JP5293525B2 - Composition for sealing an optical semiconductor element - Google Patents

Composition for sealing an optical semiconductor element Download PDF

Info

Publication number
JP5293525B2
JP5293525B2 JP2009214499A JP2009214499A JP5293525B2 JP 5293525 B2 JP5293525 B2 JP 5293525B2 JP 2009214499 A JP2009214499 A JP 2009214499A JP 2009214499 A JP2009214499 A JP 2009214499A JP 5293525 B2 JP5293525 B2 JP 5293525B2
Authority
JP
Japan
Prior art keywords
group
epoxy
resin
mass
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009214499A
Other languages
Japanese (ja)
Other versions
JP2011063686A (en
Inventor
佳英 浜本
努 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2009214499A priority Critical patent/JP5293525B2/en
Priority to KR1020100090262A priority patent/KR101751541B1/en
Priority to TW099131235A priority patent/TWI481671B/en
Priority to CN201010286520.5A priority patent/CN102020853B/en
Publication of JP2011063686A publication Critical patent/JP2011063686A/en
Application granted granted Critical
Publication of JP5293525B2 publication Critical patent/JP5293525B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Silicon Polymers (AREA)

Description

本発明は、LED等の光半導体素子を封止するための組成物に関し、詳細には、エポキシ基が付加反応によりシリコーン鎖に導入された分岐シリコーン樹脂を含み、ポットライフが長く、耐熱衝撃性等に優れた硬化物を与える組成物に関する。 The present invention relates to a composition for sealing an optical semiconductor element such as an LED, and more specifically, includes a branched silicone resin in which an epoxy group is introduced into a silicone chain by an addition reaction, has a long pot life, and has a thermal shock resistance. It is related with the composition which gives the hardened | cured material excellent in these.

従来、光半導体素子を封止するために、エポキシ樹脂組成物が広く用いられている。該エポキシ樹脂組成物は、通常、脂環式エポキシ樹脂、硬化剤および硬化触媒を含有する。該組成物を、キャスティング、トランスファー成形などの成形法により、光半導体素子が配置された金型に流しこみ硬化させることにより、光半導体素子を封止する。しかし、LEDの輝度及びパワーUPに伴い、エポキシ樹脂の変色劣化が問題となっている。特に脂環式エポキシ樹脂は、青色光や紫外線により黄変するため、LED素子の寿命を短くするという問題があった。   Conventionally, epoxy resin compositions have been widely used to seal optical semiconductor elements. The epoxy resin composition usually contains an alicyclic epoxy resin, a curing agent and a curing catalyst. The composition is poured and cured by a molding method such as casting or transfer molding into a mold in which the optical semiconductor element is disposed, thereby sealing the optical semiconductor element. However, with the brightness and power of the LED, the color change deterioration of the epoxy resin has become a problem. In particular, the alicyclic epoxy resin has a problem of shortening the life of the LED element because it is yellowed by blue light or ultraviolet light.

そこで、耐熱耐光に優れたシリコーンをエポキシ化合物で変性した、エポキシ変性シリコーンを含む組成物が提案されている。該エポキシ変性シリコーンとしては、例えば、エポキシ基を有するシランと、シラノールとを縮合させて合成された樹脂(特許文献1)、エポキシ環を少なくとも2つ有するシルセスキオキサン(特許文献2)、一官能シロキサン単位(M単位)と四官能シロキサン単位(Q単位)からなるオルガノポリシロキサンにエポキシ基を導入したもの(特許文献3)等が知られている。   Therefore, a composition containing an epoxy-modified silicone obtained by modifying a silicone excellent in heat and light resistance with an epoxy compound has been proposed. Examples of the epoxy-modified silicone include a resin synthesized by condensing a silane having an epoxy group and silanol (Patent Document 1), a silsesquioxane having at least two epoxy rings (Patent Document 2), one Known is an organopolysiloxane composed of a functional siloxane unit (M unit) and a tetrafunctional siloxane unit (Q unit) in which an epoxy group is introduced (Patent Document 3).

しかし、これらのシリコーン樹脂を含む組成物は、その硬化物の弾性率が低く且つ脆い。そのため、該組成物で封止したLEDは、温度サイクル試験において樹脂にクラックが入り易いという問題があった。   However, the composition containing these silicone resins has a low elastic modulus and is brittle. Therefore, the LED encapsulated with the composition has a problem that the resin easily cracks in the temperature cycle test.

特開平7−97433号公報Japanese Patent Laid-Open No. 7-97433 特開2005−263869号公報JP 2005-263869 A 特開平7−18078号公報JP-A-7-18078

本発明者らは、上記問題を解決すべく、所定の直鎖ポリシロキサン構造を有するエポキシ変性シリコーン樹脂を含む組成物を発明した(特願2008−195122号)。本発明は、該組成物を耐熱衝撃性及びポットライフの点でさらに改良することを目的とする。   In order to solve the above problems, the present inventors have invented a composition containing an epoxy-modified silicone resin having a predetermined linear polysiloxane structure (Japanese Patent Application No. 2008-195122). The present invention aims to further improve the composition in terms of thermal shock resistance and pot life.

本発明者らは、種々検討した結果、エポキシ基を付加反応によりシリコーン鎖に導入することによって、上記目的を達成できることを見出し、本発明を完成させるに至った。即ち、本発明は下記(A)、(B)、(C)及び(D)を含む光半導体素子封止用組成物である。
(A)不飽和基含有エポキシ化合物と、SiH基を有するオルガノポリシロキサンとの付加反応により調製される分岐シリコーン樹脂であって、1分子当たり、3以上のエポキシ基、1以上の(RSiO3/2)単位、3以上の(RSiO1/2)単位、及び、3以上の(RSiO)(nは1〜20の整数)構造を有する、分岐シリコーン樹脂 100質量部
[RはC1−20の一価の有機基、R及びRは、互いに独立に、C1−20の一価の有機基、RはC1−20の一価の有機基、但し、1分子中のRのうちの3以上はエポキシ基含有基である]
(B)1分子当り2個以上のエポキシ基を有する非芳香族系エポキシ樹脂
(A)成分と(B)成分の合計100質量部に対して50質量部以下
(C)硬化剤 (A)成分と(B)成分のエポキシ基の合計1モルに対し該エポキシ基と反応性の基が0.4〜1.5モルとなる量
(D)硬化触媒 (A)成分、(B)成分及び(C)成分の合計100質量部に対し0.01〜3質量部
As a result of various studies, the present inventors have found that the above object can be achieved by introducing an epoxy group into a silicone chain by an addition reaction, and have completed the present invention. That is, this invention is a composition for optical semiconductor element sealing containing the following (A), (B), (C) and (D).
(A) A branched silicone resin prepared by an addition reaction between an unsaturated group-containing epoxy compound and an organopolysiloxane having a SiH group, wherein 3 or more epoxy groups and 1 or more (R 1 SiO 3/2 ) units, 3 or more (R 2 R 3 R 4 SiO 1/2 ) units, and 3 or more (R 2 R 3 SiO) n (n is an integer of 1 to 20) structure, branched 100 parts by mass of silicone resin [R 1 is a C 1-20 monovalent organic group, R 2 and R 3 are independently of each other a C 1-20 monovalent organic group, and R 4 is a C 1-20 Monovalent organic group, provided that 3 or more of R 4 in one molecule is an epoxy group-containing group]
(B) Non-aromatic epoxy resin having two or more epoxy groups per molecule (A) component and (B) 50 parts by mass or less with respect to 100 parts by mass in total (C) curing agent (A) component (D) Curing catalyst (A) component, (B) component, and (B) amount which becomes 0.4-1.5 mol of this epoxy group and a reactive group with respect to 1 mol in total of the epoxy group of (B) component C) 0.01 to 3 parts by mass with respect to 100 parts by mass in total of the components

上記本発明の光半導体素子止封止用組成物はポットライフが長く、保存中に粘度が上昇することが無い。また、該組成物の硬化物は、高硬度でありながら耐熱衝撃性に優れ、良好な光半導体パッケージを形成する。   The composition for sealing an optical semiconductor element of the present invention has a long pot life and does not increase in viscosity during storage. Further, the cured product of the composition is excellent in thermal shock resistance while being high in hardness, and forms a good optical semiconductor package.

本発明の組成物において、(A)分岐シリコーン樹脂は、不飽和基含有エポキシ化合物と、SiH基を有するオルガノポリシロキサンとの付加反応により調製される。これにより、縮合反応によりエポキシ基を導入したシリコーン樹脂を含む場合に比べて長いポットライフを達成することができる。付加反応は、定法に従い白金触媒の存在下で行う。 In the composition of the present invention, the branched silicone resin (A) is prepared by an addition reaction between an unsaturated group-containing epoxy compound and an organopolysiloxane having a SiH group. Thereby, a long pot life can be achieved as compared with the case where a silicone resin into which an epoxy group is introduced by a condensation reaction is included. The addition reaction is performed in the presence of a platinum catalyst according to a conventional method.

(A)分岐シリコーン樹脂は、1分子当り3以上のエポキシ基を有する。エポキシ基は、後述するR中に含まれ、上記付加反応により飽和となった結合、例えばビニル基由来のエチレン基、アリル基由来のプロピレン基、さらに、該飽和結合とエポキシ基とを連結する基を介して、ケイ素原子に結合されている。(A)分岐シリコーン樹脂のエポキシ当量は、200〜1500g/eq、好ましくは200〜1200g/eq、である。 (A) The branched silicone resin has 3 or more epoxy groups per molecule. The epoxy group is contained in R 4 described later, and is saturated by the above addition reaction, for example, an ethylene group derived from a vinyl group, a propylene group derived from an allyl group, and further connects the saturated bond and the epoxy group. It is bonded to the silicon atom via a group. (A) The epoxy equivalent of the branched silicone resin is 200 to 1500 g / eq, preferably 200 to 1200 g / eq.

(A)分岐シリコーン樹脂は、1分子当たり、1以上の(RSiO3/2)単位、3以上の(RSiO1/2)単位、及び、3以上の(RSiO)(nは1〜20の整数)構造を有する。分岐を有するので、硬化物の硬度が高い。 (A) The branched silicone resin has one or more (R 1 SiO 3/2 ) units, three or more (R 2 R 3 R 4 SiO 1/2 ) units, and three or more (R 2 ) units per molecule. R 3 SiO) n (n is an integer of 1 to 20) structure. Since it has a branch, the hardness of the cured product is high.

、R、R及びRはC1−20の一価の有機基、但し、1分子中のRのうちの3以上はエポキシ基含有基である。C1−20の一価の有機基としては、メチル基、エチル基、プロピル基、ブチル基等のアルキル基、シクロペンチル基、シクロヘキシル基、ノルボニル基等の脂環式基、フェニル基等のアリール基等が挙げられる。好ましくは、Rがフェニル基であり、R及びRがメチル基である。 R 1 , R 2 , R 3 and R 4 are C 1-20 monovalent organic groups, provided that three or more of R 4 in one molecule are epoxy group-containing groups. The monovalent organic group of C 1-20 includes an alkyl group such as a methyl group, an ethyl group, a propyl group, and a butyl group, an alicyclic group such as a cyclopentyl group, a cyclohexyl group, and a norbornyl group, and an aryl group such as a phenyl group. Etc. Preferably, R 1 is a phenyl group, and R 2 and R 3 are methyl groups.

のエポキシ基含有基としては、γ−グリシドキシエチル基、及びβ−(3,4−エポキシシクロへキシル)エチル基及びこれらの組合せが例示される。好ましくはβ−(3,4−エポキシシクロへキシル)エチル基である。 Examples of the epoxy group-containing group of R 4 include a γ-glycidoxyethyl group, a β- (3,4-epoxycyclohexyl) ethyl group, and combinations thereof. A β- (3,4-epoxycyclohexyl) ethyl group is preferred.

好ましくは、(A)分岐シリコーン樹脂は下記式(2)で表される。 Preferably, (A) branched silicone resin is represented by following formula (2).

Figure 0005293525

式(2)において、R〜Rは上述のとおりであり、p、q、及びrは1〜20、好ましくは1〜10、の整数であり、sは1〜5、好ましくは1〜2、の整数である。
Figure 0005293525

In the formula (2), R 1 to R 4 are as described above, p, q, and r are integers of 1 to 20, preferably 1 to 10, and s is 1 to 5, preferably 1 to 1. An integer of 2.

(A)分岐シリコーン樹脂は、上述のとおり、SiH基を有するオルガノポリシロキサンに、ビニル基等の不飽和基を有するエポキシ化合物を、白金等の金属触媒の存在下で、付加させて調製される。例えば、上記式(2)のものは、下記式(3)で表される末端にSiH基を有するルガノポリシロキサンに、不飽和基を有するエポキシ化合物を付加反応させて得ることができる。 (A) As described above, the branched silicone resin is prepared by adding an epoxy compound having an unsaturated group such as a vinyl group to an organopolysiloxane having a SiH group in the presence of a metal catalyst such as platinum. . For example, those above formula (2) may be to turn organopolysiloxane having SiH groups at the ends represented by the following formula (3), obtained by addition reaction of an epoxy compound having an unsaturated group.

Figure 0005293525

(式(3)において、R〜R、p、q、r及びsは上記のとおりである。)
該不飽和基を有するエポキシ化合物としては、ビニルシクロヘキセンモノオキサイド(セロキサイド2000Z、ダイセル化学工業社製)が例示される。
Figure 0005293525

(In Formula (3), R 1 to R 4 , p, q, r, and s are as described above.)
Examples of the epoxy compound having an unsaturated group include vinylcyclohexene monooxide (Celoxide 2000Z, manufactured by Daicel Chemical Industries).

上記式(3)のオルガノポリシロキサンは、例えば、RSiX、HRSiXで表される有機ケイ素化合物(Xはアルコキシ基等の加水分解性の基)と(RSiO)n(n=1〜20)構造を有し、末端に加水分解性の基を有するオルガノポリシロキサンとを加水分解及び縮合反応に付することにより合成することができる。 The organopolysiloxane of the above formula (3) is, for example, an organosilicon compound represented by R 1 SiX 3 or HR 2 R 3 SiX (X is a hydrolyzable group such as an alkoxy group) and (R 2 R 3 SiO ) It can be synthesized by subjecting an organopolysiloxane having an n (n = 1 to 20) structure and having a hydrolyzable group at the terminal to hydrolysis and condensation reactions.

(B)1分子当り2個以上のエポキシ基を有する非芳香族系エポキシ樹脂としては、(3,4−エポキシシクロヘキサン)メチル3’,4’−エポキシシクロヘキシルカルボキシレート等の脂環式エポキシ樹脂;ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、アラルキル型エポキシ樹脂及びビフェニルアラルキル型エポキシ樹脂等の芳香環を水素添加した水添型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂などを挙げることができる。なかでも耐光性の点で、脂環式エポキシ樹脂が好適である。 (B) Examples of non-aromatic epoxy resins having two or more epoxy groups per molecule include alicyclic epoxy resins such as (3,4-epoxycyclohexane) methyl 3 ′, 4′-epoxycyclohexyl carboxylate; Hydrogen aromatic rings such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, aralkyl type epoxy resin and biphenyl aralkyl type epoxy resin Examples include a hydrogenated epoxy resin added; a dicyclopentadiene epoxy resin. Of these, alicyclic epoxy resins are preferred in terms of light resistance.

(B)エポキシ樹脂の配合量は、(A)成分と(B)成分の合計100質量部に対して50質量部、好ましくは40質量部、以下である。50質量部を超えると、耐光性が低くなる傾向がある。 (B) The compounding quantity of an epoxy resin is 50 mass parts with respect to a total of 100 mass parts of (A) component and (B) component, Preferably it is 40 mass parts or less. If it exceeds 50 parts by mass, the light resistance tends to be low.

(C)硬化剤としては、任意のエポキシ樹脂の硬化剤を使用することができ、アミン系硬化剤、フェノール系硬化剤、酸無水物系硬化剤が挙げられる。好ましくは、酸無水物系硬化剤が使用される。酸無水物系硬化剤としては、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、3−メチル−ヘキサヒドロ無水フタル酸、4−メチル−ヘキサヒドロ無水フタル酸、あるいは3−メチル−ヘキサヒドロ無水フタル酸と4−メチル−ヘキサヒドロ無水フタル酸との混合物、テトラヒドロ無水フタル酸、無水ナジック酸、無水メチルナジック酸、ノルボルナン−2,3−ジカルボン酸無水物、メチルノルボルナン−2,3−ジカルボン酸無水物などを挙げることができる。 (C) As a hardening | curing agent, the hardening | curing agent of arbitrary epoxy resins can be used, An amine type hardening | curing agent, a phenol type hardening | curing agent, and an acid anhydride type hardening | curing agent are mentioned. Preferably, an acid anhydride curing agent is used. Examples of the acid anhydride curing agent include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride, Or a mixture of 3-methyl-hexahydrophthalic anhydride and 4-methyl-hexahydrophthalic anhydride, tetrahydrophthalic anhydride, nadic anhydride, methyl nadic anhydride, norbornane-2,3-dicarboxylic anhydride, methyl norbornane- 2,3-dicarboxylic anhydride and the like can be mentioned.

(C)硬化剤の配合量は、組成物中の(A)成分と(B)成分のエポキシ基の合計1モルに対して0.4〜1.5モル、即ち、全エポキシ樹脂1当量に対して硬化剤0.4〜1.5当量、好ましくは、0.5〜1.0当量、である。 (C) The compounding quantity of a hardening | curing agent is 0.4-1.5 mol with respect to the total of 1 mol of the epoxy group of (A) component in a composition, and (B) component, ie, 1 epoxy of all the epoxy resins. The curing agent is 0.4 to 1.5 equivalents, preferably 0.5 to 1.0 equivalents.

(D)硬化触媒としては、テトラブチルホスホニウムO,O−ジエチルホスホロジチオエート、テトラフェニルホスホニウムテトラフェニルボレートなどの第四級ホスホニウム塩、トリフェニルフォスフィン、ジフェニルフォスフィン等の有機フォスフィン系硬化触媒、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、トリエタノールアミン、ベンジルジメチルアミン等の三級アミン系硬化触媒、2−メチルイミダゾール、2−フェニル−4−メチルイミダゾールなどのイミダゾール類などを挙げることができ、なかでも第四級ホスホニウム塩が好ましい。 (D) Examples of curing catalysts include quaternary phosphonium salts such as tetrabutylphosphonium O, O-diethyl phosphorodithioate and tetraphenylphosphonium tetraphenylborate, and organic phosphine-based curing catalysts such as triphenylphosphine and diphenylphosphine. , 1,8-diazabicyclo (5,4,0) undecene-7, tertiary amine curing catalysts such as triethanolamine and benzyldimethylamine, imidazoles such as 2-methylimidazole and 2-phenyl-4-methylimidazole Among them, a quaternary phosphonium salt is preferable.

(D)硬化触媒の配合量は、(A)、(B)及び(C)成分の合計100質量部に対して、
0.01〜3質量部である。硬化触媒の配合量が前記下限値より少ないと、エポキシ樹脂と硬化剤との反応を促進する効果を十分に得ることができないおそれがある。一方、硬化触媒の配合量が前記上限値より多いと、硬化時やリフロー試験時の変色の原因となるおそれがある。
(D) The compounding amount of the curing catalyst is 100 parts by mass in total of the components (A), (B) and (C).
It is 0.01-3 mass parts. If the amount of the curing catalyst is less than the lower limit, the effect of promoting the reaction between the epoxy resin and the curing agent may not be sufficiently obtained. On the other hand, if the blending amount of the curing catalyst is larger than the upper limit value, it may cause discoloration during curing or a reflow test.

上記各成分に加えて、本発明の目的を逸脱しない範囲で、慣用の添加剤、例えば酸化防止剤、変色防止剤、劣化防止剤、シリカなどの無機充填剤、シラン系カップリング剤、変性剤、可塑剤、希釈剤等を配合してよい。また、波長変更するための蛍光体や酸化チタン微粉末、シリカなどのような光散乱剤などを添加することもできる。   In addition to the above components, conventional additives such as antioxidants, anti-discoloring agents, anti-degradation agents, inorganic fillers such as silica, silane coupling agents, and modifiers may be used without departing from the object of the present invention. Plasticizers, diluents and the like may be blended. Moreover, a phosphor for changing the wavelength, a titanium oxide fine powder, a light scattering agent such as silica, and the like can be added.

本発明の組成物は、(A)シリコーン樹脂、(B)エポキシ樹脂、(C)硬化剤および(D)硬化触媒および必要により各種の添加剤を配合して、溶融混合することで調製することができる。溶融混合は、公知の方法でよく、例えば、上記の成分をリアクターに仕込み、バッチ式にて溶融混合する方法、また上記の成分をニーダーや熱三本ロールなどの混練機に投入して、連続的に溶融混合する方法が挙げられる。   The composition of the present invention is prepared by blending (A) a silicone resin, (B) an epoxy resin, (C) a curing agent and (D) a curing catalyst and various additives as required, and melt-mixing them. Can do. Melt mixing may be a known method, for example, the above components are charged into a reactor and melt mixed in a batch system, or the above components are put into a kneader such as a kneader or a hot three roll to continuously The method of melt-mixing can be mentioned.

得られた溶融混合物を鋳型に注入した状態で所定の温度下において、Bステージ化して固形化した上で使用に供することも可能である。   It is also possible to use the molten mixture obtained by injecting the molten mixture into a mold at a predetermined temperature after being B-staged and solidified.

本発明の組成物で発光半導体を封止する態様は特に制限されるものではなく、例えば、開口部を有する筐体内に配置された発光半導体を覆って筐体内に組成物を充填し、硬化させて封止することができる。また、マトリックス化された基板上にLEDを搭載したものを、印刷法、トランスファー成型、インジェクション成型、圧縮成形などにより封止することもできる。LEDなどの発光半導体素子をポッティングやインジェクションなどで被覆する場合、本発明の組成物は液状であることが好ましく、25℃の回転粘度計による測定値として10〜1,000,000mPa・s、特には100〜1,000,000mPa・s程度が好ましい。一方、トランスファー成型、等で発光半導体装置を製造する場合には、上記の液状樹脂を使用することもできるが、液状樹脂を増粘させて固形化(Bステージ化)し、ペレット化した後、成型することでも製造することができる。 The mode of sealing the light emitting semiconductor with the composition of the present invention is not particularly limited. For example, the light emitting semiconductor disposed in the housing having the opening is covered, and the housing is filled with the composition and cured. And can be sealed. In addition, an LED mounted on a matrix substrate can be sealed by a printing method, transfer molding, injection molding, compression molding, or the like. When a light-emitting semiconductor element such as an LED is coated by potting or injection, the composition of the present invention is preferably in a liquid state, and a measured value by a rotational viscometer at 25 ° C. is preferably 10 to 1,000,000 mPa · s. Is preferably about 100 to 1,000,000 mPa · s. On the other hand, when manufacturing a light emitting semiconductor device by transfer molding, etc., the above liquid resin can be used, but after thickening the liquid resin to solidify (B stage), pelletize, It can also be manufactured by molding.

以下、実施例により本発明を説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.

比較合成例1:(A)分岐シリコーン樹脂の合成>
反応容器に、セロキサイド−2000(ダイセル化学工業社製)112.71g(0.908モル)、トルエン208ml、塩化白金酸2%オクチルアルコール溶液を(Pt量20ppm)仕込んだ後、下記式(a)で表されるオルガノポリシロキサン(n=1)100g(0.303モル)、トルエン61mlを滴下し、16時間加熱還流した。
反応終了後、減圧下トルエンを除去し、ろ過を行い目的の樹脂(樹脂1)を得た。樹脂1のエポキシ当量は262g/eqであった。
< Comparative synthesis example 1: (A) Synthesis of branched silicone resin>
After charging 112.71 g (0.908 mol) of Celoxide-2000 (manufactured by Daicel Chemical Industries), 208 ml of toluene, and a 2% octyl alcohol solution of chloroplatinic acid (Pt amount 20 ppm) in a reaction vessel, the following formula (a) 100 g (0.303 mol) of organopolysiloxane (n = 1) and 61 ml of toluene were added dropwise, and the mixture was heated to reflux for 16 hours.
After completion of the reaction, toluene was removed under reduced pressure, followed by filtration to obtain the desired resin (Resin 1). The epoxy equivalent of resin 1 was 262 g / eq.

Figure 0005293525

上式(a)で表されるオルガノポリシロキサンのH−NMR(300MHz, CDCl)では、0.38ppm、4.98ppm(Si−H)、7.50ppm、及び7.75ppmにピークが観察された。一方、樹脂1のH−NMR(300MHz, CDCl)では、0.09ppm、0.51ppm、1.15ppm、1.29ppm、2.12ppm、3.12ppm、及び7.24ppmにピークが観察され、末端に脂環式エポキシ基が結合されていることを確認した。また、樹脂1の29Si−NMR(60MHz, CDCl)では、−76〜−80ppm(PhSiO3/2)、及び8〜11ppm(MeSiO)にピークが観察され、縮合反応により調製される樹脂で通常観察されるアルコキシ基が存在しないことを確認した。
Figure 0005293525

In 1 H-NMR (300 MHz, CDCl 3 ) of the organopolysiloxane represented by the above formula (a), peaks are observed at 0.38 ppm, 4.98 ppm (Si—H), 7.50 ppm, and 7.75 ppm. It was done. On the other hand, in 1 H-NMR (300 MHz, CDCl 3 ) of resin 1, peaks are observed at 0.09 ppm, 0.51 ppm, 1.15 ppm, 1.29 ppm, 2.12 ppm, 3.12 ppm, and 7.24 ppm. It was confirmed that an alicyclic epoxy group was bonded to the terminal. Further, in 29 Si-NMR (60 MHz, CDCl 3 ) of resin 1, peaks are observed at −76 to −80 ppm (PhSiO 3/2 ) and 8 to 11 ppm (Me 2 SiO), and the resin 1 is prepared by a condensation reaction. It was confirmed that there were no alkoxy groups normally observed in the resin.

<合成例2:(A)分岐シリコーン樹脂の合成>
反応容器に、セロキサイド−2000(ダイセル化学工業社製)74.51g(0.600モル)、トルエン150ml、塩化白金酸2%オクチルアルコール溶液を(Pt量20ppm)仕込んだ後、上記式(a)で表されるオルガノポリシロキサン(n=5)161g(0.200モル)、トルエン40mlを滴下し、16時間加熱還流した。反応終了後、減圧下トルエンを除去し、ろ過を行い目的の樹脂(樹脂2)を得た。樹脂2のエポキシ当量は546g/eqであった。
<Synthesis Example 2: (A) Synthesis of Branched Silicone Resin>
A reaction vessel was charged with 74.51 g (0.600 mol) of Celoxide-2000 (manufactured by Daicel Chemical Industries), 150 ml of toluene, and a 2% octyl alcohol solution of chloroplatinic acid (Pt amount 20 ppm), and then the above formula (a) 161 g (0.200 mol) of organopolysiloxane (n = 5) and 40 ml of toluene were added dropwise, and the mixture was heated to reflux for 16 hours. After completion of the reaction, toluene was removed under reduced pressure, and filtration was performed to obtain the desired resin (resin 2). The epoxy equivalent of resin 2 was 546 g / eq.

<合成例3:(A)分岐シリコーン樹脂の合成>
反応容器に、セロキサイド−2000(ダイセル化学工業社製)74.51g(0.600モル)、トルエン150ml、塩化白金酸2%オクチルアルコール溶液を(Pt量20ppm)仕込んだ後 、上記式(a)で表されるオルガノポリシロキサン(n=10)520g(0.200モル)、トルエン100mlを滴下し、16時間加熱還流した。反応終了後、減圧下トルエンを除去し、ろ過を行い目的の樹脂(樹脂3)を得た。樹脂3のエポキシ当量は1023g/eqであった。
<Synthesis Example 3: (A) Synthesis of Branched Silicone Resin>
A reaction vessel was charged with 74.51 g (0.600 mol) of Celoxide-2000 (manufactured by Daicel Chemical Industries), 150 ml of toluene, and a 2% octyl alcohol solution of chloroplatinic acid (Pt amount 20 ppm), and then the above formula (a) 520 g (0.200 mol) of organopolysiloxane (n = 10) and 100 ml of toluene were added dropwise, and the mixture was heated to reflux for 16 hours. After completion of the reaction, toluene was removed under reduced pressure, followed by filtration to obtain the desired resin (Resin 3). The epoxy equivalent of the resin 3 was 1023 g / eq.

比較合成例4:(A)分岐シリコーン樹脂の合成>
反応容器に、セロキサイド−2000(ダイセル化学工業社製)99.35g(0.800モル)、トルエン180ml、塩化白金酸2%オクチルアルコール溶液を(Pt量20ppm)仕込んだ後、下記式(b)で表されるオルガノポリシロキサン84g(0.200モル)、トルエン40mlを滴下し、加熱還流した。反応終了後、減圧下トルエンを除去し、ろ過を行い目的の樹脂(樹脂4)を得た。樹脂4のエポキシ当量は269g/eqであった。
< Comparative Synthesis Example 4: (A) Synthesis of Branched Silicone Resin>
After charging 99.35 g (0.800 mol) of Celoxide 2000 (manufactured by Daicel Chemical Industries, Ltd.), 180 ml of toluene, and a 2% octyl alcohol solution of chloroplatinic acid (Pt amount 20 ppm) into a reaction vessel, the following formula (b) The organopolysiloxane 84g (0.200 mol) represented by these and 40 ml of toluene were dripped, and it heated and refluxed. After completion of the reaction, toluene was removed under reduced pressure, followed by filtration to obtain the desired resin (resin 4). The epoxy equivalent of Resin 4 was 269 g / eq.

Figure 0005293525

上式(b)で表されるオルガノポリシロキサンのH−NMR(300MHz, CDCl)では、0.31ppm、4.85ppm(Si−H)、7.39ppm、7.76ppmにピークが観察された。一方、樹脂4のH−NMR(300MHz, CDCl)では、0.02ppm、0.43ppm、1.07ppm、1.53ppm、1.90ppm、2.06ppm、3.10ppm、7.17ppmにピークが観察され、末端に脂環式エポキシ基が結合されていることを確認した。樹脂4の29Si−NMR(60MHz, CDCl)では、−74〜−83ppm(PhSiO3/2)、7〜11ppm(MeSiO)にピークが観察され、縮合反応により調製される樹脂で通常観察されるアルコキシ基が存在しないことを確認した。
Figure 0005293525

In 1 H-NMR (300 MHz, CDCl 3 ) of the organopolysiloxane represented by the above formula (b), peaks were observed at 0.31 ppm, 4.85 ppm (Si—H), 7.39 ppm, and 7.76 ppm. It was. On the other hand, 1 H-NMR (300 MHz, CDCl 3 ) of Resin 4 has peaks at 0.02 ppm, 0.43 ppm, 1.07 ppm, 1.53 ppm, 1.90 ppm, 2.06 ppm, 3.10 ppm, 7.17 ppm. Was observed, and it was confirmed that an alicyclic epoxy group was bonded to the terminal. In 29 Si-NMR (60 MHz, CDCl 3 ) of resin 4, peaks are observed at −74 to −83 ppm (PhSiO 3/2 ) and 7 to 11 ppm (Me 2 SiO), and are usually prepared by a condensation reaction. It was confirmed that there were no observed alkoxy groups.

<比較合成例5:縮合反応による分岐シリコーン樹脂の調製>
反応容器に、MeO(Me)SiO(MeSiO)Si(Me)OMe (n=約1.5個)596.82g(2.10モル)、フェニルトリメトキシシラン(信越化学工業社製KBM103)95.34g(0.70モル)、イソプロピルアルコール1250mlを仕込んだ後、水酸化テトラメチルアンモニウムの25%水溶液21.75g、水195.75gを添加し、室温で3時間攪拌した。反応終了後、系内にトルエン1250mlを入れ、リン酸二水素ナトリウム水溶液で中和した。分液漏斗を用いて、残渣を熱水にて洗浄した。減圧下トルエンを除去してオリゴマーを得た。さらにオリゴマーに、3−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン(信越化学工業社製KBM303)517.44g(2.10モル)、イソプロピルアルコール600mlを仕込んだ後、水酸化テトラメチルアンモニウムの25%水溶液21.75g、水195.75gを添加し、室温で3時間攪拌した。反応終了後、系内にトルエン1250mlを入れ、リン酸二水素ナトリウム水溶液で中和した。分液漏斗を用いて、残渣を熱水にて洗浄した。減圧下トルエンを除去して目的の樹脂(「樹脂5」とする)を得た。樹脂5のエポキシ当量は441g/eqであった。
また、樹脂5の29Si−NMR(60MHz, CDCl)では、−64〜−56ppm(PhSiO3/2)、−52〜−44ppm(完全縮合T単位Si部分)、−41〜−36ppm(アルコキシ含有T単位Si部分)、−4〜3ppm(完全縮合D単位Si部分)、6〜10ppm(アルコキシ含有D単位Si部分)にピークが観察され、アルコキシ基が残留していることを確認した。
<Comparative Synthesis Example 5: Preparation of branched silicone resin by condensation reaction>
In a reaction vessel, MeO (Me) 2 SiO (Me 2 SiO) n Si (Me) 2 OMe (n = about 1.5) 596.82 g (2.10 mol), phenyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd.) (KBM103) 95.34 g (0.70 mol) and 1250 ml of isopropyl alcohol were charged, 21.75 g of a 25% aqueous solution of tetramethylammonium hydroxide and 195.75 g of water were added, and the mixture was stirred at room temperature for 3 hours. After completion of the reaction, 1250 ml of toluene was put into the system and neutralized with an aqueous sodium dihydrogen phosphate solution. The residue was washed with hot water using a separatory funnel. Toluene was removed under reduced pressure to obtain an oligomer. Further, 517.44 g (2.10 mol) of 3- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (KBM303, Shin-Etsu Chemical Co., Ltd.) and 600 ml of isopropyl alcohol were added to the oligomer, and then tetramethylammonium hydroxide was added. 21.75 g of 25% aqueous solution and 195.75 g of water were added, and the mixture was stirred at room temperature for 3 hours. After completion of the reaction, 1250 ml of toluene was put into the system and neutralized with an aqueous sodium dihydrogen phosphate solution. The residue was washed with hot water using a separatory funnel. Toluene was removed under reduced pressure to obtain the desired resin (referred to as “resin 5”). The epoxy equivalent of resin 5 was 441 g / eq.
Further, in 29 Si-NMR (60 MHz, CDCl 3 ) of Resin 5, −64 to −56 ppm (PhSiO 3/2 ), −52 to −44 ppm (fully condensed T unit Si portion), −41 to −36 ppm (alkoxy) Peaks were observed at the contained T unit Si portion), -4 to 3 ppm (fully condensed D unit Si portion), and 6 to 10 ppm (alkoxy containing D unit Si portion), and it was confirmed that an alkoxy group remained.

得られた樹脂及び以下の成分を用いて、組成物を調製した。
(B)エポキシ樹脂:(3,4−エポキシシクロヘキサン)メチル3’,4’−エポキシシクロヘキシルカルボキシレート(セロキサイド2021P、ダイセル工業(株)製)
(C)硬化剤:メチルヘキサヒドロ無水フタル酸(MH、新日本理化(株)製)
(D)硬化触媒:有機ホスホニウム塩(UCAT−5003、サンアプロ(株)製)
接着助剤:3−メルカプトプロピルメチルジメトキシシラン(KBM−803、信越化学工業(株)製)
A composition was prepared using the obtained resin and the following components.
(B) Epoxy resin: (3,4-epoxycyclohexane) methyl 3 ′, 4′-epoxycyclohexylcarboxylate (Celoxide 2021P, manufactured by Daicel Industries, Ltd.)
(C) Hardener: Methylhexahydrophthalic anhydride (MH, manufactured by Shin Nippon Rika Co., Ltd.)
(D) Curing catalyst: Organic phosphonium salt (UCAT-5003, manufactured by San Apro Co., Ltd.)
Adhesion aid: 3-mercaptopropylmethyldimethoxysilane (KBM-803, manufactured by Shin-Etsu Chemical Co., Ltd.)

<実施例2、3、比較例1〜3
表1に示す処方(質量部)に従い、組成物を調製した。
得られた組成物を用いて、100℃で2時間、さらにポストキュアを150℃4時間行って、厚み5mmの棒状硬化物を得た。この棒状硬化物を用いて、外観、曲げ弾性率及び曲げ強度(JIS K−6911)、耐光試験後の外観について評価した。耐光試験は初期の400nmにおける透過率を100%としたときの、12時間UV照射(高圧水銀灯 30mW/cm、365nm)後の透過率を求めた。また、23℃での初期粘度に対する23℃/8hr保存後の粘度比を測定した。結果を表1に示す。
<Examples 2 and 3 and Comparative Examples 1 to 3 >
A composition was prepared according to the formulation (parts by mass) shown in Table 1.
The obtained composition was subjected to post-cure at 100 ° C. for 2 hours and further at 150 ° C. for 4 hours to obtain a bar-shaped cured product having a thickness of 5 mm. Using this rod-shaped cured product, the appearance, bending elastic modulus and bending strength (JIS K-6911), and the appearance after the light resistance test were evaluated. In the light resistance test, the transmittance after 12 hours of UV irradiation (high pressure mercury lamp 30 mW / cm 2 , 365 nm) when the transmittance at the initial 400 nm was 100% was determined. Further, the viscosity ratio after storage at 23 ° C./8 hr to the initial viscosity at 23 ° C. was measured. The results are shown in Table 1.

Figure 0005293525
Figure 0005293525

LED装置
実施例2、3及び比較例1の組成物を用いて、以下の方法でLED装置を各3個ずつ作成した。厚さ1mm、一辺が3mmで開口部が直径2.6mm、底辺部が銀メッキされたLED用プレモールドパッケージにInGaN系青色発光素子を銀ペーストにより固定した。次に外部電極と発光素子を金ワイヤーにて接続した。各組成物をパッケージ開口部に注入した。100℃で1時間、さらに150℃で2時間硬化させてLED装置を作成した。作成したLED装置を用い、下記条件での温度サイクル試験と、65℃/95%RH下で3000時間LED点灯試験を行い、パッケージ界面の接着不良、クラックの有無、並びに変色の有無を目視観察した。結果を表2に示す。
Using the compositions of LED device Examples 2 and 3 and Comparative Example 1, three LED devices were prepared by the following method. An InGaN-based blue light-emitting element was fixed with a silver paste on a pre-molded package for LED having a thickness of 1 mm, a side of 3 mm, an opening of 2.6 mm in diameter, and a bottom of which was silver-plated. Next, the external electrode and the light emitting element were connected by a gold wire. Each composition was injected into the package opening. It was cured at 100 ° C. for 1 hour and further at 150 ° C. for 2 hours to produce an LED device. Using the created LED device, a temperature cycle test under the following conditions and an LED lighting test at 65 ° C./95% RH for 3000 hours were performed, and the adhesion failure of the package interface, the presence of cracks, and the presence or absence of discoloration were visually observed. . The results are shown in Table 2.

Figure 0005293525
Figure 0005293525

表1から分かるように、縮合反応により得られた樹脂5を含む比較例1の組成物は、粘度上昇が顕著であった。また、表2から分かるように、比較例1の組成物から得られたパッケージは、実施例の組成物から得られた硬化物に比べて耐熱衝撃性、耐光性に劣った。 As can be seen from Table 1, in the composition of Comparative Example 1 containing the resin 5 obtained by the condensation reaction, the increase in viscosity was remarkable. Further, as can be seen from Table 2, the package obtained from the composition of Comparative Example 1 was inferior in thermal shock resistance and light resistance as compared with the cured products obtained from the compositions of Examples.

本発明の光半導体素子止封止用組成物はポットライフが長く、耐光性、耐熱衝撃性に優れた光半導体装置を形成するために有用である。 The composition for sealing an optical semiconductor element of the present invention has a long pot life and is useful for forming an optical semiconductor device excellent in light resistance and thermal shock resistance.

Claims (4)

下記(A)、(B)、(C)及び(D)を含む光半導体素子封止用組成物。
(A)不飽和基含有エポキシ化合物と、SiH基を有するオルガノポリシロキサンとの付加反応により調製され下記式(2)で示される分岐シリコーン樹 100質量部
Figure 0005293525
[RはC6−20の一価のアリール基、R及びRは、互いに独立に、C1−20の一価のアルキル基又はアリール基、RはC1−20の一価のアルキル基又はエポキシ基含有基、但し、1分子中のRのうちの3以上はエポキシ基含有基であり、p、q、及びrは1〜20の整数、sは1〜5の整数である]
(B)1分子当り2個以上のエポキシ基を有する脂環式エポキシ樹脂 (A)成分と(B)成分の合計100質量部に対して50質量部以下
(C)硬化剤 (A)成分と(B)成分のエポキシ基の合計1モルに対し該エポキシ基と反応性の基が0.4〜1.5モルとなる量
(D)硬化触媒 (A)成分、(B)成分及び(C)成分の合計100質量部に対し0.01〜3質量部
The composition for optical semiconductor element sealing containing following (A), (B), (C) and (D).
(A) an unsaturated group-containing epoxy compounds and addition reaction is prepared from the following equation with the organopolysiloxane having a SiH group (2) branched silicone resins to 100 parts by mass of Ru indicated by
Figure 0005293525
[Monovalent aryl groups for R 1 is C 6-20, R 2 and R 3 are each independently a monovalent alkyl or aryl group of C 1-20, monovalent R 4 is C 1-20 alkyl group or an epoxy group-containing group, provided that are three or more epoxy group-containing group der of R 4 in one molecule, p, q, and r are an integer of 1 to 20, s is from 1 to 5 integer der Ru]
(B) Alicyclic epoxy resin having two or more epoxy groups per molecule (A) Component and (B) 50 parts by mass or less (C) Curing agent (A) component with respect to 100 parts by mass in total (B) Amount of the epoxy group and reactive group to be 0.4 to 1.5 mol with respect to 1 mol of the total epoxy group of component (D) Curing catalyst (A) Component, (B) component and (C ) 0.01-3 parts by mass with respect to 100 parts by mass in total of the components
がフェニル基、R及びRがメチル基、及びエポキシ基含有基がβ−(3,4−エポキシシクロへキシル)エチル基である請求項1に係る組成物。 The composition according to claim 1, wherein R 1 is a phenyl group, R 2 and R 3 are methyl groups, and the epoxy group-containing group is a β- (3,4-epoxycyclohexyl) ethyl group. (C)硬化剤が酸無水物である請求項1又は2に係る組成物。 (C) The composition according to claim 1 or 2, wherein the curing agent is an acid anhydride. メルカプト系シランカップリング剤をさらに含む請求項1〜のいずれか1項係る組成物。 The composition according to any one of claims 1 to 3 , further comprising a mercapto-based silane coupling agent.
JP2009214499A 2009-09-16 2009-09-16 Composition for sealing an optical semiconductor element Active JP5293525B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009214499A JP5293525B2 (en) 2009-09-16 2009-09-16 Composition for sealing an optical semiconductor element
KR1020100090262A KR101751541B1 (en) 2009-09-16 2010-09-15 Composition for encapsulating optical semiconductor element
TW099131235A TWI481671B (en) 2009-09-16 2010-09-15 Composition for light semiconductor element encapsulation
CN201010286520.5A CN102020853B (en) 2009-09-16 2010-09-16 Composition for encapsulating optical semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009214499A JP5293525B2 (en) 2009-09-16 2009-09-16 Composition for sealing an optical semiconductor element

Publications (2)

Publication Number Publication Date
JP2011063686A JP2011063686A (en) 2011-03-31
JP5293525B2 true JP5293525B2 (en) 2013-09-18

Family

ID=43862652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009214499A Active JP5293525B2 (en) 2009-09-16 2009-09-16 Composition for sealing an optical semiconductor element

Country Status (4)

Country Link
JP (1) JP5293525B2 (en)
KR (1) KR101751541B1 (en)
CN (1) CN102020853B (en)
TW (1) TWI481671B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6332907B2 (en) 2013-02-14 2018-05-30 東京応化工業株式会社 Resin composition for sealing, display device, and optical semiconductor device
JP2014227544A (en) * 2013-05-27 2014-12-08 信越化学工業株式会社 Resin composition for sealing optical semiconductor element, and optical semiconductor device using the same
JP6098531B2 (en) * 2014-01-23 2017-03-22 信越化学工業株式会社 Resin composition, resin film, semiconductor device and manufacturing method thereof
JP6521943B2 (en) 2014-02-19 2019-05-29 信越化学工業株式会社 Silicone modified epoxy resin, composition containing the epoxy resin, and cured product thereof
JP6523780B2 (en) 2014-09-29 2019-06-05 東京応化工業株式会社 Film-forming composition and method for producing cured film using the same
JP6404110B2 (en) * 2014-12-18 2018-10-10 信越化学工業株式会社 Epoxy resin containing silicone-modified epoxy resin and polyvalent carboxylic acid compound and cured product thereof
JP7491223B2 (en) * 2019-01-30 2024-05-28 株式会社レゾナック Encapsulating resin composition, electronic component device, and method for producing electronic component device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE655303A (en) * 1963-11-12 1965-03-01
JPH01188516A (en) * 1988-01-22 1989-07-27 Asahi Glass Co Ltd Curable composition
JPH03236393A (en) * 1990-02-13 1991-10-22 Sumitomo Durez Co Ltd Silicone-modified phenol compound, production thereof and epoxy derivative
US5863970A (en) * 1995-12-06 1999-01-26 Polyset Company, Inc. Epoxy resin composition with cycloaliphatic epoxy-functional siloxane
JP3851441B2 (en) * 1998-04-23 2006-11-29 日東電工株式会社 Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device
DE10107985C1 (en) * 2001-02-19 2002-04-18 3M Espe Ag Polymerizable formulation used for coating and/or bonding substrates or as dental formulation, contains organosilicon compound with aliphatic and cycloaliphatic epoxide groups, filler and initiator, inhibitor and/or accelerator
JP4198091B2 (en) * 2004-06-02 2008-12-17 旭化成株式会社 Resin composition for sealing light emitting device
US20070299165A1 (en) * 2006-06-27 2007-12-27 Gelcore Llc Phenyl-containing silicone epoxy formulations useful as encapsulants for LED applications
US20080160317A1 (en) * 2006-12-29 2008-07-03 Deborah Ann Haitko Optoelectronic device
WO2012066743A1 (en) 2010-11-15 2012-05-24 コニカミノルタオプト株式会社 Hard coating film and image display device
EP3378313A1 (en) 2011-03-23 2018-09-26 Basf Se Compositions containing polymeric, ionic compounds comprising imidazolium groups

Also Published As

Publication number Publication date
TWI481671B (en) 2015-04-21
KR20110030368A (en) 2011-03-23
JP2011063686A (en) 2011-03-31
CN102020853A (en) 2011-04-20
TW201124475A (en) 2011-07-16
CN102020853B (en) 2014-07-02
KR101751541B1 (en) 2017-06-27

Similar Documents

Publication Publication Date Title
KR101560839B1 (en) Resin composition for encapsulating optical semiconductor element
KR101836962B1 (en) New organosilicon compound, thermosetting resin composition containing the organosilicon compound, hardening resin and encapsulation material for optical semiconductor
US8309652B2 (en) Curable silicone composition and cured product therefrom
JP4803339B2 (en) Epoxy / silicone hybrid resin composition and light emitting semiconductor device
KR101500757B1 (en) Optical semiconductor device encapsulating epoxy-silicone hybrid resin composition and tablet for transfer molding containing the same
EP1874870B1 (en) Curable silicone composition and electronic components
JP5293525B2 (en) Composition for sealing an optical semiconductor element
JP2008019422A (en) Epoxy-silicone mixed resin composition and light emitting semiconductor device
JP2008189917A (en) Thermosetting composition for optical semiconductor, die bonding material for optical semiconductor element, underfill material for optical semiconductor element, sealant for optical semiconductor element and optical semiconductor element
JPH06298897A (en) Curable resin composition
JP5251919B2 (en) Resin composition for optical semiconductor element sealing
JP4822001B2 (en) Epoxy / silicone hybrid resin composition and cured product thereof
KR101652120B1 (en) Die bond agent composition for optical semiconductor element and optical semiconductor device using the composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120809

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R150 Certificate of patent or registration of utility model

Ref document number: 5293525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150