JP5292669B2 - Extreme ultraviolet exposure mask, manufacturing method thereof, and extreme ultraviolet exposure method - Google Patents
Extreme ultraviolet exposure mask, manufacturing method thereof, and extreme ultraviolet exposure method Download PDFInfo
- Publication number
- JP5292669B2 JP5292669B2 JP2006024220A JP2006024220A JP5292669B2 JP 5292669 B2 JP5292669 B2 JP 5292669B2 JP 2006024220 A JP2006024220 A JP 2006024220A JP 2006024220 A JP2006024220 A JP 2006024220A JP 5292669 B2 JP5292669 B2 JP 5292669B2
- Authority
- JP
- Japan
- Prior art keywords
- extreme ultraviolet
- mask
- film
- thin film
- resist
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 19
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000010408 film Substances 0.000 claims description 101
- 239000010409 thin film Substances 0.000 claims description 36
- 239000000758 substrate Substances 0.000 claims description 30
- 230000001681 protective effect Effects 0.000 claims description 28
- 238000002834 transmittance Methods 0.000 claims description 23
- 230000005540 biological transmission Effects 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 21
- 238000010894 electron beam technology Methods 0.000 claims description 18
- 239000010432 diamond Substances 0.000 claims description 12
- 229910003460 diamond Inorganic materials 0.000 claims description 12
- 238000000206 photolithography Methods 0.000 claims description 9
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 6
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 238000001312 dry etching Methods 0.000 claims description 3
- 238000005530 etching Methods 0.000 claims description 3
- 238000012546 transfer Methods 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 claims description 2
- 238000000465 moulding Methods 0.000 claims 1
- 230000035699 permeability Effects 0.000 description 8
- 238000004544 sputter deposition Methods 0.000 description 8
- 230000031700 light absorption Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001900 extreme ultraviolet lithography Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Description
本発明は半導体製品の製造プロセスの中でも、極端紫外線露光を用いたフォトリソグラフィー工程時に使用される極端紫外光露光用マスク及びそのマスクの製造方法並びに露光方法に関するものである。 The present invention relates to a mask for extreme ultraviolet light exposure used in a photolithography process using extreme ultraviolet exposure, a method for manufacturing the mask, and an exposure method, among the manufacturing processes of semiconductor products.
半導体集積回路の微細化は年々進んでおり、それに伴いフォトリソグラフィー技術に使用される光もその短波長化が進んでいる。近況としては、これまで光源として使用されてきたKrFエキシマレーザー(波長248nm)からArFエキシマレーザー(波長193nm)に移行しつつある。また、ArFエキシマレーザーを使用する液浸露光法の研究が近年活発に行われており、50nm以下の線幅を目標とする動きもある。 The miniaturization of semiconductor integrated circuits has been progressing year by year, and accordingly, the light used for photolithography technology has also been shortened. In recent times, the KrF excimer laser (wavelength 248 nm), which has been used as a light source, has been shifted to an ArF excimer laser (wavelength 193 nm). In recent years, an immersion exposure method using an ArF excimer laser has been actively researched, and there is a movement aiming at a line width of 50 nm or less.
しかしながら、ArFエキシマレーザーを使用する液浸露光法もその研究が進んでいるとはいえ、その実現可能性は不鮮明である。このような背景から、エキシマレーザーよりも波長が一桁以上短い(10〜15nm)極端紫外線(Extreme Ultra Violet、以下EUVと略記)を用いた、EUVリソグラフィーの研究開発が進められている。 However, although the immersion exposure method using an ArF excimer laser has been researched, its feasibility is unclear. Under such circumstances, research and development of EUV lithography using extreme ultraviolet (Extreme Ultra Violet, hereinafter abbreviated as EUV) whose wavelength is one or more orders of magnitude shorter than excimer lasers (10 to 15 nm) is being promoted.
EUV光はその波長の短さから、物質中での屈折率が真空の値に近く、材料間の光吸収の差も小さい。このようなEUV光の性質より、これまでのフォトリソグラフィーにおいて多用されてきた透過型の屈折光学系を組むことが困難となり、マスクは反射型となっている。現在のところEUV光用のマスクとして開発されているものは、まずEUV光に対する反射膜としては例えばSiウェハーやガラス基板上にSiとMoの二層膜を40組ほど成膜した多層膜があって、そしてその上層にキャッピング膜や緩衝膜、EUV光吸収膜、その上に検査光用の低反射膜などを含む吸収領域があるものが一般的である。 Due to the short wavelength of EUV light, the refractive index in the substance is close to the value of vacuum, and the difference in light absorption between materials is small. Such a property of EUV light makes it difficult to assemble a transmissive refractive optical system that has been widely used in photolithography so far, and the mask is of a reflective type. At present, a mask that has been developed as a mask for EUV light includes, for example, a multilayer film in which about 40 pairs of two layers of Si and Mo are formed on a Si wafer or a glass substrate as a reflection film for EUV light. In general, an upper layer includes an absorption region including a capping film, a buffer film, an EUV light absorption film, and a low reflection film for inspection light.
図2は、従来のEUVマスクの例を断面で示した説明図である。基板11としては、Siウェハーやガラス基板が使われる。その基板11上にはEUV光高反射率多層膜12が形成されている。その上にはTaなどEUV光吸収性の大きい金属を主成分とした光吸収膜15があり、多層膜12と光吸収膜15の間に、キャッピング膜13、緩衝膜14がこの順で形成されている。緩衝膜には、Crなどの金属やSiO2などが使用されることが多い。緩衝膜は吸収膜のドライエッチ時や欠陥修正時に多層膜へのダメージを緩和する膜であり、キャッピング膜は文字通り多層膜を保護する役目を持った膜であり、SiやRuが使用されることが多い。
FIG. 2 is an explanatory view showing an example of a conventional EUV mask in cross section. As the
しかしこのような反射型EUVマスクは多層膜部分の膜欠陥を減らすことが極めて難しく、また、吸収膜と多層膜の間には、上記のように緩衝膜やキャッピング膜を必要とし、複雑な層構成を持っていた。 However, such a reflective EUV mask is extremely difficult to reduce the film defects in the multilayer film portion, and requires a buffer film and a capping film between the absorption film and the multilayer film as described above. Had a configuration.
以下に、公知の技術文献を示す。
本発明では、反射型EUVマスクの製造困難性を解消するために、ステンシル構造を有するEUV露光のための極端紫外線露光用マスク並びにそれを用いた極端紫外線の露光方
法を提供することを課題とする。
An object of the present invention is to provide an extreme ultraviolet exposure mask for EUV exposure having a stencil structure and an extreme ultraviolet exposure method using the same in order to eliminate the difficulty in manufacturing a reflective EUV mask. .
本発明は係る課題に鑑みなされたもので、請求項1の発明は、
極端紫外線を吸収する薄膜の部分と、前記紫外線を透過するために前記薄膜に開口した透過孔の部分からなる極端紫外線露光用マスクであって、
1)前記極端紫外線を吸収する薄膜の部分を透過する透過光の、入射光に対する透過率をT、前記透過孔を透過する透過光の、入射光に対する透過率をT0とするとき、Tが3〜13%であり、さらにTとT0の位相差がπの奇数倍であり、
2)前記極端紫外線を吸収する薄膜の部分が下記材料群の1つを主成分とすることを特徴とする極端紫外線露光用マスク。
(Si、BをドープしたSi、SiC、SiN、DLC膜、ダイヤモンド膜)
である。
The present invention has been made in view of the problems, and the invention of
A mask for extreme ultraviolet exposure comprising a portion of a thin film that absorbs extreme ultraviolet light and a portion of a transmission hole that is opened in the thin film to transmit the ultraviolet light,
1) When T is the transmittance for incident light of the transmitted light that is transmitted through the portion of the thin film that absorbs extreme ultraviolet light, and T 0 is the transmittance for incident light of the transmitted light that is transmitted through the transmission hole, T is 3 to 13%, and the phase difference between T and T 0 is an odd multiple of π,
2 ) A mask for extreme ultraviolet exposure, wherein the portion of the thin film that absorbs extreme ultraviolet rays contains one of the following material groups as a main component.
(Si, SiC doped with Si, B, SiN, DLC film, diamond film)
It is.
本発明の請求項2の発明は活性層/絶縁層(SiO2)/基板(Si)層を構成したSOI基板の活性層を、請求項1に記載の極端紫外線を吸収する薄膜と同じ材料としたSOI基板を用意し、基板層側に保護膜を成膜し、フォトリソグラフィにより裏面開口部形成のためのレジストパターンを形成し、レジストパターンをマスクにして保護膜をドライエッチングし開口部とする部分の保護膜を除去し、レジストを剥離後保護膜をマスクとして、基板層側のSiをエッチングし開口部を形成し、活性層側に電子線レジストを塗布し電子線描画により透過孔を形成するためのレジストパターンを形成し、レジストパターンをマスクにして活性層をドライエッチングし透過孔を形成し、電子線レジストを剥離することを特徴とする極端紫外線露光マスクの製造方法としたものである。
According to a second aspect of the present invention, the active layer of the SOI substrate comprising the active layer / insulating layer (SiO 2 ) / substrate (Si) layer is made of the same material as the thin film that absorbs extreme ultraviolet rays according to the first aspect. An SOI substrate is prepared, a protective film is formed on the substrate layer side, a resist pattern for forming a back surface opening is formed by photolithography, and the protective film is dry-etched using the resist pattern as a mask to form an opening. After removing the part of the protective film, peeling off the resist, using the protective film as a mask, etching the Si on the substrate layer side to form an opening, applying an electron beam resist to the active layer side, and forming a transmission hole by electron beam drawing A resist pattern is formed, and the active layer is dry-etched using the resist pattern as a mask to form a transmission hole, and the electron beam resist is peeled off. It is obtained by the production method of the mask.
本発明の請求項3の発明は、単結晶Si基板の表側に、請求項1に記載のSiC、SiN、DLC膜、ダイヤモンド膜いずれかの材料を主成分とした極端紫外線を吸収する薄膜を形成し、裏側に保護膜成膜し、フォトリソグラフィにより裏側開口部形成のためのレジストパターンを形成し、レジストパターンをマスクにして保護膜をドライエッチングし開口部とする部分の保護膜を除去し、レジストを剥離後保護膜をマスクとして基板側のSiをエッチングし開口部を形成し、表側に電子線レジストを塗布し電子線描画により透過孔を形成するためのレジストパターンを形成し、レジストパターンをマスクにしてSiC、SiN、DLC膜、ダイヤモンド膜のいずれかの薄膜をドライエッチングし透過孔を形成し、電子線レジストを剥離することを特徴とする極端紫外線露光マスクの製造方法としたものである。
According to the invention of
本発明の請求項4の発明は、請求項1に記載の極端紫外線露光用マスク、または請求項2または3に記載の極端紫外線露光マスクの製造方法で製造された極端紫外線露光マスクに極端紫外線を照射し、転写パターンの形状に極端紫外線を成形する工程を具備することを特徴とする極端紫外線の露光方法。
The invention of
本発明の極端紫外光露光用マスクでは、以上のような構成であるから、極端紫外線の透過光を露光してパターン転写できるので、反射型EUVマスクの製造困難性を解消した極端紫外光露光用マスク及びその製造方法並びにそのマスクを用いた極端紫外線の露光方法とすることができる。 Since the extreme ultraviolet light exposure mask of the present invention is configured as described above, the pattern can be transferred by exposing the transmitted light of extreme ultraviolet light, so that the manufacturing difficulty of the reflective EUV mask is eliminated. A mask, a manufacturing method thereof, and an extreme ultraviolet exposure method using the mask can be obtained.
更に、本発明の露光方法によると、試料基板上に形成されたレジストに対し、精度良いパターン露光が長期間可能となり、その結果、半導体等のパターンの製造を、高い歩留まりで行うことが出来る。 Furthermore, according to the exposure method of the present invention, it is possible to perform pattern exposure with high accuracy for a resist formed on a sample substrate for a long period of time, and as a result, it is possible to manufacture a pattern of a semiconductor or the like with a high yield.
以下、本発明の実施の形態例を、図面を参照しながら説明する。 Embodiments of the present invention will be described below with reference to the drawings.
図1は本発明の極端紫外線露光用マスクの一例を断面で示す部分説明図である。 FIG. 1 is a partial explanatory view showing an example of an extreme ultraviolet exposure mask of the present invention in cross section.
<例1>
図1で、本例の極端紫外線露光用マスクは、極端紫外線を吸収する薄膜1の部分と、前記紫外線を透過するために前記薄膜1に開口した透過孔2の部分からなる。本例ではこの薄膜が基板3上に設けられている。なお、透過孔2は薄膜1と比較し極端紫外線に対して相対的に透過であればよく、例えば透過孔2に膜を設け、透過光の位相をずらすなどしても良い。
<Example 1>
In FIG. 1, the extreme ultraviolet exposure mask of this example comprises a portion of a
<例2>
また本発明の極端紫外線露光用マスクは、前記極端紫外線を吸収する薄膜1の部分を透過する透過光の、入射光に対する透過率をT、前記透過孔2を透過する透過光の、入射光に対する透過率をT0とするとき、下式で表されるDが3以上である。
<Example 2>
In the extreme ultraviolet exposure mask of the present invention, the transmittance of the transmitted light transmitted through the portion of the
D=−log10(T/T0)・・・・(1)。 D = −log10 (T / T0) (1).
従来のKrFやArF用のマスクでは、Dの値は2.5以上でも利用可能であるが、波長が短く、パターンの線幅も小さいEUVマスクでは、良好な転写を行うには、Dの値は3以上が望ましい。 Conventional masks for KrF and ArF can be used even if the value of D is 2.5 or more, but in the case of an EUV mask with a short wavelength and a small pattern line width, the value of D can be used for good transfer. Is preferably 3 or more.
<例3>
例2の極端紫外線露光用マスクについて、透過率T0がほぼ100%となるバイナリマスクを例として説明する。もっとも代表的な波長13.5nmのEUV光を本例のマスクに露光し、それを吸収する部分の薄膜材料としてSiを選び、Siの膜厚に対して透過率Tと、Dを計算した結果を図3に示す。図で横軸は、膜厚の値を、縦軸はT、Dの値を示す。図3よりSi膜厚がほぼ4μm以上であれば、D>3となり、安定したバイナリマスクとなることが分る。Si膜厚は厚くなるほど強度は増すが、反面透過孔を形成するためのエッチングが難しくなるので、厚すぎるのも良くない。
<Example 3>
The extreme ultraviolet exposure mask of Example 2 will be described using a binary mask having a transmittance T0 of almost 100% as an example. The most representative EUV light having a wavelength of 13.5 nm is exposed on the mask of this example, Si is selected as a thin film material for absorbing the mask, and the transmittance T and D are calculated with respect to the film thickness of Si. Is shown in FIG. In the figure, the horizontal axis represents the film thickness value, and the vertical axis represents the T and D values. From FIG. 3, it can be seen that when the Si film thickness is approximately 4 μm or more, D> 3 and a stable binary mask is obtained. As the Si film thickness increases, the strength increases, but on the other hand, etching for forming the transmission hole becomes difficult, so it is not good that it is too thick.
<例3の作成方法>
また、本例の極端紫外線露光用マスクは次ぎのようにして作成できる。
<Creation method of Example 3>
The extreme ultraviolet exposure mask of this example can be prepared as follows.
まず、上部の活性層が上記の条件を満たす薄膜とし、活性層の厚みが5μmであるSOI(活性層/絶縁層(SiO2)/基板(Si)の層構成をしたもの)を用意する。つぎに、裏面に保護膜(CVDやスパッタにより成膜したSiNなど)を成膜する。つぎに、フォトリソグラフィにより裏面開口部形成のためのレジストパターンを形成する。つぎに、上記レジストパターンをマスクにして、保護膜をドライエッチングし、開口部とする部分の保護膜を除去する。つぎに、レジストを剥離後、保護膜をマスクとして、加熱したK
OH液により基板側のSiをウェットエッチングし、開口部を形成する。このウェットエッチングはSOI基板の貼合わせ層であるSiO2膜で停止する。つぎに、活性層側に電子線レジストを塗布し、電子線描画により透過孔を形成するためのレジストパターンを形成する。つぎに、レジストパターンをマスクにして、活性層のSiをドライエッチングし、透過孔を形成する。つぎに、電子線レジストを剥離して本例の極端紫外線露光マスクとすることができる。
First, an SOI (active layer / insulating layer (SiO 2 ) / substrate (Si) layer structure) in which the upper active layer is a thin film satisfying the above conditions and the thickness of the active layer is 5 μm is prepared. Next, a protective film (such as SiN formed by CVD or sputtering) is formed on the back surface. Next, a resist pattern for forming a back surface opening is formed by photolithography. Next, using the resist pattern as a mask, the protective film is dry-etched to remove the portion of the protective film that becomes the opening. Next, after peeling off the resist, the film was heated using the protective film as a mask.
Si on the substrate side is wet-etched with OH liquid to form an opening. This wet etching stops at the SiO 2 film which is the bonding layer of the SOI substrate. Next, an electron beam resist is applied to the active layer side, and a resist pattern for forming transmission holes is formed by electron beam drawing. Next, using the resist pattern as a mask, Si in the active layer is dry etched to form transmission holes. Next, the electron beam resist can be peeled off to obtain the extreme ultraviolet exposure mask of this example.
<例4>
また本発明の極端紫外線露光マスクとして、前記極端紫外線を吸収する薄膜1の部分を透過する透過光の、入射光に対する透過率Tが3〜13%であり、さらにTと、前記透過孔2を透過する透過光の、入射光に対する透過率T0の位相差がπの奇数倍である極端紫外線露光用マスクを例示できる。
<Example 4>
Further, as the extreme ultraviolet exposure mask of the present invention, the transmittance T of the transmitted light transmitted through the portion of the
従来のKrFやArF用のマスクでは、利用できる位相差(PS)は実際上πの値しか有り得ないのに対し、EUVマスクでは屈折率が1に近いので3πや5πも実現可能である。 In the conventional KrF and ArF masks, the phase difference (PS) that can be used can actually be only π, whereas in the EUV mask, since the refractive index is close to 1, 3π and 5π can be realized.
本例の極端紫外線露光マスクとして、ハーフトーンマスクを例として説明する。 A halftone mask will be described as an example of the extreme ultraviolet exposure mask of this example.
<比較例1>
まず比較のため、Siを薄膜材料としたマスクについて説明する。
<Comparative Example 1>
First, for comparison, a mask using Si as a thin film material will be described.
EUV光として波長13.5nmの光とし、EUV光を吸収する部分の薄膜材料としてSiを選び、Siの膜厚に対し、透過率Tと、TとT0の位相差PSを計算した結果を図4に示す。図で横軸は膜厚の値、縦軸はTとPSの値を示し、PSについては3.14(=π)の値のみ示した。図4より、PS=πのとき、Tはすでに1%よりはるかに小さく、ハーフトーンマスクとしては不適である。これは、Siの屈折率が真空の屈折率=1に近いため、位相差を確保するには膜厚を厚くしなければならないからである。 Fig. 5 shows the result of calculating transmittance T and phase difference PS between T and T0 with respect to the thickness of Si by selecting EU as light with a wavelength of 13.5 nm as EUV light and selecting Si as a thin film material for absorbing EUV light. 4 shows. In the figure, the horizontal axis represents the film thickness value, the vertical axis represents the values of T and PS, and only the value of 3.14 (= π) is shown for PS. From FIG. 4, when PS = π, T is already much smaller than 1%, which is not suitable as a halftone mask. This is because the refractive index of Si is close to the refractive index of vacuum = 1, so that the film thickness must be increased to ensure the phase difference.
<比較例2>
さらに比較の為に、Bを1%ドープしたSiを薄膜材料としたマスクについて説明する。
図4と同様、EUV光として波長13.5nmの光とし、EUV光を吸収する部分の薄膜材料としてBを1%ドープしたSiを選び、BドープSiの膜厚に対し透過率Tと、TとT0の位相差PSを計算した結果を図5に示す。図で横軸は膜厚の値、縦軸はTとPSの値を示し、PSについては3.14(=π)の値のみ示した。図5より、Bドープにより、屈折率の、真空の屈折率=1との差はいくらか大きくなったが、PS=πのとき、Tはまだ2%以下であり、ハーフトーンマスクとしては不適である。
<Comparative example 2>
For comparison, a mask using Si doped with 1% B as a thin film material will be described.
As in FIG. 4, light having a wavelength of 13.5 nm is selected as EUV light, and Si doped with 1% B is selected as a thin film material that absorbs EUV light. FIG. 5 shows the result of calculating the phase difference PS between T and T0. In the figure, the horizontal axis represents the film thickness value, the vertical axis represents the values of T and PS, and only the value of 3.14 (= π) is shown for PS. As shown in FIG. 5, the difference in refractive index from the vacuum refractive index = 1 is somewhat increased by B doping, but when PS = π, T is still 2% or less, which is not suitable as a halftone mask. is there.
<例5>
つぎに例4の極端紫外線露光マスクの具体例について説明する。
<Example 5>
Next, a specific example of the extreme ultraviolet exposure mask of Example 4 will be described.
本例ではBを10%ドープしたSiを薄膜材料としたマスクの場合である。 In this example, the mask is made of Si thin film material doped with 10% B.
同様に、EUV光として波長13.5nmとする。EUV光を吸収する部分の薄膜材料としてBを10%ドープしたSiを選び、BドープSiの膜厚に対し透過率Tと、TとT0の位相差PSを計算した結果を図6に示す。図で横軸は膜厚の値、縦軸はTとPSの値を示し、PSについては3.14(=π)の値のみ示した。図6より、この材料では、PS=πのとき、Tは約7%となり、ハーフトーンマスクとなることができる。 Similarly, the wavelength of EUV light is 13.5 nm. FIG. 6 shows the result of calculating the transmittance T and the phase difference PS between T and T0 with respect to the film thickness of B-doped Si by selecting Si doped with 10% B as the thin film material for the part that absorbs EUV light. In the figure, the horizontal axis represents the film thickness value, the vertical axis represents the values of T and PS, and only the value of 3.14 (= π) is shown for PS. As shown in FIG. 6, with this material, when PS = π, T is about 7%, which can be a halftone mask.
<例5の作成方法>
本例の極端紫外線露光用マスクは次ぎのようにして作成できる。
<Creation method of Example 5>
The extreme ultraviolet exposure mask of this example can be prepared as follows.
活性層の厚みが約2.2μm(図6参照)であり、活性層にBを10%ドープしたSOI基板を用意する。つぎに、裏面に保護膜(CVDやスパッタにより成膜したSiNなど)を成膜し、以後、例3の作成方法と同様にして本例の極端紫外線露光用マスクを作成できる。 An SOI substrate having an active layer thickness of about 2.2 μm (see FIG. 6) and an active layer doped with 10% B is prepared. Next, a protective film (SiN or the like formed by CVD or sputtering) is formed on the back surface, and thereafter, the extreme ultraviolet exposure mask of this example can be produced in the same manner as the production method of Example 3.
<例6>
本例では例4でSiNを薄膜材料としたマスクの場合である。
<Example 6>
In this example, the mask is made of SiN as a thin film material in Example 4.
同様に、EUV光として波長13.5nmとする。EUV光を吸収する部分の薄膜材料としてSiNを選び、SiNの膜厚に対し透過率Tと、TとT0の位相差PSを計算した結果を図7に示す。図で横軸は膜厚の値、縦軸はTとPSの値を示し、PSについては9.42(=3π)の値のみ示した。図7より、SiNでは、PS=3πのとき、Tは約4.5%となり、ハーフトーンマスクとすることができる。 Similarly, the wavelength of EUV light is 13.5 nm. FIG. 7 shows the result of calculating the transmittance T and the phase difference PS between T and T0 with respect to the thickness of the SiN film by selecting SiN as the thin film material for the part that absorbs EUV light. In the figure, the horizontal axis shows the film thickness value, the vertical axis shows the values of T and PS, and only the value of 9.42 (= 3π) is shown for PS. From FIG. 7, in SiN, when PS = 3π, T is about 4.5%, and a halftone mask can be obtained.
<例6の作成方法>
単結晶Si基板の表側に、CVD法やスパッタにより厚みが約0.35μm(図7参照)のSiN膜を形成する。つぎに、裏側に保護膜(CVDやスパッタにより成膜したSiNなど)を成膜する。つぎに、フォトリソグラフィにより裏側開口部形成のためのレジストパターンを形成する。つぎに、上記レジストパターンをマスクにして、保護膜をドライエッチングし、開口部とする部分の保護膜を除去する。つぎに、レジストを剥離後、保護膜をマスクとして、加熱したKOH液により基板側のSiをウェットエッチングし、開口部を形成する。このウェットエッチは表側に形成したSiN膜で停止する。つぎに、表側に電子線レジストを塗布し、電子線描画により透過孔を形成するためのレジストパターンを形成する。つぎに、レジストパターンをマスクにして、SiN膜をドライエッチングし、透過孔を形成する。つぎに、電子線レジストを剥離して、ハーフトーンマスクとすることが出来る。
<Method for creating example 6>
A SiN film having a thickness of about 0.35 μm (see FIG. 7) is formed on the front side of the single crystal Si substrate by CVD or sputtering. Next, a protective film (SiN formed by CVD or sputtering) is formed on the back side. Next, a resist pattern for forming the back side opening is formed by photolithography. Next, using the resist pattern as a mask, the protective film is dry-etched to remove the portion of the protective film that becomes the opening. Next, after peeling off the resist, Si on the substrate side is wet-etched with a heated KOH solution using the protective film as a mask to form an opening. This wet etching stops at the SiN film formed on the front side. Next, an electron beam resist is applied to the front side, and a resist pattern for forming transmission holes is formed by electron beam drawing. Next, using the resist pattern as a mask, the SiN film is dry etched to form transmission holes. Next, the electron beam resist can be peeled off to form a halftone mask.
<例7>
本例では例4で、SiCを薄膜材料としたマスクの場合である。
<Example 7>
This example is the case of Example 4, which is a mask using SiC as a thin film material.
同様に、EUV光として波長13.5nm、EUV光を吸収する部分の薄膜材料としてSiCを選び、SiCの膜厚に対し透過率Tと、TとT0の位相差PSを計算した結果を図8に示す。図で横軸は膜厚の値、縦軸はTとPSの値を示し、PSについては9.42(=3π)の値のみ示した。図8より、SiCでは、PS=3πのとき、Tは約8%となり、ハーフトーンマスクとなることができる。 Similarly, when the wavelength is 13.5 nm as EUV light and SiC is selected as a thin film material for the part that absorbs EUV light, the transmittance T and the phase difference PS between T and T0 are calculated with respect to the film thickness of SiC. Shown in In the figure, the horizontal axis shows the film thickness value, the vertical axis shows the values of T and PS, and only the value of 9.42 (= 3π) is shown for PS. From FIG. 8, in SiC, when PS = 3π, T is about 8%, and can be a halftone mask.
<例7の作成方法>
単結晶Si基板の表側に、CVD法やスパッタにより厚みが約0.6μm(図8参照)のSiC膜を形成する。つぎに、裏側に保護膜(CVDやスパッタにより成膜したSiNなど)を成膜し、以下、裏側ウェットエッチの停止層がSiC膜である以外は、例6の作成方法と同様である。
<How to create Example 7>
A SiC film having a thickness of about 0.6 μm (see FIG. 8) is formed on the front side of the single crystal Si substrate by CVD or sputtering. Then, a protective film (SiN or the like formed by CVD or sputtering) is formed on the back side, and the same method as in Example 6 is applied except that the back side wet etch stop layer is a SiC film.
<例8>
本例では例4で、DLC膜を薄膜材料としたマスクの場合である。
<Example 8>
This example is the case of Example 4 in which the DLC film is a mask made of a thin film material.
同様に、EUV光として波長13.5nm、EUV光を吸収する部分の薄膜材料としてDLC(ダイヤモンドライクカーボン)を選び、DLCの膜厚に対し透過率Tと、TとT
0の位相差PSを計算した結果を図9に示す。図で横軸は膜厚の値、縦軸はTとPSの値を示し、PSについては15.7(=5π)の値のみ示した。図9より、DLC膜では、PS=5πのとき、Tは約7%となり、ハーフトーンマスクとなることができる。
Similarly, a wavelength of 13.5 nm is selected as EUV light, and DLC (diamond-like carbon) is selected as a thin film material for the part that absorbs EUV light.
The result of calculating the phase difference PS of 0 is shown in FIG. In the figure, the horizontal axis represents the film thickness value, the vertical axis represents the T and PS values, and only the value of 15.7 (= 5π) is shown for PS. As shown in FIG. 9, in the DLC film, when PS = 5π, T is about 7% and can be a halftone mask.
<例8の作成方法>
単結晶Si基板の表側に、CVD法により厚みが約0.45μm(図9参照)のDLC膜を形成する。つぎに、裏側に保護膜(CVDやスパッタにより成膜したSiNなど)を成膜し、以下、裏側ウェットエッチの停止層がDLC膜である以外は、例6の作成方法と同様である。
<Method for creating example 8>
A DLC film having a thickness of about 0.45 μm (see FIG. 9) is formed on the front side of the single crystal Si substrate by a CVD method. Next, a protective film (SiN or the like formed by CVD or sputtering) is formed on the back side, and the following method is the same as that of Example 6 except that the back side wet etch stop layer is a DLC film.
<例9>
本例では例4で、ダイヤモンド膜を薄膜材料としたマスクの場合である。
<Example 9>
This example is the case of Example 4, which is a mask using a diamond film as a thin film material.
同様に、EUV光として波長13.5nm、EUV光を吸収する部分の薄膜材料としてダイヤモンド膜を選び、ダイヤモンド膜厚に対し透過率Tと、TとT0の位相差PSを計算した結果を図10に示す。図で横軸は膜厚の値、縦軸はTとPSの値を示し、PSについては15.7(=5π)の値のみ示した。図10より、ダイヤモンド膜では、PS=5πのとき、Tは約7.5%となり、ハーフトーンマスクとなることができる。 Similarly, a wavelength of 13.5 nm is selected as EUV light, and a diamond film is selected as a thin film material that absorbs EUV light. The transmittance T and the phase difference PS between T and T0 are calculated with respect to the diamond film thickness. Shown in In the figure, the horizontal axis represents the film thickness value, the vertical axis represents the T and PS values, and only the value of 15.7 (= 5π) is shown for PS. As shown in FIG. 10, in the diamond film, when PS = 5π, T is about 7.5% and can be a halftone mask.
<例9の作成方法>
単結晶Si基板の表側に、CVD法により厚みが約0.3μm(図10参照)のダイヤモンド膜を形成する。つぎに、裏側に保護膜(CVDやスパッタにより成膜したSiNなど)を成膜し、以下、裏側ウェットエッチの停止層がダイヤモンド膜である以外は、例6の作成方法と同様である。
<Method for creating example 9>
A diamond film having a thickness of about 0.3 μm (see FIG. 10) is formed by CVD on the front side of the single crystal Si substrate. Next, a protective film (SiN or the like formed by CVD or sputtering) is formed on the back side, and the same method as in Example 6 is applied except that the back side wet etch stop layer is a diamond film.
1・・・薄膜
2・・・透過孔
3・・・基板
11・・・基板
12・・・EUV光高反射率多層膜
13・・・キャッピング膜
14・・・緩衝膜
15・・・EUV光吸収膜
DESCRIPTION OF
Claims (4)
1)前記極端紫外線を吸収する薄膜の部分を透過する透過光の、入射光に対する透過率をT、前記透過孔を透過する透過光の、入射光に対する透過率をT0とするとき、Tが3〜13%であり、さらにTとT 0 の位相差がπの奇数倍であり、
2)前記極端紫外線を吸収する薄膜の部分が下記材料群の1つを主成分とすることを特徴とする極端紫外線露光用マスク。
(Si、BをドープしたSi、SiC、SiN、DLC膜、ダイヤモンド膜) A mask for extreme ultraviolet exposure comprising a portion of a thin film that absorbs extreme ultraviolet light and a portion of a transmission hole that is opened in the thin film to transmit the ultraviolet light,
1) When T is the transmittance of the transmitted light that is transmitted through the portion of the thin film that absorbs extreme ultraviolet rays, and T 0 is the transmittance of the transmitted light that is transmitted through the transmission hole, and T is 3 to 13%, and the phase difference between T and T 0 is an odd multiple of π,
2 ) A mask for extreme ultraviolet exposure, wherein the portion of the thin film that absorbs extreme ultraviolet rays contains one of the following material groups as a main component.
(Si, SiC doped with Si, B, SiN, DLC film, diamond film)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006024220A JP5292669B2 (en) | 2006-02-01 | 2006-02-01 | Extreme ultraviolet exposure mask, manufacturing method thereof, and extreme ultraviolet exposure method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006024220A JP5292669B2 (en) | 2006-02-01 | 2006-02-01 | Extreme ultraviolet exposure mask, manufacturing method thereof, and extreme ultraviolet exposure method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007207964A JP2007207964A (en) | 2007-08-16 |
JP5292669B2 true JP5292669B2 (en) | 2013-09-18 |
Family
ID=38487160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006024220A Expired - Fee Related JP5292669B2 (en) | 2006-02-01 | 2006-02-01 | Extreme ultraviolet exposure mask, manufacturing method thereof, and extreme ultraviolet exposure method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5292669B2 (en) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59184526A (en) * | 1983-04-05 | 1984-10-19 | Agency Of Ind Science & Technol | Formation of pattern |
JPH01214859A (en) * | 1988-02-24 | 1989-08-29 | Hitachi Ltd | Mask |
JPH03211554A (en) * | 1990-01-17 | 1991-09-17 | Fujitsu Ltd | Production of phase shift mask |
JPH0817716A (en) * | 1994-06-29 | 1996-01-19 | Nikon Corp | Manufacture of reflection-type mask |
JPH10321495A (en) * | 1997-05-14 | 1998-12-04 | Toppan Printing Co Ltd | X-ray exposure mask and its manufacture |
JP3399839B2 (en) * | 1998-06-24 | 2003-04-21 | 日本電信電話株式会社 | X-ray mask and X-ray exposure method using the same |
JP2002299277A (en) * | 2001-03-30 | 2002-10-11 | Toshiba Corp | Manufacturing method for thin-film structural unit |
JP2003338447A (en) * | 2002-05-21 | 2003-11-28 | Mitsubishi Electric Corp | X-ray mask, x-ray aligner, x-ray exposure method, and semiconductor manufactured thereby |
-
2006
- 2006-02-01 JP JP2006024220A patent/JP5292669B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007207964A (en) | 2007-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101303795B1 (en) | EUV pellicle and manufacturing method of the same | |
JP4961990B2 (en) | Mask blank and gradation mask | |
KR20160138247A (en) | Mask blank, method for manufacturing transfer mask, and method for manufacturing semiconductor device | |
JP6087401B2 (en) | Mask blank, phase shift mask, and semiconductor device manufacturing method | |
JP6520041B2 (en) | Pellicle | |
KR102522452B1 (en) | Mask blank, transfer mask, transfer mask manufacturing method and semiconductor device manufacturing method | |
JP2009099931A (en) | Reflective photomask blank and manufacturing method thereof, reflective photomask and manufacturing method thereof, and manufacturing method of semiconductor device | |
KR20130132787A (en) | Mask blank, method for producing same, and transfer mask | |
JPWO2009136564A1 (en) | Reflective mask, reflective mask blank and manufacturing method thereof | |
JP6271780B2 (en) | Mask blank, phase shift mask, and semiconductor device manufacturing method | |
KR20100080413A (en) | Method of manufacturing photomask blank and method of manufacturing photomask | |
JP5233321B2 (en) | Extreme ultraviolet exposure mask blank, extreme ultraviolet exposure mask, extreme ultraviolet exposure mask manufacturing method, and pattern transfer method using extreme ultraviolet exposure mask | |
US20030232256A1 (en) | Photolithographic mask and methods for the fabrication of the mask | |
KR102316973B1 (en) | Resist layer-attached blank, method of manufacturing the same, mask blank and imprint mold blank, and transfer mask, imprint mold and method of manufacturing the same | |
KR102254646B1 (en) | Method for correcting photomask, method for manufacturing photomask, photomask, and method for manufacturing display device | |
JP5076473B2 (en) | Mask blank and gradation mask | |
JP2009098611A (en) | Halftone euv mask, halftone euv mask blank, manufacturing method of halftone euv mask and pattern transfer method | |
JP2018045257A (en) | Mask blank, phase shift mask and production method of semiconductor device | |
WO2019230312A1 (en) | Mask blank, phase-shift mask, and semiconductor device manufacturing method | |
JP2010122409A (en) | Photomask blank and photomask blank manufacturing method, and for photomask manufacturing method | |
JP2022191475A (en) | Photomask blank, manufacturing method of photomask, and manufacturing method of display device | |
JP5292669B2 (en) | Extreme ultraviolet exposure mask, manufacturing method thereof, and extreme ultraviolet exposure method | |
JP5767140B2 (en) | Photomask, pattern transfer method, and pellicle | |
JP4529359B2 (en) | Ultraviolet exposure mask, blank and pattern transfer method | |
WO2017179199A1 (en) | Pellicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090123 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110407 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110419 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110616 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120821 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130403 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20130411 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130514 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130527 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5292669 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |