JP5294944B2 - Substrate cleaning method - Google Patents

Substrate cleaning method Download PDF

Info

Publication number
JP5294944B2
JP5294944B2 JP2009084204A JP2009084204A JP5294944B2 JP 5294944 B2 JP5294944 B2 JP 5294944B2 JP 2009084204 A JP2009084204 A JP 2009084204A JP 2009084204 A JP2009084204 A JP 2009084204A JP 5294944 B2 JP5294944 B2 JP 5294944B2
Authority
JP
Japan
Prior art keywords
cleaning
substrate
zeta potential
fluid jet
absolute value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009084204A
Other languages
Japanese (ja)
Other versions
JP2010238850A (en
Inventor
文利 及川
聡美 ▲濱▼田
真二 梶田
雅子 小寺
琢視 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Toshiba Corp
Original Assignee
Ebara Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Toshiba Corp filed Critical Ebara Corp
Priority to JP2009084204A priority Critical patent/JP5294944B2/en
Publication of JP2010238850A publication Critical patent/JP2010238850A/en
Application granted granted Critical
Publication of JP5294944B2 publication Critical patent/JP5294944B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve cleaning with enhanced cleaning capability by effectively using two-liquid jet cleaning even when residues tightly sticks on a substrate and sufficient cleaning performance cannot be obtained only by merely applying existent two-liquid jet cleaning in the case of cleaning after CMP etc. <P>SOLUTION: The method of cleaning the substrate, in which contaminants sticking on the substrate are cleaned, includes: performing processing for increasing the absolute value of a zeta potential of the substrate and the contaminants sticking on the substrate; and then carrying out contact cleaning for cleaning a surface of the substrate with a cleaning tool in contact with the surface of the substrate; and carrying out two-liquid jet cleaning for cleaning the substrate surface by jetting a gas and a liquid to the substrate surface simultaneously. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、半導体ウェーハ等の基板の洗浄方法に関し、特にCMP後洗浄工程に使用される基板の洗浄方法に関するものである。   The present invention relates to a method for cleaning a substrate such as a semiconductor wafer, and more particularly to a method for cleaning a substrate used in a post-CMP cleaning process.

半導体デバイスの製造工程における半導体ウェーハの平坦化工程や埋込み配線形成工程等でCMP(Chemical Mechanical Polishing)技術が広く使用されている。半導体ウェーハのCMP技術では、半導体ウェーハに形成されたSiO膜や金属膜など、様々な研磨対象膜をスラリーと呼ばれる砥粒を含む研磨剤を使用して研磨するようにしている。このため、研磨後にスラリー中に含まれる砥粒や溶液、研磨残渣が半導体ウェーハ上に残留する。これら半導体ウェーハ上の残留物を除去するために、CMP後洗浄が実施される。このCMP後洗浄としては、超純水や薬液を洗浄液として用いながら、PVA(ポリビニルアルコール)を材料とするスポンジブラシ(PVAスポンジ)等の洗浄具を半導体ウェーハに接触させて洗浄する接触洗浄が一般に用いられている。 A CMP (Chemical Mechanical Polishing) technique is widely used in a semiconductor wafer flattening process, a buried wiring forming process, and the like in a semiconductor device manufacturing process. In the CMP technique of a semiconductor wafer, various films to be polished such as SiO 2 film and metal film formed on the semiconductor wafer are polished by using an abrasive containing abrasive grains called slurry. For this reason, abrasive grains, solutions, and polishing residues contained in the slurry remain on the semiconductor wafer after polishing. In order to remove these residues on the semiconductor wafer, post-CMP cleaning is performed. As the post-CMP cleaning, contact cleaning is generally used in which a cleaning tool such as a sponge brush (PVA sponge) made of PVA (polyvinyl alcohol) is brought into contact with a semiconductor wafer while using ultrapure water or a chemical solution as a cleaning solution. It is used.

CMP後洗浄は、一般に第1段洗浄と第2段洗浄、更にはそれ以上に分けて行われる。接触洗浄法による第1段洗浄は、例えば図3に示すように、基板Wの表裏面に一対のロール型PVAスポンジ(洗浄具)40を接触させ、純水や薬液などの洗浄液42を基板Wの表裏面に供給しながら、ロール型PVAスポンジ40を適当な圧力で基板Wに押し当てることで行われる。基板Wとロール型PVAスポンジ40は、それぞれ保持具(図示せず)によって保持されて自転している。   The post-CMP cleaning is generally performed by dividing into first-stage cleaning, second-stage cleaning, and further. In the first stage cleaning by the contact cleaning method, for example, as shown in FIG. The roll type PVA sponge 40 is pressed against the substrate W with an appropriate pressure while being supplied to the front and back surfaces. The substrate W and the roll type PVA sponge 40 are each rotated by being held by a holder (not shown).

図9は、接触洗浄法によって第2段洗浄を行うのに適した洗浄機70を示す。この洗浄機70は、チャック(図示せず)等で保持されて回転する基板Wの周囲を囲繞する洗浄カップ72と、揺動アーム74の自由端に垂設されて基板Wの上方に配置される回転自在なペンシル型PVAスポンジ(洗浄具)76と、基板Wの表面に洗浄液78を供給する洗浄液ノズル80を備えている。洗浄液ノズル80に洗浄液を供給する洗浄液供給ラインには、マスフロコントローラ等の制御部82が設置されている。   FIG. 9 shows a cleaning machine 70 suitable for performing the second stage cleaning by the contact cleaning method. The cleaning machine 70 is disposed above the substrate W by being suspended from a cleaning cup 72 that surrounds the periphery of the rotating substrate W held by a chuck (not shown) or the like and a free end of the swing arm 74. A rotatable pencil-type PVA sponge (cleaning tool) 76 and a cleaning liquid nozzle 80 for supplying a cleaning liquid 78 to the surface of the substrate W are provided. A control unit 82 such as a mass flow controller is installed in the cleaning liquid supply line that supplies the cleaning liquid to the cleaning liquid nozzle 80.

これにより、チャック(図示せず)を介して保持して回転させた基板Wの表面に、ペンシル型PVAスポンジ(洗浄具)76を所定の押圧力で接触させて自転ながら揺動させ、同時に、基板Wの表面に、純水や薬液等の洗浄液を供給することで、洗浄カップ72内で基板Wの表面の第2段洗浄(接触洗浄)が行われる。洗浄後、基板Wは、高速スピンまたはIPA(イソプロピルアルコール)蒸気などにより乾燥させられる。   As a result, the pencil-type PVA sponge (cleaning tool) 76 is brought into contact with the surface of the substrate W held and rotated via a chuck (not shown) with a predetermined pressing force, and is swung while rotating. By supplying a cleaning liquid such as pure water or a chemical solution to the surface of the substrate W, the second stage cleaning (contact cleaning) of the surface of the substrate W is performed in the cleaning cup 72. After cleaning, the substrate W is dried by high speed spin or IPA (isopropyl alcohol) vapor.

しかし、上述のような従来の接触洗浄法で半導体ウェーハ等の基板を洗浄すると、基板の洗浄を繰り返すうちにPVAスポンジ等の洗浄具の内部にCMP残渣などの汚染物が蓄積され、基板上への逆汚染が発生することが問題となる。この問題は、PVAスポンジの形、洗浄液の種類や供給方法によらない普遍的な課題である。   However, when a substrate such as a semiconductor wafer is cleaned by the conventional contact cleaning method as described above, contaminants such as a CMP residue are accumulated inside a cleaning tool such as a PVA sponge while the substrate is repeatedly cleaned, and is transferred onto the substrate. The problem is that reverse contamination occurs. This problem is a universal issue regardless of the shape of the PVA sponge, the type of cleaning liquid, and the supply method.

基板上に残留した微小異物を走査型電子顕微鏡などで観察して分析すると、その殆どがスラリーに含まれる砥粒であり、砥粒がPVAスポンジに大量に蓄積される可能性が非常に高いことが判る。更に、異物検査装置で基板上の汚染を測定した際に、接触洗浄の最後にPVAスポンジが半導体ウェーハに接触した箇所で多くの付着物が検出される場合があり、逆汚染の発生を裏付ける結果であることが判る。   When observing and analyzing the minute foreign matter remaining on the substrate with a scanning electron microscope or the like, most of them are abrasive grains contained in the slurry, and it is highly possible that the abrasive grains are accumulated in a large amount in the PVA sponge. I understand. Furthermore, when the contamination on the substrate is measured by the foreign substance inspection device, a lot of deposits may be detected at the place where the PVA sponge contacts the semiconductor wafer at the end of the contact cleaning, which confirms the occurrence of the reverse contamination. It turns out that it is.

接触洗浄のこのような課題に対し、噴出ノズル内に液体と気体を供給し、噴出ノズルから基板に向けて二流体を高速で噴出させて基板を洗浄する、いわゆる二流体ジェット洗浄が提案されている(特許文献1参照)。二流体ジェット洗浄は、例えば図4に示すように、噴出ノズル部54で純水またはCOガス溶解水など洗浄液とNガスまたは乾燥エアなどのガスを高速で噴出させることにより、ガス中に洗浄液が微小ミストとなって存在する二流体ジェット流52を生成し、この二流体ジェット流52を基板Wの表面に高速で噴霧して、ミスト衝突時の圧力で基板W上の異物を除去する。二流体ジェット洗浄は、非接触式で、静電気ダメージのない安定した洗浄性能の観点から、次世代洗浄技術として期待されている。 In response to such problems of contact cleaning, so-called two-fluid jet cleaning has been proposed in which liquid and gas are supplied into an ejection nozzle and two substrates are ejected at high speed from the ejection nozzle toward the substrate to clean the substrate. (See Patent Document 1). In the two-fluid jet cleaning, for example, as shown in FIG. 4, a cleaning liquid such as pure water or CO 2 gas-dissolved water and a gas such as N 2 gas or dry air are jetted at high speed in the jet nozzle section 54. A two-fluid jet flow 52 in which the cleaning liquid is present as minute mist is generated, and the two-fluid jet flow 52 is sprayed on the surface of the substrate W at a high speed to remove foreign matters on the substrate W by the pressure at the time of mist collision. . Two-fluid jet cleaning is expected as a next-generation cleaning technology from the viewpoint of non-contact type, stable cleaning performance without electrostatic damage.

また、二流体ジェット洗浄法を利用したものとして、基板に第1の薬液を供給して基板表面を第1の薬液で満たし、第1の薬液で満たした基板表面に対して第2の薬液を用いて二流体洗浄法により基板表面を洗浄するようにした洗浄方法が提案されている(特許文献2参照)   In addition, as a method using the two-fluid jet cleaning method, the first chemical solution is supplied to the substrate to fill the substrate surface with the first chemical solution, and the second chemical solution is applied to the substrate surface filled with the first chemical solution. A cleaning method has been proposed in which the substrate surface is cleaned by a two-fluid cleaning method (see Patent Document 2).

特許第3504023号公報Japanese Patent No. 3504023 特開2008−226900号公報JP 2008-226900 A

接触洗浄法を用いた一部または全ての洗浄ステップを、二流体ジェット洗浄を用いた洗浄ステップに置き換えて使用することで、逆汚染のない洗浄が期待できる。しかしCMP後洗浄の場合、CMP工程でスラリーに含まれる砥粒が強い圧力で基板に押し付けられるため、一般の洗浄工程によって除去される場合よりも残留物が基板に強固に付着して、既存の二流体ジェット洗浄を単にCMP後洗浄に適用するだけでは、十分な洗浄性能が得られないことが判った。   By replacing some or all of the cleaning steps using the contact cleaning method with the cleaning steps using the two-fluid jet cleaning, cleaning without back-contamination can be expected. However, in the post-CMP cleaning, the abrasive grains contained in the slurry in the CMP process are pressed against the substrate with a strong pressure, so that the residue adheres more firmly to the substrate than in the case of being removed by a general cleaning process. It has been found that sufficient cleaning performance cannot be obtained simply by applying the two-fluid jet cleaning to the post-CMP cleaning.

表1に直径300mmの半導体ウェーハの表面に成膜したTEOS膜をSiO砥粒またはCeO砥粒を含むスラリーでCMPし、従来の接触洗浄で洗浄した後の残留パーティクル数と、同様のCMPを行った後に二流体ジェット洗浄を行った場合の残留パーティクル数を計測した結果を表1に示す。

Figure 0005294944
In Table 1, the TEOS film formed on the surface of a semiconductor wafer having a diameter of 300 mm is CMPed with a slurry containing SiO 2 abrasive grains or CeO 2 abrasive grains, and the number of residual particles after cleaning by conventional contact cleaning is similar to that of CMP. Table 1 shows the results of the measurement of the number of residual particles when the two-fluid jet cleaning is performed after the above.
Figure 0005294944

パーティクル数の測定は、半導体ウェーハの端部2mmを除外して、80nm以上のパーティクル数を検出した。接触洗浄の洗浄ステップは、図3に示す第1洗浄機16を使用した第1段洗浄と、図9に示す洗浄機70を使用した第2段洗浄からなり、洗浄液には全て超純水を使用した。そして、図9に示す洗浄機70のペンシル型PVAスポンジ(洗浄具)76を新品に交換した直後と、半導体ウェーハ600枚の洗浄処理に使用した後の2回の評価を行った。二流体ジェット洗浄では、図3に示す第1洗浄機16を用いて第1段洗浄を行った後、図4に示す第2洗浄機18を使用して、COガス溶解水(流量200ml/min)とNガス(流量100L/min)の二流体による二流体ジェット洗浄を行った。 For the measurement of the number of particles, the number of particles of 80 nm or more was detected excluding the edge 2 mm of the semiconductor wafer. The cleaning step of the contact cleaning includes a first stage cleaning using the first cleaning machine 16 shown in FIG. 3 and a second stage cleaning using the cleaning machine 70 shown in FIG. used. Then, two evaluations were performed immediately after the pencil-type PVA sponge (cleaning tool) 76 of the cleaning machine 70 shown in FIG. 9 was replaced with a new one and after being used for cleaning processing of 600 semiconductor wafers. The two-fluid jet cleaning, after the first-stage cleaning using the first cleaning machine 16 shown in FIG. 3, by using the second cleaning machine 18 shown in FIG. 4, CO 2 gas dissolved water (flow rate 200ml / min) and N 2 gas (flow rate: 100 L / min).

表1から判るように、接触洗浄ではPVAスポンジの使用前後にかかわらず80nm以上パーティクル数が26,000個以上と非常に多く、120nm以上のパーティクル・サイズに限定しても、1,500〜2,000個のパーティクルが検出された。一方、二流体ジェット洗浄では80nm以上パーティクル数はやや減少しており、接触洗浄よりも洗浄性能が若干優れている様子が伺えるものの、依然多くのパーティクルが残留している。接触洗浄のほうが二流体ジェット洗浄に比べ残留パーティクル数が多いのは、PVAスポンジ内に汚染が蓄積され、逆汚染が発生しているためであると考えられる。なおCOガス溶解水の替わりに超純水を用いても表1の傾向に違いは見られなかった。 As can be seen from Table 1, in contact cleaning, the number of particles of 80 nm or more is 26,000 or more regardless of whether the PVA sponge is used or not, and even if the particle size is limited to 120 nm or more, 1,500 to 2,000 particles are generated. was detected. On the other hand, in the two-fluid jet cleaning, the number of particles is slightly reduced by 80 nm or more, and although it can be seen that the cleaning performance is slightly better than the contact cleaning, many particles still remain. The reason why the contact cleaning has a larger number of residual particles than the two-fluid jet cleaning is thought to be that contamination is accumulated in the PVA sponge and reverse contamination occurs. Even if ultrapure water was used in place of the CO 2 gas-dissolved water, no difference was observed in the tendency shown in Table 1.

本発明は上記事情に鑑みて為されたもので、たとえCMP後洗浄の場合等、残留物が基板に強固に付着して、既存の二流体ジェット洗浄を単に適用するだけでは十分な洗浄性能が得られない場合であっても、二流体ジェット洗浄をより有効に利用して、洗浄能力を高めた洗浄を行うことができるようにした基板の洗浄方法を提供することを目的とする。   The present invention has been made in view of the above circumstances. For example, in the case of post-CMP cleaning, the residue adheres firmly to the substrate, and sufficient cleaning performance is obtained simply by applying the existing two-fluid jet cleaning. It is an object of the present invention to provide a method for cleaning a substrate that can perform cleaning with improved cleaning capability by more effectively using two-fluid jet cleaning even if it cannot be obtained.

本発明の基板の洗浄方法は、基板に付着した汚染物を洗浄する基板の洗浄方法において、基板のゼータ電位該データ電位と同じ極性を有する基板上に付着している汚染物のゼータ電位の絶対値を共に増加させる処理を行い、しかる後、基板の表面に洗浄具を接触させて基板の表面を洗浄する接触洗浄と、ガスと液体を基板表面に向け同時に噴射して基板表面を洗浄する二流体ジェット洗浄とを行うことを特徴とする。 The substrate cleaning method of the present invention is a substrate cleaning method for cleaning contaminants attached to a substrate. The zeta potential of contaminants attached on a substrate having the same polarity as the zeta potential of the substrate and the data potential. A process to increase both absolute values is performed, and then the substrate surface is cleaned by bringing a cleaning tool into contact with the substrate surface to clean the substrate surface and simultaneously jetting gas and liquid toward the substrate surface. Two-fluid jet cleaning is performed.

このように、基板のゼータ電位該データ電位と同じ極性を有する基板上に付着している汚染物のゼータ電位の絶対値を共に増加させる処理を行うことで、基板と汚染物との間の電気的反発力を増加させ、これによって、例えばCMP中に基板表面に強固に押し付けられた砥粒も基板表面から脱離可能となし、その後、接触洗浄と二流体ジェット洗浄を行うことで洗浄能力を高めることができる。 Thus, by performing the processing together to increase the absolute value of the zeta potential of the contaminants adhering on the substrate having the same polarity as the zeta potential and the data potential of the substrate, between the substrate and the contaminants Increases the electric repulsive force, so that, for example, abrasive grains firmly pressed against the substrate surface during CMP can also be detached from the substrate surface, and then cleaning performance by contact cleaning and two-fluid jet cleaning Can be increased.

前記ゼータ電位の絶対値を増加させる処理で増加させた後の基板のゼータ電位と基板上に付着している汚染物のゼータ電位は、共に−50mV以下または+50mV以上であることが好ましい。 It is preferable that both the zeta potential of the substrate after the increase in the absolute value of the zeta potential and the zeta potential of the contaminant attached on the substrate are −50 mV or less or +50 mV or more.

前記ゼータ電位の絶対値を増加させる処理を、界面活性剤を含む洗浄液を基板表面に供給することで行うことができる。前記ゼータ電位の絶対値を増加させる処理を、アルカリ性の洗浄液を基板表面に供給することで行ってもよい。   The treatment for increasing the absolute value of the zeta potential can be performed by supplying a cleaning liquid containing a surfactant to the substrate surface. The treatment for increasing the absolute value of the zeta potential may be performed by supplying an alkaline cleaning liquid to the substrate surface.

前記洗浄具は、例えばPVAスポンジからなる。これにより、PVDスポンジ内に汚染が蓄積されることを防止することができる。   The cleaning tool is made of, for example, PVA sponge. Thereby, it is possible to prevent the contamination from being accumulated in the PVD sponge.

前記ゼータ電位の絶対値を増加させる処理をCMP直後の基板に対して行うことが好ましい。これにより、残留物が基板に強固に付着して、既存の二流体ジェット洗浄を単に適用するだけでは十分な洗浄性能が得られないCMP後洗浄の場合であっても、基板に対する洗浄効果を高めることができる。   The treatment for increasing the absolute value of the zeta potential is preferably performed on the substrate immediately after CMP. This enhances the cleaning effect on the substrate even in the case of post-CMP cleaning in which the residue adheres firmly to the substrate and sufficient cleaning performance cannot be obtained simply by applying the existing two-fluid jet cleaning. be able to.

前記接触洗浄及び前記二流体ジェット洗浄の少なくとも一方を、基板のゼータ電位該データ電位と同じ極性を有する基板上に付着している汚染物のゼータ電位の絶対値を共に増加させながら行うことが好ましい。これによって、接触洗浄または二流体ジェット洗浄の際にも、基板と汚染物との間の電気的反発力を増加させて、洗浄効果を更に高めることができる。 At least one of the contact cleaning and the two-fluid jet cleaning, it is carried out while both increasing the absolute value of the zeta potential of the contaminants adhering on the substrate having the same polarity as the zeta potential and the data potential of the substrate preferable. Accordingly, even in the contact cleaning or the two-fluid jet cleaning, the electric repulsive force between the substrate and the contaminant can be increased to further enhance the cleaning effect.

本発明によれば、基板のゼータ電位該データ電位と同じ極性を有する基板上に付着している汚染物のゼータ電位の絶対値を共に増加させる処理を行うことで、基板と汚染物との間の電気的反発力を増加させ、これによって、例えばCMP中に基板表面に強固に押し付けられた砥粒も基板表面から脱離可能となし、その後、接触洗浄と二流体ジェット洗浄を行うことで洗浄能力を高めることができる。 According to the present invention, by performing the processing together to increase the absolute value of the zeta potential of the contaminants adhering on the substrate having the same polarity as the zeta potential and the data potential of the substrate, the substrate and the contaminants By increasing the electric repulsive force between them, for example, abrasive grains firmly pressed against the substrate surface during CMP can also be detached from the substrate surface, and then contact cleaning and two-fluid jet cleaning are performed. The cleaning ability can be increased.

本発明の基板の洗浄方法に使用されるCMP装置の全体配置図である。1 is an overall layout view of a CMP apparatus used in a substrate cleaning method of the present invention. 図1に示すCMP装置に備えられている研磨部の概要を示す図である。It is a figure which shows the outline | summary of the grinding | polishing part with which the CMP apparatus shown in FIG. 1 is equipped. 図1に示すCMP装置に備えられている第1の洗浄機の概要を示す図である。It is a figure which shows the outline | summary of the 1st washing machine with which the CMP apparatus shown in FIG. 1 is equipped. 図1に示すCMP装置に備えられている第2の研磨機の概要を示す図である。It is a figure which shows the outline | summary of the 2nd grinding machine with which the CMP apparatus shown in FIG. 1 is equipped. 本発明の実施形態の基板の洗浄方法の処理フロー図である。It is a processing flowchart of the washing | cleaning method of the board | substrate of embodiment of this invention. 本発明の他の実施形態の基板の洗浄方法の処理フロー図である。It is a processing flowchart of the washing | cleaning method of the board | substrate of other embodiment of this invention. 本発明の更に他の実施形態の基板の洗浄方法の処理フロー図である。It is a processing flowchart of the washing | cleaning method of the board | substrate of other embodiment of this invention. 本発明の更に他の実施形態の基板の洗浄方法の処理フロー図である。It is a processing flowchart of the washing | cleaning method of the board | substrate of other embodiment of this invention. 従来の洗浄機の概要を示す図である。It is a figure which shows the outline | summary of the conventional washing machine.

以下、本発明の実施形態を図面を参照して説明する。なお、以下の例では、SiO砥粒またはCeO砥粒等の砥粒を含むスラリーを使用してCMPを行った直後の半導体ウェーハ等の基板を洗浄する、基板のCMP後洗浄に適用した例を示す。本発明は、CMP後洗浄以外の基板の洗浄一般に広く適用できることは勿論である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in the following examples, it applied to the post-CMP cleaning of the substrate for cleaning a substrate such as a semiconductor wafer immediately after performing CMP using a slurry containing abrasive grains such as SiO 2 abrasive grains or CeO 2 abrasive grains. An example is shown. Needless to say, the present invention can be widely applied to substrate cleaning in general other than post-CMP cleaning.

図1は、本発明の基板の洗浄方法に使用されるCMP装置の全体配置図である。図1に示すように、CMP装置は、研磨部10、ロード・アンロード部12、2基の搬送機14a,14b、基板の接触洗浄による第1段洗浄を行う第1洗浄機16、基板の二流体ジェット洗浄による第2段洗浄を行う第2洗浄機18及び反転機20を備えており、研磨部10と搬送機14aとの間には、基板受渡台22が配置されている。   FIG. 1 is an overall layout view of a CMP apparatus used in the substrate cleaning method of the present invention. As shown in FIG. 1, the CMP apparatus includes a polishing unit 10, a load / unload unit 12, two transporters 14 a and 14 b, a first cleaning machine 16 that performs first-stage cleaning by contact cleaning of the substrate, A second cleaning machine 18 and a reversing machine 20 that perform the second stage cleaning by the two-fluid jet cleaning are provided, and a substrate delivery table 22 is disposed between the polishing unit 10 and the transfer machine 14a.

研磨部10は、半導体ウェーハ等の基板Wの研磨(CMP)処理と、CMP直後の基板Wと該基板W上に付着している汚染物(スラリーに含まれる砥粒)のゼータ電圧の絶対値を増加させる処理とを行うもので、図2に示すように、上面に研磨パッド24を貼り付けた回転自在な研磨テーブル26と、基板Wを保持しつつ研磨テーブル26に所定の押圧力で押し付ける回転自在な基板ホルダ28と、研磨パッド24上にスラリー(研磨剤)30を供給するスラリーノズル32と、研磨パッド24上に洗浄液34を供給する洗浄液ノズル36とを具備している。   The polishing unit 10 performs polishing (CMP) processing of the substrate W such as a semiconductor wafer, and the absolute value of the zeta voltage of the substrate W immediately after CMP and contaminants (abrasive grains contained in the slurry) adhering to the substrate W. As shown in FIG. 2, a rotatable polishing table 26 having a polishing pad 24 attached to the upper surface and a pressing force against the polishing table 26 while holding the substrate W as shown in FIG. A rotatable substrate holder 28, a slurry nozzle 32 that supplies a slurry (abrasive) 30 onto the polishing pad 24, and a cleaning liquid nozzle 36 that supplies a cleaning liquid 34 onto the polishing pad 24 are provided.

これにより、基板ホルダ28と研磨テーブル26をそれぞれ回転させながら基板ホルダ28で保持した基板Wを研磨パッド24に押圧させ、同時に研磨パッド24上にスラリーノズル32からスラリー30を供給して基板Wの研磨を行う。そして、基板Wの研磨終了後、基板ホルダ28と研磨テーブル26をそれぞれ回転させながら基板ホルダ28で保持した基板Wを研磨パッド24に押圧させた状態のまま、研磨パッド24上に洗浄液ノズル36から界面活性剤を含む洗浄液34を供給することで、基板Wと該基板Wの表面に付着している、例えばスラリー30に含まれる砥粒等の汚染物のゼータ電圧の絶対値を増加させる。界面仮性剤を含む洗浄液34の代わりに、アルカリ性の洗浄液を使用しても良い。 As a result, the substrate W held by the substrate holder 28 is pressed against the polishing pad 24 while rotating the substrate holder 28 and the polishing table 26, and at the same time, the slurry 30 is supplied from the slurry nozzle 32 onto the polishing pad 24. Polish. After the polishing of the substrate W, the substrate W held by the substrate holder 28 is pressed against the polishing pad 24 while rotating the substrate holder 28 and the polishing table 26 , respectively, and the cleaning liquid nozzle 36 is placed on the polishing pad 24. By supplying the cleaning liquid 34 containing the surfactant, the absolute value of the zeta voltage of the contaminants such as abrasive grains contained in the slurry 30 attached to the surface of the substrate W and the substrate W is increased. Instead of the cleaning liquid 34 containing the interfacial temporary agent, an alkaline cleaning liquid may be used.

基板Wの接触洗浄による第1段洗浄を行う第1洗浄機16は、図3に示すように、例えばローラ等で外周部を把持され該ローラ等の回転に伴って回転する基板Wの表裏両面に互いに接離する方向に移動自在で、自転自在な一対のロール型PVAスポンジ(洗浄具)40と、基板Wの表裏両面に洗浄液42を供給する洗浄液ノズル44を備えており、洗浄液ノズル44に洗浄液を供給する洗浄液供給ラインには、流量制御のためのマスフロコントローラ等の制御部46が設置されている。   As shown in FIG. 3, the first cleaning machine 16 that performs first-stage cleaning by contact cleaning of the substrate W grips the outer peripheral portion with, for example, a roller and rotates both the front and back surfaces of the substrate W as the roller rotates. And a pair of roll-type PVA sponges (cleaning tools) 40 that are movable in a direction that allows them to move toward and away from each other, and a cleaning liquid nozzle 44 that supplies the cleaning liquid 42 to both the front and back surfaces of the substrate W. A control unit 46 such as a mass flow controller for controlling the flow rate is installed in the cleaning liquid supply line for supplying the cleaning liquid.

これにより、ローラ等の回転に伴って回転している基板Wの表裏両面に一対のロール型PVAスポンジ(洗浄具)40を所定の押圧力で接触させながら自転させながら、基板Wの表裏両面に洗浄液ノズル44から洗浄液42を供給することで、基板Wの表裏両面を洗浄(第1段洗浄)する。   As a result, a pair of roll-type PVA sponges (cleaning tools) 40 are rotated on the front and back surfaces of the substrate W while rotating with a predetermined pressing force between the front and back surfaces of the substrate W rotating with the rotation of the roller or the like. By supplying the cleaning liquid 42 from the cleaning liquid nozzle 44, the front and back surfaces of the substrate W are cleaned (first-stage cleaning).

基板Wの二流体ジェット洗浄による第2段洗浄を行う第2洗浄機18は、図4に示すように、チャック(図示せず)等で保持し該チャックの回転に伴って回転する基板Wの周囲を囲繞する洗浄カップ50と、このチャック等に保持された基板Wの上方に平行移動自在に配置され、基板Wに向けて洗浄液とガスを高速で噴出させて二流体ジェット流52を生成し高速で噴霧する噴出ノズル54とを備えている。噴出ノズル54には、純水またはCOガス溶解水など洗浄液を供給する洗浄液供給ライン56と、Nガスまたは乾燥エアなどのガスを供給するガス供給ライン58が接続され、この各ライン56,58には、洗浄液とガスそれぞれの流量を調整する制御部60,62が設けられている。 As shown in FIG. 4, the second cleaning machine 18 that performs the second stage cleaning by the two-fluid jet cleaning of the substrate W holds the substrate W by a chuck (not shown) or the like and rotates the substrate W as the chuck rotates. A cleaning cup 50 that surrounds the periphery and a substrate W held by the chuck or the like are arranged in a freely movable manner, and a cleaning fluid and a gas are jetted toward the substrate W at a high speed to generate a two-fluid jet flow 52. And an ejection nozzle 54 for spraying at high speed. The jet nozzle 54 is connected to a cleaning liquid supply line 56 for supplying a cleaning liquid such as pure water or CO 2 gas-dissolved water, and a gas supply line 58 for supplying a gas such as N 2 gas or dry air. 58 includes control units 60 and 62 for adjusting the flow rates of the cleaning liquid and the gas, respectively.

これにより、純水またはCOガス溶解水などの洗浄液と、Nガスまたは乾燥エアなどのガスを噴出ノズル54から高速で噴出させることにより、ガス中に洗浄液が微小ミストとなって存在する二流体ジェット流52が生成され、この二流体ジェット流52をチャック等で保持されて回転している基板Wに向けて高速で噴霧することにより、ミスト衝突時の圧力で基板W上の異物が除去される。これによって、基板Wの洗浄(第2段洗浄)が行われる。 Thereby, the cleaning liquid such as pure water or CO 2 gas-dissolved water and the gas such as N 2 gas or dry air are ejected from the ejection nozzle 54 at a high speed, so that the cleaning liquid exists in the gas as a minute mist. A fluid jet flow 52 is generated, and the two-fluid jet flow 52 is sprayed at high speed toward the rotating substrate W held by a chuck or the like, so that foreign matters on the substrate W are removed by the pressure at the time of mist collision. Is done. As a result, the substrate W is cleaned (second stage cleaning).

次に、本発明の実施形態の基板の洗浄方法を図5の処理フローを参照して説明する。
先ず、基板カセット等の保管ケース内に収納された基板Wをロード・アンロード部12にセットする。基板Wは、例えば直径300mmで、表面にTEOS膜が成膜されている半導体ウェーハである。ロード・アンロード部12にセットされた保管ケースから1枚の基板Wを搬送機14bで取り出し反転機20に搬送する。反転機20によって表面が下向きに反転された基板Wを搬送機14aで基板受渡台22に搬送し、研磨部10の基板ホルダ28で保持する。
Next, a substrate cleaning method according to an embodiment of the present invention will be described with reference to the processing flow of FIG.
First, the substrate W stored in a storage case such as a substrate cassette is set in the load / unload unit 12. The substrate W is, for example, a semiconductor wafer having a diameter of 300 mm and a TEOS film formed on the surface. One substrate W is taken out from the storage case set in the load / unload unit 12 by the transfer device 14b and transferred to the reversing device 20. The substrate W whose surface is inverted downward by the reversing machine 20 is transported to the substrate delivery table 22 by the transporting machine 14 a and is held by the substrate holder 28 of the polishing unit 10.

基板Wを保持した基板ホルダ28を研磨テーブル26の上方に移動させた後、基板ホルダ28及び研磨テーブ26をそれぞれ回転させながら、基板ホルダ28を下降させて基板Wを所定の押圧力で押圧し、同時に研磨パッド24上にスラリーノズル32からスラリー30を供給して基板Wの研磨(TEOS膜の研磨)を行う。そして、基板Wの研磨終了後、基板ホルダ28と研磨テーブル26をそれぞれ回転させながら基板ホルダ28で保持した基板Wを研磨パッド24に押圧させた状態のまま、研磨パッド24上に洗浄液ノズル36から界面活性剤を含む洗浄液34を供給することで、基板Wと該基板W上に付着している、例えばスラリーに含まれる砥粒等の汚染物のゼータ電圧の絶対値を増加させる。界面活性剤を含む洗浄液34の供給時間は、数秒以上必要であり、10秒以上であることが好適である。界面活性剤を含む洗浄液34を供給している間に基板Wを研磨パッド24に向けて押圧する押圧力は、研磨時に基板Wを研磨パッド24に向けて押圧する押圧力よりも小さくて良い。   After the substrate holder 28 holding the substrate W is moved above the polishing table 26, the substrate holder 28 is lowered and the substrate W is pressed with a predetermined pressing force while rotating the substrate holder 28 and the polishing table 26, respectively. At the same time, the slurry 30 is supplied from the slurry nozzle 32 onto the polishing pad 24 to polish the substrate W (TEOS film polishing). After the polishing of the substrate W, the substrate W held by the substrate holder 28 is pressed against the polishing pad 24 while rotating the substrate holder 28 and the polishing table 26, respectively, and the cleaning liquid nozzle 36 is placed on the polishing pad 24. By supplying the cleaning liquid 34 containing a surfactant, the absolute value of the zeta voltage of the substrate W and contaminants such as abrasive grains contained in the slurry attached to the substrate W is increased. The supply time of the cleaning liquid 34 containing the surfactant is required to be several seconds or more, and is preferably 10 seconds or more. The pressing force for pressing the substrate W toward the polishing pad 24 while supplying the cleaning liquid 34 containing the surfactant may be smaller than the pressing force for pressing the substrate W toward the polishing pad 24 during polishing.

次に、基板ホルダ28で保持した基板Wを基板受渡台22に搬送して受け渡し、この基板受渡台22で受け取った基板を搬送機14aで第1洗浄機16に搬送する。この洗浄機16で、ローラ等の回転に伴って回転している基板Wの表裏両面に一対のロール型PVAスポンジ(洗浄具)40を所定の押圧力で接触させながら自転させながら、基板Wの表裏両面に洗浄液ノズル44から、純水からなる洗浄液42を供給することで、基板Wの表裏両面を接触洗浄(第1段洗浄)する。   Next, the substrate W held by the substrate holder 28 is transferred to the substrate transfer table 22 and transferred, and the substrate received by the substrate transfer table 22 is transferred to the first cleaner 16 by the transfer device 14a. With this cleaning machine 16, a pair of roll-type PVA sponges (cleaning tools) 40 are rotated while contacting with a predetermined pressing force on both the front and back surfaces of the substrate W rotating with the rotation of a roller or the like. By supplying the cleaning liquid 42 made of pure water from the cleaning liquid nozzle 44 to both the front and back surfaces, the front and back surfaces of the substrate W are contact cleaned (first stage cleaning).

この第1段洗浄後の基板Wを搬送機14aで反転機20に搬送し、この反転機20で表面を上向きに反転させた基板を、搬送機14aで第2洗浄機18に搬送する。この洗浄機18で、例えばNガス100L/minとCO溶解水200ml/minからなる二流体を噴出ノズル54から基板Wの表面に高速で噴霧して、二流体ジェット洗浄(第2段洗浄)を行う。 The substrate W after the first stage cleaning is transferred to the reversing machine 20 by the transfer machine 14a, and the substrate whose surface is turned upside down by the reversing machine 20 is transferred to the second cleaning machine 18 by the transfer machine 14a. With this cleaning machine 18, for example, two fluids consisting of N 2 gas 100 L / min and CO 2 dissolved water 200 ml / min are sprayed from the ejection nozzle 54 onto the surface of the substrate W at a high speed to perform two-fluid jet cleaning (second stage cleaning )I do.

次に、洗浄機18で基板Wを高速スピンで乾燥させ、乾燥後の基板Wを、搬送機14bによりロード・アンロード部12の保管ケース(基板カセット)に戻す。   Next, the substrate W is dried by the high-speed spin by the cleaning machine 18, and the dried substrate W is returned to the storage case (substrate cassette) of the load / unload unit 12 by the transport device 14b.

上記処理を行った場合の基板(ウェーハ)上の残留パーティクル数を計測した結果を、二流体ジェット洗浄として表2に示す。比較のために、上記第2の洗浄機18による二流体ジェット洗浄の代わりに、図9に示す洗浄機70を使用し、洗浄液として純水を用いて洗浄した時の基板(ウェーハ)上の残留パーティクル数を計測した結果も、接触洗浄として表2に示す。

Figure 0005294944
Table 2 shows the results of measuring the number of residual particles on the substrate (wafer) when the above treatment is performed, as two-fluid jet cleaning. For comparison, instead of the two-fluid jet cleaning by the second cleaning machine 18, the cleaning machine 70 shown in FIG. 9 is used, and the residue on the substrate (wafer) is cleaned using pure water as the cleaning liquid. The results of measuring the number of particles are also shown in Table 2 as contact cleaning.
Figure 0005294944

表2より、界面活性剤を含む洗浄液での処理(基板と基板上の汚染物のゼータ電圧の絶対値を増加させる処理)を追加したことにより、80nm以上パーティクルは、接触洗浄で9,601個、二流体ジェット洗浄で6,400個となり、従来の洗浄方法で20,000〜36,000個残留していたのに対して大幅に改善されることが判る。さらに、半導体デバイスの歩留りに影響を及ぼす可能性の高い、よりサイズの大きい120nm以上のパーティクル数で比較すると、接触洗浄後に1,905個であるのに対し、二流体ジェット洗浄後は717個まで低減していることが判る。   From Table 2, by adding a treatment with a cleaning solution containing a surfactant (a treatment that increases the absolute value of the zeta voltage of the substrate and contaminants on the substrate), 9,601 particles, 80 It can be seen that the number of fluid jet cleaning is 6,400, which is a significant improvement compared to 20,000-36,000 remaining in the conventional cleaning method. Furthermore, when compared with the larger number of particles with a size of 120 nm or more, which is likely to affect the yield of semiconductor devices, the number is 1,905 after contact cleaning, but it is reduced to 717 after two-fluid jet cleaning. You can see that

界面活性剤を含む洗浄液を二流体ジェット洗浄処理前に供給することで残留パーティクル数が低減できるメカニズムとして、以下の理由が考えられる。すなわち、CMP対象である基板表面膜(SiO膜)と砥粒(SiO粒子またはCeO粒子)の洗浄液中でのゼータ電位を比較すると、洗浄液が超純水(pH7)の場合にはSiO、CeOとも−20〜−50mVと弱いマイナス電位を持つ程度だが、界面活性剤を加えた超純水の場合には−50mV以上の強いマイナス電位を示しており、SiO膜と砥粒との間の電気的反発力が増加している。その結果、CMP中に基板表面膜(SiO膜)表面に強固に押し付けられた砥粒も脱離可能となり、再付着も抑制される。同時に、二流体ジェットで生成される微小ミスト衝突時の圧力がペンシル型PVAスポンジによる接触洗浄を上回り、異物除去しやすいためと、二流体ジェット洗浄は、非接触洗浄で逆汚染がないために、表2に示すような優れた洗浄性能が達成できたと考えられる。 The following reasons can be considered as a mechanism that can reduce the number of residual particles by supplying a cleaning liquid containing a surfactant before the two-fluid jet cleaning process. That is, when the zeta potential in the cleaning liquid of the substrate surface film (SiO 2 film) and abrasive grains (SiO 2 particles or CeO 2 particles) to be CMP is compared, when the cleaning liquid is ultrapure water (pH 7), SiO 2 2 and CeO 2 have a weak negative potential of −20 to −50 mV, but in the case of ultrapure water to which a surfactant is added, a strong negative potential of −50 mV or more is shown, and the SiO 2 film and abrasive grains The electric repulsive force between is increasing. As a result, abrasive grains firmly pressed against the surface of the substrate surface film (SiO 2 film) during CMP can be detached, and re-adhesion can be suppressed. At the same time, the pressure at the time of micro mist collision generated by the two-fluid jet exceeds the contact cleaning by the pencil type PVA sponge, and it is easy to remove foreign matters, and the two-fluid jet cleaning is non-contact cleaning and there is no back contamination, It is considered that excellent cleaning performance as shown in Table 2 was achieved.

表2の結果は、Nガス流量が100L/min、COガス溶解水流量が200ml/minの条件の場合であるが、Nガス流量を75L/min、50L/minまたはそれ以下に落としても、COガス溶解水流量を100ml/min以下に落としても、ほぼ同様の洗浄性能が得ることができることが確かめられている。またCOガス溶解水は、洗浄時の帯電防止には有効であるが、パーティクル除去のみを目的とすれば、COガス溶解水の替わりに超純水を用いても同様の効果を得ることができることが確かめられている。 The results in Table 2 are for the conditions where the N 2 gas flow rate is 100 L / min and the CO 2 gas dissolved water flow rate is 200 ml / min, but the N 2 gas flow rate is reduced to 75 L / min, 50 L / min or less. However, it has been confirmed that substantially the same cleaning performance can be obtained even if the flow rate of the CO 2 gas dissolved water is reduced to 100 ml / min or less. In addition, CO 2 gas-dissolved water is effective for preventing electrification at the time of cleaning, but for the purpose of removing particles only, the same effect can be obtained even if ultra pure water is used instead of CO 2 gas-dissolved water. It has been confirmed that

上記実施形態では、基板表面膜と砥粒との間に電気的反発力を与える手段として界面活性剤を用いたが、アルカリ性薬液でも同等の効果を得ることができる。また界面活性剤を含む洗浄液、あるいはアルカリ性薬液などを研磨パッド上に供給する回数は一回に限定されることなく、CMP後に何度かに分けて供給しても良く、その間に超純水やスラリー、または別の薬液を研磨パッドに供給しても良い。また上記実施形態では、2つの洗浄機で第1段洗浄と第2段洗浄を行うようにしているが、洗浄機の数は3つ以上として、第3段もしくはそれ以上の洗浄を行うようにしてもよい。更に、第1段洗浄を行う第1洗浄機16におけるロール型PVAスポンジ40や基板Wの設置位置及び方向は任意に設定できる。例えば、基板を垂直に設置して、ロール型PVAスポンジが基板の少なくとも表面に接触するようにしてもよい。第2段洗浄を行う第2洗浄機18における乾燥方法は、高速スピン回転に限らず、IPA乾燥、または別の乾燥手段であってもよい。このことは、以下の各例においても同様である。   In the above embodiment, the surfactant is used as a means for giving an electric repulsive force between the substrate surface film and the abrasive grains, but an equivalent effect can be obtained even with an alkaline chemical solution. In addition, the number of times the cleaning liquid containing the surfactant or the alkaline chemical liquid is supplied onto the polishing pad is not limited to one time, and may be supplied several times after the CMP. Slurry or another chemical may be supplied to the polishing pad. In the above embodiment, the first stage cleaning and the second stage cleaning are performed by two cleaning machines. However, the number of cleaning machines is three or more, and the third stage cleaning or more is performed. May be. Furthermore, the installation position and direction of the roll type PVA sponge 40 and the substrate W in the first cleaning machine 16 that performs the first stage cleaning can be arbitrarily set. For example, the substrate may be installed vertically so that the roll type PVA sponge contacts at least the surface of the substrate. The drying method in the second cleaning machine 18 that performs the second stage cleaning is not limited to high-speed spin rotation, and may be IPA drying or another drying means. The same applies to the following examples.

図6は、本発明の他の実施形態の処理フローを示す。この例の図5に示す例と異なる点は、図3に示す第1洗浄機16による接触洗浄に使用される洗浄液34として、純水の代わりに、0.5%の界面活性剤を含む純水を使用している点にある。これによって、ロール型PVDスポンジ(洗浄具)40による接触洗浄を、基板Wと基板W上に付着している砥粒等の汚染物の絶対値を増加させながら行うようにしている。   FIG. 6 shows a processing flow of another embodiment of the present invention. This example is different from the example shown in FIG. 5 in that the cleaning liquid 34 used for contact cleaning by the first cleaning machine 16 shown in FIG. The point is that water is used. Thus, contact cleaning by the roll type PVD sponge (cleaning tool) 40 is performed while increasing the absolute value of the contaminants such as abrasive grains adhering to the substrate W and the substrate W.

上記処理を行った場合の基板(ウェーハ)上の残留パーティクル数を計測した結果を、二流体ジェット洗浄として表3に示す。比較のために、上記第2の洗浄機18による二流体ジェット洗浄の代わりに、図9に示す洗浄機70を使用し、洗浄液として純水を用いて洗浄した時の基板(ウェーハ)上の残留パーティクル数を計測した結果も、接触洗浄として表3に示す。

Figure 0005294944
Table 3 shows the results of measuring the number of residual particles on the substrate (wafer) when the above treatment is performed, as two-fluid jet cleaning. For comparison, instead of the two-fluid jet cleaning by the second cleaning machine 18, the cleaning machine 70 shown in FIG. 9 is used, and the residue on the substrate (wafer) is cleaned using pure water as the cleaning liquid. The results of measuring the number of particles are also shown in Table 3 as contact cleaning.
Figure 0005294944

二流体ジェット洗浄にあっては、表2と比較して、80nm以上のパーティクル数において約1,100個の低減効果があり、特に120nm以上のパーティクル数は半減している。接触洗浄にあっては、界面活性剤を添加した効果はなく、逆に表2で示した純水での洗浄結果よりもパーティクル数が増加している。この現象は、接触洗浄で除去したパーティクルの一部がスポンジ内部に蓄積されるが、界面活性剤添加によりスポンジ自体も洗浄されてしまい、蓄積されたパーティクルが基板上に放出されて残留するためであると考えられる。   In the two-fluid jet cleaning, as compared with Table 2, there is an effect of reducing about 1,100 particles at 80 nm or more, and the number of particles at 120 nm or more is halved. In the contact cleaning, there is no effect of adding the surfactant, and conversely, the number of particles is larger than the cleaning result with pure water shown in Table 2. This phenomenon is because some of the particles removed by contact cleaning are accumulated inside the sponge, but the sponge itself is also cleaned by the addition of the surfactant, and the accumulated particles are released and remain on the substrate. It is believed that there is.

前述の第1段洗浄に使用する洗浄液の界面活性剤濃度を0.5〜8%に段階的に変えた場合の基板(ウェーハ)上の残留パーティクル数を計測して結果を表4に示す。

Figure 0005294944
Table 4 shows the results obtained by measuring the number of residual particles on the substrate (wafer) when the surfactant concentration of the cleaning liquid used for the first stage cleaning is changed stepwise to 0.5 to 8%.
Figure 0005294944

表4から、洗浄液の界面活性剤濃度が2%と4%の場合に残留パーティクル数が多い傾向が見られ、界面活性剤濃度が0.5%と8%の場合にはパーティクル数が少ないことが判る。したがって、洗浄液の界面活性剤濃度は、2%未満もしくは4%より高い条件であることがより好適である。洗浄液の界面活性剤濃度が2〜4%の領域でパーティクル数が若干増加する原因は、次のように推察される。すなわち研磨砥粒は微小な砥粒粒子が数個から数十個程度凝集してスラリー中に存在し、砥粒間の電気的反発力に変化がない限り、研磨後の基板(SiO)表面でもこの凝集状態で残存する。後洗浄で界面活性剤の添加量を増やしていくと、砥粒間の電気的反発力が増加して砥粒の凝集が弱まり、砥粒が散在して砥粒の全表面積は増加する。ところが界面活性剤の量が中途半端に多い状態(ここでは濃度2〜4%の領域に相当)では、増加した砥粒表面には界面活性剤が吸着するものの、基板表面膜(SiO膜)表面への界面活性剤吸着量が不足してしまう。そのため、基板表面膜(SiO膜)と砥粒間の電気的反発力が十分でなくなり、残留パーティクル数の増加として検出されてしまう。洗浄液の界面活性剤濃度が4%より高い条件、例えば8%では、基板表面膜(SiO表面)にも十分な量の界面活性剤が吸着できるので、残留パーティクル数は再び減少する。 From Table 4, there is a tendency for the number of residual particles to be large when the surfactant concentration in the cleaning liquid is 2% and 4%, and the number of particles is small when the surfactant concentration is 0.5% and 8%. I understand. Therefore, the surfactant concentration in the cleaning liquid is more preferably less than 2% or higher than 4%. The reason why the number of particles slightly increases in the region where the surfactant concentration of the cleaning liquid is 2 to 4% is presumed as follows. That is, as long as the abrasive grains are aggregated from several to several tens of fine abrasive grains and exist in the slurry, and there is no change in the electrical repulsion between the abrasive grains, the surface of the polished substrate (SiO 2 ) However, it remains in this aggregated state. When the amount of the surfactant added is increased by post-cleaning, the electrical repulsion between the abrasive grains increases, the aggregation of the abrasive grains weakens, the abrasive grains are scattered, and the total surface area of the abrasive grains increases. However, in a state where the amount of the surfactant is halfway (in this case, corresponding to a region having a concentration of 2 to 4%), although the surfactant is adsorbed on the increased abrasive grain surface, the substrate surface film (SiO 2 film) The amount of surfactant adsorbed on the surface will be insufficient. For this reason, the electric repulsive force between the substrate surface film (SiO 2 film) and the abrasive grains becomes insufficient, and is detected as an increase in the number of residual particles. When the surfactant concentration in the cleaning liquid is higher than 4%, for example, 8%, a sufficient amount of the surfactant can be adsorbed on the substrate surface film (SiO 2 surface), so the number of residual particles decreases again.

図7は、本発明の更に他の実施形態の基板の洗浄方法の処理フローを示す。この例の図5及び図6に示す例と異なる点は、図4に示す第2洗浄機18による二流体ジェット洗浄に使用される洗浄液52として、純水の代わりに、界面活性剤を含む純水を使用している点にある。これによって、二流体ジェット洗浄を、基板Wと基板W上に付着している砥粒等の汚染物の絶対値を増加させながら行うようにしている。   FIG. 7 shows a process flow of a substrate cleaning method according to still another embodiment of the present invention. 5 and 6 of this example is different from the example shown in FIG. 5 and FIG. 6 as a cleaning liquid 52 used for two-fluid jet cleaning by the second cleaning machine 18 shown in FIG. The point is that water is used. Thus, the two-fluid jet cleaning is performed while increasing the absolute value of the contaminants such as abrasive grains adhering to the substrate W and the substrate W.

この場合、例えばCOガス溶解水に界面活性剤を添加してもよいが、発泡しやすい界面活性剤を使用した場合には、ミスト生成時に界面活性剤が発泡して洗浄の妨げとなる。その場合には、界面活性剤と一緒に消泡剤を適宜添加することが好ましく、例えばNガスとCOガス溶解水からなる二流体ジェットを基板表面に噴射するのと同時に、図4に図示しない別の洗浄液ノズルより界面活性剤を含む洗浄液を基板表面に供給するようにしても良い。界面活性剤を含む洗浄液を基板表面に供給するタイミングは、二流体ジェットを噴射している全ての時間ではなく、一部の時間、例えば二流体ジェットを噴射する初期の時間のみでも良い。 In this case, for example, a surfactant may be added to the CO 2 gas-dissolved water. However, when a surfactant that easily foams is used, the surfactant foams at the time of mist formation and hinders cleaning. In that case, it is preferable to add an antifoaming agent as appropriate together with the surfactant. For example, a two-fluid jet composed of N 2 gas and CO 2 gas-dissolved water is sprayed onto the substrate surface, and simultaneously with FIG. A cleaning liquid containing a surfactant may be supplied to the substrate surface from another cleaning liquid nozzle (not shown). The timing at which the cleaning liquid containing the surfactant is supplied to the substrate surface may not be the entire time during which the two-fluid jet is ejected, but only a part of the time, for example, the initial time during which the two-fluid jet is ejected.

図8は、本発明の更に他の実施形態の処理フローを示す。この例の図7に示す例と異なる点は、図4に示す第2洗浄機18による二流体ジェット洗浄に際して、先ず図4に図示しない洗浄液ノズルから基板の表面に界面活性剤を含む洗浄液を供給し、しかる後、二流体ジェットを基板表面に噴射するようにしている点にある。このように、界面活性剤を含む洗浄液を基板表面に二流体ジェット洗浄前に供給しても、前述と同様な洗浄効果を得ることができる。また界面活性剤を含む洗浄液を基板表面に供給する工程と二流体ジェット洗浄を行う工程とを交互に繰り返して行うことにより、より高い洗浄効果が得られる。   FIG. 8 shows a processing flow of still another embodiment of the present invention. 7 is different from the example shown in FIG. 7 in that, when the two-fluid jet cleaning is performed by the second cleaning machine 18 shown in FIG. 4, a cleaning liquid containing a surfactant is first supplied from the cleaning liquid nozzle not shown in FIG. However, after that, the two-fluid jet is jetted onto the substrate surface. As described above, even when the cleaning liquid containing the surfactant is supplied to the substrate surface before the two-fluid jet cleaning, the same cleaning effect as described above can be obtained. Further, a higher cleaning effect can be obtained by alternately repeating the step of supplying the cleaning liquid containing the surfactant to the substrate surface and the step of performing the two-fluid jet cleaning.

これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。   Although one embodiment of the present invention has been described so far, it is needless to say that the present invention is not limited to the above-described embodiment, and may be implemented in various forms within the scope of the technical idea.

10 研磨部
12 ロード・アンロード部
14a,14b 搬送機
16,18 洗浄機
24 研磨パッド
26 研磨テーブル
28 基板ホルダ
30 スラリー
32 スラリーノズル
34,42 洗浄液
36,44 洗浄液ノズル
40 ロール型PVAスポンジ(洗浄具)
50 洗浄カップ
52 二流体ジェット流
54 噴出ノズル
56 洗浄液供給ライン
58 ガス供給ライン
DESCRIPTION OF SYMBOLS 10 Polishing part 12 Load / unload part 14a, 14b Conveyor 16, 18 Cleaning machine 24 Polishing pad 26 Polishing table 28 Substrate holder 30 Slurry 32 Slurry nozzle 34, 42 Cleaning liquid 36, 44 Cleaning liquid nozzle 40 Roll type PVA sponge (cleaning tool )
50 Washing cup 52 Two-fluid jet 54 Spray nozzle 56 Cleaning liquid supply line 58 Gas supply line

Claims (7)

基板に付着した汚染物を洗浄する基板の洗浄方法において、
基板のゼータ電位該データ電位と同じ極性を有する基板上に付着している汚染物のゼータ電位の絶対値を共に増加させる処理を行い、しかる後、
基板の表面に洗浄具を接触させて基板の表面を洗浄する接触洗浄と、ガスと液体を基板表面に向け同時に噴射して基板表面を洗浄する二流体ジェット洗浄とを行うことを特徴とする基板の洗浄方法。
In the substrate cleaning method for cleaning contaminants adhering to the substrate,
It performs a process of both increasing the absolute value of the zeta potential of the contaminants adhering on the substrate having the same polarity as the zeta potential and the data potential of the substrate, thereafter,
A substrate characterized by performing contact cleaning in which a cleaning tool is brought into contact with the surface of the substrate to clean the surface of the substrate, and two-fluid jet cleaning in which gas and liquid are simultaneously jetted toward the substrate surface to clean the substrate surface. Cleaning method.
前記ゼータ電位の絶対値を増加させる処理で増加させた後の基板のゼータ電位と基板上に付着している汚染物のゼータ電位は、共に−50mV以下または+50mV以上であることを特徴とする請求項1記載の基板の洗浄方法。 The zeta potential of the substrate after the increase in the absolute value of the zeta potential and the zeta potential of the contaminant adhering to the substrate are both -50 mV or less or +50 mV or more. Item 4. A method for cleaning a substrate according to Item 1. 前記ゼータ電位の絶対値を増加させる処理を、界面活性剤を含む洗浄液を基板表面に供給することで行うことを特徴とする請求項1または2記載の基板の洗浄方法。   3. The substrate cleaning method according to claim 1, wherein the treatment for increasing the absolute value of the zeta potential is performed by supplying a cleaning liquid containing a surfactant to the substrate surface. 前記ゼータ電位の絶対値を増加させる処理を、アルカリ性の洗浄液を基板表面に供給することで行うことを特徴とする請求項1または2記載の基板の洗浄方法。   3. The substrate cleaning method according to claim 1, wherein the treatment for increasing the absolute value of the zeta potential is performed by supplying an alkaline cleaning liquid to the substrate surface. 前記洗浄具は、PVAスポンジからなることを特徴とする請求項1乃至4のいずれかに記載の基板の洗浄方法。   The substrate cleaning method according to claim 1, wherein the cleaning tool is made of PVA sponge. 前記ゼータ電位の絶対値を増加させる処理をCMP直後の基板に対して行うことを特徴とする請求項1乃至5のいずれかに記載の基板の洗浄方法。   6. The method for cleaning a substrate according to claim 1, wherein the processing for increasing the absolute value of the zeta potential is performed on the substrate immediately after CMP. 前記接触洗浄及び前記二流体ジェット洗浄の少なくとも一方を、基板のゼータ電位該データ電位と同じ極性を有する基板上に付着している汚染物のゼータ電位の絶対値を共に増加させながら行うことを特徴とする請求項1乃至6のいずれかに記載の基板の洗浄方法。 At least one of the contact cleaning and the two-fluid jet cleaning, to be performed while both increasing the absolute value of the zeta potential of the contaminants adhering on the substrate having the same polarity as the zeta potential and the data potential of the substrate The substrate cleaning method according to claim 1, wherein the substrate is cleaned.
JP2009084204A 2009-03-31 2009-03-31 Substrate cleaning method Active JP5294944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009084204A JP5294944B2 (en) 2009-03-31 2009-03-31 Substrate cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009084204A JP5294944B2 (en) 2009-03-31 2009-03-31 Substrate cleaning method

Publications (2)

Publication Number Publication Date
JP2010238850A JP2010238850A (en) 2010-10-21
JP5294944B2 true JP5294944B2 (en) 2013-09-18

Family

ID=43092930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009084204A Active JP5294944B2 (en) 2009-03-31 2009-03-31 Substrate cleaning method

Country Status (1)

Country Link
JP (1) JP5294944B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5712061B2 (en) * 2011-06-16 2015-05-07 株式会社荏原製作所 Substrate processing method and substrate processing unit
JP2013089797A (en) 2011-10-19 2013-05-13 Ebara Corp Substrate cleaning method and substrate cleaning device
JP5866227B2 (en) 2012-02-23 2016-02-17 株式会社荏原製作所 Substrate cleaning method
JP6250924B2 (en) 2012-10-02 2017-12-20 株式会社荏原製作所 Substrate cleaning apparatus and polishing apparatus
JP6295023B2 (en) 2012-10-03 2018-03-14 株式会社荏原製作所 Substrate cleaning apparatus, substrate cleaning method, and polishing apparatus
JP6093569B2 (en) 2012-12-28 2017-03-08 株式会社荏原製作所 Substrate cleaning device
SG10201407598VA (en) 2013-11-19 2015-06-29 Ebara Corp Substrate cleaning apparatus and substrate processing apparatus
JP7160725B2 (en) 2019-03-06 2022-10-25 株式会社荏原製作所 Substrate processing equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306650A (en) * 1995-05-09 1996-11-22 Mitsubishi Chem Corp Cleaning method of substrate and alkaline cleaning composition using for the method
JP2000218517A (en) * 1999-01-26 2000-08-08 Hitachi Ltd Manufacturing method and device for electronic parts
JP2000294525A (en) * 1999-04-08 2000-10-20 Toshiba Corp Manufacture of semiconductor device
JP2004288858A (en) * 2003-03-20 2004-10-14 Dainippon Screen Mfg Co Ltd Method and apparatus for treating substrate
KR20070001955A (en) * 2004-01-26 2007-01-04 티비더블유 인더스트리즈, 인코포레이티드 Multi-step pad conditioning system and method for chemical planarization
JP2007335856A (en) * 2006-05-19 2007-12-27 Sanyo Chem Ind Ltd Detergent for electronics material

Also Published As

Publication number Publication date
JP2010238850A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
JP5294944B2 (en) Substrate cleaning method
TWI525686B (en) Substrate cleaning method
TWI666068B (en) Substrate cleaning apparatus and cleaning method
JP4813185B2 (en) Wafer cleaning apparatus and cleaning method
JP6113960B2 (en) Substrate processing apparatus and substrate processing method
KR102146872B1 (en) Substrate cleaning apparatus and substrate cleaning method
EP3112086A2 (en) Method of polishing back surface of substrate and substrate processing apparatus
JP2001035821A (en) Method and apparatus for polishing substrate
JPWO2007108315A1 (en) Substrate processing apparatus and substrate processing method
TW201330148A (en) Substrate cleaning method and substrate cleaning device
US20160083676A1 (en) Method and apparatus for high efficiency post cmp clean using engineered viscous fluid
JP6420415B2 (en) Substrate processing equipment
US9630296B2 (en) Substrate processing apparatus
JP2012138498A (en) Cleaning method
JP2015015284A (en) Substrate cleaning device and substrate cleaning method
JP6971676B2 (en) Board processing equipment and board processing method
JP6625461B2 (en) Polishing equipment
KR20110064608A (en) Wafer cleaning apparatus with spin scrubber and cleaning method thereof
TWI417951B (en) Substrate liquid treatment apparatus, substrate liquid treatment method and storage medium storing substrate liquid treatment program
WO2010047119A1 (en) Apparatus for cleaning substrate for magnetic recording medium, and method for cleaning substrate for magnetic recording medium
EP3396707B1 (en) Apparatus and method for cleaning a back surface of a substrate
Deng et al. A novel cleaner for colloidal silica abrasive removal in post-Cu CMP cleaning
Chen et al. Chemical mechanical cleaning for CMP defect reduction
JP2000040684A (en) Cleaning equipment
Hazarika et al. Post-Chemical Mechanical Planarization Cleaning Technology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130611

R150 Certificate of patent or registration of utility model

Ref document number: 5294944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250