JP5295544B2 - Curable composition - Google Patents

Curable composition Download PDF

Info

Publication number
JP5295544B2
JP5295544B2 JP2007270653A JP2007270653A JP5295544B2 JP 5295544 B2 JP5295544 B2 JP 5295544B2 JP 2007270653 A JP2007270653 A JP 2007270653A JP 2007270653 A JP2007270653 A JP 2007270653A JP 5295544 B2 JP5295544 B2 JP 5295544B2
Authority
JP
Japan
Prior art keywords
group
curable composition
acid
reactive silicon
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007270653A
Other languages
Japanese (ja)
Other versions
JP2009096899A (en
Inventor
芳弘 井狩
敏彦 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2007270653A priority Critical patent/JP5295544B2/en
Publication of JP2009096899A publication Critical patent/JP2009096899A/en
Application granted granted Critical
Publication of JP5295544B2 publication Critical patent/JP5295544B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a curable composition securing practical stability and exhibiting high elongation with low stress without reducing adhesiveness of a cured product. <P>SOLUTION: The curable composition comprises a polyether-based polymer A having a cross-linkable reactive silicon group, a carboxylic acid alkali metal salt B containing at least one kind of metal selected among lithium and sodium, and a curing catalyst C mixed if necessary. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、ケイ素原子に結合した水酸基または加水分解性基を有し、シロキサン結合を形成することで架橋しうるケイ素含有基(以下、「反応性ケイ素基」ともいう)を有するポリエーテル系重合体(A)とカルボン酸アルカリ金属塩(B)とを含有することを特徴とする硬化性組成物に関する。   The present invention relates to a polyether-based polymer having a silicon-containing group (hereinafter also referred to as “reactive silicon group”) having a hydroxyl group or a hydrolyzable group bonded to a silicon atom and capable of crosslinking by forming a siloxane bond. The present invention relates to a curable composition comprising a coalescence (A) and an alkali metal carboxylate (B).

分子中に少なくとも1個の反応性ケイ素基を含有する有機重合体は室温下において、湿気等により反応性ケイ素基が加水分解とシロキサン結合形成を経て架橋することでゴム状の硬化物が得られるという興味深い性質を有することが知られている。   An organic polymer containing at least one reactive silicon group in the molecule can form a rubber-like cured product by crosslinking the reactive silicon group through hydrolysis and siloxane bond formation at room temperature due to moisture or the like. It is known to have an interesting property.

これらの反応性ケイ素基を有する重合体中で、ポリエーテル系重合体やポリイソブチレン系重合体は、特許文献1〜7に開示されており、特にポリエーテル系重合体やポリイソブチレン系重合体は既に工業的に生産され、シーリング材、接着剤、塗料などの用途に広く使用されている。   Among these polymers having reactive silicon groups, polyether polymers and polyisobutylene polymers are disclosed in Patent Documents 1 to 7, and in particular, polyether polymers and polyisobutylene polymers are Already industrially produced, it is widely used in applications such as sealing materials, adhesives and paints.

このうち例えば、主鎖がポリプロピレンオキシドであるものを用いた硬化性組成物は、室温では液状であり、硬化するとゴム弾性体となる特徴を有しており、建築用シーリング材等に広く用いられている。   Among these, for example, a curable composition using a main chain of polypropylene oxide is liquid at room temperature, and has a characteristic of becoming a rubber elastic body when cured, and is widely used as a sealing material for buildings. ing.

上述のようなゴム弾性体を建築用途に使用する場合、目地の動きに追従する必要があることから、一般に低応力で高伸びであるようなゴム弾性体が望まれる。低応力にする方法としては、反応性ケイ素基の含有量を減らす方法が知られているが、ゴム表面がべたつく(残留タックと呼ばれる)原因となることが多い。これは、架橋に関与しない分子鎖が残ることによると考えられている。   When the rubber elastic body as described above is used for a building application, it is necessary to follow the movement of the joint. Therefore, a rubber elastic body that generally has a low elongation and a high elongation is desired. As a method of reducing the stress, a method of reducing the content of reactive silicon groups is known, but it often causes the rubber surface to become sticky (called residual tack). This is believed to be due to the remaining molecular chains that are not involved in crosslinking.

また、ゴム弾性体の低応力化、高伸び化技術としては特許文献8に記載されているように、分子中にα,βジオール構造又はα,γジオール構造を有する化合物を組成物中に添加する方法が公知である。   Further, as described in Patent Document 8, as a technique for reducing the stress and increasing the elongation of a rubber elastic body, a compound having an α, β diol structure or an α, γ diol structure in the molecule is added to the composition. Methods for doing this are known.

一方、反応性ケイ素基末を有する重合体とカルボン酸化合物を用いた硬化性組成物に関する発明としては、特許文献9に記載したものが挙げられる。特許文献9に記載されている技術では、ほとんどが周期表の2族〜10族の金属原子についてのものである。
特開昭52−73998号公報 特開平05−125272号公報 特開平03−72527号公報 特開昭63−6003号公報 特開昭63−6041号公報 特公平01−38407号公報 特開平08−231758号公報 特開平11−80533号公報 特開2003−206410号公報
On the other hand, what was described in patent document 9 is mentioned as invention regarding the curable composition using the polymer which has a reactive silicon group powder, and a carboxylic acid compound. Most of the techniques described in Patent Document 9 relate to the metal atoms of Group 2 to Group 10 of the periodic table.
JP-A-52-73998 JP 05-125272 A Japanese Patent Laid-Open No. 03-72527 Japanese Patent Laid-Open No. 63-6003 JP-A 63-6041 Japanese Patent Publication No. 01-38407 Japanese Patent Laid-Open No. 08-231758 Japanese Patent Laid-Open No. 11-80533 JP 2003-206410 A

ところが、反応性ケイ素基の含有量を減らす方法では、ゴムの復元性が大きく低下する問題がある。   However, the method of reducing the content of reactive silicon groups has a problem that the resilience of rubber is greatly reduced.

本発明は、実用的な復元性を確保し、硬化物の接着性を低下させずに、低応力で高伸びを特徴とする硬化性組成物を提供する。   The present invention provides a curable composition characterized by low stress and high elongation without deteriorating the adhesiveness of a cured product while ensuring practical restoration properties.

上述の現状に鑑み検討した結果、架橋可能な反応性ケイ素基を有するポリエーテル系重合体(A)と、カルボン酸アルカリ金属塩のうち、金属がリチウム、ナトリウムから選ばれる少なくとも1種の金属の塩(B)、および必要に応じて硬化触媒(C)を含有することにより、上記課題を解決できることを見出し、本発明を完成するに至った。   As a result of examination in view of the above-mentioned present situation, among the polyether polymer (A) having a crosslinkable reactive silicon group and an alkali metal carboxylate, at least one metal selected from lithium and sodium is used. It has been found that the above problems can be solved by containing the salt (B) and, if necessary, the curing catalyst (C), and the present invention has been completed.

本発明の硬化性組成物は、硬化物が低応力で高伸びという物性を発現し、また、復元性や接着性についても実用に十分耐える物性を発現するという効果を有する。   The curable composition of the present invention has the effect that the cured product exhibits the physical properties of low stress and high elongation, and also exhibits physical properties that are sufficiently practical for the restorability and adhesiveness.

上記(A)成分は、重合体1分子中に反応性ケイ素基を平均して少なくとも1個有する。1分子中に含まれる反応性ケイ素基の数が1個以上であると、実用上十分な硬化性が得られる。しかし、多すぎると架橋密度が高くなりすぎるために良好な機械物性を示さなくなる虞があるので、好ましくは、1.1〜5個である。   The component (A) has at least one reactive silicon group on average in one molecule of the polymer. When the number of reactive silicon groups contained in one molecule is 1 or more, practically sufficient curability can be obtained. However, if the amount is too large, the crosslink density becomes too high, and there is a possibility that good mechanical properties may not be exhibited. Therefore, the number is preferably 1.1 to 5.

上記(A)成分の1分子中に少なくとも1個の反応性ケイ素基を有するポリエーテル系重合体の主鎖骨格は、下記一般式(1)で表される繰り返し単位を持つ。
−R−O− (1)
(式中、Rは2価の有機基を表す。)
上記Rは2価の有機基であれば特に限定されないが、炭素数1〜14の直鎖又は分岐鎖のアルキレン基が好ましい。より好ましくは、炭素数2〜4の直鎖又は分岐鎖のアルキレン基である。
The main chain skeleton of the polyether polymer having at least one reactive silicon group in one molecule of the component (A) has a repeating unit represented by the following general formula (1).
—R 1 —O— (1)
(In the formula, R 1 represents a divalent organic group.)
R 1 is not particularly limited as long as it is a divalent organic group, but a linear or branched alkylene group having 1 to 14 carbon atoms is preferable. More preferably, it is a C2-C4 linear or branched alkylene group.

上記一般式(1)で表される繰り返し単位としては特に限定されないが、例えば、−CHO−、−CHCHO−、−CHCH(CH)O−、−CHCH(C)O−、−CHC(CHO−、−CHCHCHCHO−等が挙げられる。 The repeating unit represented by the general formula (1) is not particularly limited, for example, -CH 2 O -, - CH 2 CH 2 O -, - CH 2 CH (CH 3) O -, - CH 2 CH (C 2 H 5) O - , - CH 2 C (CH 3) 2 O -, - CH 2 CH 2 CH 2 CH 2 O- and the like.

上記ポリエーテル系重合体の主鎖骨格は、上記一般式(1)で表される繰り返し単位のうち1種類からなってもよいし、2種類以上の繰り返し単位からなってもよい。シーリング材用途等に使用される場合には、特にプロピレンオキシドを主成分とする重合体が好ましい。   The main chain skeleton of the polyether polymer may be composed of one type of repeating units represented by the general formula (1), or may be composed of two or more types of repeating units. When used for a sealing material or the like, a polymer containing propylene oxide as a main component is particularly preferable.

上記ポリエーテル系重合体の主鎖骨格中には、ポリエーテル系重合体の特徴を大きく損なわない範囲でウレタン結合等の他の結合成分を有してもよい。このような結合様式としては他に、エステル結合、ウレア結合、カーバメート結合、スルフィド結合、ジスルフィド結合等が挙げられる。   The main chain skeleton of the polyether polymer may have other bonding components such as a urethane bond as long as the characteristics of the polyether polymer are not significantly impaired. Other examples of such bonding modes include ester bonds, urea bonds, carbamate bonds, sulfide bonds, disulfide bonds, and the like.

上記(A)成分中に含有される反応性ケイ素基は下記一般式(2)で表されるものである。
−[Si(R2−a(X)O]−Si(R3−b(X)(2)
(式中、R、Rは、同一又は異なって、それぞれ炭素数1〜20のアルキル基、炭素数6〜20のアリール基、炭素数7〜20のアラルキル基、又は(RSiO−(Rは炭素数1〜20の1価の炭化水素基を示す。3個のRは同一であってもよく、異なっていてもよい)で表されるトリオルガノシロキシ基を示す。R又はRがそれぞれ2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。Xは水酸基又は加水分解性基を示す。Xが2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。aは0〜2の整数を表す。bは0〜3の整数を表す。pは0〜19の整数を示す。pが2以上である場合、p個の−[Si(R2−a(X)O]−基におけるaは、同一の値であってもよく、異なっていてもよい。なお、上記一般式(2)で表される反応性ケイ素基において、Xで表される加水分解性基又は水酸基は少なくとも1個存在するものとする。)
上記炭素数1〜20のアルキル基としては特に限定されず、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t−ブチル基、シクロヘキシル基等が挙げられる。
The reactive silicon group contained in the component (A) is represented by the following general formula (2).
- [Si (R 2) 2 -a (X) a O] p -Si (R 3) 3-b (X) b (2)
(In the formula, R 2 and R 3 are the same or different and are each an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or (R 4 ) 3. SiO- (R 4 is R 4 .3 pieces of a monovalent hydrocarbon group having 1 to 20 carbon atoms may be the same or different) shows a triorganosiloxy group represented by When two or more of R 2 or R 3 are present, they may be the same or different, X represents a hydroxyl group or a hydrolyzable group, and when two or more of X are present, They may be the same or different, a represents an integer of 0 to 2, b represents an integer of 0 to 3, p represents an integer of 0 to 19. p is 2 or more. in some cases, the p number - [Si (R 2) 2 -a (X) a O] p - a in group, the In the reactive silicon group represented by the general formula (2), there is at least one hydrolyzable group or hydroxyl group represented by X. Suppose)
The alkyl group having 1 to 20 carbon atoms is not particularly limited, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, and a cyclohexyl group.

上記炭素数6〜20のアリール基としては特に限定されず、例えば、フェニル基、ナフチル基、アントリル基、ピレニル基等が挙げられる。   The aryl group having 6 to 20 carbon atoms is not particularly limited, and examples thereof include a phenyl group, a naphthyl group, an anthryl group, and a pyrenyl group.

上記炭素数7〜20のアラルキル基としては特に限定されず、例えば、ベンジル基、フェネチル基等が挙げられる。   The aralkyl group having 7 to 20 carbon atoms is not particularly limited, and examples thereof include a benzyl group and a phenethyl group.

上記炭素数1〜20の1価の炭化水素基としては特に限定されず、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t−ブチル基、ペンチル基、エチニル基、1−プロペニル基、ビニル基、アリル基、1−メチルブチル基、2−エチルブチル基、シクロヘキシル基、フェニル基等が挙げられる。   The monovalent hydrocarbon group having 1 to 20 carbon atoms is not particularly limited. For example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, t-butyl group, pentyl group, ethynyl group, 1- Examples include propenyl group, vinyl group, allyl group, 1-methylbutyl group, 2-ethylbutyl group, cyclohexyl group, and phenyl group.

上記Xで表される加水分解性基としては特に限定されず、従来公知のものを用いることができる。例えば、水素原子、ハロゲン原子、アルコキシ基、アリールオキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基、イソシアニド基、イソシアネ−ト基、イソチオシアネート基等が挙げられる。これらのうち、水素原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基が好ましく、加水分解性が穏やかで取り扱いやすいという点から、アルコキシ基が特に好ましい。   It does not specifically limit as a hydrolysable group represented by said X, A conventionally well-known thing can be used. For example, hydrogen atom, halogen atom, alkoxy group, aryloxy group, acyloxy group, ketoximate group, amino group, amide group, acid amide group, aminooxy group, mercapto group, alkenyloxy group, isocyanide group, isocyanate group, And isothiocyanate groups. Among these, a hydrogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an aminooxy group, a mercapto group, and an alkenyloxy group are preferable. Particularly preferred.

上記Xで表される水酸基や加水分解性基は、1個のケイ素原子に1〜3個の範囲で結合することができる。また、上記一般式(2)で表される反応性ケイ素基中の水酸基や加水分解性基の総和は、1〜5個の範囲が好ましい。上記反応性ケイ素基を形成するケイ素原子は1個でもよく、2個以上であってもよいが、シロキサン結合等により連結されたケイ素原子の場合は20個までであってもよい。   The hydroxyl group or hydrolyzable group represented by X can be bonded to one silicon atom in the range of 1 to 3. Moreover, the sum total of the hydroxyl group and hydrolyzable group in the reactive silicon group represented by the general formula (2) is preferably in the range of 1 to 5. The number of silicon atoms forming the reactive silicon group may be one or two or more. In the case of silicon atoms linked by a siloxane bond or the like, up to 20 silicon atoms may be used.

本発明においては、上記一般式(2)で表される反応性ケイ素基のうち、下記一般式(3)
−Si(R3−b(X) (3)
(式中、R、X、bは上記に同じ。)で表される反応性ケイ素基が、入手が容易である点から好ましく用いられる。
In the present invention, among the reactive silicon groups represented by the general formula (2), the following general formula (3)
-Si (R 3 ) 3-b (X) b (3)
A reactive silicon group represented by the formula (wherein R 3 , X and b are the same as above) is preferably used because it is easily available.

上記(A)成分において、上記反応性ケイ素基の導入方法としては特に限定されず、公知の方法を用いることができる。例えば、以下に挙げる方法で導入することができる。
(イ)分子中に水酸基等の官能基を有するポリエーテル系重合体に、この官能基に対して反応性を示す活性基及び不飽和基を有する有機化合物を反応させ、不飽和基を含有するポリエーテル系重合体を得るか、又は、不飽和基含有エポキシ化合物との共重合により不飽和基を含有するポリエーテル系重合体を得、次いで、得られた不飽和基を含有するポリエーテル系重合体に反応性ケイ素基を有するヒドロシランを作用させてヒドロシリル化する方法。
(ロ)(イ)法と同様にして得られた不飽和基を含有するポリエーテル系重合体にメルカプト基及び反応性ケイ素基を有する化合物を反応させる方法。
(ハ)分子中に水酸基、エポキシ基やイソシアネート基等の官能基を有するポリエーテル系重合体に、この官能基に対して反応性を示す官能基及び反応性ケイ素基を有する化合物を反応させる方法。
In the component (A), the method for introducing the reactive silicon group is not particularly limited, and a known method can be used. For example, it can be introduced by the following method.
(A) A polyether polymer having a functional group such as a hydroxyl group in the molecule is reacted with an organic compound having an active group and an unsaturated group which are reactive with the functional group, and contains an unsaturated group. A polyether polymer is obtained, or a polyether polymer containing an unsaturated group is obtained by copolymerization with an unsaturated group-containing epoxy compound, and then the obtained polyether group containing an unsaturated group A method of hydrosilylating a polymer by reacting a hydrosilane having a reactive silicon group.
(B) A method in which a polyether polymer containing an unsaturated group obtained in the same manner as in the method (a) is reacted with a compound having a mercapto group and a reactive silicon group.
(C) A method in which a polyether polymer having a functional group such as a hydroxyl group, an epoxy group, or an isocyanate group in the molecule is reacted with a compound having a reactive functional group and a reactive silicon group. .

以上の方法のなかで、(イ)の方法、又は、(ハ)のうち末端に水酸基を有する重合体とイソシアネート基及び反応性ケイ素基を有する化合物を反応させる方法が好ましい。   Among the above methods, the method (a) or the method (c) of reacting a polymer having a hydroxyl group at the terminal with a compound having an isocyanate group and a reactive silicon group is preferred.

上記(A)成分は直鎖状であっても、分岐を有してもよく、その分子量は500〜50000程度が好ましい。より好ましくは、1000〜30000である。   The component (A) may be linear or branched, and the molecular weight is preferably about 500 to 50,000. More preferably, it is 1000-30000.

上記(A)成分の具体例としては特に限定されず、例えば、特公昭45−36319号公報、特公昭46−12154号公報、特開昭50−156599号公報、特開昭54−6096号公報、特開昭55−13767号公報、特開昭55−13468号公報、特開昭57−164123号公報、特公平3−2450号公報、米国特許第3,632,557、米国特許第4,345,053、米国特許第4,366,307、米国特許第4,960,844等の各公報に開示されているもの、また、特開昭61−197631号公報、特開昭61−215622号公報、特開昭61−215623号公報、特開昭61−218632号公報等の各公報に開示されている数平均分子量6000以上、Mw/Mnが1.6以下であるような高分子量で且つ分子量分布が狭いポリエーテル系重合体等を挙げることができる。   Specific examples of the component (A) are not particularly limited. For example, JP-B No. 45-36319, JP-B No. 46-12154, JP-A No. 50-156599, JP-A No. 54-6096 are disclosed. JP, 55-13767, JP 55-13468, JP 57-164123, JP 3-2450, U.S. Pat. No. 3,632,557, U.S. Pat. 345,053, U.S. Pat. No. 4,366,307, U.S. Pat. No. 4,960,844, etc., and JP-A 61-197631, JP-A 61-215622. A polymer having a number average molecular weight of 6000 or more and Mw / Mn of 1.6 or less disclosed in each publication such as JP-A-61-215623 and JP-A-61-218632. In and molecular weight distribution can be given a narrow polyether polymer or the like.

上記反応性ケイ素基を含有するポリエーテル系重合体は、単独で使用してもよいし2種以上併用してもよい。また、反応性ケイ素基を有するビニル系重合体を併用してなるポリエーテル系重合体も用いることができる。   The polyether polymer containing the reactive silicon group may be used alone or in combination of two or more. In addition, a polyether polymer obtained by using a vinyl polymer having a reactive silicon group in combination can also be used.

上記反応性ケイ素基を含有するビニル系重合体をブレンドしてなるポリエーテル系重合体の製造方法としては特に限定されず、例えば、特開昭59−122541号公報、特開昭63−112642号公報、特開平6−172631号公報等に開示されているもの等を挙げることができる。   The method for producing a polyether polymer obtained by blending the vinyl polymer containing the reactive silicon group is not particularly limited. For example, JP 59-122541 A and JP 63-112642 A1. The thing etc. which are indicated by gazette, JP, 6-172631, A, etc. can be mentioned.

また、上記反応性ケイ素基を含有するオキシアルキレン系重合体の存在下で(メタ)アクリル酸エステル系単量体の重合を行う方法を用いることもできる。この製造方法は、特開昭59−78223号公報、特開昭59−168014号公報、特開昭60−228516号公報、特開昭60−228517号公報等の各公報に具体的に開示されているが、これらに限定されるものではない。   Moreover, the method of superposing | polymerizing a (meth) acrylic-ester type monomer in presence of the oxyalkylene type polymer containing the said reactive silicon group can also be used. This production method is specifically disclosed in JP-A-59-78223, JP-A-59-168014, JP-A-60-228516, JP-A-60-228517, and the like. However, it is not limited to these.

本発明の硬化性組成物に含有される(B)成分のカルボン酸アルカリ金属塩は、詳しい作用機構は不明であるが、ポリエーテル系重合体中の反応性ケイ素基に作用することで、架橋密度を低下させたり、カルボン酸アルカリ金属塩自身が可塑剤として作用することによって、硬化物の内部応力を低下させ、高伸びを発現させるものと考えられる。   The alkali metal salt of the carboxylic acid component (B) contained in the curable composition of the present invention is not known in detail, but it acts as a crosslink by acting on the reactive silicon group in the polyether polymer. It is considered that the internal stress of the cured product is reduced and high elongation is exhibited by reducing the density or the carboxylic acid alkali metal salt itself acting as a plasticizer.

従って、(B)成分として使用するカルボン酸アルカリ金属塩としてはカルボン酸部位の炭素数が多いもの、すなわち一般に高級脂肪酸と呼ばれるカルボン酸が好ましい。長鎖の高級脂肪酸部位によって大きな可塑化効果が期待できるからである。また、カルボン酸部位の炭素数が多いものは(B)成分自身とポリエーテル系重合体との絡み合いが強く働くことで、硬化物表面へのブリードが阻害され、効果が長期に渡って持続する。   Therefore, as the carboxylic acid alkali metal salt used as the component (B), those having a large number of carbon atoms in the carboxylic acid moiety, that is, carboxylic acids generally called higher fatty acids are preferred. This is because a large plasticizing effect can be expected from the long chain higher fatty acid moiety. In addition, when the carbon number of the carboxylic acid moiety is large, the entanglement between the component (B) itself and the polyether polymer acts strongly, so that bleeding to the cured product surface is inhibited and the effect lasts for a long time. .

本発明においてカルボン酸部位の炭素数は、その部位自体による可塑化効果を特に必要としない場合には限定されず2以上であれば良いが、可塑化効果を望む場合には8以上が好ましく、10以上がより好ましく、12以上がさらに好ましい。一方で取り扱いや組成物に対する溶解性の観点から18以下が好ましい炭素数である。   In the present invention, the number of carbon atoms in the carboxylic acid moiety is not limited when the plasticizing effect by the moiety itself is not particularly required, and may be 2 or more, but preferably 8 or more when the plasticizing effect is desired, 10 or more are more preferable, and 12 or more are more preferable. On the other hand, 18 or less is preferable from the viewpoint of handling and solubility in the composition.

また、本発明の(B)成分はアルカリ金属塩であることが好ましい。これは一般に、アルカリ土類金属の塩はアルカリ金属のそれに比べて金属イオンと陰イオン間の結合が強いために、種々の媒体に対する溶解性が小さいことが知られている。従って、本発明においてカルボン酸のアルカリ土類金属塩を使用した場合は、硬化性組成物へ溶解または分散しにくく、所望の効果が得られないことがあるからである。   Moreover, it is preferable that (B) component of this invention is an alkali metal salt. In general, it is known that an alkaline earth metal salt has a lower solubility in various media because the bond between a metal ion and an anion is stronger than that of an alkali metal. Therefore, when an alkaline earth metal salt of carboxylic acid is used in the present invention, it is difficult to dissolve or disperse in the curable composition, and the desired effect may not be obtained.

さらに、3族以降の金属イオンの場合は、金属そのものの入手性、毒性やコストの点から望ましくない場合もある。   Furthermore, in the case of group 3 or later metal ions, it may be undesirable from the standpoint of availability, toxicity and cost of the metal itself.

また、アルカリ金属の中でも、ルビジウム、セシウム、フランシウムは地球上に存在する量が少ない希少な金属であるため、コスト面から実用されにくい。また、一般に、カリウムはナトリウムに比べて工業的に使用されている量が少なく、この点でコスト的に実用化されにくい。従って、本発明の(B)成分のカルボン酸アルカリ金属塩に使用されるアルカリ金属としては、リチウムもしくはナトリウムが好適に使用される。   Further, among alkali metals, rubidium, cesium, and francium are rare metals that are present in a small amount on the earth, and thus are difficult to put into practical use from the viewpoint of cost. In general, potassium is used less industrially than sodium, and it is difficult to put it to practical use in this respect. Accordingly, lithium or sodium is preferably used as the alkali metal used in the carboxylic acid alkali metal salt of the component (B) of the present invention.

このようなカルボン酸アルカリ金属塩としては、オクチル酸リチウム、オクチル酸ナトリウム、2−エチルへキサン酸リチウム、2−エチルへキサン酸ナトリウム、カプリン酸リチウム、カプリン酸ナトリウム、ネオデカン酸リチウム、ネオデカン酸ナトリウム、ラウリン酸リチウム、らウリン酸ナトリウム、ミリスチン酸リチウム、ミリスチン酸ナトリウム、パルミチン酸リチウム、パルミチン酸ナトリウム、オレイン酸リチウム、オレイン酸ナトリウム、ステアリン酸リチウム、ステアリン酸ナトリウムが好ましい。   Examples of the alkali metal carboxylate include lithium octylate, sodium octylate, lithium 2-ethylhexanoate, sodium 2-ethylhexanoate, lithium caprate, sodium caprate, lithium neodecanoate, and sodium neodecanoate. Lithium laurate, sodium urinate, lithium myristate, sodium myristate, lithium palmitate, sodium palmitate, lithium oleate, sodium oleate, lithium stearate, and sodium stearate are preferred.

上記(B)の化合物は、単独で使用してもよいし2種以上併用してもよい。上記(B)の化合物の使用量は、上記(A)成分であるポリエーテル系重合体100重量部に対し、0.1〜100重量部が好ましい。0.1重量部未満であると、目的とする効果が得られにくく、100重量部を超えると、硬化物の強度や高度が実用的でなくなる場合があり好ましくない。1〜20重量部の範囲で使用することがより好ましい。   The compound (B) may be used alone or in combination of two or more. The amount of the compound (B) used is preferably 0.1 to 100 parts by weight with respect to 100 parts by weight of the polyether polymer as the component (A). If the amount is less than 0.1 parts by weight, it is difficult to obtain the intended effect. If the amount exceeds 100 parts by weight, the strength and altitude of the cured product may not be practical, which is not preferable. It is more preferable to use in the range of 1 to 20 parts by weight.

本発明の硬化性組成物に含有される(C)成分の硬化触媒としては、特に限定されず、一般に使用されているシラノール縮合触媒を用いることができる。このようなものとしては、例えば、テトラブチルチタネート、テトラプロピルチタネート等のチタン酸エステル類;ジブチルすずジラウレート、ジブチルすずマレエート、ジブチルすずジアセテート、オクチル酸すず、ナフテン酸すず、ジブチルすずオキサイドとフタル酸エステルとの反応物、ジブチルすずジアセチルアセトナート等の有機すず化合物類;アルミニウムトリスアセチルアセトナート、アルミニウムトリスエチルアセトアセテート、ジイソプロポキシアルミニウムエチルアセトアセテート等の有機アルミニウム化合物類;ビスマス−トリス(2−エチルヘキソエート)、ビスマス−トリス(ネオデカノエート)等のビスマス塩と有機カルボン酸との反応物等;ジルコニウムテトラアセチルアセトナート、チタンテトラアセチルアセトナート等のキレート化合物類;オクチル酸鉛等の有機鉛化合物;有機バナジウム化合物;ブチルアミン、オクチルアミン、ジブチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ジエチレントリアミン、トリエチレンテトラミン、オレイルアミン、シクロヘキシルアミン、ベンジルアミン、ジエチルアミノプロピルアミン、キシリレンジアミン、トリエチレンジアミン、グアニジン、ジフェニルグアニジン、2,4,6−トリス(ジメチルアミノメチル)フェノール、モルホリン、N−メチルモルホリン、2−エチル−4−メチルイミダゾール、1,8−ジアザビシクロ(5,4,0)ウンデセン−7(DBU)等のアミン系化合物;又はそれらのカルボン酸等との塩;過剰のポリアミンと多塩基酸とから得られる低分子量ポリアミド樹脂;過剰のポリアミンとエポキシ化合物との反応生成物等を挙げることができる。これらは単独でも2種以上併用して用いてもよい。上記シラノール縮合触媒のうち、有機金属化合物類、有機金属化合物類とアミン系化合物との併用系が硬化性の点から好ましい。   The curing catalyst for the component (C) contained in the curable composition of the present invention is not particularly limited, and a generally used silanol condensation catalyst can be used. Examples include titanic acid esters such as tetrabutyl titanate and tetrapropyl titanate; dibutyltin dilaurate, dibutyltin maleate, dibutyltin diacetate, tin octylate, tin naphthenate, dibutyltin oxide and phthalic acid Reaction products with esters, organotin compounds such as dibutyltin diacetylacetonate; organoaluminum compounds such as aluminum trisacetylacetonate, aluminum trisethylacetoacetate, diisopropoxyaluminum ethylacetoacetate; bismuth-tris (2- Reaction products of bismuth salts such as ethylhexoate) and bismuth-tris (neodecanoate) and organic carboxylic acids, etc .; zirconium tetraacetylacetonate, titanium tetraacetyl Chelate compounds such as setnerate; organic lead compounds such as lead octylate; organic vanadium compounds; butylamine, octylamine, dibutylamine, monoethanolamine, diethanolamine, triethanolamine, diethylenetriamine, triethylenetetramine, oleylamine, cyclohexylamine, benzyl Amine, diethylaminopropylamine, xylylenediamine, triethylenediamine, guanidine, diphenylguanidine, 2,4,6-tris (dimethylaminomethyl) phenol, morpholine, N-methylmorpholine, 2-ethyl-4-methylimidazole, 1, Amine compounds such as 8-diazabicyclo (5,4,0) undecene-7 (DBU); or salts thereof with carboxylic acids; excess polyamines and polybasic acids And the like the reaction product of an excess polyamine and epoxy compound; et low molecular weight polyamide resin obtained. These may be used alone or in combination of two or more. Among the silanol condensation catalysts, organometallic compounds, and a combined system of an organometallic compound and an amine compound are preferable from the viewpoint of curability.

上記シラノール縮合触媒の使用量は、上記反応性ケイ素基を有する上記成分(A)であるポリエーテル系重合体100重量部に対して0.01〜20重量部が好ましい。0.01重量部未満であると、硬化速度が遅くなり、また、硬化反応が充分に進行しにくくなり、20重量部を超えると、硬化時に局部的な発熱や発泡が生じ、良好な硬化物が得られにくくなる。より好ましくは、0.1〜10重量部である。   The amount of the silanol condensation catalyst used is preferably 0.01 to 20 parts by weight with respect to 100 parts by weight of the polyether polymer as the component (A) having the reactive silicon group. If it is less than 0.01 part by weight, the curing rate is slow, and the curing reaction does not proceed sufficiently. If it exceeds 20 parts by weight, local heat generation and foaming occur during curing, and a good cured product is obtained. Is difficult to obtain. More preferably, it is 0.1 to 10 parts by weight.

本発明の硬化性組成物には、更に、必要に応じて、脱水剤、相溶化剤、接着性改良剤、物性調整剤、保存安定性改良剤、充填剤、可塑剤、老化防止剤、紫外線吸収剤、金属不活性化剤、オゾン劣化防止剤、光安定剤、アミン系ラジカル連鎖禁止剤、リン系過酸化物分解剤、滑剤、顔料、発泡剤、難燃剤、帯電防止剤等の各種添加剤を適宜添加することができる。   The curable composition of the present invention may further include a dehydrating agent, a compatibilizing agent, an adhesion improving agent, a physical property adjusting agent, a storage stability improving agent, a filler, a plasticizer, an anti-aging agent, an ultraviolet ray, if necessary. Various additives such as absorbers, metal deactivators, ozone degradation inhibitors, light stabilizers, amine radical chain inhibitors, phosphorus peroxide decomposers, lubricants, pigments, foaming agents, flame retardants, antistatic agents, etc. An agent can be added as appropriate.

上記充填剤としては特に限定されず、例えば、木粉、クルミ殻粉、もみ殻粉、パルプ、木綿チップ、マイカ、グラファイト、けいそう土、白土、カオリン、クレー、タルク、ヒュームドシリカ、沈降性シリカ、無水ケイ酸、石英粉末、ガラスビーズ、炭酸カルシウム、炭酸マグネシウム、酸化チタン、カーボンブラック、ガラスバルーン、アルミニウム粉末、亜鉛粉末、アスベスト、ガラス繊維、炭素繊維等を挙げることができる。これらは単独でも2種以上併用して用いてもよい。   The filler is not particularly limited. For example, wood powder, walnut shell powder, rice husk powder, pulp, cotton chips, mica, graphite, diatomaceous earth, white clay, kaolin, clay, talc, fumed silica, sedimentation property. Examples thereof include silica, silicic anhydride, quartz powder, glass beads, calcium carbonate, magnesium carbonate, titanium oxide, carbon black, glass balloon, aluminum powder, zinc powder, asbestos, glass fiber, and carbon fiber. These may be used alone or in combination of two or more.

本発明の硬化性組成物の調製方法としては特に限定されず、例えば、ポリエーテル系重合体(A)にカルボン酸アルカリ金属塩化合物(B)を添加し、必要に応じて、加熱攪拌等を施し、均一に分散させればよい。しかし、完全に均一透明な状態にする必要はなく、不透明な状態であっても分散していれば充分な効果を得ることができる。   It does not specifically limit as a preparation method of the curable composition of this invention, For example, a carboxylic-acid alkali metal salt compound (B) is added to a polyether polymer (A), and heating stirring etc. are carried out as needed. It can be applied and uniformly dispersed. However, it is not necessary to make it completely uniform and transparent, and even if it is in an opaque state, a sufficient effect can be obtained if it is dispersed.

上述の混合方法としては、ミキサー、3本ロール、ニーダー等を用いることができる。また、必要に応じて分散性改良剤を併用してもよい。   As the above-mentioned mixing method, a mixer, three rolls, a kneader, or the like can be used. Moreover, you may use a dispersibility improving agent together as needed.

以上のようにして得られる硬化性組成物は、2液型はもちろん1液型の硬化性組成物にも適用できる。1液型の場合は、実質的に水分のない状態で本発明の硬化性組成物を調製することによって得られ、密閉状態に保存すれば長期間の貯蔵に耐え、大気中に曝露すれば速やかに表面から硬化を開始する。   The curable composition obtained as described above can be applied to a one-component curable composition as well as a two-component curable composition. In the case of the one-pack type, it is obtained by preparing the curable composition of the present invention in a substantially moisture-free state, and can be stored for a long time if stored in a sealed state, and quickly if exposed to the atmosphere. Curing is started from the surface.

本発明の硬化性組成物は、粘着剤、建造物・船舶・自動車・道路などのシーリング材、接着剤、型取剤、防振材、制振材、防音材、発泡材料、塗料、吹付材などに使用できる。本発明の硬化性組成物を硬化して得られる硬化物は、柔軟性および接着性に優れることから、これらの中でも、シーリング材または接着剤として用いることがより好ましい。   The curable composition of the present invention is a pressure-sensitive adhesive, a sealing material for buildings, ships, automobiles, roads, etc., an adhesive, a mold preparation, a vibration-proof material, a vibration-damping material, a sound-proof material, a foam material, a paint, and a spray material. Can be used for etc. Since the hardened | cured material obtained by hardening | curing the curable composition of this invention is excellent in a softness | flexibility and adhesiveness, it is more preferable to use as a sealing material or an adhesive agent among these.

また、太陽電池裏面封止材などの電気・電子部品材料、電線・ケーブル用絶縁被覆材などの電気絶縁材料、弾性接着剤、コンタクト型接着剤、スプレー型シール材、クラック補修材、タイル張り用接着剤、粉体塗料、注型材料、医療用ゴム材料、医療用粘着剤、医療機器シール材、食品包装材、サイディグボードなどの外装材の目地用シーリング材、コーティング材、プライマー、電磁波遮蔽用導電性材料、熱伝導性材料、ホットメルト材料、電気電子用ポッティング剤、フィルム、ガスケット、各種成形材料、および、網入りガラスや合わせガラス端面(切断部)の防錆・防水用封止材、自動車部品、電機部品、各種機械部品などにおいて使用される液状シール剤などの様々な用途に利用可能である。更に、単独あるいはプライマーの助けをかりてガラス、磁器、木材、金属、樹脂成形物などの如き広範囲の基質に密着しうるので、種々のタイプの密封組成物および接着組成物としても使用可能である。   Also, electrical and electronic parts materials such as solar cell backside sealing materials, electrical insulation materials such as insulation coating materials for electric wires and cables, elastic adhesives, contact type adhesives, spray type sealing materials, crack repair materials, and tiles Adhesives, powder coating materials, casting materials, medical rubber materials, medical adhesives, medical equipment seal materials, food packaging materials, sealing materials for joints of exterior materials such as siding boards, coating materials, primers, electromagnetic shielding Conductive materials, heat conductive materials, hot melt materials, potting agents for electrical and electronic use, films, gaskets, various molding materials, and sealing materials for anticorrosion and waterproofing of meshed glass and laminated glass end faces (cut parts) It can be used for various applications such as liquid sealants used in automobile parts, electrical parts, various machine parts and the like. Furthermore, since it can adhere to a wide range of substrates such as glass, porcelain, wood, metal and resin moldings alone or with the help of a primer, it can be used as various types of sealing compositions and adhesive compositions. .

以下に本発明の実施例を掲げて更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

なお、下記合成例、実施例及び比較例中、「部」及び「%」は、それぞれ「重量部」及び「重量%」を表す。   In the following synthesis examples, examples and comparative examples, “part” and “%” represent “part by weight” and “% by weight”, respectively.

また、下記合成例中、「数平均分子量」及び「分子量分布(重量平均分子量と数平均分子量の比)」は、ゲルパーミエーションクロマトグラフィー(GPC)を用いた標準ポリスチレン換算法により算出した。ただし、GPCカラムとしてポリスチレン架橋ゲルを充填したもの(東ソー製TSK−GEL Hタイプ)、GPC溶媒としてテトラヒドロフラン(THF)を用いた。
(合成例1)架橋性シリル基を有するポリエーテル系重合体(A−1)の合成例
分子量約2,000のポリオキシプロピレンジオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキシドの重合を行い、数平均分子量約25,500のポリプロピレンオキシドを得た。続いて、この水酸基末端ポリプロピレンオキシドの水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、更に塩化アリルを添加して末端の水酸基をアリル基に変換した。未反応の塩化アリルを減圧脱揮により除去した。得られた未精製のアリル基末端ポリプロピレンオキシド100重量部に対し、n−ヘキサン300重量部と、水300重量部を混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液に更に水300重量部を混合攪拌し、再度遠心分離により水を除去した後、ヘキサンを減圧脱揮により除去した。以上により、末端がアリル基である数平均分子量約25,500の2官能ポリプロピレンオキシド(P−1)を得た。
In the following synthesis examples, “number average molecular weight” and “molecular weight distribution (ratio of weight average molecular weight to number average molecular weight)” were calculated by a standard polystyrene conversion method using gel permeation chromatography (GPC). However, a GPC column packed with polystyrene cross-linked gel (TSO-GEL H type manufactured by Tosoh Corporation) and tetrahydrofuran (THF) as a GPC solvent were used.
(Synthesis Example 1) Synthesis Example of Polyether Polymer (A-1) Having Crosslinkable Silyl Group Propylene oxide using polyoxypropylene diol having a molecular weight of about 2,000 as an initiator and a zinc hexacyanocobaltate glyme complex catalyst To obtain polypropylene oxide having a number average molecular weight of about 25,500. Subsequently, a methanol solution of 1.2 times equivalent of NaOMe with respect to the hydroxyl group of the hydroxyl group-terminated polypropylene oxide was added to distill off the methanol, and further allyl chloride was added to convert the terminal hydroxyl group into an allyl group. Unreacted allyl chloride was removed by vacuum devolatilization. After mixing and stirring 300 parts by weight of n-hexane and 300 parts by weight of water with respect to 100 parts by weight of the obtained unpurified allyl group-terminated polypropylene oxide, water was removed by centrifugation, and the resulting hexane solution was further added. 300 parts by weight of water was mixed and stirred, and after removing water again by centrifugation, hexane was removed by vacuum devolatilization. As a result, a bifunctional polypropylene oxide (P-1) having a number average molecular weight of about 25,500 having an allyl group at the end was obtained.

得られたアリル基末端ポリプロピレンオキシド(P−1)100重量部に対し、白金ビニルシロキサン錯体の白金含量3wt%のイソプロパノール溶液150ppmを触媒として、メチルジメトキシシラン1.1重量部と90℃で5時間反応させ、メチルジメトキシシリル基末端ポリプロピレンオキシド(A−1)を得た。H−NMRによる測定により、末端のメチルジメトキシシリル基は1分子あたり平均して約1.2個であった。
(合成例2)架橋性シリル基を有するポリ(アクリル酸n−ブチル)重合体(A−2)の合成例
窒素雰囲気下、250L反応機に、CuBr(1.09kg)、アセトニトリル(11.4kg)、アクリル酸n−ブチル(26.0kg)及び2,5−ジブロモアジピン酸ジエチル(2.28kg)を加え、70〜80℃で30分程度撹拌した。これにペンタメチルジエチレントリアミンを加え、反応を開始した。反応開始30分後から2時間かけて、アクリル酸n−ブチル(104kg)を連続的に追加した。反応途中、ペンタメチルジエチレントリアミンを適宜添加し、内温70℃〜90℃となるようにした。ここまでで使用したペンタメチルジエチレントリアミン総量は220gであった。反応開始から4時間後、80℃で減圧下、加熱攪拌することにより揮発分を除去した。これにアセトニトリル(45.7kg)、1,7−オクタジエン(14.0kg)、ペンタメチルジエチレントリアミン(439g)を添加して、8時間撹拌を続けた。混合物を80℃で減圧下、加熱攪拌して揮発分を除去した。
With respect to 100 parts by weight of the obtained allyl group-terminated polypropylene oxide (P-1), 1.1 parts by weight of methyldimethoxysilane and 90 ° C. for 5 hours using 150 ppm of an isopropanol solution having a platinum content of 3 wt% of a platinum vinylsiloxane complex as a catalyst Reaction was performed to obtain a methyldimethoxysilyl group-terminated polypropylene oxide (A-1). As a result of measurement by 1 H-NMR, the average number of terminal methyldimethoxysilyl groups was about 1.2 per molecule.
(Synthesis example 2) Synthesis example of poly (n-butyl acrylate) polymer (A-2) having a crosslinkable silyl group In a nitrogen atmosphere, a 250 L reactor was charged with CuBr (1.09 kg), acetonitrile (11.4 kg). ), N-butyl acrylate (26.0 kg) and diethyl 2,5-dibromoadipate (2.28 kg) were added, and the mixture was stirred at 70 to 80 ° C. for about 30 minutes. To this was added pentamethyldiethylenetriamine to initiate the reaction. 30 minutes after the start of the reaction, n-butyl acrylate (104 kg) was continuously added over 2 hours. During the reaction, pentamethyldiethylenetriamine was appropriately added so that the internal temperature became 70 ° C to 90 ° C. The total amount of pentamethyldiethylenetriamine used so far was 220 g. Four hours after the start of the reaction, volatile components were removed by heating and stirring at 80 ° C. under reduced pressure. Acetonitrile (45.7 kg), 1,7-octadiene (14.0 kg) and pentamethyldiethylenetriamine (439 g) were added thereto, and stirring was continued for 8 hours. The mixture was heated and stirred at 80 ° C. under reduced pressure to remove volatile components.

この濃縮物にトルエンを加え、重合体を溶解させた後、ろ過助剤として珪藻土、吸着剤として珪酸アルミ、ハイドロタルサイトを加え、酸素窒素混合ガス雰囲気下(酸素濃度6%)、内温100℃で加熱攪拌した。混合液中の固形分をろ過で除去し、ろ液を内温100℃で減圧下、加熱攪拌して揮発分を除去した。さらにこの濃縮物に吸着剤として珪酸アルミ、ハイドロタルサイト、熱劣化防止剤を加え、減圧下、加熱攪拌した(平均温度約175℃、減圧度10Torr以下)。さらに吸着剤として珪酸アルミ、ハイドロタルサイトを追加し、酸化防止剤を加え、酸素窒素混合ガス雰囲気下(酸素濃度6%)、内温150℃で加熱攪拌した。この濃縮物にトルエンを加え、重合体を溶解させた後、混合液中の固形分をろ過で除去し、ろ液を減圧下で加熱攪拌して揮発分を除去し、アルケニル基を有する重合体を得た。   Toluene is added to this concentrate to dissolve the polymer, diatomaceous earth is added as a filter aid, aluminum silicate and hydrotalcite are added as adsorbents, and an oxygen-nitrogen mixed gas atmosphere (oxygen concentration 6%) is set to an internal temperature of 100. The mixture was heated and stirred at ° C. The solid content in the mixed solution was removed by filtration, and the filtrate was heated and stirred at an internal temperature of 100 ° C. under reduced pressure to remove volatile components. Furthermore, aluminum silicate, hydrotalcite, and a heat deterioration inhibitor were added as adsorbents to this concentrate, and the mixture was heated and stirred under reduced pressure (average temperature of about 175 ° C., degree of vacuum of 10 Torr or less). Furthermore, aluminum silicate and hydrotalcite were added as adsorbents, an antioxidant was added, and the mixture was heated and stirred at an internal temperature of 150 ° C. in an oxygen-nitrogen mixed gas atmosphere (oxygen concentration 6%). Toluene is added to the concentrate to dissolve the polymer, and then the solid content in the mixed solution is removed by filtration. The filtrate is heated and stirred under reduced pressure to remove volatile matter, and a polymer having an alkenyl group. Got.

このアルケニル基を有する重合体、ジメトキシメチルシラン(アルケニル基に対して2.0モル当量)、オルトギ酸メチル(アルケニル基に対して1.0モル当量)、白金ビニルシロキサン錯体の白金含量3wt%のイソプロパノール溶液150ppmを混合し、窒素雰囲気下で、100℃で加熱攪拌した。アルケニル基が消失したことをH−NMRによって確認し、反応混合物を濃縮して、末端にジメトキシシリル基を有するポリ(アクリル酸−n−ブチル)重合体(A−2)を得た。得られた重合体(A−2)の数平均分子量は約26000、分子量分布は1.3であった。重合体1分子当たりに導入された平均のシリル基の数をH−NMR分析により求めたところ、約1.8個であった。 Polymer having this alkenyl group, dimethoxymethylsilane (2.0 molar equivalents relative to alkenyl group), methyl orthoformate (1.0 molar equivalents relative to alkenyl group), platinum content of platinum vinylsiloxane complex 3 wt% 150 ppm of isopropanol solution was mixed, and the mixture was heated and stirred at 100 ° C. in a nitrogen atmosphere. The disappearance of the alkenyl group was confirmed by 1 H-NMR, and the reaction mixture was concentrated to obtain a poly (acrylic acid-n-butyl) polymer (A-2) having a dimethoxysilyl group at the terminal. The number average molecular weight of the obtained polymer (A-2) was about 26000, and the molecular weight distribution was 1.3. When the average number of silyl groups introduced per polymer molecule was determined by 1 H-NMR analysis, it was about 1.8.

(実施例1)
合成例1で得られたメチルジメトキシシリル末端ポリプロピレンオキシド(A−1)、可塑剤:DIDP(フタル酸ジイソデシル、協和発酵製)、充填材:白艶華CCR(膠質炭酸カルシウム、白石工業製)、ホワイトンSB(重質炭酸カルシウム、白石工業製)、着色剤:タイペークR−820(酸化チタン、石原産業製)、タレ防止剤:ディスパロン#6500(脂肪酸アマイドワックス、楠本化成製)、紫外線吸収剤:チヌビン−327(2,4−ジ−t−ブチル−6−(5−クロロベンゾトリアゾール−2−イル)フェノール、チバ・スペシャルティ・ケミカルズ製)、光安定剤:サノールLS−770(ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、三共製)、およびステアリン酸ナトリウム(ナカライ製)を表1の配合に従い、手混ぜで撹拌混合した後に、3本ペイントロールに3回通して十分に攪拌混合された混合物を得た。これらの混合物に、表1に記載された配合部数のビニルシラン:A−171(ビニルトリメトキシシラン、GE東芝シリコーン製)、アミノシラン(A−1120、GE東芝シリコーン製)、硬化触媒:ジブチル錫ジアセチルアセトナート(U−220H,日東化成製)を添加して、スパチュラを用いて手混ぜで十分に混合させて、硬化性組成物を調製した。硬化物の物性を表1に示した。
引張り物性
得られた硬化性組成物を約3mmの厚さに均一に伸ばし、23℃55%RH下に3日間、次いで50℃下に4日間静置して硬化養生させた。得られた硬化物の引張物性をJIS K 6301に準拠して評価した。結果を表1に示す。
復元性
上記と同様に作製し、養生させて得られた硬化物をJIS K6301に準拠して3号ダンベル型に打ち抜いた。得られた3号ダンベル型硬化物に間隔が20mmの標線を引き、この標線間を40mmになるように100%伸張した状態で3号ダンベルを固定し、90℃下24時間静置した。24時間後、これを解放して23℃55%RH下に静置した。解放後1時間が経過した後に標線が復元した割合を測定し、復元率として算出した。
Example 1
Methyldimethoxysilyl-terminated polypropylene oxide (A-1) obtained in Synthesis Example 1, Plasticizer: DIDP (diisodecyl phthalate, manufactured by Kyowa Hakko), Filler: Baiyinhua CCR (grilled calcium carbonate, manufactured by Shiroishi Kogyo), Whiten SB (heavy calcium carbonate, manufactured by Shiroishi Kogyo Co., Ltd.), Colorant: Taipei R-820 (Titanium oxide, manufactured by Ishihara Kogyo Co., Ltd.), Sacrificial inhibitor: Disparon # 6500 (Fatty acid amide wax, manufactured by Enomoto Kasei), UV absorber: Tinuvin -327 (2,4-di-t-butyl-6- (5-chlorobenzotriazol-2-yl) phenol, manufactured by Ciba Specialty Chemicals), light stabilizer: Sanol LS-770 (bis (2,2 , 6,6-tetramethyl-4-piperidyl) sebacate, Sankyo), and sodium stearate (Nacalai) Were mixed by hand according to the formulation shown in Table 1, and then passed through three paint rolls three times to obtain a sufficiently stirred mixture. In these mixtures, vinyl silane: A-171 (vinyl trimethoxysilane, manufactured by GE Toshiba Silicone), aminosilane (A-1120, manufactured by GE Toshiba Silicone), curing catalyst described in Table 1, curing catalyst: dibutyltin diacetylacetate Nart (U-220H, manufactured by Nitto Kasei) was added and thoroughly mixed by hand with a spatula to prepare a curable composition. The physical properties of the cured product are shown in Table 1.
Tensile Properties The obtained curable composition was uniformly stretched to a thickness of about 3 mm, and allowed to cure and cure by leaving still at 23 ° C. and 55% RH for 3 days and then at 50 ° C. for 4 days. The tensile properties of the obtained cured product were evaluated according to JIS K 6301. The results are shown in Table 1.
It was prepared similarly to the resilient above was punched cured product obtained by curing a No. 3 dumbbell-type in conformity with JIS K6301. A marked line with an interval of 20 mm was drawn on the resulting No. 3 dumbbell-shaped cured product, and the No. 3 dumbbell was fixed in a state where the gap between the marked lines was extended to 100 mm, and was allowed to stand at 90 ° C. for 24 hours. . After 24 hours, it was released and allowed to stand at 23 ° C. and 55% RH. The rate at which the marked line was restored after 1 hour had elapsed after release was measured and calculated as the restoration rate.

(実施例2)
実施例2では、実施例1における硬化触媒であるU−220Hをジブチル錫オキサイドとフタル酸ジオクチルとの反応生成物(#918、三共有機合成製、以下#918と称する)に変更し、これを2部使用したこと以外は実施例1と同様にして硬化性組成物を作成し、引張り物性と復元率とを測定した。結果を表1に示す。
(Example 2)
In Example 2, U-220H, which is the curing catalyst in Example 1, was changed to a reaction product of dibutyltin oxide and dioctyl phthalate (# 918, manufactured by Sansha Gosei Co., Ltd., hereinafter referred to as # 918). A curable composition was prepared in the same manner as in Example 1 except that 2 parts were used, and the tensile properties and the restoration rate were measured. The results are shown in Table 1.

(実施例3)
実施例3では、実施例1における硬化触媒であるU−220Hを、2.5部のネオデカン酸(バーサチック10、ジャパンエポキシレジン製)と0.5部のN,N−ジエチルー1,3−プロパンジアミン(和光純薬製)とからなる混合物に変更したこと以外は実施例1と同様にして硬化性組成物を作成し、引張り物性と復元率とを測定した。結果を表1に示す。
(Example 3)
In Example 3, U-220H, which is the curing catalyst in Example 1, was prepared by using 2.5 parts of neodecanoic acid (Versatic 10, manufactured by Japan Epoxy Resin) and 0.5 parts of N, N-diethyl-1,3-propane. A curable composition was prepared in the same manner as in Example 1 except that the mixture was changed to a mixture composed of diamine (manufactured by Wako Pure Chemical Industries, Ltd.), and the tensile physical properties and the restoration rate were measured. The results are shown in Table 1.

(比較例1)
実施例1において、ステアリン酸ナトリウムを添加しなかったこと以外は実施例1と同様に実施した。結果を表1に示した。
(Comparative Example 1)
In Example 1, it implemented like Example 1 except not having added sodium stearate. The results are shown in Table 1.

(比較例2)
実施例2において、ステアリン酸ナトリウムを添加しなかったこと以外は実施例2と同様に実施した。結果を表1に示した。
(Comparative Example 2)
In Example 2, it implemented like Example 2 except not having added sodium stearate. The results are shown in Table 1.

(比較例3)
実施例3において、ステアリン酸ナトリウムを添加しなかったこと以外は実施例3と同様に実施した。結果を表1に示した。
(Comparative Example 3)
In Example 3, it implemented like Example 3 except not having added sodium stearate. The results are shown in Table 1.

(実施例4)
合成例1で得られたメチルジメトキシシリル基末端ポリプロピレンオキシド(A−1)、合成例2で得られたメチルジメトキシシリル基末端ポリ(アクリル酸n−ブチル)重合体(A−2)、充填材:UltraPflex(膠質炭酸カルシウム、Specialty Minerals Inc.製)、Q3T(重質炭酸カルシウム、J.M.Huber Corporation製)、SL−150(セラミックバルーン、envirospheres製)、可塑剤:DIDP(フタル酸ジイソデシル、協和発酵製)、表面改質剤(Aronix M−309、東亞合成製)、タレ防止剤:ディスパロン#305(脂肪酸アマイドワックス、楠本化成製)、光安定剤:LA63P(旭電化工業製)、エポキシ樹脂(エピコート−828、ビスフェノールA型液状エポキシ樹脂、ジャパンエポキシレジン製)、およびステアリン酸ナトリウムを表2の配合に従い、手混ぜで撹拌混合した後に、3本ペイントロールに3回通して十分に攪拌混合された混合物を得た。これらの混合物に、表2に記載された配合部数のビニルシラン:A−171(ビニルトリメトキシシラン、GE東芝シリコーン製)、アミノシラン(A−1120、3−(2−アミノエチル)アミノプロピルトリメトキシシラン、GE東芝シリコーン製)、エポキシシラン(A−187、3−グリシドキシプロピルトリメトキシシラン、GE東芝シリコーン製)、硬化触媒:ネオデカン酸(バーサチック10、ジャパンエポキシレジン製)、ラウリルアミン(和光純薬製)を添加して、スパチュラを用いて手混ぜで十分に混合させて、硬化性組成物を調製した。結果を表2に示した。
接着性
硬化性組成物を各種被着体(陽極酸化アルミ、SUS304、ガラス、塩ビ鋼板、硬質塩ビ、FRP)に密着させ、23℃下7日間養生させた。この後、90°方向に硬化物が破断するまで引張り、その時の破壊状態を観察した。凝集破壊率(CF率)が90%以上の場合を◎、50%以上90%未満の場合を○、50%未満の場合を×として判定した。
Example 4
Methyldimethoxysilyl group-terminated polypropylene oxide (A-1) obtained in Synthesis Example 1, methyldimethoxysilyl group-terminated poly (n-butyl acrylate) polymer (A-2) obtained in Synthesis Example 2, and filler : UltraPflex (collagen calcium carbonate, manufactured by Specialty Minerals Inc.), Q3T (heavy calcium carbonate, manufactured by JM Huber Corporation), SL-150 (ceramic balloon, manufactured by envirospheres), plasticizer: DIDP (diisodecyl phthalate, Kyowa Hakko), surface modifier (Aronix M-309, manufactured by Toagosei), sagging inhibitor: Disparon # 305 (fatty acid amide wax, manufactured by Enomoto Kasei), light stabilizer: LA63P (Asahi Denka Kogyo), epoxy Resin (Epicoat-828, Bisuf Enol A-type liquid epoxy resin (manufactured by Japan Epoxy Resin) and sodium stearate according to the formulation in Table 2, and after stirring and mixing by hand, the mixture was thoroughly mixed by passing three paint rolls three times. It was. In these mixtures, the number of parts of vinylsilane described in Table 2: A-171 (vinyltrimethoxysilane, manufactured by GE Toshiba Silicones), aminosilane (A-1120, 3- (2-aminoethyl) aminopropyltrimethoxysilane) GE Toshiba Silicone), epoxy silane (A-187, 3-glycidoxypropyltrimethoxysilane, GE Toshiba Silicone), curing catalyst: neodecanoic acid (Versatic 10, Japan Epoxy Resin), laurylamine (Wako Pure) And the mixture was thoroughly mixed by hand with a spatula to prepare a curable composition. The results are shown in Table 2.
The adhesive curable composition was adhered to various adherends (anodized aluminum, SUS304, glass, PVC steel plate, hard PVC, FRP) and cured at 23 ° C. for 7 days. Then, it pulled until the hardened | cured material fractured | ruptured in the 90 degree direction, and the fracture state at that time was observed. A case where the cohesive failure rate (CF rate) was 90% or more was judged as ◎, a case where it was 50% or more and less than 90% was judged as ○, and a case where it was less than 50% was judged as ×.

また、上記と同様にして作製した硬化物を、23℃下7日間養生した後純水に浸して50℃下7日間養生させた。この後、上記と同様に試験をすることで、耐水接着性を評価した。凝集破壊率(CF率)が90%以上の場合を◎、50%以上90%未満の場合を○、50%未満の場合を×として判定した。   Further, the cured product produced in the same manner as described above was cured at 23 ° C. for 7 days, then immersed in pure water and cured at 50 ° C. for 7 days. Then, the water-resistant adhesiveness was evaluated by testing in the same manner as described above. A case where the cohesive failure rate (CF rate) was 90% or more was judged as ◎, a case where it was 50% or more and less than 90% was judged as ○, and a case where it was less than 50% was judged as ×.

(比較例4)
実施例4において、ステアリン酸ナトリウムを添加しなかったこと以外は実施例4と同様に実施した。結果を表2に示した。
(Comparative Example 4)
In Example 4, it implemented like Example 4 except not having added sodium stearate. The results are shown in Table 2.

実施例1と比較例1との比較から、硬化触媒としてU−220Hを用いた時はステアリン酸ナトリウムを添加することによって、硬化物が低応力で高伸びとなることがわかる。さらには、低応力でありながら、復元率は低下しないことがわかる。実施例2と比較例2との比較から、硬化触媒として#918を用いた時もステアリン酸ナトリウムを添加することによって、硬化物が低応力で高伸びとなることがわかる。また、低応力でありながら、復元率は低下しないことがわかる。さらに、実施例3と比較例3との比較から、硬化触媒としてネオデカン酸とN,N−ジエチル−1,3−プロパンジアミンからなる塩を用いた時にもステアリン酸ナトリウムを添加することによって、硬化物が低応力で高伸びとなることがわかる。一方で、低応力でありながら、復元率は大きく低下しないことがわかる。以上のように、硬化触媒の種類によらず、復元率を低下させることなく、低応力で高伸びを特徴とする硬化性組成物が得られることがわかる。   From the comparison between Example 1 and Comparative Example 1, it can be seen that when U-220H is used as a curing catalyst, the cured product becomes high elongation with low stress by adding sodium stearate. Furthermore, it can be seen that the recovery rate does not decrease while the stress is low. From the comparison between Example 2 and Comparative Example 2, it is found that the cured product becomes high elongation with low stress by adding sodium stearate even when # 918 is used as the curing catalyst. It can also be seen that the restoration rate does not decrease while the stress is low. Furthermore, from the comparison between Example 3 and Comparative Example 3, it was found that by adding sodium stearate when using a salt composed of neodecanoic acid and N, N-diethyl-1,3-propanediamine as a curing catalyst, It can be seen that the object becomes high elongation with low stress. On the other hand, it can be seen that the restoration rate does not decrease greatly while the stress is low. As described above, it can be seen that a curable composition characterized by low stress and high elongation can be obtained without reducing the restoration rate, regardless of the type of curing catalyst.

実施例4と比較例4との比較から、ステアリン酸ナトリウムを添加することで硬化物は確かに低応力で高伸びとなることがわかる。さらに、硬化物の各種被着体に対する接着性および耐水接着性はステアリン酸ナトリウムを添加しても変化しないことがわかる。以上のように、本発明によれば硬化物の接着性を低下させずに、低応力で高伸びを特徴とする硬化性組成物が得られることがわかる。   From the comparison between Example 4 and Comparative Example 4, it can be seen that by adding sodium stearate, the cured product surely becomes high elongation with low stress. Furthermore, it turns out that the adhesiveness with respect to various to-be-adhered bodies and water-resistant adhesiveness of hardened | cured material do not change even if sodium stearate is added. As described above, according to the present invention, it can be seen that a curable composition characterized by low stress and high elongation can be obtained without reducing the adhesiveness of the cured product.

Claims (5)

架橋可能な反応性ケイ素基を有するポリエーテル系重合体(A)と、カルボン酸アルカリ金属塩のうち、金属がリチウム、ナトリウムから選ばれる少なくとも1種の金属のカルボン酸塩(B)とを含有する硬化性組成物であって、(B)成分が、オクチル酸、2−エチルへキサン酸、カプリン酸、ネオデカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、オレイン酸およびステアリン酸からなる群より選ばれる少なくとも1種のカルボン酸の金属塩である硬化性組成物A polyether polymer (A) having a crosslinkable reactive silicon group and a carboxylate (B) of at least one metal selected from lithium and sodium among alkali metal carboxylates The component (B) is selected from the group consisting of octylic acid, 2-ethylhexanoic acid, capric acid, neodecanoic acid, lauric acid, myristic acid, palmitic acid, oleic acid, and stearic acid. A curable composition which is a metal salt of at least one carboxylic acid . ポリエーテル系重合体(A)の主鎖がポリプロピレンオキシドであることを特徴とする請求項記載の硬化性組成物。 The curable composition according to claim 1, wherein the main chain of the polyether polymer (A) is polypropylene oxide. ポリエーテル系重合体(A)100重量部に対して、カルボン酸アルカリ金属塩(B)を0.01〜20重量部含有することを特徴とする請求項1または2記載の硬化性組成物。 3. The curable composition according to claim 1, wherein 0.01 to 20 parts by weight of the carboxylic acid alkali metal salt (B) is contained with respect to 100 parts by weight of the polyether polymer (A). さらに、(C)成分として硬化触媒(以下、シラノール縮合触媒とも言う)を含有することを特徴とする請求項1〜のいずれかに記載の硬化性組成物。 The curable composition according to any one of claims 1 to 3 , further comprising a curing catalyst (hereinafter also referred to as a silanol condensation catalyst) as the component (C). 請求項1〜のいずれかに記載の硬化性組成物からなることを特徴とするシーリング材。 It consists of a curable composition in any one of Claims 1-4 , The sealing material characterized by the above-mentioned.
JP2007270653A 2007-10-17 2007-10-17 Curable composition Active JP5295544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007270653A JP5295544B2 (en) 2007-10-17 2007-10-17 Curable composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007270653A JP5295544B2 (en) 2007-10-17 2007-10-17 Curable composition

Publications (2)

Publication Number Publication Date
JP2009096899A JP2009096899A (en) 2009-05-07
JP5295544B2 true JP5295544B2 (en) 2013-09-18

Family

ID=40700211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007270653A Active JP5295544B2 (en) 2007-10-17 2007-10-17 Curable composition

Country Status (1)

Country Link
JP (1) JP5295544B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102595888B1 (en) * 2018-10-05 2023-10-27 주고꾸 도료 가부시키가이샤 Antifouling paint composition, antifouling coating film, antifouling coating film attachment substrate, and method for manufacturing the same
JP7370561B2 (en) * 2019-05-29 2023-10-30 日東化成株式会社 Antifouling paint composition
JPWO2023282048A1 (en) * 2021-07-05 2023-01-12

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810430B2 (en) * 1979-03-28 1983-02-25 信越化学工業株式会社 Room temperature curable composition
JPS55131050A (en) * 1979-03-30 1980-10-11 Shin Etsu Chem Co Ltd Room temperature vulcanizing composition
JPH0912709A (en) * 1995-07-04 1997-01-14 Shin Etsu Chem Co Ltd Production of siloxane-modified polyoxyalkylne compound, its production and room temperature curing composition containing the same
JP4225613B2 (en) * 1998-09-18 2009-02-18 サンスター技研株式会社 Heat-curing modified silicone composition
JP4150220B2 (en) * 2001-07-27 2008-09-17 株式会社カネカ Curable composition
JP3743004B2 (en) * 2001-10-24 2006-02-08 株式会社スリーボンド Room temperature curable composition

Also Published As

Publication number Publication date
JP2009096899A (en) 2009-05-07

Similar Documents

Publication Publication Date Title
JP3506269B2 (en) Curable composition
JP5081673B2 (en) Curable composition
WO2004039892A1 (en) Curable composition and method for improving recovery properties and creep properties
JP2993778B2 (en) Room temperature curable composition
JPH05117521A (en) Curable composition
JP5508000B2 (en) Curable composition
WO2007037483A1 (en) Curable composition
WO2007037484A1 (en) Curable composition
JP6088790B2 (en) Curable composition and cured product thereof
JPH11116686A (en) Hardening composition
JP3913859B2 (en) Curable composition
JP2012057148A (en) Curable composition
JP2011063669A (en) Curable composition
JP5110957B2 (en) Curable composition
JP5295544B2 (en) Curable composition
JP2832496B2 (en) Method for improving the tackiness or dust adhesion of the surface of a cured product while improving the workability of the curable composition
JP5605906B2 (en) Curable composition
JP2012057150A (en) Curable composition
JP4034716B2 (en) Curable composition
JP2018104488A (en) Curable composition
JP2011127004A (en) Adhesive for assembling speaker, using plurality of polyoxyalkylene-based polymers
JP3706674B2 (en) Painting method
JP3593211B2 (en) Curable composition
JP2020132732A (en) Method for producing organic polymer having crosslinkable silyl group
JPH10168299A (en) Curable composition excellent in adhesion of coating material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130612

R150 Certificate of patent or registration of utility model

Ref document number: 5295544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250