JP5293345B2 - Method for manufacturing metal can body - Google Patents

Method for manufacturing metal can body Download PDF

Info

Publication number
JP5293345B2
JP5293345B2 JP2009083457A JP2009083457A JP5293345B2 JP 5293345 B2 JP5293345 B2 JP 5293345B2 JP 2009083457 A JP2009083457 A JP 2009083457A JP 2009083457 A JP2009083457 A JP 2009083457A JP 5293345 B2 JP5293345 B2 JP 5293345B2
Authority
JP
Japan
Prior art keywords
angle
corner
metal
mold
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009083457A
Other languages
Japanese (ja)
Other versions
JP2010234393A (en
Inventor
克巳 小島
雅毅 多田
浩樹 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009083457A priority Critical patent/JP5293345B2/en
Publication of JP2010234393A publication Critical patent/JP2010234393A/en
Application granted granted Critical
Publication of JP5293345B2 publication Critical patent/JP5293345B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a metal can body by which a square pipe type can body having a proper shape even when taking the metal sheet having thin sheet thickness as a base stock can be efficiently manufactured. <P>SOLUTION: When forming a corner part by pinching a cylindrical body portion to be made into the corner part of a square pipe by taking the cylindrical body a obtained from a metal sheet as a material to be formed, using an outer die 4 having a corner-shaped working surface 40 and an inner die 3 having a working surface 30 of a circular cross section on its tip and with the inner die 3 which is situated on the inside of the cylindrical body a, and an outer die 4 which is situated on the outside of the cylindrical body a, the corner part is formed by taking the open angle &theta; of the working surface 40 of the outer die at &lt;90&deg;, so that the open angle &theta; of the outer working surface 40 of the outer die, the radius r of curvature of the working surface 30 of the inner die, the sheet thickness t of the metal sheet and the yield strength &sigma; of the metal sheet satisfy a prescribed conditions. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、角筒型の金属缶胴の製造方法に関するもので、特に、極薄金属板を素材とする角筒型缶胴を得るのに好適な製造方法に関するものである。   The present invention relates to a method of manufacturing a rectangular tube-shaped metal can body, and more particularly to a manufacturing method suitable for obtaining a rectangular tube-shaped can body made of an ultrathin metal plate.

角筒型の容器は、例えば、複数個の容器を箱に詰めて梱包したり、店頭で陳列する際などに、容器間の空隙を小さくできるため、省スペースの点で有利である。内容量が400mL程度以下の飲料容器の場合、従来、こうした角筒型容器の素材には紙が用いられてきた。紙製の容器は軽いという利点がある反面、強度が小さく、圧迫や落下で容易に変形してしまう欠点がある。
一方、飲料容器には金属缶が広く用いられている。金属は紙に較べて強度が高く、容器の変形に対して有利である。但し、従来では角筒型の飲料容器の素材として金属が用いられることは殆どなかった。これは、金属缶が紙製容器に較べて重いことが一因であると考えられる。金属缶を軽くするには、素材金属板の板厚を薄くすることが有効である。
The rectangular tube type container is advantageous in terms of space saving because, for example, when a plurality of containers are packed in a box and packed or displayed at a storefront, the gap between the containers can be reduced. In the case of a beverage container having an inner volume of about 400 mL or less, conventionally, paper has been used as a material for such a rectangular tube type container. Paper containers have the advantage of being light, but have a disadvantage that they are small in strength and easily deform when pressed or dropped.
On the other hand, metal cans are widely used for beverage containers. Metal has a higher strength than paper and is advantageous for deformation of the container. However, in the past, metal was rarely used as a material for a rectangular tube type beverage container. This is probably because the metal can is heavier than the paper container. To lighten the metal can, it is effective to reduce the thickness of the material metal plate.

特許文献1には、板厚を薄くした素材を用いて角筒型の金属缶を成形する方法が示されている。この方法では、所定寸法に剪断された長方形の素材をシーム溶接により円筒素体とし、これを角出しする(角部の成形)ことで角筒とする。角出しは成形すべき角部の数に対応した複数組の内型と外型を用いて行い、さらに角部に溝付けを行う。この方法により、板厚0.1mmまでの鋼板を角筒型の金属缶に成形できるとしている。   Patent Document 1 discloses a method of forming a rectangular tube-shaped metal can using a material having a thin plate thickness. In this method, a rectangular material sheared to a predetermined dimension is formed into a cylindrical body by seam welding, and a square tube is formed by squaring (molding corners). The cornering is performed by using a plurality of sets of inner molds and outer molds corresponding to the number of corners to be molded, and the corners are further grooved. According to this method, a steel plate having a thickness of up to 0.1 mm can be formed into a rectangular tube-shaped metal can.

特公昭61−34891号公報Japanese Patent Publication No.61-34891

しかし、特許文献1の方法について、本発明者らが板厚0.1mmの極薄鋼板を用いて実験を行った結果、以下に述べるような不具合が生じることが判った。まず、角出しおよび溝付けを行うと、溝付け部分に破断が生じた。この破断は溝付け部分に生じたことから、溝付けを行わないで成形したところ、角部は所定の角度(概ね90°)にならず、結果として側壁面が筒の外側に向けて湾曲した形状となり、適正な形状の角筒にはならないという結果が得られた。すなわち、4つの角部と側壁面を備えた角筒を成形するに当たり、図3(缶胴を高さ方向から見た平面図)に示すように、側壁面1が概ね平面で且つ角部2の角度α(コーナー角度)が概ね90°である形状を得ようとしたが、実際には、図4(缶胴を高さ方向から見た平面図)に示すように、側壁面1が外側に湾曲し、且つ角部2の角度αが90°よりも相当程度大きくなり、角筒としての適正な形状が得られないことが判った。このような形状では、容器間の空隙を小さくできるという角筒型容器としての利点が得られない。ここで、上述した角部2の角度αは以下のように定義される。すなわち、図14に示すように、角部2の曲率半径bを持ち且つ角部2に接する円20(仮想円)を想定し、円20と角部2とが乖離する点21,22における円20の接線23,24を定めた時、この接線23と接線24の成す角度を角度2の角度αとする。   However, as a result of experiments conducted on the method of Patent Document 1 by using the ultrathin steel plate having a thickness of 0.1 mm, the inventors found that the following problems occur. First, when squaring and grooving were performed, breakage occurred at the grooving portion. Since this rupture occurred in the grooved portion, when it was molded without grooving, the corner portion did not become a predetermined angle (generally 90 °), and as a result, the side wall surface curved toward the outside of the cylinder. As a result, the result was that the square tube was not properly shaped. That is, in forming a square tube having four corners and a side wall surface, as shown in FIG. 3 (a plan view of the can body seen from the height direction), the side wall surface 1 is substantially flat and the corner portion 2 is formed. In this case, an attempt was made to obtain a shape having an angle α (corner angle) of approximately 90 °, but actually, as shown in FIG. 4 (a plan view of the can body as viewed from the height direction), the side wall surface 1 is outside. And the angle α of the corner portion 2 becomes considerably larger than 90 °, and it has been found that an appropriate shape as a square tube cannot be obtained. In such a shape, the advantage as a rectangular tube type container that the space | gap between containers can be made small is not acquired. Here, the angle α of the corner 2 described above is defined as follows. That is, as shown in FIG. 14, assuming a circle 20 (virtual circle) having a radius of curvature b of the corner 2 and in contact with the corner 2, circles at points 21 and 22 where the circle 20 and the corner 2 are separated from each other. When 20 tangent lines 23 and 24 are determined, an angle formed by the tangent line 23 and the tangent line 24 is defined as an angle α of an angle 2.

以上のように、板厚の薄い金属板を素材とする角筒型缶胴の製造技術は、未だ確立されていない。
したがって本発明の目的は、板厚の薄い金属板を素材とする場合でも、適正な形状の角筒型缶胴を効率的に製造することができる金属缶胴の製造方法を提供することにある。
As described above, a manufacturing technique for a rectangular tube can body using a thin metal plate as a raw material has not yet been established.
Accordingly, an object of the present invention is to provide a method for manufacturing a metal can body that can efficiently manufacture a square-shaped can body having an appropriate shape even when a thin metal plate is used as a raw material. .

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]金属板の円筒体を被成形材とし、コーナー状の加工面を有する外型と、先端に断面円弧状の加工面を有する内型とを用い、円筒体内側に位置する内型と円筒体外側に位置する外型とにより、角筒の角部となるべき円筒体部分を挟圧して角部の成形を行う角筒型缶胴の製造方法において、
外型加工面の開角θを90°未満とし、且つ外型加工面の開角θ(°)、内型加工面の曲率半径r(mm)、金属板の板厚t(mm)および金属板の降伏強度σ(N/mm)が下記(1)式を満足する条件で前記角部の成形を行うことを特徴とする金属缶胴の製造方法。

Figure 0005293345
[2]上記[1]の製造方法で得られた金属缶胴の少なくとも一方の端部に蓋を固定し、金属缶とすることを特徴とする金属缶の製造方法。 The gist of the present invention for solving the above problems is as follows.
[1] An inner mold located on the inner side of a cylindrical body using a cylindrical body of a metal plate as a material to be molded, an outer mold having a corner-shaped machining surface, and an inner mold having a machining surface having an arc-shaped cross section at the tip, In the manufacturing method of the rectangular tube can body that molds the corner portion by sandwiching the cylindrical portion to be the corner portion of the rectangular tube with the outer mold located outside the cylindrical body,
The opening angle θ of the outer die machining surface is less than 90 °, the opening angle θ (°) of the outer die machining surface, the radius of curvature r (mm) of the inner die machining surface, the thickness t (mm) of the metal plate, and the metal A method for producing a metal can body, characterized in that the corner portion is formed under the condition that the yield strength σ (N / mm 2 ) of the plate satisfies the following formula (1).
Figure 0005293345
[2] A method for producing a metal can, characterized in that a lid is fixed to at least one end of the metal can body obtained by the production method of [1] to obtain a metal can.

本発明によれば、板厚の薄い金属板を素材として、側壁面が概ね平面で且つ角部の角度(コーナー角度)が概ね90°となる適正な形状の角筒型缶胴を効率的に製造することができる。   According to the present invention, using a thin metal plate as a raw material, an appropriately shaped rectangular tube can body having a side wall surface that is substantially flat and a corner angle (corner angle) of approximately 90 ° is efficiently produced. Can be manufactured.

本発明の製造方法の実施状況の一例を示すもので、(イ)は成形前、(ロ)は成形中、(ハ)は成形後の各状態を示す平面図It shows an example of the implementation status of the production method of the present invention, (A) is before molding, (B) is during molding, (C) is a plan view showing each state after molding 本発明で用いる外型および内型の構造を示す平面図Plan view showing the structure of the outer mold and the inner mold used in the present invention 角筒型缶胴の成形工程により得られる適正な缶胴形状(高さ方向から見た缶胴の平面形状)を示す説明図Explanatory drawing which shows the proper can body shape (planar shape of the can body seen from the height direction) obtained by the formation process of a square tube type can body 角筒型缶胴の成形工程により得られる不適正な缶胴形状(高さ方向から見た缶胴の平面形状)を示す説明図Explanatory drawing which shows the improper can body shape (planar shape of the can body seen from the height direction) obtained by the formation process of a rectangular tube type can body 特許文献1の方法において、角部の溝付けを行わずに角付けする実験を行った際の成形前の材料(円筒体)と成形手段(内型、外型)を示すもので、缶胴を高さ方向から見た平面図In the method of Patent Document 1, a material (cylindrical body) before molding and a molding means (inner mold, outer mold) when performing an experiment for squaring without grooving a corner are shown. Plan view from the height direction 図5の実験で用いた1組の内型と外型を示す平面図FIG. 5 is a plan view showing one set of inner mold and outer mold used in the experiment of FIG. 特許文献1の方法において、角部の溝付けを行わずに角付けする実験を行った際に得られた缶胴角部の角度αを、内型加工面の曲率半径rとの関係で示すグラフIn the method of Patent Document 1, the angle α of the corner of the can body obtained when an experiment for squaring without grooving the corner is shown in relation to the radius of curvature r of the inner die machining surface. Graph 図7の実験において、缶胴角部の角度αが95°以上となった現象を説明するための説明図7 is an explanatory diagram for explaining a phenomenon in which the angle α of the can barrel corner portion is 95 ° or more in the experiment of FIG. 図7の結果をσ・r/(1000・t)と缶胴角部の角度αとの関係で整理したグラフFIG. 7 is a graph in which the results of FIG. 7 are arranged by the relationship between σ · r / (1000 · t) and the angle α of the can barrel corner. 外型加工面の開角θを50〜90°として缶胴角部の成形を行った際に得られた缶胴角部の角度αを、外型加工面の開角θとの関係で示すグラフThe angle α of the can body corner portion obtained when the can body corner portion is formed by setting the open angle θ of the outer die processing surface to 50 to 90 ° is shown in relation to the open angle θ of the outer mold processing surface. Graph 図10の結果に基づき、缶胴角部の角度αが90°となる条件を外型加工面の開角θとσ・r/(1000・t)との関係で整理したグラフBased on the results of FIG. 10, a graph in which the condition that the angle α of the can barrel corner is 90 ° is arranged by the relationship between the open angle θ of the outer die machining surface and σ · r / (1000 · t). 図10の結果に基づき、缶胴角部の角度αが85°〜93°となる条件を外型加工面の開角θとσ・r/(1000・t)との関係で整理したグラフBased on the results of FIG. 10, a graph in which the conditions at which the angle α of the can body corner portion is 85 ° to 93 ° are arranged in relation to the open angle θ of the outer die machining surface and σ · r / (1000 · t). 特許文献1の方法において、角部の溝付けを行う成形手段(内型、外型)の断面図Sectional drawing of forming means (inner mold, outer mold) for grooving corners in the method of Patent Document 1 角部の角度αを定義するための説明図Explanatory diagram for defining the angle α of the corner

本発明の角筒型缶胴の製造方法では、金属板の円筒体を被成形材とし、この円筒体内側に位置する内型と円筒体外側に位置する外型とにより、角筒の角部となるべき筒体部分を挟圧して角部の成形を行う。
図1は、本発明の製造方法の実施状況の一例を示すもので、(イ)は成形前、(ロ)は成形中、(ハ)は成形後の各状態を示す平面図である。図において、aは被成形材である円筒体であり、円筒状に変形させた長方形の金属板の対向する両端縁部をシーム溶接などにより接合して得られたものである。Aは成形された角筒である。3は円筒体aの内側に位置する内型、4は円筒体aの外側に位置する外型であり、この内型3と外型4を対とする成形型が4組備えられ、これらにより成形手段が構成されている。
In the method of manufacturing a rectangular tube can body according to the present invention, a cylindrical body of a metal plate is used as a material to be molded, and the corner portion of the rectangular tube is formed by an inner mold positioned inside the cylindrical body and an outer mold positioned outside the cylindrical body. The cylindrical portion to be formed is clamped to form the corner portion.
FIG. 1 shows an example of the implementation status of the production method of the present invention, where (A) is before molding, (B) is during molding, and (C) is a plan view showing each state after molding. In the figure, a is a cylindrical body which is a material to be molded, and is obtained by joining opposite end edges of a rectangular metal plate deformed into a cylindrical shape by seam welding or the like. A is a molded square tube. 3 is an inner mold positioned inside the cylindrical body a, 4 is an outer mold positioned outside the cylindrical body a, and four sets of molding molds each having the inner mold 3 and the outer mold 4 are provided. Forming means are configured.

図2は、1組の内型3と外型4を示す平面図である。
前記外型4は、所定の開角θを有するコーナー状の加工面40(加工面)を有し、成形時には、この加工面40が缶胴角部の外面側を拘束する。前記内型3は、先端に所定の曲率半径rを有する断面円弧状(水平方向断面で円弧状)の加工面30を有し、成形時には、この加工面30が缶胴角部の内面側を拘束する。より詳細には、材料が内型3の円弧状の加工面30の2点と外型4の加工面40との間で挟圧されつつ、内型3の加工面30に沿って曲げられる結果、缶胴の各角部が成形される。
なお、内型3と外型4の好ましい形態については、後に詳細に説明する。
FIG. 2 is a plan view showing a pair of inner mold 3 and outer mold 4.
The outer mold 4 has a corner-shaped processed surface 40 (processed surface) having a predetermined opening angle θ, and the processed surface 40 restrains the outer surface side of the can barrel corner at the time of molding. The inner die 3 has a processing surface 30 having a circular arc shape (arc shape in a horizontal cross section) having a predetermined radius of curvature r at the tip, and at the time of molding, the processing surface 30 extends to the inner surface side of the can barrel corner. to bound. More specifically, the result is that the material is bent along the machining surface 30 of the inner mold 3 while being pressed between the two points of the arc-shaped machining surface 30 of the inner mold 3 and the machining surface 40 of the outer mold 4. Each corner of the can body is molded.
In addition, the preferable form of the inner mold | type 3 and the outer mold | type 4 is demonstrated in detail later.

本発明の製造方法では、図1(イ)に示すように、円筒体aの周方向で等間隔となるように、円筒体aに対して4組の内型3・外型4を配した状態で、図1(ロ)に示すように、これら4組の内型3と外型4により、角筒の角部となるべき円筒体部分を挟圧して角部の成形を行う。これにより図1(ハ)に示すような角部2と側壁面1を有する角筒Aが得られる。
本発明では、このような成形工程において、外型加工面40の開角θを90°未満とし、且つ外型加工面40の開角θ(°)、内型加工面30の曲率半径r(mm)、金属板の板厚t(mm)および金属板の降伏強度σ(N/mm)が後述する(1)式を満足する条件で前記角部の成形を行うものである。以下、そのような本発明の製造方法の詳細と、本発明に至った検討の結果について説明する。
In the manufacturing method of the present invention, as shown in FIG. 1 (a), four sets of inner mold 3 and outer mold 4 are arranged with respect to the cylindrical body a so as to be equally spaced in the circumferential direction of the cylindrical body a. In this state, as shown in FIG. 1B, the four portions of the inner die 3 and the outer die 4 are used to sandwich the cylindrical portion that should become the corner of the square tube, thereby forming the corner. As a result, a square tube A having a corner portion 2 and a side wall surface 1 as shown in FIG.
In the present invention, in such a molding step, the open angle θ of the outer mold processed surface 40 is set to less than 90 °, the open angle θ (°) of the outer mold processed surface 40, and the radius of curvature r ( mm), the thickness t (mm) of the metal plate, and the yield strength σ (N / mm 2 ) of the metal plate satisfy the following formula (1). Hereinafter, the details of the production method of the present invention and the results of the study that led to the present invention will be described.

本発明者らは、特許文献1の方法により極薄鋼板を成形した場合、上述したように溝付けで破断が生じ、また、側壁面が缶胴の外側に向けて湾曲し、適正な形状の角筒とはならない理由について詳細に検討した。
まず、溝付けで破断が生じるのは、以下のような理由によるものと考えられる。特許文献1の方法における溝付けは、図13に示すように外型11に備えられたポンチ12と、内型10に備えられた凹部13で材料14(金属板)を成形することにより行われる。この際、内型10で拘束された材料14がポンチ12で凹部13内に押し込まれ、伸ばされることになる。材料14がこのような成形に耐え得る十分な伸びを備えていれば問題はないが、伸びが劣る場合は材料が成形に耐えられず、破断に至ると考えられる。材料の伸びは、その化学成分、製造方法、金属組織などで決まる材質的特性であるが、一方で板厚に大きく影響され、板厚が薄いほど伸びは低くなる。従来、製缶分野では用いられてこなかった板厚0.1mm程度の極薄鋼板は、それよりも板厚が厚い鋼板に較べて、材質的特性が同等であったとしても伸びは低い。そのため、溝付け部分で破断が生じたものと考えられる。
When forming the ultra-thin steel plate by the method of Patent Document 1, the present inventors break as a result of grooving as described above, and the side wall surface is curved toward the outside of the can body and has an appropriate shape. The reason why it was not a square tube was examined in detail.
First, it is considered that the rupture caused by grooving is due to the following reasons. Grooving in the method of Patent Document 1 is performed by forming a material 14 (metal plate) with a punch 12 provided in the outer mold 11 and a recess 13 provided in the inner mold 10 as shown in FIG. . At this time, the material 14 constrained by the inner mold 10 is pushed into the recess 13 by the punch 12 and stretched. There is no problem as long as the material 14 has sufficient elongation that can withstand such molding, but if the elongation is inferior, it is considered that the material cannot withstand molding and breaks. The elongation of the material is a material property determined by its chemical composition, manufacturing method, metal structure, etc., but on the other hand, it is greatly influenced by the plate thickness, and the elongation decreases as the plate thickness decreases. Conventionally, an ultra-thin steel sheet having a thickness of about 0.1 mm that has not been used in the can manufacturing field has a low elongation even if the material characteristics are equivalent compared to a steel sheet having a larger thickness. Therefore, it is considered that the fracture occurred at the grooved portion.

材料の破断は、飲料容器では内容物の漏洩に結びつくため、あってはならない現象である。よって、破断の原因である溝付けは行わないことが望ましい。そこで、溝付けを行わずに、内型と外型で角出しする実験を行った。
この実験では、表1に示す板厚tと降伏強度σを有する供試材A〜D(錫めっき鋼板)を用いた。供試材をシーム溶接により外径52.4mm、高さ136.7mmの円筒体aとし、この円筒体aに対して、図5のように配置した内型5(先端に断面円弧状の加工面50を有する内型)と外型6(コーナー状の加工面60を有する外型)により角部を成形し、角筒型の缶胴とした。図6に示す外型6の加工面60の開角θについては、特許文献1には記述されていないが、同文献の図面を測定するとそれぞれ90°であるため、ここでも同様とした。また、図6に示す内型5の加工面50の曲率半径rについては、特許文献1では18L缶に対して22mmが例示されているが、本発明は主に小型の400mL以下程度の缶を想定しているため、サイズの相違を考慮して本実験では2〜8mmとした。4組の内型5・外型6は、各々の組が円筒体aの周方向において等間隔となるように配置した。成形後の缶胴について、その角部2の角度α(コーナー角度)を測定した。
Breaking the material is a phenomenon that should not occur because it leads to leakage of the contents in the beverage container. Therefore, it is desirable not to perform grooving which is a cause of breakage. Therefore, an experiment was conducted in which the inner mold and the outer mold were squared without grooving.
In this experiment, specimens A to D (tinned steel sheets) having a thickness t and a yield strength σ shown in Table 1 were used. The test material was formed into a cylindrical body a having an outer diameter of 52.4 mm and a height of 136.7 mm by seam welding, and an inner mold 5 (processing with an arc-shaped cross section at the tip) arranged as shown in FIG. A corner portion was formed by an outer mold 6 (an outer mold having a surface 50) and an outer mold 6 (an outer mold having a corner-shaped processed surface 60) to form a rectangular tube-shaped can body. The opening angle θ of the processed surface 60 of the outer mold 6 shown in FIG. 6 is not described in Patent Document 1, but is 90 degrees when measured in the drawing of the same document, and thus is the same here. Moreover, as for the curvature radius r of the processing surface 50 of the inner mold 5 shown in FIG. 6, 22 mm is exemplified for the 18 L can in Patent Document 1, but the present invention mainly uses a small can of about 400 mL or less. Since it is assumed, the thickness is set to 2 to 8 mm in this experiment in consideration of the difference in size. The four sets of the inner mold 5 and the outer mold 6 were arranged so that each set was equally spaced in the circumferential direction of the cylindrical body a. About the can body after shaping | molding, the angle (alpha) (corner angle) of the corner | angular part 2 was measured.

Figure 0005293345
Figure 0005293345

その缶胴角部2の角度αを内型加工面50の曲率半径rで整理した結果を図7に示す。同図によれば、缶胴角部2の角度αは95°以上となっており、いずれの条件でも側壁面1が筒の外側に向けて湾曲し、適正な形状の角筒とはならかった。この理由は以下のように考えられる。本実験における成形の概要を図8に示す。図8(イ)に示すように円筒体(被成形材)が内型5と外型6とで挟圧されると、型が接している間は角筒Aの側壁面1は平面状に保たれ、角部2の角度は外型加工面60の開角θに沿って90°となる。しかし、図8(ロ)に示すように成形後に型から開放された缶胴Aでは、角部2がスプリングバックで開くことで、その角度αが95°よりも大きくなり、これによって側壁面1が筒の外側に向けて湾曲した状態となる。特許文献1の方法では、溝付けすること、すなわち小さい曲率半径の2つの内型先端部(加工面)で2箇所の曲げを行うことになるため、その効果で角部2のスプリングバックが抑制されるものと考えられる。   FIG. 7 shows the result of arranging the angle α of the can barrel corner 2 with the radius of curvature r of the inner mold processed surface 50. According to the figure, the angle α of the can body corner portion 2 is 95 ° or more, and the side wall surface 1 is curved toward the outside of the tube under any condition, and the square tube of an appropriate shape does not work. It was. The reason is considered as follows. An outline of molding in this experiment is shown in FIG. As shown in FIG. 8 (a), when the cylindrical body (material to be molded) is sandwiched between the inner mold 5 and the outer mold 6, the side wall surface 1 of the rectangular tube A is flat while the mold is in contact. The angle of the corner portion 2 is 90 ° along the open angle θ of the outer mold processing surface 60. However, as shown in FIG. 8 (b), in the can body A released from the mold after molding, the angle part 2 is opened by the spring back, so that the angle α becomes larger than 95 °. Is curved toward the outside of the cylinder. In the method of Patent Document 1, since the groove is formed, that is, the two inner mold tip portions (processed surfaces) having a small radius of curvature are bent at two locations, the spring back of the corner portion 2 is suppressed by the effect. It is considered to be done.

したがって、側壁面の湾曲を抑制するためには、型から開放された後の缶胴角部の角度αを90°に近づければよいことになる。そこで、角度αを制御する方法を見出すべく、前記実験結果を改めて検討すると、材料の降伏強度σが大きいほど、また、内型加工面の曲率半径rが大きいほど、さらに、材料の板厚tが小さいほど、角度αは大きくなる。つまり、缶胴角部の角度αは材料の降伏強度σと内型加工面の曲率半径rに比例し、材料の板厚tに反比例する。そこで、上述した実験結果について、σ・r/(1000・t)と缶胴角部の角度αとの関係を整理したものが図9である。ここで、板厚tに1000を乗じたのは、σ・r/(1000・t)の絶対値を角度αと同程度の大きさの値とすることで、計算を簡易にするためである。図9によれば、缶胴角部の角度αはσ・r/(1000・t)を指標とすることで統一的に整理できることが判る。つまり、缶胴角部の角度αを制御するためには、材料の降伏強度σ、板厚t、内型加工面の曲率半径rの関係を調整すればよいことが判る。   Therefore, in order to suppress the curvature of the side wall surface, the angle α of the can barrel corner after being released from the mold should be close to 90 °. Therefore, when the experimental result is examined again in order to find a method for controlling the angle α, the larger the yield strength σ of the material and the larger the radius of curvature r of the inner working surface, the more the thickness t of the material. Is smaller, the angle α is larger. In other words, the angle α of the can barrel corner is proportional to the yield strength σ of the material and the radius of curvature r of the inner surface, and inversely proportional to the thickness t of the material. Accordingly, FIG. 9 shows the relationship between σ · r / (1000 · t) and the angle α of the can body corner portion, with respect to the experimental results described above. Here, the thickness t is multiplied by 1000 in order to simplify the calculation by setting the absolute value of σ · r / (1000 · t) to the same value as the angle α. . According to FIG. 9, it can be understood that the angle α of the can barrel corner can be unified by using σ · r / (1000 · t) as an index. That is, in order to control the angle α of the can body corner portion, it is understood that the relationship between the yield strength σ of the material, the plate thickness t, and the curvature radius r of the inner die machining surface may be adjusted.

缶胴角部の角度αを小さくするには、材料の板厚tが厚く、降伏強度σが低く、内型加工面の曲率半径rが小さいほどよい。しかし、本発明が目指す軽量の缶体を得るためには、材料の板厚tは薄いほうがよく、概ね0.10〜0.15mm程度が望ましい。また、缶体の強度を確保する観点から薄い板厚を補うために材料の降伏強度σは高い方がよく、300〜750N/mm程度が望ましい。また、内型加工面の曲率半径rは、内型が接触する際に材料に損傷を与えないために大きい方がよく、概ね2mm以上が望ましい。このように、材料の板厚t、降伏強度σおよび内型加工面の曲率半径rの望ましい条件は、いずれも缶胴角部の角度αを小さくして90°に近づけるために必要な条件とは相反する関係にある。しかも、そのような望ましい板厚t、降伏強度σおよび内型加工面の曲率半径rの範囲で得られる缶胴角部の角度αは、図7の実験結果では最低でも95°である。 In order to reduce the angle α of the can barrel corner, it is better that the plate thickness t of the material is thicker, the yield strength σ is lower, and the radius of curvature r of the inner die working surface is smaller. However, in order to obtain a lightweight can body aimed by the present invention, the thickness t of the material is preferably thin, and is preferably about 0.10 to 0.15 mm. Further, from the viewpoint of securing the strength of the can body, in order to compensate for the thin plate thickness, the material should have a high yield strength σ, preferably about 300 to 750 N / mm 2 . Further, the radius of curvature r of the inner die working surface is preferably large so as not to damage the material when the inner die contacts, and is preferably approximately 2 mm or more. Thus, the desirable conditions for the material thickness t, yield strength σ, and radius of curvature r of the inner working surface are all the conditions necessary to reduce the angle α of the can barrel corner and approach 90 °. Are in a conflicting relationship. Moreover, the angle α of the can barrel corner obtained in such a range of the desired thickness t, yield strength σ, and radius of curvature r of the inner working surface is at least 95 ° in the experimental results of FIG.

そこで、本発明者らは外型加工面の開角θに着目し、この開角θをより小さい角度とすることで、缶胴角部の角度αを90°にすることができると考え、これを確認するために、以下のような実験を行った。
表2に示す板厚tと降伏強度σを有する供試材(i)〜(iv)(錫めっき鋼板)を用い、この供試材をシーム溶接して外径52.4mm、高さ136.7mmの円筒体とし、この円筒体に対して図5と同様に内型と外型を用いて缶胴角部の成形を行った。この実験では、内型加工面の曲率半径rを2mm、4mmとし、外型加工面の開角θを50〜90°として缶胴角部の成形を行った。この実験で得られた外型加工面の開角θと缶胴角部の角度αとの関係を図10に示す。同図に示されるように、外型加工面の開角θを適切に設定することで、缶胴角部の角度αを90°に近い値とすることができる。
Therefore, the present inventors pay attention to the open angle θ of the outer mold processed surface, and consider that the angle α of the can barrel corner can be set to 90 ° by setting the open angle θ to a smaller angle. In order to confirm this, the following experiment was conducted.
Using test materials (i) to (iv) (tin-plated steel plates) having a thickness t and a yield strength σ shown in Table 2, the test materials were seam welded to have an outer diameter of 52.4 mm and a height of 136. A cylindrical body of 7 mm was formed, and the corner of the can body was molded using the inner mold and the outer mold in the same manner as in FIG. In this experiment, the can body corner portion was formed by setting the radius of curvature r of the inner die machining surface to 2 mm and 4 mm and the open angle θ of the outer die machining surface to 50 to 90 °. FIG. 10 shows the relationship between the open angle θ of the outer mold processed surface and the angle α of the can barrel corner obtained in this experiment. As shown in the figure, the angle α of the can barrel corner can be set to a value close to 90 ° by appropriately setting the opening angle θ of the outer mold processed surface.

Figure 0005293345
Figure 0005293345

外型加工面の適切な開角θは、表2の(i)〜(iv)の条件によって、つまり材料の板厚t、降伏強度σおよび内型加工面の曲率半径rの組み合わせによって異なる。そこで、図10の結果に基づき、缶胴角部の角度αが90°となる条件を外型加工面の開角θとσ・r/(1000・t)との関係で整理したものが図11である。すなわち、図11に示される外型加工面の開角θとσ・r/(1000・t)との関係を満足する条件で缶胴角部の成形を行うことにより、缶胴角部の角度αが90°で側壁面が平面状の缶胴が得られる。   The appropriate opening angle θ of the outer die machining surface varies depending on the conditions (i) to (iv) in Table 2, that is, depending on the combination of the material thickness t, the yield strength σ, and the curvature radius r of the inner die machining surface. Therefore, based on the result of FIG. 10, the conditions in which the angle α of the can body corner portion is 90 ° are arranged in relation to the open angle θ of the outer mold processed surface and σ · r / (1000 · t). 11. In other words, the angle of the can barrel corner is formed by molding the can barrel corner under the condition satisfying the relationship between the opening angle θ of the outer die machining surface shown in FIG. 11 and σ · r / (1000 · t). A can body having α of 90 ° and a flat side wall surface is obtained.

本発明により製造される缶胴を角筒型容器として用いるには、缶胴の両端(両開口部)にフランジ部を設けた後、同様にフランジ部を備えた蓋を装着し、双方のフランジ部を巻締めることで蓋を取付固定する。ここで、容器間の空隙を小さくできるという角筒型容器の利点は、厳密に缶胴の側壁面が平面状で且つ缶胴角部の角度αが90°でなくても、すなわち、缶胴の側壁面が概ね平面状で且つ缶胴角部の角度αが90°に近い角度であれば、実質的に問題なく得られる。
例えば、缶胴角部の角度α<90°の場合には、缶胴の側壁面は内側に湾曲した形状となり、その程度が大きいと蓋の装着も困難になる。しかし、側壁面の湾曲の程度が小さければ、蓋の装着に実質的な支障はなく、また、角筒型容器としての上記利点が失われることはない。
In order to use the can body manufactured according to the present invention as a rectangular tube-shaped container, after providing flange portions at both ends (both openings) of the can body, similarly, a lid provided with the flange portions is mounted and both flanges are mounted. The lid is attached and fixed by tightening the part. Here, the advantage of the rectangular tube container that the gap between the containers can be reduced is that the side wall surface of the can barrel is strictly flat and the angle α of the can barrel corner portion is not 90 °, that is, the can barrel If the side wall surface is substantially planar and the angle α of the can body corner is close to 90 °, the problem can be substantially obtained.
For example, when the angle α <90 ° of the can body corner portion, the side wall surface of the can body is curved inward, and if the degree is large, it is difficult to attach the lid. However, if the degree of curvature of the side wall surface is small, there will be no substantial hindrance to the mounting of the lid, and the above advantages as a rectangular tube container will not be lost.

一方、缶胴角部の角度α>90°の場合には、缶胴の側壁面は外側に湾曲した形状となり、その程度が大きいと蓋の装着も困難となる。また、角度α>90°のために缶胴の側壁面が外側に湾曲していても、蓋を装着することで缶胴の両端部近傍の形状が拘束されて湾曲が矯正され、湾曲の影響はなくなるが、缶胴の両端部から離れた部位ではその矯正作用が働かないため、缶胴に外側への湾曲が生じる。しかし、側壁面の缶胴外側への湾曲の程度が小さければ、蓋の装着に実質的な支障はなく、また、蓋装着後の湾曲程度も小さく、角筒型容器としての上記利点が失われることはない。   On the other hand, when the angle α> 90 ° of the can body corner portion, the side wall surface of the can body is curved outward, and if the degree is large, it is difficult to attach the lid. In addition, even if the side wall surface of the can body is curved outward because the angle α> 90 °, the shape in the vicinity of both ends of the can body is constrained and the curvature is corrected by attaching the lid, and the influence of the curvature However, since the correcting action does not work at the part away from both ends of the can body, the can body is curved outward. However, if the degree of bending of the side wall surface to the outside of the can body is small, there is no substantial hindrance to the mounting of the lid, and the degree of bending after the mounting of the lid is small, and the above advantages as a rectangular tube container are lost. There is nothing.

本発明者らが検討した結果によれば、缶胴角部の角度α<90°であっても、角度α≧85°であれば、側壁面の湾曲の程度が小さく、蓋の装着に実質的な支障はないことが判った。一方、缶胴角部の角度α>90°であっても、角度α≦93°であれば、側壁面の湾曲の程度が小さいため、蓋の装着に実質的な支障がないだけでなく、蓋装着後の湾曲部の張り出し量は約1mm以下であり、巻締め部の幅を超えて外側にせり出すことはないため、実質的に問題がないことが判った。すなわち、缶胴角部の角度αが85°〜93°の範囲になるように成形すればよいことが判った。   According to the results examined by the present inventors, even when the angle α <90 ° of the can barrel corner, if the angle α ≧ 85 °, the degree of curvature of the side wall surface is small, and the lid is substantially attached. It was found that there was no problem. On the other hand, even if the angle α> 90 ° of the can body corner, if the angle α ≦ 93 °, the degree of curvature of the side wall surface is small, so that there is no substantial hindrance to the mounting of the lid, It has been found that the amount of protrusion of the curved portion after mounting the lid is about 1 mm or less and does not protrude outward beyond the width of the winding portion, so that there is substantially no problem. That is, it has been found that the can is formed so that the angle α of the corner portion of the can is in the range of 85 ° to 93 °.

そこで、図10の結果に基づき、缶胴角部の角度αが85°〜93°となる条件を外型加工面の開角θとσ・r/(1000・t)との関係で整理したものが図12である。すなわち、図12に示される外型加工面の開角θとσ・r/(1000・t)との関係を満足する、下記(1)式の条件で缶胴角部の成形を行うことにより、缶胴角部の角度αが85°〜93°で側壁面が概ね平面状の缶胴が得られる。
したがって、本発明では、外型加工面の開角θを90°未満とし、且つ外型加工面の開角θ(°)、内型加工面の曲率半径r(mm)、金属板の板厚t(mm)および金属板の降伏強度σ(N/mm)が下記(1)式を満足する条件で前記角部の成形を行う。

Figure 0005293345
Therefore, based on the results of FIG. 10, the conditions under which the angle α of the can barrel angle portion is 85 ° to 93 ° are arranged by the relationship between the open angle θ of the outer mold processed surface and σ · r / (1000 · t). The thing is FIG. That is, by forming the can barrel corner portion under the condition of the following formula (1) that satisfies the relationship between the open angle θ of the outer mold processed surface shown in FIG. 12 and σ · r / (1000 · t). A can body having an angle [alpha] of the can body corner portion of 85 [deg.] To 93 [deg.] And a substantially flat side wall surface is obtained.
Therefore, in the present invention, the open angle θ of the outer die machining surface is less than 90 °, the open angle θ (°) of the outer die machining surface, the radius of curvature r (mm) of the inner die machining surface, and the thickness of the metal plate. The corner portion is formed under the condition that t (mm) and the yield strength σ (N / mm 2 ) of the metal plate satisfy the following expression (1).
Figure 0005293345

本発明で製造される缶胴の素材としては、耐食性の確保のため各種の表面処理を施した鋼板が望ましい。そのような表面処理鋼板としては、錫、亜鉛、ニッケル、クロムなどの1種または2種以上を鋼板表面にめっきしたもの、さらに、そのめっき層の上層にクロメート処理やリン酸塩処理のような各種化成処理を施したものが好適である。なかでも、従来から飲料容器に用いられている錫めっき鋼板(ぶりき)、電解クロメート処理鋼板(ティンフリー・スチール)が好適である。また、各種表面処理鋼板に有機樹脂フィルムを被覆したラミネート鋼板は、耐食性、環境適合性などの観点から特に好適である。   As a material of the can body manufactured by the present invention, a steel plate subjected to various surface treatments for ensuring corrosion resistance is desirable. As such a surface-treated steel plate, one or more of tin, zinc, nickel, chromium, etc. are plated on the surface of the steel plate, and further, the chromate treatment or phosphate treatment is applied to the upper layer of the plated layer. Those subjected to various chemical conversion treatments are suitable. Among these, tin-plated steel plates (baffle) and electrolytic chromate-treated steel plates (tin-free steel) conventionally used for beverage containers are suitable. Moreover, the laminated steel plate which coat | covered the organic resin film on various surface treatment steel plates is especially suitable from viewpoints, such as corrosion resistance and environmental compatibility.

金属板の板厚に特別な制限はないが、容器の軽量化の観点からは、0.095〜0.155mmが好適である。また、金属板の降伏強度σは、360〜650N/mm程度が特に好ましい。
被成形材である円筒体aを得るには、通常、円筒状に変形させた長方形の金属板の対向する両端縁部を接合して円筒体とする。金属板の両端縁部を接合する方法は、十分な接合強度が得られる方法であれば特に制限はないが、溶接法、接着法、半田法などを用いことができる。これらのうち、特に接合強度の高い溶接法が好適である。溶接法としは、シーム溶接などの通電溶接や、レーザー溶接などを適用することができる。
Although there is no special restriction | limiting in the plate | board thickness of a metal plate, 0.095-0.155mm is suitable from a viewpoint of weight reduction of a container. The yield strength σ of the metal plate is particularly preferably about 360 to 650 N / mm 2 .
In order to obtain a cylindrical body a which is a material to be molded, the opposite end edges of a rectangular metal plate deformed into a cylindrical shape are usually joined to form a cylindrical body. The method for joining both edge portions of the metal plate is not particularly limited as long as sufficient joining strength is obtained, but a welding method, an adhesion method, a solder method, or the like can be used. Among these, a welding method with particularly high joint strength is suitable. As the welding method, current welding such as seam welding, laser welding, or the like can be applied.

次に、本発明で用いる成形手段である内型・外型の好ましい形態について、図2に基づいて説明する。
内型3と外型4の基本構成はさきに説明したとおりであるが、内型3の断面円弧状の加工面30の2点が外型4のコーナー状の加工面40との間で材料を挟圧しつつ、缶胴の各角部が成形されるので、内型3の加工面30は、外型4の加工面40が接面となる状態で外型4に接触する必要がある。したがって、外型4の加工面40の奥行きをL(mm)とすると、内型加工面30の曲率半径r(mm)および外型加工面40の開角θ(°)との関係で、Lは幾何学的に下記の条件を満たす必要がある。
L>r/tan(θ/2)
Next, preferred forms of the inner mold and the outer mold, which are molding means used in the present invention, will be described with reference to FIG.
The basic configuration of the inner die 3 and the outer die 4 is as described above, but the material between the two points of the arc-shaped machining surface 30 of the inner die 3 and the corner-like machining surface 40 of the outer die 4 is a material. Since each corner portion of the can body is formed while the pressure is held, the processed surface 30 of the inner mold 3 needs to be in contact with the outer mold 4 with the processed surface 40 of the outer mold 4 being in contact. Therefore, if the depth of the processed surface 40 of the outer mold 4 is L (mm), the relationship between the radius of curvature r (mm) of the inner processed surface 30 and the open angle θ (°) of the outer processed surface 40 is L Must satisfy the following conditions geometrically.
L> r / tan (θ / 2)

但し、Lが大きすぎると隣接する外型4どうしが干渉することになるので、実質的な上限がある。Lの好適範囲は、缶のサイズ、内型加工面30の曲率半径rなどによっても異なるが、例えば、300mL前後の内容量の金属缶を製造するのに内型加工面30の曲率半径rを2〜6mm程度とした場合、概ね4〜20mm程度であることが望ましい。
内型加工面の曲率半径rも、上記(1)式の条件以外に特別な制限はないが、一般には1〜20mm程度であり、特に好ましい範囲は2〜16mmである。
内型3と外型4は、缶胴角部の成形を精度よく行う必要性から、材料を成形する際に型自体が変形しないことが必要である。したがって、剛体であることが望ましく、通常の金属加工で用いられる金属等の素材を用いたものが望ましい。
However, if L is too large, adjacent outer molds 4 interfere with each other, so there is a substantial upper limit. The preferred range of L varies depending on the size of the can, the radius of curvature r of the inner mold processing surface 30, and the like. For example, in order to manufacture a metal can having an internal capacity of about 300 mL, the radius of curvature r of the inner mold processing surface 30 is set. When it is about 2-6 mm, it is desirable that it is about 4-20 mm.
The radius of curvature r of the inner working surface is not particularly limited except for the condition of the above formula (1), but is generally about 1 to 20 mm, and a particularly preferable range is 2 to 16 mm.
Since the inner mold 3 and the outer mold 4 need to accurately mold the can barrel corner, it is necessary that the mold itself does not deform when the material is molded. Therefore, it is desirable to be a rigid body, and it is desirable to use a material such as a metal used in normal metal processing.

本発明により製造される角筒型缶胴のサイズや、この缶胴を用いる角筒型容器のサイズ、内容量に特別な制限はないが、特に好適な角筒型缶胴、角筒型容器のサイズは、相対する側壁面間が約4cm〜5cm、缶高さが約5cm〜15cm、内容量が約80〜400mL程度のものである。また、本発明により製造されるのは、断面四角形状の角筒型缶胴および角筒型容器である。
本発明により製造される缶胴は、少なくとも一方の端部に蓋が取り付けられ、角筒型金属缶となる。蓋の取付は、通常、缶胴の端部周縁と蓋の周縁にそれぞれフランジ部を設け、缶胴端部に蓋を装着した状態で、両者のフランジ部を巻締めることにより行う。
There is no particular limitation on the size of the rectangular tube can body manufactured according to the present invention, the size of the rectangular tube container using the can body, or the internal capacity, but a particularly preferable rectangular tube can body and rectangular tube container The size between the opposite side wall surfaces is about 4 cm to 5 cm, the can height is about 5 cm to 15 cm, and the internal volume is about 80 to 400 mL. In addition, a rectangular tube can body and a rectangular tube container having a square cross section are manufactured according to the present invention.
The can body manufactured according to the present invention has a lid attached to at least one end to form a rectangular tube-shaped metal can. The attachment of the lid is usually performed by providing flange portions on the periphery of the end of the can body and the periphery of the cover, and winding both flange portions in a state where the cover is attached to the end of the can body.

表3に示す板厚tと降伏強度σを有する錫めっき鋼板を供試材として用いた。この供試材をシーム溶接法で外径52.4mm、高さ136.7mmの円筒体とした後、表3に示す内型加工面の曲率半径r、外型加工面の開角θとした4対の内型と外型で角出し成形を行った。このようにして得られた缶胴について、角部の角度αを測定した。その結果を表3に併せて示す。
表3に示されるように、本発明例では缶胴角部の角度αがいずれも85°〜93°の範囲となることが判る。
A tin-plated steel sheet having a thickness t and a yield strength σ shown in Table 3 was used as a test material. After this test material was formed into a cylindrical body having an outer diameter of 52.4 mm and a height of 136.7 mm by a seam welding method, the curvature radius r of the inner die machining surface and the open angle θ of the outer die machining surface shown in Table 3 were set. Square forming was performed with four pairs of inner mold and outer mold. About the can body thus obtained, the angle α of the corner portion was measured. The results are also shown in Table 3.
As shown in Table 3, it can be seen that in the example of the present invention, the angle α of the can barrel corner is in the range of 85 ° to 93 °.

Figure 0005293345
Figure 0005293345

ここで、表3のf1、f2は、それぞれ以下のように(1)式の右辺、左辺を示す。

Figure 0005293345
Here, f1 and f2 in Table 3 indicate the right side and the left side of the equation (1) as follows.
Figure 0005293345

1 側壁面
2 角部
3,5 内型
4,6 外型
30,50 内型加工面
40,60 外型加工面
a 円筒体
A 角筒
DESCRIPTION OF SYMBOLS 1 Side wall surface 2 Corner | angular part 3,5 Inner type | mold 4,6 Outer type | mold 30,50 Inner type | mold processed surface 40,60 Outer type | mold processed surface a Cylinder A Square tube

Claims (2)

金属板の円筒体を被成形材とし、コーナー状の加工面を有する外型と、先端に断面円弧状の加工面を有する内型とを用い、円筒体内側に位置する内型と円筒体外側に位置する外型とにより、角筒の角部となるべき円筒体部分を挟圧して角部の成形を行う角筒型缶胴の製造方法において、
外型加工面の開角θを90°未満とし、且つ外型加工面の開角θ(°)、内型加工面の曲率半径r(mm)、金属板の板厚t(mm)および金属板の降伏強度σ(N/mm)が下記(1)式を満足する条件で前記角部の成形を行うことを特徴とする金属缶胴の製造方法。
Figure 0005293345
A metal plate cylinder is used as a material to be molded, and an outer mold having a corner-shaped machining surface and an inner mold having an arc-shaped machining surface at the tip are used. In the manufacturing method of the rectangular tube type can body for forming the corner portion by sandwiching the cylindrical body portion to be the corner portion of the rectangular tube by the outer mold located at
The opening angle θ of the outer die machining surface is less than 90 °, the opening angle θ (°) of the outer die machining surface, the radius of curvature r (mm) of the inner die machining surface, the thickness t (mm) of the metal plate, and the metal A method for producing a metal can body, characterized in that the corner portion is formed under the condition that the yield strength σ (N / mm 2 ) of the plate satisfies the following formula (1).
Figure 0005293345
請求項1に記載の製造方法で得られた金属缶胴の少なくとも一方の端部に蓋を固定し、金属缶とすることを特徴とする金属缶の製造方法。   A metal can manufacturing method, wherein a lid is fixed to at least one end of a metal can body obtained by the manufacturing method according to claim 1 to form a metal can.
JP2009083457A 2009-03-30 2009-03-30 Method for manufacturing metal can body Expired - Fee Related JP5293345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009083457A JP5293345B2 (en) 2009-03-30 2009-03-30 Method for manufacturing metal can body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009083457A JP5293345B2 (en) 2009-03-30 2009-03-30 Method for manufacturing metal can body

Publications (2)

Publication Number Publication Date
JP2010234393A JP2010234393A (en) 2010-10-21
JP5293345B2 true JP5293345B2 (en) 2013-09-18

Family

ID=43089248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009083457A Expired - Fee Related JP5293345B2 (en) 2009-03-30 2009-03-30 Method for manufacturing metal can body

Country Status (1)

Country Link
JP (1) JP5293345B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53149488A (en) * 1977-05-31 1978-12-26 Fuji Kogyosho Kk Method of and device for forming rectangular thin plate can
JPH0596330A (en) * 1991-06-25 1993-04-20 Nisshin Steel Co Ltd Method for v-bending composite steel plate
JP2002211559A (en) * 2001-01-19 2002-07-31 Npw Technical Laboratory Co Ltd Method and apparatus for forming angular can barrel

Also Published As

Publication number Publication date
JP2010234393A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
EP0182646B1 (en) Packaging material comprising iron foil, and container and container lid composed thereof
TWI574445B (en) Lid for a battery case
US8684211B1 (en) Can end with retort resistant panel, and tooling and associated method for providing same
EP2380677B1 (en) Manufacturing method for lid that requires no can opener
TWI714765B (en) Laminated sheet and container for container
JP4855712B2 (en) Square battery container
EP1044886B1 (en) Easily openable can lid with excellent openability and method of forming same
JP5471182B2 (en) Method for manufacturing metal can body
JP5293345B2 (en) Method for manufacturing metal can body
JP5353489B2 (en) Method for manufacturing metal can body
JP4583239B2 (en) Seamless aluminum square can
EP1914064A1 (en) Laminate steel sheet for can body of two-piece can and two-piece can comprising laminate steel sheet
JP4964933B2 (en) Neck-in forming method for steel cans
WO2017093429A1 (en) Container with a double seam
KR20080056775A (en) Method of drawing/ironing of resin-coated metal sheet and drawn and ironed resin-coated can formed by the same
WO2022270157A1 (en) Multilayer body for molding containers, molding container and package
JP5359438B2 (en) Can body
JP2021144864A (en) Method for producing laminate material for double cup type case
CN207346266U (en) A kind of new aluminium lid and new opentop
JP5295494B2 (en) DI can
CN106794672B (en) Foil blank
US8475973B2 (en) Mechanically joined bipolar plates and method therefor
US712999A (en) Storage battery.
JP2012110957A (en) Method for manufacturing square drawn can
JP2014168816A (en) Can-top

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R150 Certificate of patent or registration of utility model

Ref document number: 5293345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees