JP5471182B2 - Method for manufacturing metal can body - Google Patents

Method for manufacturing metal can body Download PDF

Info

Publication number
JP5471182B2
JP5471182B2 JP2009201162A JP2009201162A JP5471182B2 JP 5471182 B2 JP5471182 B2 JP 5471182B2 JP 2009201162 A JP2009201162 A JP 2009201162A JP 2009201162 A JP2009201162 A JP 2009201162A JP 5471182 B2 JP5471182 B2 JP 5471182B2
Authority
JP
Japan
Prior art keywords
mold
angle
side wall
corner
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009201162A
Other languages
Japanese (ja)
Other versions
JP2011050979A (en
Inventor
克己 小島
雅毅 多田
浩樹 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009201162A priority Critical patent/JP5471182B2/en
Publication of JP2011050979A publication Critical patent/JP2011050979A/en
Application granted granted Critical
Publication of JP5471182B2 publication Critical patent/JP5471182B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、角筒型の金属缶胴の製造方法に関するもので、特に、極薄金属板を素材とする角筒型缶胴を得るのに好適な製造方法に関するものである。   The present invention relates to a method of manufacturing a rectangular tube-shaped metal can body, and more particularly to a manufacturing method suitable for obtaining a rectangular tube-shaped can body made of an ultrathin metal plate.

角筒型の容器は、例えば、複数個の容器を箱に詰めて梱包したり、店頭で陳列する際などに、容器間の空隙を小さくできるため、省スペースの点で有利である。内容量が400mL程度以下の飲料容器の場合、従来、こうした角筒型容器の素材には紙が用いられてきた。紙製の容器は軽いという利点がある反面、強度が小さく、圧迫や落下で容易に変形してしまう欠点がある。
一方、飲料容器には金属缶が広く用いられている。金属は紙に較べて強度が高く、容器の変形に対して有利である。但し、従来では角筒型の飲料容器の素材として金属が用いられることは殆どなかった。これは、金属缶が紙製容器に較べて重いことが一因であると考えられる。金属缶を軽くするには、素材金属板の板厚を薄くすることが有効である。
The rectangular tube type container is advantageous in terms of space saving because, for example, when a plurality of containers are packed in a box and packed or displayed at a storefront, the gap between the containers can be reduced. In the case of a beverage container having an inner volume of about 400 mL or less, conventionally, paper has been used as a material for such a rectangular tube type container. Paper containers have the advantage of being light, but have a disadvantage that they are small in strength and easily deform when pressed or dropped.
On the other hand, metal cans are widely used for beverage containers. Metal has a higher strength than paper and is advantageous for deformation of the container. However, in the past, metal was rarely used as a material for a rectangular tube type beverage container. This is probably because the metal can is heavier than the paper container. To lighten the metal can, it is effective to reduce the thickness of the material metal plate.

特許文献1には、板厚を薄くした素材を用いて角筒型の金属缶を成形する方法が示されている。この方法では、所定寸法に剪断された長方形の素材をシーム溶接により円筒素体とし、これを角出しする(角部の成形)ことで角筒とする。角出しは成形すべき角部の数に対応した複数組の内型と外型を用いて行い、さらに角部に溝付けを行う。この方法により、板厚0.1mmまでの鋼板を角筒型の金属缶に成形できるとしている。
また、特許文献2には、缶胴の側壁部に内方に凹んだ凹部を形成した角缶およびその成形方法が示されている。
Patent Document 1 discloses a method of forming a rectangular tube-shaped metal can using a material having a thin plate thickness. In this method, a rectangular material sheared to a predetermined dimension is formed into a cylindrical body by seam welding, and a square tube is formed by squaring (molding corners). The cornering is performed by using a plurality of sets of inner molds and outer molds corresponding to the number of corners to be molded, and the corners are further grooved. According to this method, a steel plate having a thickness of up to 0.1 mm can be formed into a rectangular tube-shaped metal can.
Patent Document 2 discloses a square can in which a concave portion recessed inward is formed on a side wall portion of a can body and a molding method thereof.

特公昭61−34891号公報Japanese Patent Publication No.61-34891 特開2002―211559号公報Japanese Patent Application Laid-Open No. 2002-211559

しかし、特許文献1の方法について、本発明者らが板厚0.1mmの極薄鋼板を用いて実験を行った結果、以下に述べるような不具合が生じることが判った。まず、角出しおよび溝付けを行うと、溝付け部分に破断が生じた。この破断は溝付け部分に生じたことから、溝付けを行わないで成形したところ、角部は所定の角度(概ね90°)にならず、結果として側壁部が筒の外側に向けて湾曲した形状となり、適正な形状の角筒にはならないという結果が得られた。すなわち、4つの角部と側壁部を備えた角筒を成形するに当たり、図3(缶胴を高さ方向から見た平面図)に示すように、側壁部1が概ね平面で且つ角部2の角度α(コーナー角度)が概ね90°である形状を得ようとしたが、実際には、図4(缶胴を高さ方向から見た平面図)に示すように、側壁部1が外側に湾曲し、且つ角部2の角度αが90°よりも相当程度大きくなり、角筒としての適正な形状が得られないことが判った。このような形状では、容器間の空隙を小さくできるという角筒型容器としての利点が得られない。ここで、上述した角部2の角度αは以下のように定義される。すなわち、図19に示すように、角部2の曲率半径bを持ち且つ角部2に接する円20(仮想円)を想定し、円20と角部2とが乖離する点21,22における円20の接線23,24を定めた時、この接線23と接線24の成す角度を角部2の角度αとする。   However, as a result of experiments conducted on the method of Patent Document 1 by using the ultrathin steel plate having a thickness of 0.1 mm, the inventors found that the following problems occur. First, when squaring and grooving were performed, breakage occurred at the grooving portion. Since this breakage occurred in the grooved portion, when the molding was performed without grooving, the corner portion did not become a predetermined angle (approximately 90 °), and as a result, the side wall portion curved toward the outside of the cylinder. As a result, the result was that the square tube was not properly shaped. That is, in forming a square tube having four corners and side walls, as shown in FIG. 3 (a plan view of the can body seen from the height direction), the side walls 1 are substantially flat and the corners 2 are formed. In this case, an attempt was made to obtain a shape having an angle α (corner angle) of approximately 90 °, but actually, as shown in FIG. 4 (a plan view of the can body seen from the height direction), the side wall portion 1 is outside. And the angle α of the corner portion 2 becomes considerably larger than 90 °, and it has been found that an appropriate shape as a square tube cannot be obtained. In such a shape, the advantage as a rectangular tube type container that the space | gap between containers can be made small is not acquired. Here, the angle α of the corner 2 described above is defined as follows. That is, as shown in FIG. 19, assuming a circle 20 (virtual circle) having a radius of curvature b of the corner 2 and in contact with the corner 2, circles at points 21 and 22 where the circle 20 and the corner 2 are separated from each other. When 20 tangent lines 23 and 24 are determined, an angle formed by the tangent line 23 and the tangent line 24 is defined as an angle α of the corner 2.

また、特許文献2のように、缶胴の側壁部に内方に凹んだ凹部を形成することにより、側壁部の外側への湾曲は回避できるが、側壁部を内方に凹んだ形状にすると角缶の内容量を減少させることになる。特許文献1や特許文献2が対象としているのは、18L缶などのような比較的内容量が多い缶であるため、側壁部の内方への凹みによる内容量の減少は大きな問題にはならないとも考えられるが、本発明が主たる対象とする内容量400mL程度の比較的内容量の少ない缶では、側壁部の内方への凹みによる内容量の減少は看過できないものである。また、特許文献2の方法は、角筒に成形した後、さらに成形を行って側壁部に凹部を形成するものであるため、缶胴の成形工程が増え、製造コストが高くなる。
以上のように、板厚の薄い金属板を素材とする角筒型缶胴の製造技術は、未だ確立されていない。
したがって本発明の目的は、板厚の薄い金属板を素材とする場合でも、適正な形状の角筒型缶胴を効率的に製造することができる金属缶胴の製造方法を提供することにある。
Further, as in Patent Document 2, by forming a concave portion recessed inward in the side wall portion of the can body, it is possible to avoid the outward bending of the side wall portion, but when the side wall portion is recessed inward. The content of the square can will be reduced. Since Patent Document 1 and Patent Document 2 are intended for cans having a relatively large internal volume such as an 18L can, a decrease in the internal volume due to the inward depression of the side wall is not a big problem. However, in a can with a relatively small internal volume of about 400 mL, which is the main object of the present invention, the decrease in the internal volume due to the inward depression of the side wall cannot be overlooked. Moreover, since the method of patent document 2 is what shape | molds into a rectangular tube and then shape | molds and forms a recessed part in a side wall part, the formation process of a can body increases and manufacturing cost becomes high.
As described above, a manufacturing technique for a rectangular tube can body using a thin metal plate as a raw material has not yet been established.
Accordingly, an object of the present invention is to provide a method for manufacturing a metal can body that can efficiently manufacture a square-shaped can body having an appropriate shape even when a thin metal plate is used as a raw material. .

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]金属板の円筒体を被成形材とし、断面山形状の加工面を有する外型と、先端に断面円弧状の加工面を有する内型とを用い、円筒体外側に位置する外型により、角筒の側壁部となる円筒体部分を円筒体内側方向に押圧して側壁部を成形するとともに、円筒体内側に位置する内型により、角筒の角部となる円筒体部分を円筒体外側方向に押圧して角部を成形する角筒型缶胴の製造方法であって、
外型加工面の開角θ(°)、外型加工面の頂部の曲率半径R(mm)、内型加工面の曲率半径r(mm)、金属板の板厚t(mm)および金属板の降伏強度σ(N/mm)が下記(1)式および(2)式を満足する条件で、前記外型と内型による缶胴の成形を行うことを特徴とする金属缶胴の製造方法。

Figure 0005471182
[2]上記[1]の製造方法で得られた金属缶胴の少なくとも一方の端部に蓋を固定し、金属缶とすることを特徴とする金属缶の製造方法。 The gist of the present invention for solving the above problems is as follows.
[1] An outer mold that uses a cylindrical body of a metal plate as a material to be molded, has an outer mold having a cross-sectionally shaped machining surface, and an inner mold having a machining surface having an arc-shaped cross section at the tip, and is located outside the cylindrical body By pressing the cylindrical portion that becomes the side wall portion of the square tube in the direction toward the inside of the cylindrical body, the side wall portion is molded, and the cylindrical portion that becomes the corner portion of the square tube is formed into a cylinder by the inner mold located inside the cylindrical body. It is a manufacturing method of a square tube type can body that presses in the body outer side direction to mold a corner part,
The opening angle θ (°) of the outer die machining surface, the radius of curvature R (mm) of the top of the outer die machining surface, the radius of curvature r (mm) of the inner die machining surface, the thickness t (mm) of the metal plate, and the metal plate The can body is formed by the outer mold and the inner mold under the condition that the yield strength σ (N / mm 2 ) satisfies the following formulas (1) and (2): Method.
Figure 0005471182
[2] A method for producing a metal can, characterized in that a lid is fixed to at least one end of the metal can body obtained by the production method of [1] to obtain a metal can.

本発明によれば、板厚の薄い金属板を素材として、側壁部が概ね平面で且つ角部の角度(コーナー角度)が概ね90°となる適正な形状の角筒型缶胴を効率的に製造することができる。   According to the present invention, using a thin metal plate as a raw material, an appropriately shaped rectangular tube can body having a side wall portion that is substantially flat and a corner portion angle (corner angle) of approximately 90 ° is efficiently produced. Can be manufactured.

本発明の製造方法の実施状況の一例を示すもので、(イ)は成形前、(ロ)は成形中、(ハ)は成形後の各状態を示す平面図It shows an example of the implementation status of the production method of the present invention, (A) is before molding, (B) is during molding, (C) is a plan view showing each state after molding 本発明で用いる外型および内型の構造を示す平面図Plan view showing the structure of the outer mold and the inner mold used in the present invention 角筒型缶胴の成形工程により得られる適正な缶胴形状(高さ方向から見た缶胴の平面形状)を示す説明図Explanatory drawing which shows the proper can body shape (planar shape of the can body seen from the height direction) obtained by the formation process of a square tube type can body 角筒型缶胴の成形工程により得られる不適正な缶胴形状(高さ方向から見た缶胴の平面形状)を示す説明図Explanatory drawing which shows the improper can body shape (planar shape of the can body seen from the height direction) obtained by the formation process of a rectangular tube type can body 特許文献1の方法において、角部の溝付けを行わずに角付けする成形試験を行った際の成形前の材料(円筒体)と成形手段(内型、外型)を示すもので、缶胴を高さ方向から見た平面図In the method of Patent Document 1, a material (cylindrical body) before molding and a molding means (inner mold, outer mold) when performing a molding test for squaring without grooving the corners are shown. Plan view of the trunk as seen from the height direction 図5の成形試験で用いた1組の内型と外型を示す平面図FIG. 5 is a plan view showing one set of inner mold and outer mold used in the molding test of FIG. 特許文献1の方法において、角部の溝付けを行わずに角付けする成形試験を行った際に得られた缶胴角部の角度αを、内型加工面の曲率半径rとの関係で示すグラフIn the method of Patent Document 1, the angle α of the can barrel corner obtained when a forming test for cornering is performed without grooving the corner, in relation to the curvature radius r of the inner die machining surface. Graph showing 図7の成形試験において、缶胴角部の角度αが95°以上となった現象を説明するための説明図7 is an explanatory diagram for explaining a phenomenon in which the angle α of the can barrel corner becomes 95 ° or more in the molding test of FIG. 図7の結果をσ・r/(1000・t)と缶胴角部の角度αとの関係で整理したグラフFIG. 7 is a graph in which the results of FIG. 7 are arranged by the relationship between σ · r / (1000 · t) and the angle α of the can barrel corner. 本発明を得るために行った缶胴の成形試験において使用した内型と外型を示す平面図The top view which shows the inner type | mold and outer type | mold used in the molding test of the can body performed in order to obtain this invention 図10に示す内型と外型を用いた成形試験で得られた角筒型缶胴の形状を示す説明図Explanatory drawing which shows the shape of the square cylinder type can body obtained by the shaping | molding test using the inner type | mold and outer type | mold shown in FIG. 外型加工面の開角θを120〜175°として缶胴の成形を行った際に得られた缶胴角部の角度αを、外型加工面の開角θとの関係で示すグラフA graph showing the angle α of the can body corner portion obtained when the can body is molded with the open angle θ of the outer mold processing surface being 120 to 175 ° in relation to the open angle θ of the outer mold processing surface. 図12の結果に基づき、缶胴角部の角度αが90°となる条件を外型加工面の開角θとσ・r/(1000・t)との関係で整理したグラフBased on the results of FIG. 12, a graph in which the condition that the angle α of the can barrel corner is 90 ° is arranged in relation to the open angle θ of the outer die machining surface and σ · r / (1000 · t). 外型加工面の頂部の曲率半径Rを4〜16mmとして缶胴の成形を行った際に得られた側壁部の変位量hを、外型加工面の頂部の曲率半径Rとの関係で示すグラフThe displacement h of the side wall portion obtained when the can body is molded with the curvature radius R of the top portion of the outer die machining surface being 4 to 16 mm is shown in relation to the curvature radius R of the top portion of the outer die machining surface. Graph 図14の結果に基づき、側壁部の変位量hが0mmとなる条件を外型加工面の頂部の曲率半径Rと(t・10)/σとの関係で整理したグラフBased on the result of FIG. 14, a graph in which the condition that the displacement amount h of the side wall portion is 0 mm is arranged by the relationship between the radius of curvature R of the top portion of the outer die machining surface and (t · 10 4 ) / σ. 図12の結果に基づき、缶胴角部の角度αが85°〜93°となる条件を外型加工面の開角θとσ・r/(1000・t)との関係で整理したグラフBased on the result of FIG. 12, a graph in which the condition that the angle α of the can body corner portion is 85 ° to 93 ° is arranged by the relationship between the open angle θ of the outer die machining surface and σ · r / (1000 · t). 図14の結果に基づき、側壁部の変位量hが±1mmとなる条件を外型加工面の頂部の曲率半径Rと(t・10)/σとの関係で整理したグラフBased on the results of FIG. 14, a graph in which the condition that the displacement amount h of the side wall portion is ± 1 mm is arranged by the relationship between the radius of curvature R of the top portion of the outer die machining surface and (t · 10 4 ) / σ. 特許文献1の方法において、角部の溝付けを行う成形手段(内型、外型)の断面図Sectional drawing of forming means (inner mold, outer mold) for grooving corners in the method of Patent Document 1 角部の角度αを定義するための説明図Explanatory diagram for defining the angle α of the corner

本発明の角筒型缶胴の製造方法では、金属板の円筒体を被成形材とし、この円筒体内側に位置する内型と円筒体外側に位置する外型とにより、角筒の角部となる筒体部分と側壁部となる筒体部分をそれぞれ円筒体内外から押圧し、円筒体を角筒に成形する。
図1は、本発明の製造方法の実施状況の一例を示すもので、(イ)は成形前、(ロ)は成形中、(ハ)は成形後の各状態を示す平面図である。図において、aは被成形材である円筒体であり、円筒状に変形させた長方形の金属板の対向する両端縁部をシーム溶接などにより接合して得られたものである。Aは成形された角筒である。3は円筒体aの内側に位置する内型、4は円筒体aの外側に位置する外型であり、この内型3と外型4が各々4個備えられ、これらにより成形手段が構成されている。
In the method of manufacturing a rectangular tube can body according to the present invention, a cylindrical body of a metal plate is used as a material to be molded, and the corner portion of the rectangular tube is formed by an inner mold positioned inside the cylindrical body and an outer mold positioned outside the cylindrical body. The cylindrical body part and the cylindrical part serving as the side wall part are pressed from outside the cylindrical body, respectively, to form the cylindrical body into a rectangular tube.
FIG. 1 shows an example of the implementation status of the production method of the present invention, where (A) is before molding, (B) is during molding, and (C) is a plan view showing each state after molding. In the figure, a is a cylindrical body which is a material to be molded, and is obtained by joining opposite end edges of a rectangular metal plate deformed into a cylindrical shape by seam welding or the like. A is a molded square tube. 3 is an inner mold located inside the cylindrical body a, and 4 is an outer mold located outside the cylindrical body a. The inner mold 3 and the four outer molds 4 are provided, and these constitute molding means. ing.

図2は、1つの内型3と、この内型3により成形される角部2の両側の側壁部1を成形する2つの外型4を示す平面図である。
前記外型4は、所定の開角θを有する断面山形状(水平方向断面で緩い山形状)の加工面40を有する。この外型4は円筒体外側に位置し、成形時には、その加工面40が角筒の側壁部となる円筒体部分を円筒体内側方向に押圧して側壁部を成形する。加工面40の断面山形状は、その両傾斜部400が直線状に構成されるとともに、頂部401が所定の曲率半径Rを有する円弧状に構成されている。なお、外型4の加工面40の開角θとは、図2に示すように両傾斜部400の延長線がなす角部(山形)の内角である。
前記内型3は、先端に所定の曲率半径rを有する断面円弧状(水平方向断面で円弧状)の加工面30を有する。この内型3は円筒体内側に位置し、成形時には、その加工面30が角筒の角部となる円筒体部分を円筒体外側方向に押圧して角部を成形する。
FIG. 2 is a plan view showing one inner mold 3 and two outer molds 4 that mold the side wall portions 1 on both sides of the corner 2 formed by the inner mold 3.
The outer mold 4 has a machining surface 40 having a cross-sectional mountain shape (a loose mountain shape in a horizontal cross section) having a predetermined opening angle θ. The outer mold 4 is located outside the cylindrical body, and at the time of molding, the side wall portion is formed by pressing the cylindrical body portion whose processed surface 40 becomes the side wall portion of the square tube in the inner side of the cylindrical body. The cross-sectional mountain shape of the processing surface 40 is configured such that both inclined portions 400 are configured in a straight line and the top portion 401 is formed in an arc shape having a predetermined radius of curvature R. The open angle θ of the processed surface 40 of the outer mold 4 is an inner angle of a corner (an angle) formed by an extension line of both inclined portions 400 as shown in FIG.
The inner die 3 has a processing surface 30 having a circular arc shape (arc shape in a horizontal cross section) having a predetermined radius of curvature r at the tip. The inner mold 3 is located inside the cylindrical body, and at the time of molding, the corner portion is formed by pressing a cylindrical body portion whose processing surface 30 is a corner portion of the rectangular tube in the outer direction of the cylindrical body.

本発明の製造方法では、図1(イ)に示すように、円筒体aの周方向で等間隔となるように、円筒体aに対して各4個の内型3・外型4を配した状態で、図1(ロ)に示すように、これら内型3と外型4により、角筒の角部となる円筒体部分と側壁部となる円筒体部分を円筒体内外に押圧して角筒の成形を行う。これにより図1(ハ)に示すような角部2と側壁部1を有する角筒Aが得られる。
本発明では、このような成形工程において、外型加工面の開角θ(°)、外型加工面の頂部の曲率半径R(mm)、内型加工面の曲率半径r(mm)、金属板の板厚t(mm)および金属板の降伏強度σ(N/mm)が後述する(1)式および(2)式を満足する条件で成形を行うものである。以下、そのような本発明の製造方法の詳細と、本発明に至った検討の結果について説明する。
In the manufacturing method of the present invention, as shown in FIG. 1 (a), four inner molds 3 and four outer molds 4 are arranged on the cylindrical body a so as to be equally spaced in the circumferential direction of the cylindrical body a. In this state, as shown in FIG. 1B, the inner mold 3 and the outer mold 4 are used to press the cylindrical portion serving as the corner portion of the rectangular tube and the cylindrical portion serving as the side wall portion into and out of the cylindrical body. Forming a square tube. As a result, a square tube A having a corner portion 2 and a side wall portion 1 as shown in FIG.
In the present invention, in such a molding process, the open angle θ (°) of the outer die machining surface, the curvature radius R (mm) of the top of the outer die machining surface, the curvature radius r (mm) of the inner die machining surface, metal The forming is performed under the condition that the plate thickness t (mm) and the yield strength σ (N / mm 2 ) of the metal plate satisfy the expressions (1) and (2) described later. Hereinafter, the details of the production method of the present invention and the results of the study that led to the present invention will be described.

本発明者らは、特許文献1の方法により極薄鋼板を成形した場合、上述したように溝付けで破断が生じ、また、側壁部が缶胴の外側に向けて湾曲し、適正な形状の角筒とはならない理由について詳細に検討した。
まず、溝付けで破断が生じるのは、以下のような理由によるものと考えられる。特許文献1の方法における溝付けは、図18に示すように外型11に備えられたポンチ12と、内型10に備えられた凹部13で材料14(金属板)を成形することにより行われる。この際、内型10で拘束された材料14がポンチ12で凹部13内に押し込まれ、伸ばされることになる。材料14がこのような成形に耐え得る十分な伸びを備えていれば問題はないが、伸びが劣る場合は材料が成形に耐えられず、破断に至ると考えられる。材料の伸びは、その化学成分、製造方法、金属組織などで決まる材質的特性であるが、一方で板厚に大きく影響され、板厚が薄いほど伸びは低くなる。従来、製缶分野では用いられてこなかった板厚0.1mm程度の極薄鋼板は、それよりも板厚が厚い鋼板に較べて、材質的特性が同等であったとしても伸びは低い。そのため、溝付け部分で破断が生じたものと考えられる。
When the present inventors formed an ultrathin steel sheet by the method of Patent Document 1, as described above, breakage occurs due to grooving, and the side wall portion curves toward the outside of the can body, and has an appropriate shape. The reason why it was not a square tube was examined in detail.
First, it is considered that the rupture caused by grooving is due to the following reasons. Grooving in the method of Patent Document 1 is performed by forming a material 14 (metal plate) with a punch 12 provided in the outer mold 11 and a recess 13 provided in the inner mold 10 as shown in FIG. . At this time, the material 14 constrained by the inner mold 10 is pushed into the recess 13 by the punch 12 and stretched. There is no problem as long as the material 14 has sufficient elongation that can withstand such molding, but if the elongation is inferior, it is considered that the material cannot withstand molding and breaks. The elongation of the material is a material property determined by its chemical composition, manufacturing method, metal structure, etc., but on the other hand, it is greatly influenced by the plate thickness, and the elongation decreases as the plate thickness decreases. Conventionally, an ultra-thin steel sheet having a thickness of about 0.1 mm that has not been used in the can manufacturing field has a low elongation even if the material characteristics are equivalent compared to a steel sheet having a larger thickness. Therefore, it is considered that the fracture occurred at the grooved portion.

材料の破断は、飲料容器では内容物の漏洩に結びつくため、あってはならない現象である。よって、破断の原因である溝付けは行わないことが望ましい。そこで、溝付けを行わずに、内型と外型で角出しする実験を行った。
この実験では、表1に示す板厚tと降伏強度σを有する供試材A〜D(錫めっき鋼板)を用いた。供試材をシーム溶接により外径52.4mm、高さ136.7mmの円筒体aとし、この円筒体aに対して、図5のように配置した内型5(先端に断面円弧状の加工面50を有する内型)と外型6(コーナー状の加工面60を有する外型)により角部を成形し、角筒型の缶胴とした。図6に示す外型6の加工面60の開角βについては、特許文献1には記述されていないが、同文献の図面を測定するとそれぞれ90°であるため、ここでも同様とした。また、図6に示す内型5の加工面50の曲率半径rについては、特許文献1では18L缶に対して22mmが例示されているが、本発明は主に小型の400mL以下程度の缶を想定しているため、サイズの相違を考慮して本実験では2〜8mmとした。4組の内型5・外型6は、各々の組が円筒体aの周方向において等間隔となるように配置した。成形後の缶胴について、その角部2の角度α(コーナー角度)を測定した。
Breaking the material is a phenomenon that should not occur because it leads to leakage of the contents in the beverage container. Therefore, it is desirable not to perform grooving which is a cause of breakage. Therefore, an experiment was conducted in which the inner mold and the outer mold were squared without grooving.
In this experiment, specimens A to D (tinned steel sheets) having a thickness t and a yield strength σ shown in Table 1 were used. The test material was formed into a cylindrical body a having an outer diameter of 52.4 mm and a height of 136.7 mm by seam welding, and an inner mold 5 (processing with an arc-shaped cross section at the tip) arranged as shown in FIG. A corner portion was formed by an outer mold 6 (an outer mold having a surface 50) and an outer mold 6 (an outer mold having a corner-shaped processed surface 60) to form a rectangular tube-shaped can body. Although the opening angle β of the machining surface 60 of the outer mold 6 shown in FIG. 6 is not described in Patent Document 1, it is the same here because it is 90 ° when measured in the drawing of the same document. Moreover, as for the curvature radius r of the processing surface 50 of the inner mold 5 shown in FIG. 6, 22 mm is exemplified for the 18 L can in Patent Document 1, but the present invention mainly uses a small can of about 400 mL or less. Since it is assumed, the thickness is set to 2 to 8 mm in this experiment in consideration of the difference in size. The four sets of the inner mold 5 and the outer mold 6 were arranged so that each set was equally spaced in the circumferential direction of the cylindrical body a. About the can body after shaping | molding, the angle (alpha) (corner angle) of the corner | angular part 2 was measured.

Figure 0005471182
Figure 0005471182

その缶胴角部2の角度αを内型加工面50の曲率半径rで整理した結果を図7に示す。同図によれば、缶胴角部2の角度αは95°以上となっており、いずれの条件でも側壁部1が筒の外側に向けて湾曲し、適正な形状の角筒とはならかった。この理由は以下のように考えられる。本実験における成形の概要を図8に示す。図8(イ)に示すように円筒体(被成形材)が内型5と外型6とで挟圧されると、型が接している間は角筒Aの側壁部1は平面状に保たれ、角部2の角度は外型加工面60の開角βに沿って90°となる。しかし、図8(ロ)に示すように成形後に型から開放された缶胴Aでは、角部2がスプリングバックで開くことで、その角度αが95°よりも大きくなり、これによって側壁部1が筒の外側に向けて湾曲した状態となる。特許文献1の方法では、溝付けすること、すなわち小さい曲率半径の2つの内型先端部(加工面)で2箇所の曲げを行うことになるため、その効果で角部2のスプリングバックが抑制されるものと考えられる。   FIG. 7 shows the result of arranging the angle α of the can barrel corner 2 with the radius of curvature r of the inner mold processed surface 50. According to the figure, the angle α of the can body corner portion 2 is 95 ° or more, and the side wall portion 1 is curved toward the outside of the tube under any condition, so that it does not become a square tube of an appropriate shape. It was. The reason is considered as follows. An outline of molding in this experiment is shown in FIG. As shown in FIG. 8 (a), when the cylindrical body (material to be molded) is sandwiched between the inner mold 5 and the outer mold 6, the side wall 1 of the square tube A is flat while the mold is in contact. In other words, the angle of the corner portion 2 is 90 ° along the opening angle β of the outer die machining surface 60. However, as shown in FIG. 8 (b), in the can body A released from the mold after molding, the corner portion 2 is opened by the spring back, so that the angle α becomes larger than 95 °, thereby the side wall portion 1. Is curved toward the outside of the cylinder. In the method of Patent Document 1, since the groove is formed, that is, the two inner mold tip portions (processed surfaces) having a small radius of curvature are bent at two locations, the spring back of the corner portion 2 is suppressed by the effect. It is considered to be done.

したがって、側壁面の湾曲を抑制するためには、型から開放された後の缶胴角部の角度αを90°に近づければよいことになる。そこで、角度αを制御する方法を見出すべく、前記実験結果を改めて検討すると、材料の降伏強度σが大きいほど、また、内型加工面の曲率半径rが大きいほど、さらに、材料の板厚tが小さいほど、角度αは大きくなる。つまり、缶胴角部の角度αは材料の降伏強度σと内型加工面の曲率半径rに比例し、材料の板厚tに反比例する。そこで、上述した実験結果について、σ・r/(1000・t)と缶胴角部の角度αとの関係を整理したものが図9である。ここで、板厚tに1000を乗じたのは、σ・r/(1000・t)の絶対値を角度αと同程度の大きさの値とすることで、計算を簡易にするためである。図9によれば、缶胴角部の角度αはσ・r/(1000・t)を指標とすることで統一的に整理できることが判る。つまり、缶胴角部の角度αを制御するためには、材料の降伏強度σ、板厚t、内型加工面の曲率半径rの関係を調整すればよいことが判る。   Therefore, in order to suppress the curvature of the side wall surface, the angle α of the can barrel corner after being released from the mold should be close to 90 °. Therefore, when the experimental result is examined again in order to find a method for controlling the angle α, the larger the yield strength σ of the material and the larger the radius of curvature r of the inner working surface, the more the thickness t of the material. Is smaller, the angle α is larger. In other words, the angle α of the can barrel corner is proportional to the yield strength σ of the material and the radius of curvature r of the inner surface, and inversely proportional to the thickness t of the material. Accordingly, FIG. 9 shows the relationship between σ · r / (1000 · t) and the angle α of the can body corner portion, with respect to the experimental results described above. Here, the thickness t is multiplied by 1000 in order to simplify the calculation by setting the absolute value of σ · r / (1000 · t) to the same value as the angle α. . According to FIG. 9, it can be understood that the angle α of the can barrel corner can be unified by using σ · r / (1000 · t) as an index. That is, in order to control the angle α of the can body corner portion, it is understood that the relationship between the yield strength σ of the material, the plate thickness t, and the curvature radius r of the inner die machining surface may be adjusted.

缶胴角部の角度αを小さくするには、材料の板厚tが厚く、降伏強度σが低く、内型加工面の曲率半径rが小さいほどよい。しかし、本発明が目指す軽量の缶体を得るためには、材料の板厚tは薄いほうがよく、概ね0.10〜0.15mm程度が望ましい。また、缶体の強度を確保する観点から薄い板厚を補うために材料の降伏強度σは高い方がよく、300〜750N/mm程度が望ましい。また、内型加工面の曲率半径rは、内型が接触する際に材料に損傷を与えないために大きい方がよく、概ね2mm以上が望ましい。このように、材料の板厚t、降伏強度σおよび内型加工面の曲率半径rの望ましい条件は、いずれも缶胴角部の角度αを小さくして90°に近づけるために必要な条件とは相反する関係にある。しかも、そのような望ましい板厚t、降伏強度σおよび内型加工面の曲率半径rの範囲で得られる缶胴角部の角度αは、図7の実験結果では最低でも95°である。 In order to reduce the angle α of the can barrel corner, it is better that the plate thickness t of the material is thicker, the yield strength σ is lower, and the radius of curvature r of the inner die working surface is smaller. However, in order to obtain a lightweight can body aimed by the present invention, the thickness t of the material is preferably thin, and is preferably about 0.10 to 0.15 mm. Further, from the viewpoint of securing the strength of the can body, in order to compensate for the thin plate thickness, the material should have a high yield strength σ, preferably about 300 to 750 N / mm 2 . Further, the radius of curvature r of the inner die working surface is preferably large so as not to damage the material when the inner die contacts, and is preferably approximately 2 mm or more. Thus, the desirable conditions for the material thickness t, yield strength σ, and radius of curvature r of the inner working surface are all the conditions necessary to reduce the angle α of the can barrel corner and approach 90 °. Are in a conflicting relationship. Moreover, the angle α of the can barrel corner obtained in such a range of the desired thickness t, yield strength σ, and radius of curvature r of the inner working surface is at least 95 ° in the experimental results of FIG.

このように、従来技術の方法である、内型と外型によって素材を挟圧して角部を成形する方法によって、缶胴角部の角度αを90°に近づけ、側壁部の湾曲を解消することは事実上困難である。また、最初にこの方法によって角部を成形した後、側壁部の湾曲を矯正する方法は、工程の増加を招くため望ましくない。
そこで、本発明者らは、従来技術のように内型と外型によって素材を挟圧することで角部を成形する方法以外の方法であって、且つ一工程で缶胴角部を適正な角度αに成形し、側壁部の湾曲を解消できる成形方法について検討を行い、その結果、図10に示すような、内型3により素材(角筒の角部となる円筒体部分)を円筒体外側方向に押圧して角部を成形するとともに、外型4により素材(角筒の側壁部となる円筒体部分)を円筒体内側方向に押圧して側壁部を成形する方法を創案した。この成形方法は、角筒の角部を外型4と内型3に拘束された状態で90°未満の角度になるように成形し、スプリングバック後に角部の角度が概ね90°となるようにするものであり、角部の成形と側壁部の矯正とが一工程で達成される。この方法の有効性を確認するため、以下のような実験を行った。
As described above, the angle α of the can barrel corner portion is brought close to 90 ° by the method of forming the corner portion by pressing the material between the inner mold and the outer mold, which is a conventional technique, thereby eliminating the curvature of the side wall portion. That is practically difficult. In addition, the method of correcting the curvature of the side wall after first forming the corner by this method is not desirable because it increases the number of steps.
Therefore, the inventors of the present invention are methods other than the method of forming the corner portion by clamping the material between the inner mold and the outer mold as in the prior art, and the can body corner portion is set to an appropriate angle in one step. As a result, the material (cylindrical portion that becomes the corner of the square tube) is formed on the outside of the cylindrical body by the inner mold 3 as shown in FIG. In addition to forming the corners by pressing in the direction, a method of forming the side walls by pressing the material (cylindrical body portion serving as the side wall portion of the square tube) with the outer mold 4 in the direction toward the inner side of the cylinder was devised. In this molding method, the corner of the square tube is molded so as to have an angle of less than 90 ° while being constrained by the outer die 4 and the inner die 3, and the angle of the corner becomes approximately 90 ° after the spring back. In this way, corner forming and side wall correction are achieved in one step. In order to confirm the effectiveness of this method, the following experiment was conducted.

表2に示す板厚tと降伏強度σを有する供試材(i)〜(iv)(錫めっき鋼板)を用い、この供試材をシーム溶接して外径52.4mm、高さ136.7mmの円筒体とし、この円筒体に対して図10のように配置した内型3と外型4を用いて角部と側壁部を成形し、角筒状の缶胴とした。内型3には、先端部の加工面30の曲率半径rを2mm、4mmとしたものを用いた。また、外型4には、加工面40の頂部401の曲率半径Rを4mmとし、加工面40の開角θを120〜175°としたものを用いた。成形後の缶胴を型から開放し、缶胴角部の角度αを測定した。外型加工面の開角θと缶胴角部の角度αとの関係を図12に示す。   Using test materials (i) to (iv) (tin-plated steel plates) having a thickness t and a yield strength σ shown in Table 2, the test materials were seam welded to have an outer diameter of 52.4 mm and a height of 136. A cylindrical body of 7 mm was formed, and corners and side walls were formed using the inner mold 3 and the outer mold 4 arranged as shown in FIG. As the inner mold 3, one having a radius of curvature r of the processed surface 30 at the tip of 2 mm and 4 mm was used. In addition, the outer mold 4 used was one in which the radius of curvature R of the top 401 of the processed surface 40 was 4 mm and the open angle θ of the processed surface 40 was 120 to 175 °. The molded can body was released from the mold, and the angle α of the can body corner was measured. FIG. 12 shows the relationship between the open angle θ of the outer mold processed surface and the angle α of the can barrel corner.

Figure 0005471182
Figure 0005471182

外型加工面40の適切な開角θは、表2の(i)〜(iv)の条件によって、つまり材料の板厚t、降伏強度σおよび内型加工面30の曲率半径rの組み合わせによって異なる。そこで、図12の結果に基づき、缶胴角部の角度αが90°となる条件を外型加工面40の開角θとσ・r/(1000・t)との関係で整理したものが図13である。すなわち、図13に示される外型加工面の開角θとσ・r/(1000・t)との関係を満足する条件で缶胴の成形を行うことにより、缶胴角部の角度αが90°で側壁面が平面状の缶胴が得られる。
図12および図13の(i)〜(iv)はそれぞれ表2の供試材に対応する。図13に示されるように、側壁部を成形する外型加工面40の開角θを適切に設定することで、缶胴角部の角度αを90°に近い値とすることができる。ただし、図11に示すように、単に内型3で角部を押圧成形し、且つ外型4で側壁部を押圧成形しただけでは、缶胴角部の角度αを90°に近い値とすることができても、特許文献2のように側壁部が内側に凹んだ形状となり(図11中のh:凹みによる側壁部中央部の変位量)、望ましくない。そこで、このような側壁部の形状不良を生じない成形条件について検討した結果、側壁部を押圧する外型加工面40の形状を最適化すればよいことが判った。
The appropriate opening angle θ of the outer die machining surface 40 depends on the conditions (i) to (iv) in Table 2, that is, the combination of the material thickness t, the yield strength σ, and the curvature radius r of the inner die machining surface 30. Different. Therefore, based on the results of FIG. 12, the conditions in which the angle α of the can barrel angle portion is 90 ° are arranged in relation to the open angle θ of the outer mold processed surface 40 and σ · r / (1000 · t). FIG. That is, by forming the can body under the condition satisfying the relationship between the opening angle θ of the outer mold processed surface and σ · r / (1000 · t) shown in FIG. A can body having a flat side wall surface at 90 ° is obtained.
12 and 13 correspond to the specimens in Table 2, respectively. As shown in FIG. 13, the angle α of the can barrel corner can be set to a value close to 90 ° by appropriately setting the opening angle θ of the outer mold processing surface 40 for molding the side wall. However, as shown in FIG. 11, the angle α of the can barrel corner is a value close to 90 ° by simply press-molding the corner with the inner mold 3 and press-molding the side wall with the outer mold 4. Even if it is possible, the shape of the side wall portion is indented as in Patent Document 2 (h in FIG. 11: the amount of displacement of the central portion of the side wall portion due to the depression), which is not desirable. Therefore, as a result of examining the molding conditions that do not cause such a shape defect of the side wall portion, it has been found that the shape of the outer mold processing surface 40 that presses the side wall portion may be optimized.

表3に示す板厚tと降伏強度σを有する供試材(v)〜(vii)(錫めっき鋼板)を用い、この供試材をシーム溶接して外径52.4mm、高さ136.7mmの円筒体とし、この円筒体に対して図10のように配置した内型3と外型4を用いて角部と側壁部を成形し、角筒状の缶胴とした。内型加工面30の曲率半径rと外型加工面40の開角θを表3に示す値とし、且つ外型加工面40の頂部401の曲率半径Rを4〜16mmとした。成形後の缶胴を型から開放し、側壁部の中央部での変位量h(図11参照)を測定した。外型加工面40の頂部401の曲率半径Rと側壁部の中央部での変位量hとの関係を図14に示す。図14の側壁部の変位量hは、缶内側への凹みの場合をプラス、缶外側への張り出しの場合をマイナスとして示した。図14によれば、外型加工面40の頂部401の曲率半径Rを最適化することで、凹み、張り出しによる側壁部の変位を抑制できることが判る。ただし、外型加工面40の頂部401の最適な曲率半径Rは、表3の(v)〜(vii)の条件、すなわち材料の板厚tと降伏強度σの組み合わせによって異なる。   Using test materials (v) to (vii) (tin-plated steel plates) having a thickness t and a yield strength σ shown in Table 3, the test materials were seam-welded to have an outer diameter of 52.4 mm and a height of 136. A cylindrical body of 7 mm was formed, and corners and side walls were formed using the inner mold 3 and the outer mold 4 arranged as shown in FIG. The curvature radius r of the inner die machining surface 30 and the opening angle θ of the outer die machining surface 40 were values shown in Table 3, and the curvature radius R of the top 401 of the outer die machining surface 40 was 4 to 16 mm. The molded can body was released from the mold, and the displacement h (see FIG. 11) at the center of the side wall was measured. FIG. 14 shows the relationship between the radius of curvature R of the apex 401 of the outer die machining surface 40 and the amount of displacement h at the center of the side wall. The amount of displacement h of the side wall portion in FIG. 14 is shown as positive when the dent is inside the can and minus when it protrudes outside the can. According to FIG. 14, it can be seen that by optimizing the radius of curvature R of the top 401 of the outer mold processing surface 40, the displacement of the side wall due to the dent and overhang can be suppressed. However, the optimum radius of curvature R of the apex 401 of the outer die machining surface 40 differs depending on the conditions (v) to (vii) in Table 3, that is, the combination of the plate thickness t of the material and the yield strength σ.

図14の結果から、側壁部の凹み或いは張り出しによる変位量hを0に近づける曲率半径Rは、板厚tが厚いほど小さく、また、降伏強度が大きいほど小さい。そこで、図14の結果に基づき、側壁部の変位量hが0となる条件を外型加工面40の頂部401の曲率半径Rと(10・t)/σとの関係で整理したものが図15である。ここで、板厚tに10を乗じたのは、(10・t)/σの絶対値を曲率半径Rと同程度の大きさの値とすることで、計算を簡易にするためである。すなわち、図15に示される外型加工面40の頂部401の曲率半径Rと(10・t)/σとの関係を満足する条件で缶胴の成形を行うことにより、側壁部の変位量hが0の缶胴が得られる。 From the result of FIG. 14, the curvature radius R that brings the displacement amount h due to the depression or overhanging of the side wall portion closer to 0 is smaller as the plate thickness t is thicker and smaller as the yield strength is larger. Therefore, based on the result of FIG. 14, the condition in which the displacement amount h of the side wall portion becomes 0 is arranged by the relationship between the radius of curvature R of the top portion 401 of the outer die machining surface 40 and (10 4 · t) / σ. FIG. Here, multiplied by 10 4 in the thickness t is, (10 4 · t) / sigma of the absolute value by the magnitude of the value comparable to the radius of curvature R, in order to calculate the simplified is there. That is, when the can body is molded under the condition that satisfies the relationship between the radius of curvature R of the apex 401 of the outer die machining surface 40 and (10 4 · t) / σ shown in FIG. A can body with h = 0 is obtained.

Figure 0005471182
Figure 0005471182

以上のように、図10に示すような内型3と外型4を用いた缶胴の成形方法において、缶胴角部の角度αを90°とし、且つ側壁部の凹みあるいは張り出しによる変位量hを0にできる成形条件が存在することが判った。
本発明により製造される缶胴を角筒型容器として用いるには、缶胴の両端(両開口部)にフランジ部を設けた後、同様にフランジ部を備えた蓋を装着し、双方のフランジ部を巻締めることで蓋を取付固定する。ここで、容器間の空隙を小さくできるという角筒型容器の利点は、厳密に缶胴の側壁部が平面状で且つ缶胴角部の角度αが90°でなくても、すなわち、缶胴の側壁部が概ね平面状で且つ缶胴角部の角度αが90°に近い角度であれば、実質的に問題なく得られる。
具体的には、缶胴角部の角度αが85〜93°であれば、側壁部を外型で押圧成形する条件を適正化することで、側壁部の凹みあるいは張り出しによる変位量hを±1mm以内とすることができる。
As described above, in the can barrel forming method using the inner mold 3 and the outer mold 4 as shown in FIG. 10, the angle α of the can barrel corner is set to 90 °, and the amount of displacement due to the depression or overhang of the side wall. It was found that there exist molding conditions that can make h 0.
In order to use the can body manufactured according to the present invention as a rectangular tube-shaped container, after providing flange portions at both ends (both openings) of the can body, similarly, a lid provided with the flange portions is mounted and both flanges are mounted. The lid is attached and fixed by tightening the part. Here, the advantage of the rectangular tube container that the gap between the containers can be reduced is that the side wall portion of the can body is strictly planar and the angle α of the can body corner portion is not 90 °, that is, the can body If the side wall portion of the can is substantially planar and the angle α of the can barrel corner portion is an angle close to 90 °, substantially no problem is obtained.
Specifically, if the angle α of the can body corner portion is 85 to 93 °, the displacement amount h due to the depression or overhanging of the sidewall portion can be reduced by optimizing the conditions for pressing the sidewall portion with an outer mold. It can be within 1 mm.

そこで、図12の結果に基づき、缶胴角部の角度αが85°〜93°となる条件を外型加工面40の開角θとσ・r/(1000・t)との関係で整理したものが図16である。すなわち、図16に示される外型加工面40の開角θとσ・r/(1000・t)との関係を満足する、下記(1)式の条件で缶胴の成形を行うことにより、缶胴角部の角度αが85°〜93°の缶胴が得られる。
また、図14の結果に基づき、側壁部の中央部の変位量が±1mm以内となる条件を外型加工面40の頂部401の曲率半径Rと(10・t)/σとの関係で整理したものが図17である。すなわち、図17に示される外型加工面40の頂部401の曲率半径Rと(10・t)/σとの関係を満足する、下記(2)式の条件で缶胴の成形を行うことにより、側壁部の中央部の変位量が±1mm以内の缶胴が得られる。
したがって、本発明では、外型加工面40の開角θ(°)、外型加工面40の頂部401の曲率半径R(mm)、内型加工面30の曲率半径r(mm)、金属板の板厚t(mm)および金属板の降伏強度σ(N/mm)が下記(1)式および(2)式を満足する条件で前記外型4と内型3よる缶胴の成形を行う。
Therefore, based on the result of FIG. 12, the condition that the angle α of the can barrel angle portion is 85 ° to 93 ° is arranged by the relationship between the open angle θ of the outer mold processed surface 40 and σ · r / (1000 · t). FIG. 16 shows the result. That is, by forming the can body under the condition of the following formula (1) that satisfies the relationship between the opening angle θ of the outer mold processing surface 40 shown in FIG. 16 and σ · r / (1000 · t), A can body having an angle α of the can body corner portion of 85 ° to 93 ° is obtained.
Further, based on the result of FIG. 14, the condition that the amount of displacement of the central portion of the side wall portion is within ± 1 mm is based on the relationship between the radius of curvature R of the top portion 401 of the outer die machining surface 40 and (10 4 · t) / σ. FIG. 17 shows the arrangement. That is, the can body is molded under the condition of the following formula (2) that satisfies the relationship between the radius of curvature R of the top 401 of the outer die machining surface 40 shown in FIG. 17 and (10 4 · t) / σ. Thus, a can body having a displacement amount of the central portion of the side wall portion within ± 1 mm is obtained.
Therefore, in the present invention, the opening angle θ (°) of the outer die machining surface 40, the curvature radius R (mm) of the top 401 of the outer die machining surface 40, the curvature radius r (mm) of the inner die machining surface 30, the metal plate The can body is formed by the outer mold 4 and the inner mold 3 under the conditions that the sheet thickness t (mm) and the yield strength σ (N / mm 2 ) of the metal sheet satisfy the following expressions (1) and (2): Do.

Figure 0005471182
Figure 0005471182

本発明で製造される缶胴の素材としては、耐食性の確保のため各種の表面処理を施した鋼板が望ましい。そのような表面処理鋼板としては、錫、亜鉛、ニッケル、クロムなどの1種または2種以上を鋼板表面にめっきしたもの、さらに、そのめっき層の上層にクロメート処理やリン酸塩処理のような各種化成処理を施したものが好適である。なかでも、従来から飲料容器に用いられている錫めっき鋼板(ぶりき)、電解クロメート処理鋼板(ティンフリー・スチール)が好適である。また、各種表面処理鋼板に有機樹脂フィルムを被覆したラミネート鋼板は、耐食性、環境適合性などの観点から特に好適である。   As a material of the can body manufactured by the present invention, a steel plate subjected to various surface treatments for ensuring corrosion resistance is desirable. As such a surface-treated steel plate, one or more of tin, zinc, nickel, chromium, etc. are plated on the surface of the steel plate, and further, the chromate treatment or phosphate treatment is applied to the upper layer of the plated layer. Those subjected to various chemical conversion treatments are suitable. Among these, tin-plated steel plates (baffle) and electrolytic chromate-treated steel plates (tin-free steel) conventionally used for beverage containers are suitable. Moreover, the laminated steel plate which coat | covered the organic resin film on various surface treatment steel plates is especially suitable from viewpoints, such as corrosion resistance and environmental compatibility.

金属板の板厚に特別な制限はないが、容器の軽量化の観点からは、0.095〜0.155mmが好適である。また、金属板の降伏強度σは、360〜650N/mm程度が特に好ましい。
被成形材である円筒体aを得るには、通常、円筒状に変形させた長方形の金属板の対向する両端縁部を接合して円筒体とする。金属板の両端縁部を接合する方法は、十分な接合強度が得られる方法であれば特に制限はないが、溶接法、接着法、半田法などを用いことができる。これらのうち、特に接合強度の高い溶接法が好適である。溶接法としは、シーム溶接などの通電溶接や、レーザー溶接などを適用することができる。
Although there is no special restriction | limiting in the plate | board thickness of a metal plate, 0.095-0.155mm is suitable from a viewpoint of weight reduction of a container. The yield strength σ of the metal plate is particularly preferably about 360 to 650 N / mm 2 .
In order to obtain a cylindrical body a which is a material to be molded, the opposite end edges of a rectangular metal plate deformed into a cylindrical shape are usually joined to form a cylindrical body. The method for joining both edge portions of the metal plate is not particularly limited as long as sufficient joining strength is obtained, but a welding method, an adhesion method, a solder method, or the like can be used. Among these, a welding method with particularly high joint strength is suitable. As the welding method, current welding such as seam welding, laser welding, or the like can be applied.

内型3と外型4は、缶胴の成形を精度よく行う必要性から、材料を成形する際に型自体が変形しないことが必要である。したがって、剛体であることが望ましく、通常の金属加工で用いられる金属等の素材を用いたものが望ましい。
本発明により製造される角筒型缶胴のサイズや、この缶胴を用いる角筒型容器のサイズ、内容量に特別な制限はないが、特に好適な角筒型缶胴、角筒型容器のサイズは、相対する側壁部間が約4cm〜5cm、缶高さが約5cm〜15cm、内容量が約80〜400mL程度のものである。また、本発明により製造されるのは、断面四角形状の角筒型缶胴および角筒型容器である。
本発明により製造される缶胴は、少なくとも一方の端部に蓋が取り付けられ、角筒型金属缶となる。蓋の取付は、通常、缶胴の端部周縁と蓋の周縁にそれぞれフランジ部を設け、缶胴端部に蓋を装着した状態で、両者のフランジ部を巻締めることにより行う。
Since the inner mold 3 and the outer mold 4 need to accurately mold the can body, it is necessary that the mold itself does not deform when the material is molded. Therefore, it is desirable to be a rigid body, and it is desirable to use a material such as a metal used in normal metal processing.
There is no particular limitation on the size of the rectangular tube can body manufactured according to the present invention, the size of the rectangular tube container using the can body, or the internal capacity, but a particularly preferable rectangular tube can body and rectangular tube container The size between the side walls is about 4 cm to 5 cm, the can height is about 5 cm to 15 cm, and the internal volume is about 80 to 400 mL. In addition, a rectangular tube can body and a rectangular tube container having a square cross section are manufactured according to the present invention.
The can body manufactured according to the present invention has a lid attached to at least one end to form a rectangular tube-shaped metal can. The attachment of the lid is usually performed by providing flange portions on the periphery of the end of the can body and the periphery of the cover, and winding both flange portions in a state where the cover is attached to the end of the can body.

表4〜表6に示す板厚tと降伏強度σを有する錫めっき鋼板を供試材として用いた。この供試材をシーム溶接法で外径52.4mm、高さ136.7mmの円筒体とした後、表4〜表6に示す内型加工面の曲率半径r、外型加工面の開角θおよび曲率半径Rとした各4個の内型と外型で角筒型缶胴への成形を行った。このようにして得られた缶胴について、角部の角度αと側壁部の凹みまたは張り出しによる変位量hを測定した。側壁部の変位量hは、缶内側への凹みの場合をプラス、缶外側への張り出しの場合をマイナスとして示した。それらの結果を表4〜表6に併せて示す。
表4〜表6に示されるように、本発明例はいずれも、缶胴角部の角度αが85°〜93°の範囲で且つ側壁部の変位量hが±1mm以内となっている。
A tin-plated steel sheet having a thickness t and a yield strength σ shown in Tables 4 to 6 was used as a test material. After this test material was formed into a cylindrical body having an outer diameter of 52.4 mm and a height of 136.7 mm by a seam welding method, the curvature radius r of the inner die machining surface and the open angle of the outer die machining surface shown in Tables 4 to 6 were used. Each of the four inner molds and outer molds each having θ and a radius of curvature R was molded into a rectangular tube can body. With respect to the can body thus obtained, the angle α of the corner portion and the displacement amount h due to the depression or overhang of the side wall portion were measured. The displacement amount h of the side wall portion is shown as positive when the dent is inside the can and as minus when the bulge is outside the can. The results are also shown in Tables 4 to 6.
As shown in Tables 4 to 6, in all examples of the present invention, the angle α of the can barrel corner is in the range of 85 ° to 93 °, and the displacement amount h of the side wall is within ± 1 mm.

Figure 0005471182
Figure 0005471182

Figure 0005471182
Figure 0005471182

Figure 0005471182
Figure 0005471182

なお、表4〜表6において、f1,f2は以下のように本発明の(1)式の左辺と右辺を示し、f3,f4は以下のように本発明の(2)式の左辺と右辺を示す。

Figure 0005471182
In Tables 4 to 6, f1 and f2 indicate the left and right sides of the expression (1) of the present invention as follows, and f3 and f4 indicate the left and right sides of the expression (2) of the present invention as follows. Indicates.
Figure 0005471182

1 側壁部
2 角部
3 内型
4 外型
30 内型加工面
40 外型加工面
400 傾斜部
401 頂部
a 円筒体
A 角筒
DESCRIPTION OF SYMBOLS 1 Side wall part 2 Corner | angular part 3 Inner type | mold 4 Outer type | mold 30 Inner type | mold processing surface 40 Outer type | mold processing surface 400 Inclination part 401 Top part a Cylindrical body A Square cylinder

Claims (2)

金属板の円筒体を被成形材とし、断面山形状の加工面を有する外型と、先端に断面円弧状の加工面を有する内型とを用い、円筒体外側に位置する外型により、角筒の側壁部となる円筒体部分を円筒体内側方向に押圧して側壁部を成形するとともに、円筒体内側に位置する内型により、角筒の角部となる円筒体部分を円筒体外側方向に押圧して角部を成形する角筒型缶胴の製造方法であって、
外型加工面の開角θ(°)、外型加工面の頂部の曲率半径R(mm)、内型加工面の曲率半径r(mm)、金属板の板厚t(mm)および金属板の降伏強度σ(N/mm)が下記(1)式および(2)式を満足する条件で、前記外型と内型による缶胴の成形を行うことを特徴とする金属缶胴の製造方法。
Figure 0005471182
A metal plate cylinder is used as a material to be molded, and an outer mold having a cross-sectionally mountain-shaped machining surface and an inner mold having a cross-section arc-shaped machining surface at the tip, and an outer mold positioned outside the cylinder, The cylindrical portion that becomes the side wall portion of the cylinder is pressed toward the inner side of the cylindrical body to form the side wall portion, and the cylindrical portion that becomes the corner portion of the square tube is moved outward from the cylindrical body by the inner mold positioned inside the cylindrical body. A method of manufacturing a rectangular tube can body that is pressed into a corner portion,
The opening angle θ (°) of the outer die machining surface, the radius of curvature R (mm) of the top of the outer die machining surface, the radius of curvature r (mm) of the inner die machining surface, the thickness t (mm) of the metal plate, and the metal plate The can body is formed by the outer mold and the inner mold under the condition that the yield strength σ (N / mm 2 ) satisfies the following formulas (1) and (2): Method.
Figure 0005471182
請求項1に記載の製造方法で得られた金属缶胴の少なくとも一方の端部に蓋を固定し、金属缶とすることを特徴とする金属缶の製造方法。   A metal can manufacturing method, wherein a lid is fixed to at least one end of a metal can body obtained by the manufacturing method according to claim 1 to form a metal can.
JP2009201162A 2009-08-31 2009-08-31 Method for manufacturing metal can body Expired - Fee Related JP5471182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009201162A JP5471182B2 (en) 2009-08-31 2009-08-31 Method for manufacturing metal can body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009201162A JP5471182B2 (en) 2009-08-31 2009-08-31 Method for manufacturing metal can body

Publications (2)

Publication Number Publication Date
JP2011050979A JP2011050979A (en) 2011-03-17
JP5471182B2 true JP5471182B2 (en) 2014-04-16

Family

ID=43940561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009201162A Expired - Fee Related JP5471182B2 (en) 2009-08-31 2009-08-31 Method for manufacturing metal can body

Country Status (1)

Country Link
JP (1) JP5471182B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110184836A (en) * 2019-05-31 2019-08-30 燕山大学 A kind of automatic hook device of wirerope steel wire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106102951B (en) * 2014-02-27 2018-02-27 东洋制罐集团控股株式会社 Polygon tank and its forming method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53149488A (en) * 1977-05-31 1978-12-26 Fuji Kogyosho Kk Method of and device for forming rectangular thin plate can
JPS6099014U (en) * 1983-07-25 1985-07-05 株式会社 ナカジマ Straightening roller device for large square steel pipes
JP2915898B1 (en) * 1998-05-25 1999-07-05 生野金属株式会社 Method for manufacturing square cans

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110184836A (en) * 2019-05-31 2019-08-30 燕山大学 A kind of automatic hook device of wirerope steel wire

Also Published As

Publication number Publication date
JP2011050979A (en) 2011-03-17

Similar Documents

Publication Publication Date Title
EP2908964B1 (en) Method and tool assembly for reforming an end closure with coined panel radius and end closure
CA2504251C (en) Can end, tooling for manufacture of the can end and seaming chuck adapted to affix a converted can end to a can body
JP6193794B2 (en) Method for forming a rectangular battery case
US9616483B2 (en) Can end with retort resistant panel, and tooling and associated method for providing same
WO2010061961A1 (en) Manufacturing method for lid that requires no can opener
JP5471182B2 (en) Method for manufacturing metal can body
WO2011155329A1 (en) Seamless can body
JP6726525B2 (en) Laminated sheets for containers and containers
JPH11105867A (en) Highly corrosion-resistant, easily openable resin-coated metal can lid requiring no repairs at obverse and reverse
JP2015139781A (en) Ironing metal mold and manufacturing method of molding material
JP5353489B2 (en) Method for manufacturing metal can body
JP2016520026A (en) Beverage can end having an arcuate panel wall and a curved transition wall
JP5293345B2 (en) Method for manufacturing metal can body
JP2013208652A (en) Resin coated seamless can body
CN112496171B (en) Method for manufacturing pot body of deep-drawing square two-piece pot
JP4964933B2 (en) Neck-in forming method for steel cans
JP4583239B2 (en) Seamless aluminum square can
JP5359438B2 (en) Can body
JP2000109068A (en) Can lid for can having positive internal pressure
JP6998142B2 (en) 3-piece can with bead
KR100646261B1 (en) Metal can and manufacturing method of the same
US20240109113A1 (en) Press forming method
JP2008240099A (en) Aluminum alloy sheet for packaging container and method for producing the same
JP6376899B2 (en) Metal can
JP5620566B1 (en) Ultra-thin expanding can

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Ref document number: 5471182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees