frost damage can be prevented during windless periods in a tea plantation over a wide area in winter, and a linear blower that normally generates power with wind power can be manufactured. Furthermore, if you make a windmill using either a dragonfly blade like a dragonfly with a very large diameter, a blade with a J-shaped cross section, or a blade with a J-shaped back-to-back cross section, for example, you can It is possible to create a very large linear wind power generator that can be completely covered, and to create new industries even in regions where power conditions are severe.

10 シュラウド付回転翼
20 リニア送風機
30 リニア風力発電機
100 回転ダクト
101 回転ダクト内周部
110 トンボの羽根様の羽根
111 踏み面
112 蹴上げ面
113 スロープ(傾斜面)
114 蹴り込み長
115 翼根
116 翼端
117 切り欠き部分
118 凸梁
119 凹凸形状
120 界磁磁石
130 J字型断面の羽根
140 J字型背中合わせ断面の羽根
200 シュラウド
210 電機子
220 間隙保持用ベアリング
230 カムフォロア
310 巨大巻き車
320 薄板帯コイル
θ 踏み面と蹴上げ面との成す角度
黒矢印 :羽根の進行方向
白矢印 :風の流れる方向
白抜き二重線矢印:揚力又は抗力の発生する方向
DESCRIPTION OF SYMBOLS 10 Rotor blade with shroud 20 Linear blower 30 Linear wind power generator 100 Rotating duct 101 Rotating duct inner periphery 110 Dragonfly blades 111 Tread surface 112 Lifting surface 113 Slope (inclined surface)
114 Kicking length 115 Blade root 116 Blade tip 117 Notched portion 118 Convex beam 119 Concavity and convexity 120 Field magnet 130 J-shaped section blade 140 J-shaped back-to-back section blade 200 Shroud 210 Armature 220 Bearing for holding gap 230 Cam follower 310 Giant winding wheel 320 Thin strip coil θ Angle formed by the tread surface and the kicking surface Black arrow: Direction of blade movement White arrow: Direction of wind flow White double line arrow: Direction in which lift or drag occurs

Claims (2)

概ね厚みが一定の薄板を折り曲げるか、プレスするか、溶接するか、蝶番状にして連結するかの少なくともいずれか1つの方法で、踏み面や蹴上げ面やスロープ(傾斜面)を構成して翼幅(翼弦)方向が階段状を成す羽根とし、翼根部分を回転軸に取付固定し、翼端部分を回転ダクトや円環に取付固定した両支持の羽根を有するシュラウド付回転翼やリニア送風機やリニア風力発電機に用いるトンボの羽根様の羽根において、翼長方向に蹴上げ面を構成する薄板の枚数が、翼幅(翼弦)方向で隣接する踏み面やスロープ(傾斜面)の枚数よりも、必ず1枚以上多いことを特徴とするトンボの羽根様の羽根。 A wing is formed by forming a tread surface, a kick-up surface, or a slope (inclined surface) by at least one of bending, pressing, welding, or connecting in a hinge-like manner. A blade with a shroud that has a blade with a width (blade chord) direction that is stepped, a blade root portion attached and fixed to a rotating shaft, and a blade tip portion attached and fixed to a rotating duct or ring. In the blades of dragonfly blades used in blowers and linear wind power generators, the number of thin plates that form the lifting surface in the blade length direction is the number of treads and slopes (inclined surfaces) adjacent in the blade width (chord) direction. A dragonfly wing-like wing characterized by having at least one more than the wing. 請求項1のトンボの羽根様の羽根を構成する踏み面、蹴上げ面、スロープ(傾斜面)のうちの踏み面を除去して、蹴り込み長付きの蹴上げ面とスロープ(傾斜面)との組合せのみとして、翼幅(翼弦)方向の断面が概J字型になる羽根(以下、「J字型断面の羽根」という)の翼根部分を回転軸に取付固定し、翼端部分を回転ダクトや円環に取付固定して構成したか、J字型断面の羽根を2枚背中合わせにして一体化した羽根(以下、「J字型背中合わせ断面の羽根」という)の翼根部分を回転軸に取付固定し、翼端部分を回転ダクトや円環に取付固定して構成したかの少なくともいずれか一方の羽根を有することを特徴としたリニア風力発電機。
A combination of a kick-up surface with a kick-in length and a slope (inclined surface) by removing the tread surface of the tread surface, the kick-up surface and the slope (inclined surface) constituting the blade-like blade of the dragonfly of claim 1 The blade root part of the blade (hereinafter referred to as “blade with J-shaped cross section”) whose cross section in the blade width (chord) direction is approximately J-shaped is attached and fixed to the rotating shaft, and the blade tip part is rotated. The axis of rotation of the blade root part of a blade (hereinafter referred to as a “blade with a J-shaped back-to-back cross section”) that is configured by mounting and fixing to a duct or an annulus, or two back-to-back blades with a J-shaped cross section. A linear wind power generator comprising at least one blade configured to be fixedly attached to a blade and a blade tip portion fixed to a rotating duct or a ring.
JP2012183117A 2012-08-22 2012-08-22 Dragonfly blade-like blades, J-shaped cross-section blades, and J-shaped back-to-back blades used for rotor blades with shrouds, linear blowers, and linear wind power generators Active JP5296249B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012183117A JP5296249B1 (en) 2012-08-22 2012-08-22 Dragonfly blade-like blades, J-shaped cross-section blades, and J-shaped back-to-back blades used for rotor blades with shrouds, linear blowers, and linear wind power generators
PCT/JP2013/069365 WO2014030465A1 (en) 2012-08-22 2013-07-17 Dragonfly-wing-shaped blade, blade with j-shaped cross section, and blade with back-to-back j-shaped cross section, for use in shroud-equipped rotary vane mechanism, linear blower, or linear wind-powered generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012183117A JP5296249B1 (en) 2012-08-22 2012-08-22 Dragonfly blade-like blades, J-shaped cross-section blades, and J-shaped back-to-back blades used for rotor blades with shrouds, linear blowers, and linear wind power generators

Publications (2)

Publication Number Publication Date
JP5296249B1 true JP5296249B1 (en) 2013-09-25
JP2014040168A JP2014040168A (en) 2014-03-06

Family

ID=49396777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012183117A Active JP5296249B1 (en) 2012-08-22 2012-08-22 Dragonfly blade-like blades, J-shaped cross-section blades, and J-shaped back-to-back blades used for rotor blades with shrouds, linear blowers, and linear wind power generators

Country Status (2)

Country Link
JP (1) JP5296249B1 (en)
WO (1) WO2014030465A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50152204U (en) * 1974-06-03 1975-12-18
JPS55139296U (en) * 1979-03-26 1980-10-04
JPS5864895U (en) * 1981-10-28 1983-05-02 カルソニックカンセイ株式会社 Juan
JPH0285896U (en) * 1988-12-19 1990-07-06
JPH11324893A (en) * 1998-05-01 1999-11-26 ▲黄▼ 頌華 Impeller and device provided with its impeller
JP3148233U (en) * 2008-08-11 2009-02-12 学校法人文理学園 Low Reynolds number airfoil
JP2011021609A (en) * 2003-03-18 2011-02-03 Renewable Devices Swift Turbins Ltd Wind turbine
JP2011058483A (en) * 2009-09-11 2011-03-24 Bunri Gakuen Small propeller wind turbine
JP2011132858A (en) * 2009-12-24 2011-07-07 E & E Kk Wind turbine for horizontal shaft type wind power generation device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195944A (en) * 1992-01-22 1993-08-06 Rikiya Kudo Wide mill vane without vane resistance sound caused by wide pressure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50152204U (en) * 1974-06-03 1975-12-18
JPS55139296U (en) * 1979-03-26 1980-10-04
JPS5864895U (en) * 1981-10-28 1983-05-02 カルソニックカンセイ株式会社 Juan
JPH0285896U (en) * 1988-12-19 1990-07-06
JPH11324893A (en) * 1998-05-01 1999-11-26 ▲黄▼ 頌華 Impeller and device provided with its impeller
JP2011021609A (en) * 2003-03-18 2011-02-03 Renewable Devices Swift Turbins Ltd Wind turbine
JP3148233U (en) * 2008-08-11 2009-02-12 学校法人文理学園 Low Reynolds number airfoil
JP2011058483A (en) * 2009-09-11 2011-03-24 Bunri Gakuen Small propeller wind turbine
JP2011132858A (en) * 2009-12-24 2011-07-07 E & E Kk Wind turbine for horizontal shaft type wind power generation device

Also Published As

Publication number Publication date
JP2014040168A (en) 2014-03-06
WO2014030465A1 (en) 2014-02-27

Similar Documents

Publication Publication Date Title
US8777580B2 (en) Secondary airfoil mounted on stall fence on wind turbine blade
KR100933790B1 (en) Vertical axis type darrieus windmill
EP2592265B1 (en) Power producing spinner for a wind turbine
US8672608B2 (en) Tower type vertical axle windmill
WO2002059464A1 (en) Fluid machinery
JP7109478B2 (en) Segmented airfoil design for guidewires
EP2402592A1 (en) Wind turbine generator
CN116750186B (en) Low noise blade for open rotor
JP2008082185A (en) Wind power generation device
JP5296249B1 (en) Dragonfly blade-like blades, J-shaped cross-section blades, and J-shaped back-to-back blades used for rotor blades with shrouds, linear blowers, and linear wind power generators
US20100135809A1 (en) Wind wheel
JP2011085127A (en) Rotor
WO2022114106A1 (en) Vortex generator for wind turbine blade, wind turbine blade, and wind-power generation apparatus
KR101073096B1 (en) Vertical axis type Darrieus windmill
WO2019105517A1 (en) Wind turbine blade
KR100979177B1 (en) Wind-turbine apparatus
JP6158019B2 (en) Axial turbine generator
JP6882294B2 (en) Tunnel wind turbine with horizontal rotor axis
JP6426869B1 (en) Horizontal axis rotor
KR20110008789A (en) Blade for wind power generation and device for wind power generation
US11703029B2 (en) Rotor blade for a wind power installation, rotor for a wind power installation, structure and wind power installation
KR101842451B1 (en) Wind power generator
CN102459871A (en) Wind turbine device
JP5829583B2 (en) Wind turbine blade, wind turbine and wind power generator
JP2002188403A (en) Hydraulic equipment

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130612

R150 Certificate of patent or registration of utility model

Ref document number: 5296249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250