JP5289178B2 - Control device and control method for voltage fluctuation compensation device for electric railway - Google Patents

Control device and control method for voltage fluctuation compensation device for electric railway Download PDF

Info

Publication number
JP5289178B2
JP5289178B2 JP2009117334A JP2009117334A JP5289178B2 JP 5289178 B2 JP5289178 B2 JP 5289178B2 JP 2009117334 A JP2009117334 A JP 2009117334A JP 2009117334 A JP2009117334 A JP 2009117334A JP 5289178 B2 JP5289178 B2 JP 5289178B2
Authority
JP
Japan
Prior art keywords
power
reactive power
phase
compensation
seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009117334A
Other languages
Japanese (ja)
Other versions
JP2010264857A (en
Inventor
秀一 長門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009117334A priority Critical patent/JP5289178B2/en
Publication of JP2010264857A publication Critical patent/JP2010264857A/en
Application granted granted Critical
Publication of JP5289178B2 publication Critical patent/JP5289178B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Description

この発明は、電気鉄道用電圧変動補償装置の制御装置及び制御方法に関し、特に、三相/二相変換する単相交流き電システムにおいて同相き電もしくは片座き電にて電力供給する場合、電気鉄道用電圧変動補償装置を設置した時の制御装置に関するものである。   The present invention relates to a control device and a control method for a voltage fluctuation compensator for electric railways, and in particular, when power is supplied by in-phase power or single-seat power in a single-phase AC power feeding system that performs three-phase / two-phase conversion. The present invention relates to a control device when an electric railway voltage fluctuation compensation device is installed.

単相交流き電システムにおいて、基本的にM座及びT座のうち一方のき電(母)線を接続する同相き電もしくは片座き電では、き電線と接続されない片座と接続するインバータ装置は、有効電力の融通のみを行う制御方式を採用していた。このような制御方式は例えば特許文献1に開示されている。   In a single-phase AC feed system, an inverter connected to a single seat that is not connected to a feeder in the same-phase feed or one-seat feed that basically connects one of the M and T seats. The apparatus employs a control method that only allows the exchange of active power. Such a control method is disclosed in Patent Document 1, for example.

特開2004−314702号公報(段落[0040],図1)JP 2004-314702 A (paragraph [0040], FIG. 1)

三相/二相変換する単相交流き電システムの電力供給方式の形態である同相き電もしくは片座き電において、電気鉄道用電圧変動補償装置(RPC(Railway Static Power Conditioner))により有効電力融通と無効電力補償する場合、従来の制御方式では、き電線と接続されない片座と接続した一方のインバータ装置は、無効電力補償には何ら関与しておらず、三相電源側の三相不平衡を十分に改善できていないという問題点があった。   In in-phase or single-seat power supply, which is a form of power supply for a single-phase AC power system that converts three-phase / two-phase, effective power is supplied by a voltage fluctuation compensator (RPC (Railway Static Power Conditioner)) for electric railways. In the case of interchange and reactive power compensation, in the conventional control method, one inverter connected to a single seat that is not connected to the feeder does not participate in reactive power compensation at all, and the three-phase power supply on the three-phase power supply side is not involved. There was a problem that the balance could not be improved sufficiently.

この発明は上記問題点を解決するためになされたもので、三相電源側の三相不平衡を改善させた電気鉄道用電圧変動補償装置の制御装置及び制御方法を得ることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a control device and a control method for a voltage fluctuation compensator for an electric railway, in which the three-phase unbalance on the three-phase power supply side is improved.

この発明に係る請求項1記載の電気鉄道用電圧変動補償装置の制御装置は、電気鉄道用の電圧変動補償装置を制御する電圧変動補償装置の制御装置であって、前記電圧変動補償装置は、電気鉄道用三相/二相変換変圧器により第1及び第2のき電線から供給される第1及び第2の単相交流電力のうち、前記第1の単相交流電力を前記第1のき電線を介して電車負荷に供給する電気鉄道用電力給電システムにおける有効電力及び無効電力を、前記第1及び第2のき電線に接続される第1及び第2のインバータを用いて補償し、前記第1のき電線の無効電力を少なくとも検出する負荷検出手段と、前記無効電力に基づき、前記第1のき電線の無効電力を補償するための第1の補償用無効電力を算出し、該第1の補償用無効電力によって前記第1のき電線の無効電力がゼロに近づくように、前記第1のインバータを制御する第1のインバータ無効電力制御手段とを備え、前記第1のインバータにおける前記第1の補償用無効電力の最大値が、電流耐量以内の出力に制限するリミッタ制限手段により前記第1のインバータを構成する容量によって予め制限されており、前記第1の補償用無効電力によって前記無効電力を完全に補償できない場合、前記無効電力及び前記第1の補償用無効電力間の差分値に基づき前記第1の補償用無効電力の位相と正反対となる逆方向の位相を有する第2の補償用無効電力を算出し、前記第2の補償用無効電力によって前記第2のき電線に無効電力を発生させるように、前記第2のインバータを制御する第2のインバータ無効電力制御手段をさらに備える。 According to a first aspect of the present invention, there is provided a control device for a voltage fluctuation compensator for an electric railway, which is a control device for a voltage fluctuation compensator for controlling a voltage fluctuation compensator for an electric railway, wherein the voltage fluctuation compensator comprises: Of the first and second single-phase AC power supplied from the first and second feeder lines by the three-phase / two-phase conversion transformer for electric railway, the first single-phase AC power is converted into the first single-phase AC power. Compensating the active power and reactive power in the electric power supply system for electric railways supplied to the train load via the feeder using the first and second inverters connected to the first and second feeders, Load detecting means for detecting at least reactive power of the first feeder, and calculating first compensation reactive power for compensating reactive power of the first feeder based on the reactive power; The first compensation reactive power causes the first compensation As the reactive power of the electric wire approaches zero, the maximum value of said first and a first inverter reactive power control means for controlling the inverter, wherein the first inverter first compensation reactive power, When the reactive power is limited in advance by the capacity constituting the first inverter by the limiter limiting means for limiting the output to within the current withstand capability, and the reactive power cannot be completely compensated by the first compensating reactive power, the reactive power And calculating a second compensation reactive power having a phase in the opposite direction to the phase of the first compensation reactive power based on the difference value between the first compensation reactive power and the second compensation reactive power. Second inverter reactive power control means is further provided for controlling the second inverter so that reactive power is generated in the second feeder by compensating reactive power.

請求項1記載の電圧変動補償装置の制御装置における第2のインバータ無効電力制御手段は、第1の補償用無効電力によって無効電力を完全に補償できない場合でも、電車負荷に電力供給を行っていない第2のき電線に対し、無効電力及び第1の補償用無効電力間の差分値に基づき得られる、第1の補償用無効電力の位相と正反対となる逆方向の位相を有する第2の補償用無効電力によって第2のき電線に無効電力を発生させるように、第2のインバータの無効電力補償動作を制御している。

The second inverter reactive power control means in the voltage fluctuation compensator control device according to claim 1 does not supply electric power to the train load even when the reactive power cannot be completely compensated for by the first compensating reactive power. A second compensation having a phase in the opposite direction to the phase of the first compensation reactive power, obtained based on the difference value between the reactive power and the first compensation reactive power for the second feeder. The reactive power compensation operation of the second inverter is controlled so that the reactive power is generated in the second feeder by the reactive power.

その結果、第1及び第2の補償用無効電力によって無効電力補償動作を行うことができるため、電気鉄道用三相/二相変換変圧器における三相電源側の三相不平衡をより一層改善させることができる効果を奏する。   As a result, the reactive power compensation operation can be performed by the first and second compensating reactive powers, so that the three-phase unbalance on the three-phase power supply side in the three-phase / two-phase conversion transformer for electric railway is further improved. The effect which can be made is produced.

この発明の実施の形態1の制御対象である電圧変動補償装置を用いた電気鉄道用電力給電システムの構成を模式的に示す説明図である。It is explanatory drawing which shows typically the structure of the electric power feeding system for electric railways using the voltage fluctuation compensation apparatus which is the control object of Embodiment 1 of this invention. この発明の実施の形態1である電気鉄道用電圧変動補償装置の制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the control apparatus of the voltage fluctuation compensation apparatus for electric railways which is Embodiment 1 of this invention. この発明の実施の形態1である電気鉄道用電圧変動補償装置の制御装置の効果をシミュレーションした結果を示す説明図である。It is explanatory drawing which shows the result of having simulated the effect of the control apparatus of the voltage fluctuation compensation apparatus for electric railways which is Embodiment 1 of this invention. この発明の実施の形態2の制御対象である電圧変動補償装置を用いた電気鉄道用電力給電システムの構成を模式的に示す説明図である。It is explanatory drawing which shows typically the structure of the electric power feeding system for electric railways using the voltage fluctuation compensation apparatus which is the control object of Embodiment 2 of this invention. この発明の実施の形態2である電気鉄道用電圧変動補償装置の制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the control apparatus of the voltage fluctuation compensation apparatus for electric railways which is Embodiment 2 of this invention.

<実施の形態1>
図1はこの発明の実施の形態1である電気鉄道用電圧変動補償装置の制御装置の制御対象である電気鉄道用電圧変動補償装置を用いた電気鉄道用電力給電システムの構成を模式的に示す説明図である。同図において、電気鉄道用電圧変動補償装置(RPC)3(以下、「電圧変動補償装置3」と略記する。)を備えた同相き電もしくは片座き電における電気鉄道用電力給電システムを示している。
<Embodiment 1>
FIG. 1 schematically shows a configuration of an electric railway power supply system using an electric railway voltage fluctuation compensator that is a control target of the electric railway voltage fluctuation compensator controller according to the first embodiment of the present invention. It is explanatory drawing. In the figure, a power supply system for an electric railway in in-phase or single-seat electric power supply equipped with an electric railway voltage fluctuation compensator (RPC) 3 (hereinafter abbreviated as “voltage fluctuation compensator 3”) is shown. ing.

同図において、三相/二相変換変圧器1は電気鉄道用であるスコット結線変圧器や変形ウッド結線変圧器を含む三相/二相変換変圧器である。三相/二相変換変圧器1により三相/二相変換されたM座電力(第1の単相交流電力)及びT座電力(第2の単相交流電圧)がM座側き電線18m及びT座側き電線18t(第1及び第2のき電線)より得られる。M座電力が供給されるM座側のき電線18m(第1のき電線)にトロリー線15を介してレール16上を走行する列車負荷2が接続される。   In the figure, a three-phase / two-phase conversion transformer 1 is a three-phase / two-phase conversion transformer including a Scott connection transformer and a modified Wood connection transformer for electric railways. The M-seat power (first single-phase AC power) and the T-seat power (second single-phase AC voltage) that have been three-phase / two-phase converted by the three-phase / two-phase transformer 1 And the T seat side feeder 18t (first and second feeders). A train load 2 traveling on the rail 16 is connected via a trolley wire 15 to an M seat side feeder 18m (first feeder) to which M seat power is supplied.

三相/二相変換変圧器1のM座側き電線18m及びT座側き電線18t(第2のき電線)に電圧変動補償装置3が接続される。電圧変動補償装置3内においてM座側単相変圧器4は三相/二相変換変圧器1のM座側き電線18mに接続され、T座側単相変圧器5は三相/二相変換変圧器1のT座側き電線18tに接続される。なお、本明細書中で述べるM座及びT座は結線方式によりA座及びB座を含む意味で用いている。   The voltage fluctuation compensating device 3 is connected to the M seat side feeder 18m and the T seat side feeder 18t (second feeder) of the three-phase / two-phase conversion transformer 1. In the voltage fluctuation compensating device 3, the M seat side single phase transformer 4 is connected to the M seat side feeder 18m of the three phase / two phase conversion transformer 1, and the T seat side single phase transformer 5 is a three phase / two phase. It is connected to the T seat side feeder 18t of the conversion transformer 1. In addition, M seat and T seat described in this specification are used in the meaning including A seat and B seat by a connection system.

T座側単相変圧器5,M座側単相変圧器4間は、T座側単相変圧器5からM座側単相変圧器4にかけてT座インバータ7(第2のインバータ)、直流コンデンサ17及びM座インバータ6(第1のインバータ)を介して接続される。なお、M座インバータ6は交流側がM座側単相変圧器4と接続され、T座インバータ7は交流側がT座側単相変圧器5と接続され、M座インバータ6,T座インバータ7それぞれの直流側が直流コンデンサ17を介して接続される。また、三相/二相変換変圧器1、M座側単相変圧器4、T座側単相変圧器5、M座インバータ6及びT座インバータ7それぞれの具体的な構成は、本発明と直接関係がないため説明を省略する。   Between the T-seat side single-phase transformer 5 and the M-seat side single-phase transformer 4, a T-seat inverter 7 (second inverter), DC is applied from the T-seat side single-phase transformer 5 to the M-seat side single-phase transformer 4. The capacitor 17 and the M seat inverter 6 (first inverter) are connected. The AC side of the M seat inverter 6 is connected to the M seat side single-phase transformer 4, and the T seat inverter 7 is connected to the T seat side single phase transformer 5 on the AC side. Are connected via a DC capacitor 17. The specific configurations of the three-phase / two-phase conversion transformer 1, the M-seat-side single-phase transformer 4, the T-seat-side single-phase transformer 5, the M-seat inverter 6 and the T-seat inverter 7 are the same as the present invention. Description is omitted because there is no direct relationship.

このような構成の電圧変動補償装置3が実施の形態1の電気鉄道用電圧変動補償装置の制御装置19の制御対象となる。   The voltage fluctuation compensator 3 having such a configuration is controlled by the controller 19 of the electric railway voltage fluctuation compensator of the first embodiment.

図2はこの発明の実施の形態1である電気鉄道用電圧変動補償装置の制御装置19の構成を示すブロック図である。   FIG. 2 is a block diagram showing the configuration of the control device 19 of the electric railway voltage fluctuation compensator according to the first embodiment of the present invention.

図2で示すように、電圧変動補償装置3の制御装置19は、負荷検出手段9、M座側無効電力補償用算出手段10、融通有効電力用算出手段11、T座側無効電力補償用算出手段12、M座インバータゲート制御手段13及びT座インバータゲート制御手段14から構成されている。   As shown in FIG. 2, the control device 19 of the voltage fluctuation compensation device 3 includes a load detection unit 9, an M seat side reactive power compensation calculation unit 10, a flexible active power calculation unit 11, and a T seat side reactive power compensation calculation. It comprises means 12, M-seat inverter gate control means 13 and T-seat inverter gate control means 14.

負荷検出手段9は、三相/二相変換変圧器1のM座側き電線18mにおけるM座側負荷8の有効電力Pm及び無効電力Qmを検出する。   The load detection means 9 detects the active power Pm and reactive power Qm of the M seat side load 8 in the M seat side feeder 18m of the three-phase / two-phase conversion transformer 1.

M座側無効電力補償用算出手段10は負荷検出手段9より得た無効電力Qmに基づき補償用無効電力QRm(第1の補償用無効電力)を算出する。M座インバータゲート制御手段13は補償用無効電力QRmに基づきM座インバータ6による無効電力補償動作を(ゲート)制御する。すなわち、M座側無効電力補償用算出手段10及びM座インバータゲート制御手段13によりM座インバータ6の無効電力補償動作を制御する第1のインバータ無効電力制御手段を構成する。   The M seat side reactive power compensation calculation means 10 calculates a compensation reactive power QRm (first compensation reactive power) based on the reactive power Qm obtained from the load detection means 9. The M seat inverter gate control means 13 (gate) controls the reactive power compensation operation by the M seat inverter 6 based on the compensation reactive power QRm. In other words, the M seat side reactive power compensation calculating means 10 and the M seat inverter gate control means 13 constitute first inverter reactive power control means for controlling the reactive power compensation operation of the M seat inverter 6.

T座側無効電力補償用算出手段12は無効電力Qm及び補償用無効電力QRmに基づき補償用無効電力QRt(第2の補償用無効電力)を算出する。T座インバータゲート制御手段14は補償用無効電力QRtに基づきT座インバータ7の無効電力補償動作を(ゲート)制御する。すなわち、T座側無効電力補償用算出手段12及びT座インバータゲート制御手段14によりT座インバータ7の無効電力補償動作を制御する第2のインバータ無効電力制御手段を構成する。   The T-seat side reactive power compensation calculation means 12 calculates a compensation reactive power QRt (second compensation reactive power) based on the reactive power Qm and the compensation reactive power QRm. The T-seat inverter gate control means 14 (gate) controls the reactive power compensation operation of the T-seat inverter 7 based on the compensation reactive power QRt. That is, the T seat side reactive power compensation calculating means 12 and the T seat inverter gate control means 14 constitute second inverter reactive power control means for controlling the reactive power compensation operation of the T seat inverter 7.

融通有効電力用算出手段11は負荷検出手段9より得た有効電力Pmに基づき融通有効電力Pcを算出する。M座インバータゲート制御手段13及びT座インバータゲート制御手段14は融通有効電力Pcに基づきM座インバータ6及びT座インバータ7の有効電力融通動作を制御する。すなわち、融通有効電力用算出手段11及びM座インバータゲート制御手段13によりM座インバータ6に対し有効電力融通動作を制御する第1のインバータ有効電力制御手段を構成し、融通有効電力用算出手段11及びT座インバータゲート制御手段14によりT座インバータ7に対し有効電力融通動作を制御する第2のインバータ有効電力制御手段を構成する。   The flexible active power calculation means 11 calculates the flexible active power Pc based on the active power Pm obtained from the load detection means 9. The M seat inverter gate control means 13 and the T seat inverter gate control means 14 control the active power accommodation operation of the M seat inverter 6 and the T seat inverter 7 based on the accommodation active power Pc. That is, a first inverter active power control means for controlling the active power accommodation operation for the M seat inverter 6 is constituted by the accommodation active power calculation means 11 and the M seat inverter gate control means 13, and the accommodation active power calculation means 11. The T-seat inverter gate control means 14 constitutes second inverter active power control means for controlling the active power interchange operation for the T-seat inverter 7.

なお、M座インバータ6及びT座インバータ7は、それぞれ決められた電流耐量以内の出力に制限するリミッタ制限手段を備えている。   The M-seat inverter 6 and the T-seat inverter 7 are each provided with limiter limiting means for limiting the output to a value within the determined current withstand capability.

以上のように構成された電圧変動補償装置3の制御装置19における制御方法を説明する。実施の形態1の制御装置19は、M座側負荷8であるM座側き電線18mの有効電力Pm、無効電力Qmを負荷検出手段9により検出して、以下の制御を行う。   A control method in the control device 19 of the voltage fluctuation compensator 3 configured as described above will be described. The control device 19 of the first embodiment detects the effective power Pm and reactive power Qm of the M seat side feeder 18m, which is the M seat side load 8, by the load detection means 9, and performs the following control.

(1)列車負荷2側のき電母線(第1のき電線)であるM座側き電線18mに接続したM座インバータ6(第1のインバータ)は以下のように制御される。   (1) The M seat inverter 6 (first inverter) connected to the M seat side feeder 18m which is a feeder line (first feeder) on the train load 2 side is controlled as follows.

(有効電力融通動作の制御)
上記第1のインバータ有効電力制御手段(融通有効電力用算出手段11+M座インバータゲート制御手段13)は、M座側き電線18mの有効電力Pmの1/2を最大分担する融通有効電力Pcを出力するようにM座インバータ6を制御する。なお、残りの有効電力(Pm−Pc)は三相/二相変換変圧器1のM座(M座側き電線18m)から供給するようにする。
(Control of active power interchange operation)
The first inverter active power control means (accommodation active power calculation means 11 + M seat inverter gate control means 13) outputs the accommodation active power Pc that makes the largest share of 1/2 of the active power Pm of the M seat side feeder 18m. Thus, the M seat inverter 6 is controlled. The remaining active power (Pm−Pc) is supplied from the M seat (M seat side feeder 18m) of the three-phase / two-phase conversion transformer 1.

(無効電力補償動作の制御)
上記第1のインバータ無効電力制御手段(M座側無効電力補償用算出手段10+M座インバータゲート制御手段13)は、M座側き電線18mの無効電力Qmを最大補償する補償用無効電力QRmを出力するようにM座インバータ6を制御する。
(Control of reactive power compensation operation)
The first inverter reactive power control means (M seat side reactive power compensation calculation means 10 + M seat inverter gate control means 13) outputs a compensation reactive power QRm for maximum compensation of the reactive power Qm of the M seat side feeder 18m. Thus, the M seat inverter 6 is controlled.

なお、M座インバータ6における融通有効電力Pcと補償用無効電力QRmの最大値は、電流耐量以内の出力に制限するリミッタ制限手段によりM座インバータ6を構成する容量によって予め制限されている。したがって、「QRm=Qm」とするのが理想であるが、上述した補償用無効電力QRmの最大値の制限により、「QRm=Qm」を実現できない場合がある。   Note that the maximum values of the interchangeable active power Pc and the compensation reactive power QRm in the M seat inverter 6 are limited in advance by the capacity constituting the M seat inverter 6 by the limiter limiting means that limits the output to within the current withstand capability. Therefore, it is ideal to set “QRm = Qm”, but “QRm = Qm” may not be realized due to the limitation on the maximum value of the compensation reactive power QRm described above.

(2)三相/二相変換変圧器1のT座側(T座側き電線18t:第2のき電線)に接続したT座インバータ7は以下のように制御される。   (2) The T-seat inverter 7 connected to the T-seat side (T-seat side feeder 18t: second feeder) of the three-phase / two-phase conversion transformer 1 is controlled as follows.

(有効電力融通動作の制御)
上記第2のインバータ有効電力制御手段(融通有効電力用算出手段11+T座インバータゲート制御手段14)は出力する融通有効電力Pcに対応して、三相/二相変換変圧器1のT座側から有効電力Pmの最大1/2の出し入れ制御を行うようにT座インバータ7を制御する。具体的には、列車負荷2が力行状態ならば有効電力PmをT座側から取り込むように制御し、列車負荷2が回生状態ならば有効電力PmをT座側に戻すように制御する。
(Control of active power interchange operation)
The second inverter active power control means (accommodation active power calculation means 11 + T seat inverter gate control means 14) corresponds to the output interchangeable power Pc from the T seat side of the three-phase / two-phase conversion transformer 1. The T-seat inverter 7 is controlled so as to perform the maximum and half control of the active power Pm. Specifically, if the train load 2 is in a power running state, control is performed so that the active power Pm is taken from the T seat side, and if the train load 2 is in a regenerative state, control is performed so that the active power Pm is returned to the T seat side.

(無効電力補償動作の制御)
上記第2のインバータ無効電力制御手段(T座側無効電力補償用算出手段12+T座インバータゲート制御手段14)は、負荷検出手段9の無効電力Qmと補償用無効電力QRmとの差分を取り、「Qm−QRm>0」の場合、この差分(Qm−QRm)に基づき、M座インバータ6から出力する補償用無効電力QRmの位相と正反対となる逆方向の補償用無効電力QRt((Qm−QRm)に最も近い値)を出力するようにT座インバータ7を制御する。一方、「Qm−QRm≦0」の場合、無効電力補償動作は行わないようにT座インバータ7を制御する。なお、補償用無効電力QRmはM座インバータ6の補償用無効電力QRmの最大値制限が予め認知可能であれば、T座側無効電力補償用算出手段12単独で無効電力Qmに基づき求めることができる。また、T座側無効電力補償用算出手段12が補償用無効電力QRmの最大値制限を予め認知していない場合はM座側無効電力補償用算出手段10より出力される補償用無効電力QRmを取り込むことにより、補償用無効電力QRmを認識することができる。
(Control of reactive power compensation operation)
The second inverter reactive power control means (T seat side reactive power compensation calculating means 12 + T seat inverter gate control means 14) takes the difference between the reactive power Qm of the load detecting means 9 and the reactive power QRm for compensation, In the case of “Qm−QRm> 0”, based on this difference (Qm−QRm), the compensation reactive power QRt ((Qm−QRm) in the opposite direction is opposite to the phase of the compensation reactive power QRm output from the M-seat inverter 6. The T-seat inverter 7 is controlled so as to output a value closest to). On the other hand, in the case of “Qm−QRm ≦ 0”, the T-seat inverter 7 is controlled so as not to perform the reactive power compensation operation. If the maximum value limit of the compensation reactive power QRm of the M-seat inverter 6 can be recognized in advance, the compensation reactive power QRm can be obtained based on the reactive power Qm by the T seat side reactive power compensation calculation unit 12 alone. it can. If the T seat side reactive power compensation calculation means 12 does not recognize the maximum value limit of the compensation reactive power QRm in advance, the compensation reactive power QRm output from the M seat side reactive power compensation calculation means 10 is calculated. By taking in, the compensation reactive power QRm can be recognized.

なお、T座インバータ7における融通有効電力Pcと補償用無効電力QRtの最大値は、電流耐量以内の出力に制限するリミッタ制限手段によりT座インバータ7を構成する容量によって予め制限されている。   Note that the maximum values of the interchangeable active power Pc and the compensation reactive power QRt in the T-seat inverter 7 are limited in advance by the capacity of the T-seat inverter 7 by limiter limiting means that limits the output to within the current withstand capability.

(無効電力補償動作の制御方法)
実施の形態1の制御装置19における上記第1及び第2のインバータ無効電力制御手段による無効電力補償制御方法をまとめる以下のステップ(a) 〜(c) を実行することなる。
(Control method for reactive power compensation operation)
The following steps (a) to (c) for summarizing the reactive power compensation control method by the first and second inverter reactive power control means in the control device 19 of the first embodiment are executed.

ステップ(a)は、 列車負荷2に電力供給を行っている第1のき電線であるM座側き電線18mの無効電力Qmを取得する。   Step (a) acquires the reactive power Qm of the M seat side feeder 18m, which is the first feeder that supplies power to the train load 2.

ステップ(b)は、 無効電力Qmに基づき、補償用無効電力QRmを算出し、該補償用無効電力QRmによってM座側き電線18mの無効電力がゼロに近づくように、M座インバータ6制御する。   Step (b) calculates a compensation reactive power QRm based on the reactive power Qm, and controls the M seat inverter 6 so that the reactive power of the M seat side feeder 18m approaches zero by the compensation reactive power QRm. .

ステップ(c)は、無効電力Qm及び補償用無効電力QRmに基づき、補償用無効電力QRmによって無効電力Qmを完全に補償できない場合(Qm−QRm>0)、第2の補償用無効電力である補償用無効電力QRtを算出し、補償用無効電力QRtによってT座側き電線18tに無効電力が発生するように、T座インバータ7の無効電力補償動作を制御する。   Step (c) is the second compensation reactive power when the reactive power Qm cannot be completely compensated by the compensation reactive power QRm based on the reactive power Qm and the compensation reactive power QRm (Qm−QRm> 0). The compensation reactive power QRt is calculated, and the reactive power compensation operation of the T seat inverter 7 is controlled so that the reactive power is generated in the T seat side feeder 18t by the compensation reactive power QRt.

(効果等)
上述した実施の形態1の電圧変動補償装置用の制御装置19における第2のインバータ無効電力制御手段(T座側無効電力補償用算出手段12+T座インバータゲート制御手段14)は、上記ステップ(c) において、補償用無効電力QRmによって無効電力Qmを完全に補償できない場合でも、列車負荷2に電力供給を行っていないT座側き電線18tに対し、補償用無効電力QRtによってT座側き電線18tに無効電力を発生させるように、T座インバータ7の無効電力補償動作を制御している。
(Effects etc.)
The second inverter reactive power control means (T-seat side reactive power compensation calculation means 12 + T-seat inverter gate control means 14) in the control device 19 for the voltage fluctuation compensator of the first embodiment described above is the above step (c). Even if the reactive power Qm cannot be completely compensated for by the compensation reactive power QRm, the T seat side feeder 18t is compensated by the compensation reactive power QRt for the T seat side feeder 18t that is not supplying power to the train load 2. The reactive power compensation operation of the T-seat inverter 7 is controlled so that reactive power is generated in the inverter.

その結果、補償用無効電力QRm及び補償用無効電力QRtによって無効電力補償動作を行うことができるため、電気鉄道用三相/二相変換変圧器における三相電源側の三相不平衡をより一層改善させることができる効果を奏する。この効果に伴い、列車負荷2への電力給電効率を向上させて電気鉄道用電力給電システムにおける電力の省エネルギー化を図ることができる。   As a result, the reactive power compensation operation can be performed by the compensating reactive power QRm and the compensating reactive power QRt, so that the three-phase unbalance on the three-phase power supply side in the three-phase / two-phase conversion transformer for electric railway is further reduced. There is an effect that can be improved. With this effect, it is possible to improve the power supply efficiency to the train load 2 and to save power in the electric power supply system for electric railways.

すなわち、実施の形態1の電気鉄道用電圧変動補償装置の制御装置19による制御方法によれば、電気鉄道用電力給電システムがM座電力のみを用いる同相き電あるいは片座き電において、系統の電圧品質改善(電圧変動、電圧不平衡、電流不平衡)を目的に、電圧変動補償装置3を導入した時、M座インバータ6から補償しきれない無効電力をT座インバータ7から無効電力補償することができる。このため、さらに電圧品質改善が行える効果を奏する。特に、新幹線等の列車負荷2におけるセクション切替設備を不要にする同相き電について上記効果の度合が大きい。   That is, according to the control method by the control device 19 of the electric railway voltage fluctuation compensator according to the first embodiment, the electric power supply system for electric railways can be used for in-phase power or single-seat power using only M seat power. When the voltage fluctuation compensator 3 is introduced for the purpose of voltage quality improvement (voltage fluctuation, voltage imbalance, current imbalance), the reactive power that cannot be compensated for by the M seat inverter 6 is compensated for by the T seat inverter 7. be able to. As a result, the voltage quality can be further improved. In particular, the degree of the above effect is large with respect to common-mode power that eliminates the need for section switching equipment in the train load 2 such as the Shinkansen.

また、実施の形態1の制御装置19の制御対象である電圧変動補償装置3の設備自体は従来設備構成と変わらないため、保守点検や系統事故に対して、電気鉄道用電力給電システムの片座き電あるいは同相き電を両座き電に切り替える場合においても、制御装置19の制御内容を従来の両座き電用に変更するだけで可能となる。   Further, since the equipment itself of the voltage fluctuation compensator 3 to be controlled by the control device 19 of the first embodiment is the same as that of the conventional equipment configuration, one seat of the electric power feeding system for electric railways can be used for maintenance and system faults. Even when the feeding or in-phase feeding is switched to the both sitting electricity, it is possible only by changing the control content of the control device 19 to the conventional both sitting electricity.

図3はこの発明の実施の形態1である電気鉄道用電圧変動補償装置の制御装置の効果をシミュレーションした結果を示す説明図である。同図の(a) に示すような送電線を含む三相電源45、スコット結線変圧器46、及びRPC装置47から構成される片座き電の電力供給の系統に、トロリー線49を介してレール50上を走行する列車負荷38を与えた場合のRPC装置47を制御対象としたシミュレーションした結果を同図の(b) に示している。   FIG. 3 is an explanatory diagram showing the result of simulating the effect of the control device of the electric railway voltage fluctuation compensation device according to the first embodiment of the present invention. A single-seat power supply system comprising a three-phase power supply 45 including a transmission line, a Scott connection transformer 46, and an RPC device 47 as shown in FIG. (B) of the same figure shows the result of the simulation in which the RPC device 47 is controlled when the train load 38 traveling on the rail 50 is given.

図3の(b) において、横軸をRPC容量、縦軸を三相の電圧不平衡率として、特許文献1等で用いられる従来の制御方式のシミュレーション結果L0と、本実施の形態1の制御装置19による制御方式のシミュレーション結果L1とを示している。   In FIG. 3B, with the RPC capacity on the horizontal axis and the three-phase voltage unbalance rate on the vertical axis, the simulation result L0 of the conventional control method used in Patent Document 1 and the control of the first embodiment is used. The simulation result L1 of the control method by the apparatus 19 is shown.

図3の(b) のシミュレーション結果から、実施の形態1の制御方式は従来の制御方式よりも、電圧不平衡率を軽減させていることがわかる。   From the simulation result of FIG. 3B, it can be seen that the control method of the first embodiment reduces the voltage imbalance rate more than the conventional control method.

<実施の形態2>
図4はこの発明の実施の形態2である電気鉄道用電圧変動補償装置の制御装置の制御対象である電気鉄道用電圧変動補償装置を用いた電気鉄道用電力給電システムの構成を模式的に示す説明図である。同図において、電圧変動補償装置23を備えた同相き電もしくは片座き電における電気鉄道用電力給電システムを示している。
<Embodiment 2>
FIG. 4 schematically shows the configuration of an electric railway power supply system using the electric railway voltage fluctuation compensator that is the control target of the electric railway voltage fluctuation compensator controller according to the second embodiment of the present invention. It is explanatory drawing. In the same figure, the electric power supply system for electric railways in the in-phase power supply or the one-seat power supply provided with the voltage fluctuation compensating device 23 is shown.

同図において、三相/二相変換変圧器21は電気鉄道用であるスコット結線変圧器や変形ウッド結線変圧器を含む三相/二相変換変圧器である。三相/二相変換変圧器21により三相/二相変換されたT座電力(第1の単相交流電力)及びM座電力(第2の単相交流電圧)がT座側き電線38t及びM座側き電線38m(第1及び第2のき電線)より得られる。T座電力が供給されるT座側き電線38t(第1のき電線)にトロリー線35を介してレール36上を走行する列車負荷22が接続される。   In the figure, a three-phase / two-phase conversion transformer 21 is a three-phase / two-phase conversion transformer including a Scott connection transformer and a modified Wood connection transformer for electric railways. T-seat power (first single-phase AC power) and M-seat power (second single-phase AC voltage), which are three-phase / two-phase converted by the three-phase / two-phase conversion transformer 21, are converted into T-seat side feeders 38t. And the M seat side feeder 38m (first and second feeders). A train load 22 traveling on the rail 36 is connected via a trolley wire 35 to a T seat side feeder 38t (first feeder) to which T seat power is supplied.

三相/二相変換変圧器21のT座側き電線38t及びM座側き電線38m(第2のき電線)に電圧変動補償装置23が接続される。電圧変動補償装置23内においてT座側単相変圧器25は三相/二相変換変圧器21のT座側き電線38tに接続され、M座側単相変圧器24は三相/二相変換変圧器21のM座側き電線38mに接続される。   The voltage fluctuation compensating device 23 is connected to the T seat side feeder 38t and the M seat side feeder 38m (second feeder) of the three-phase / two-phase conversion transformer 21. In the voltage fluctuation compensation device 23, the T-seat side single-phase transformer 25 is connected to the T-seat side feeder 38t of the three-phase / two-phase conversion transformer 21, and the M-seat side single-phase transformer 24 is a three-phase / two-phase transformer. It is connected to the M seat side feeder 38m of the conversion transformer 21.

M座側単相変圧器24,T座側単相変圧器25間は、M座側単相変圧器24からT座側単相変圧器25にかけてM座インバータ26(第2のインバータ)、直流コンデンサ37及びT座インバータ27(第1のインバータ)を介して接続される。なお、T座インバータ27は交流側がT座側単相変圧器25と接続され、M座インバータ26は交流側がM座側単相変圧器24と接続され、T座インバータ27,M座インバータ26それぞれの直流側が直流コンデンサ37を介して接続される。また、三相/二相変換変圧器21、M座側単相変圧器24、T座側単相変圧器25、M座インバータ26及びT座インバータ27それぞれの具体的な構成は、本発明と直接関係がないため説明を省略する。   Between the M-seat-side single-phase transformer 24 and the T-seat-side single-phase transformer 25, the M-seat inverter 26 (second inverter) and DC are connected from the M-seat-side single-phase transformer 24 to the T-seat-side single-phase transformer 25. The capacitor 37 and the T seat inverter 27 (first inverter) are connected. The T seat inverter 27 is connected to the T seat side single phase transformer 25 on the AC side, and the M seat inverter 26 is connected to the M seat side single phase transformer 24 on the AC side. Are connected via a DC capacitor 37. The specific configurations of the three-phase / two-phase conversion transformer 21, the M-seat side single-phase transformer 24, the T-seat side single-phase transformer 25, the M-seat inverter 26, and the T-seat inverter 27 are the same as the present invention. Description is omitted because there is no direct relationship.

このような構成の電圧変動補償装置23が実施の形態2の電気鉄道用電圧変動補償装置の制御装置39の制御対象となる。   The voltage fluctuation compensator 23 having such a configuration is a control target of the controller 39 of the electric railway voltage fluctuation compensator of the second embodiment.

図5はこの発明の実施の形態2である電気鉄道用電圧変動補償装置の制御装置39の構成を示すブロック図である。   FIG. 5 is a block diagram showing a configuration of a control device 39 of the electric railway voltage fluctuation compensating device according to the second embodiment of the present invention.

図5で示すように、電圧変動補償装置23の制御装置39は、負荷検出手段29、M座側無効電力補償用算出手段30、融通有効電力用算出手段31、T座側無効電力補償用算出手段32、M座インバータゲート制御手段33及びT座インバータゲート制御手段34から構成されている。   As shown in FIG. 5, the control device 39 of the voltage fluctuation compensation device 23 includes a load detection means 29, an M seat side reactive power compensation calculation means 30, a flexible active power calculation means 31, and a T seat side reactive power compensation calculation. It comprises means 32, M seat inverter gate control means 33 and T seat inverter gate control means 34.

負荷検出手段29は、三相/二相変換変圧器21のT座側き電線38tにおけるT座側負荷28の有効電力Pt及び無効電力Qtを検出する。   The load detection means 29 detects the active power Pt and the reactive power Qt of the T seat side load 28 in the T seat side feeder 38 t of the three-phase / two-phase conversion transformer 21.

T座側無効電力補償用算出手段32は負荷検出手段29より得た無効電力Qtに基づき補償用無効電力QRt(第1の補償用無効電力)を算出する。T座インバータゲート制御手段34は補償用無効電力QRtに基づきT座インバータ27による無効電力補償動作を(ゲート)制御する。すなわち、T座側無効電力補償用算出手段32及びT座インバータゲート制御手段34によりT座インバータ27の無効電力補償動作を制御する第1のインバータ無効電力制御手段を構成する。   The T-seat side reactive power compensation calculating means 32 calculates a compensation reactive power QRt (first compensation reactive power) based on the reactive power Qt obtained from the load detecting means 29. The T-seat inverter gate control means 34 (gate) controls the reactive power compensation operation by the T-seat inverter 27 based on the compensation reactive power QRt. That is, the T seat side reactive power compensation calculating means 32 and the T seat inverter gate control means 34 constitute first inverter reactive power control means for controlling the reactive power compensation operation of the T seat inverter 27.

M座側無効電力補償用算出手段30は無効電力Qt及び補償用無効電力QRtに基づき補償用無効電力QRm(第2の補償用無効電力)を算出する。M座インバータゲート制御手段33は補償用無効電力QRmに基づきM座インバータ26の無効電力補償動作を(ゲート)制御する。すなわち、M座側無効電力補償用算出手段30及びM座インバータゲート制御手段33によりM座インバータ26の無効電力補償動作を制御する第2のインバータ無効電力制御手段を構成する。   The M seat side reactive power compensation calculation means 30 calculates a compensation reactive power QRm (second compensation reactive power) based on the reactive power Qt and the compensation reactive power QRt. The M seat inverter gate control means 33 (gate) controls the reactive power compensation operation of the M seat inverter 26 based on the compensation reactive power QRm. That is, the M seat side reactive power compensation calculating means 30 and the M seat inverter gate control means 33 constitute second inverter reactive power control means for controlling the reactive power compensation operation of the M seat inverter 26.

融通有効電力用算出手段31は負荷検出手段29より得た有効電力Ptに基づき融通有効電力Pcを算出する。T座インバータゲート制御手段34及びM座インバータゲート制御手段33は融通有効電力Pcに基づきT座インバータ27及びM座インバータ26の有効電力融通動作を制御する。すなわち、融通有効電力用算出手段31及びT座インバータゲート制御手段34によりT座インバータ27に対し有効電力融通動作を制御する第1のインバータ有効電力制御手段を構成し、融通有効電力用算出手段31及びM座インバータゲート制御手段33によりM座インバータ26に対し有効電力融通動作を制御する第2のインバータ有効電力制御手段を構成する。   The flexible active power calculation means 31 calculates the flexible active power Pc based on the active power Pt obtained from the load detection means 29. The T seat inverter gate control means 34 and the M seat inverter gate control means 33 control the active power accommodation operation of the T seat inverter 27 and the M seat inverter 26 based on the accommodation active power Pc. That is, a first inverter active power control means for controlling the active power accommodation operation for the T seat inverter 27 is constituted by the accommodation active power calculation means 31 and the T seat inverter gate control means 34, and the accommodation active power calculation means 31. And the second inverter active power control means for controlling the active power interchange operation for the M seat inverter 26 by the M seat inverter gate control means 33.

なお、M座インバータ26及びT座インバータ27は、それぞれ決められた電流耐量以内の出力に制限するリミッタ制限手段を備えている。   Each of the M-seat inverter 26 and the T-seat inverter 27 includes limiter limiting means for limiting the output to a value within the determined current withstand capability.

以上のように構成された電圧変動補償装置23の制御装置39における制御方法を説明する。実施の形態2の制御装置39は、T座側負荷28であるT座側き電線38tの有効電力Pt、無効電力Qtを負荷検出手段29により検出して、以下の制御を行う。   A control method in the control device 39 of the voltage fluctuation compensation device 23 configured as described above will be described. The control device 39 according to the second embodiment detects the effective power Pt and reactive power Qt of the T seat side feeder 38t, which is the T seat side load 28, by the load detection means 29, and performs the following control.

(1)列車負荷22側のき電母線(第1のき電線)であるT座側き電線38tに接続したT座インバータ27(第1のインバータ)は以下のように制御される。   (1) The T-seat inverter 27 (first inverter) connected to the T-seat side feeder 38t that is a feeder line (first feeder) on the train load 22 side is controlled as follows.

(有効電力融通動作の制御)
上記第1のインバータ有効電力制御手段(融通有効電力用算出手段31+T座インバータゲート制御手段34)は、T座側き電線38tの有効電力Ptの1/2を最大分担する融通有効電力Pcを出力するようにT座インバータ27を制御する。なお、残りの有効電力(Pm−Pc)は三相/二相変換変圧器21のT座(T座側き電線38t)から供給するようにする。
(Control of active power interchange operation)
The first inverter active power control means (accommodation active power calculation means 31 + T seat inverter gate control means 34) outputs the accommodation active power Pc that makes the largest share of 1/2 of the active power Pt of the T seat side feeder 38t. Thus, the T-seat inverter 27 is controlled. The remaining active power (Pm−Pc) is supplied from the T seat (T seat side feeder 38t) of the three-phase / two-phase conversion transformer 21.

(無効電力補償動作の制御)
上記第1のインバータ無効電力制御手段(T座側無効電力補償用算出手段32+T座インバータゲート制御手段34)は、T座側き電線38tの無効電力Qtを最大補償する補償用無効電力QRtを出力するようにT座インバータ27を制御する。
(Control of reactive power compensation operation)
The first inverter reactive power control means (T-seat side reactive power compensation calculating means 32 + T-seat inverter gate control means 34) outputs a compensation reactive power QRt for maximum compensation of the reactive power Qt of the T-seat side feeder 38t. Thus, the T-seat inverter 27 is controlled.

なお、T座インバータ27における融通有効電力Pcと補償用無効電力QRtの最大値は、電流耐量以内の出力に制限するリミッタ制限手段によりT座インバータ27を構成する容量によって予め制限されている。したがって、「QRm=Qm」とするのが理想であるが、上述した補償用無効電力QRtの最大値の制限により、「QRm=Qm」を実現できない場合がある。   Note that the maximum values of the interchangeable active power Pc and the compensation reactive power QRt in the T-seat inverter 27 are limited in advance by the capacity constituting the T-seat inverter 27 by limiter limiting means that limits the output to within the current withstand capability. Therefore, it is ideal to set “QRm = Qm”, but “QRm = Qm” may not be realized due to the limitation on the maximum value of the compensation reactive power QRt described above.

(2)三相/二相変換変圧器21のM座側(M座側き電線38m:第2のき電線)に接続したM座インバータ26は以下のように制御される。   (2) The M seat inverter 26 connected to the M seat side (M seat side feeder 38m: second feeder) of the three-phase / two-phase conversion transformer 21 is controlled as follows.

(有効電力融通動作の制御)
上記第2のインバータ有効電力制御手段(融通有効電力用算出手段31+M座インバータゲート制御手段33)は出力する融通有効電力Pcに対応して、三相/二相変換変圧器21のM座側から有効電力Ptの最大1/2の出し入れ制御を行うようにM座インバータ26を制御する。具体的には、列車負荷22が力行状態ならば有効電力PtをM座側から取り込むように制御し、列車負荷22が回生状態ならば有効電力PtをM座側に戻すように制御する。
(Control of active power interchange operation)
The second inverter active power control means (accommodation active power calculation means 31 + M seat inverter gate control means 33) corresponds to the output interchangeable power Pc from the M seat side of the three-phase / two-phase conversion transformer 21. The M-seat inverter 26 is controlled so as to perform a control of taking in and out the maximum half of the active power Pt. Specifically, if the train load 22 is in a power running state, control is performed so that the active power Pt is taken from the M seat side, and if the train load 22 is in a regenerative state, control is performed so that the active power Pt is returned to the M seat side.

(無効電力補償動作の制御)
上記第2のインバータ無効電力制御手段(M座側無効電力補償用算出手段30+M座インバータゲート制御手段33)は、負荷検出手段29の無効電力Qtと補償用無効電力QRtとの差分を取り、「Qt−QRt>0」の場合、この差分(Qt−QRt)に基づき、T座インバータ27から出力する補償用無効電力QRtの位相と正反対となる逆方向の補償用無効電力QRm((Qt−QRt)に最も近い値)を出力するようにM座インバータ26を制御する。一方、「Qt−QRt≦0」の場合、無効電力補償動作は行わないようにM座インバータ26を制御する。なお、補償用無効電力QRtはT座インバータ27の補償用無効電力QRtの最大値制限が予め認知可能であれば、M座側無効電力補償用算出手段30単独で無効電力Qtに基づき求めることができる。また、M座側無効電力補償用算出手段30が補償用無効電力QRtの最大値制限を予め認知していない場合はT座側無効電力補償用算出手段32より出力される補償用無効電力QRtを取り込むことにより、補償用無効電力QRtを認識することができる。
(Control of reactive power compensation operation)
The second inverter reactive power control means (M seat reactive power compensation calculation means 30 + M seat inverter gate control means 33) takes the difference between the reactive power Qt of the load detection means 29 and the compensation reactive power QRt, In the case of “Qt−QRt> 0”, based on this difference (Qt−QRt), the compensation reactive power QRm ((Qt−QRt) in the opposite direction that is opposite to the phase of the compensation reactive power QRt output from the T-seat inverter 27. The M-seat inverter 26 is controlled so as to output the value closest to. On the other hand, in the case of “Qt−QRt ≦ 0”, the M seat inverter 26 is controlled not to perform the reactive power compensation operation. The compensation reactive power QRt can be obtained based on the reactive power Qt by the M seat side reactive power compensation calculating means 30 alone if the maximum value limit of the compensation reactive power QRt of the T seat inverter 27 can be recognized in advance. it can. When the M seat side reactive power compensation calculation means 30 does not recognize the maximum value limit of the compensation reactive power QRt in advance, the compensation reactive power QRt output from the T seat side reactive power compensation calculation means 32 is used. By taking in, the compensation reactive power QRt can be recognized.

なお、M座インバータ26における融通有効電力Pcと補償用無効電力QRmの最大値は、電流耐量以内の出力に制限するリミッタ制限手段によりM座インバータ26を構成する容量によって予め制限されている。   Note that the maximum values of the interchangeable active power Pc and the compensation reactive power QRm in the M seat inverter 26 are limited in advance by the capacity constituting the M seat inverter 26 by limiter limiting means for limiting the output to within the current withstand capability.

(無効電力補償動作の制御方法)
実施の形態2の制御装置39における上記第1及び第2のインバータ無効電力制御手段による無効電力補償制御方法をまとめる以下のステップ(a) 〜(c) を実行することなる。
(Control method for reactive power compensation operation)
The following steps (a) to (c) for summarizing the reactive power compensation control method by the first and second inverter reactive power control means in the control device 39 of the second embodiment are executed.

ステップ(a)は、 列車負荷22に電力供給を行っている第1のき電線であるT座側き電線38tの無効電力Qtを取得する。   Step (a) acquires the reactive power Qt of the T seat side feeder 38t, which is the first feeder that supplies power to the train load 22.

ステップ(b)は、 無効電力Qtに基づき、補償用無効電力QRtを算出し、該補償用無効電力QRtによってT座側き電線38tの無効電力がゼロに近づくように、T座インバータ27制御する。   Step (b) calculates the compensation reactive power QRt based on the reactive power Qt, and controls the T-seat inverter 27 so that the reactive power of the T-seat side feeder 38t approaches zero by the compensation reactive power QRt. .

ステップ(c)は、無効電力Qt及び補償用無効電力QRtに基づき、補償用無効電力QRtによって無効電力Qtを完全に補償できない場合(Qt−QRt>0)、第2の補償用無効電力である補償用無効電力QRmを算出し、補償用無効電力QRmによってM座側き電線38mに無効電力が発生するように、M座インバータ26の無効電力補償動作を制御する。   Step (c) is a second reactive reactive power when the reactive power Qt cannot be completely compensated by the reactive power QRt based on the reactive power Qt and the reactive power QRt (Qt−QRt> 0). The compensation reactive power QRm is calculated, and the reactive power compensation operation of the M seat inverter 26 is controlled so that the reactive power is generated in the M seat side feeder 38m by the compensation reactive power QRm.

(効果等)
上述した実施の形態2の電圧変動補償装置用の制御装置39における第2のインバータ無効電力制御手段(M座側無効電力補償用算出手段30+M座インバータゲート制御手段33)は、上記ステップ(c) において、補償用無効電力QRtによって無効電力Qtを完全に補償できない場合でも、列車負荷22に電力供給を行っていないM座側き電線38mに対し、補償用無効電力QRmによってM座側き電線38mに無効電力を発生させるように、M座インバータ26の無効電力補償動作を制御している。
(Effects etc.)
The second inverter reactive power control means (M-seat side reactive power compensation calculating means 30 + M-seat inverter gate control means 33) in the control device 39 for the voltage fluctuation compensator of the second embodiment described above is the above step (c). Even if the reactive power Qt cannot be completely compensated by the compensation reactive power QRt, the M seat side feeder 38m is compensated by the compensation reactive power QRm for the M seat side feeder 38m that is not supplying power to the train load 22. The reactive power compensation operation of the M-seat inverter 26 is controlled so that reactive power is generated in the inverter.

その結果、補償用無効電力QRt及び補償用無効電力QRmによって無効電力補償動作を行うことができるため、電気鉄道用三相/二相変換変圧器における三相電源側の三相不平衡をより一層改善させることができる効果を奏する。この効果に伴い、列車負荷22への電力給電効率を向上させて電気鉄道用電力給電システムにおける電力の省エネルギー化を図ることができる。   As a result, since the reactive power compensation operation can be performed by the compensation reactive power QRt and the compensation reactive power QRm, the three-phase unbalance on the three-phase power supply side in the three-phase / two-phase conversion transformer for electric railway is further reduced. There is an effect that can be improved. With this effect, it is possible to improve the power supply efficiency to the train load 22 and to save energy in the electric power supply system for electric railways.

すなわち、実施の形態2の電気鉄道用電圧変動補償装置の制御装置39による制御方法によれば、電気鉄道用電力給電システムがT座電力のみを用いる同相き電あるいは片座き電において、系統の電圧品質改善(電圧変動、電圧不平衡、電流不平衡)を目的に、電圧変動補償装置23を導入した時、T座インバータ27から補償しきれない無効電力をM座インバータ26から無効電力補償することができる。このため、さらに電圧品質改善が行える効果を奏する。特に、新幹線等の列車負荷22におけるセクション切替設備を不要にする同相き電について上記効果の度合が大きい。   That is, according to the control method by the control device 39 of the electric railway voltage fluctuation compensator according to the second embodiment, the electric power supply system for the electric railway uses the T-seat power only, When the voltage fluctuation compensator 23 is introduced for the purpose of improving the voltage quality (voltage fluctuation, voltage imbalance, current imbalance), the reactive power that cannot be compensated for by the T seat inverter 27 is compensated for by the M seat inverter 26. be able to. As a result, the voltage quality can be further improved. In particular, the degree of the above effect is large with respect to in-phase power that eliminates the need for section switching equipment in the train load 22 such as the Shinkansen.

また、実施の形態2の制御装置39の制御対象である電圧変動補償装置23の設備自体は従来設備構成と変わらないため、保守点検や系統事故に対して、電気鉄道用電力給電システムの片座き電あるいは同相き電を両座き電に切り替える場合においても、制御装置39の制御内容を従来の両座き電用に変更するだけで可能となる。   In addition, since the equipment itself of the voltage fluctuation compensator 23 to be controlled by the control device 39 according to the second embodiment is not different from the conventional equipment configuration, a single seat of the electric power supply system for electric railways can be used for maintenance inspections and system faults. Even when the feeding or in-phase feeding is switched to both sitting electricity, the control content of the control device 39 can be changed only to the conventional both sitting electricity.

(その他)
なお、実施の形態1及び実施の形態2で述べた制御装置19(39)の少なくとも一部は、例えば、主記憶装置、演算装置、入力装置、二次記憶装置及び出力装置等から構成され、これらの装置が例えば共通バスを介して共通に接続されるような構成のコンピュータ装置により実現することができる。
(Other)
Note that at least a part of the control device 19 (39) described in the first and second embodiments includes, for example, a main storage device, an arithmetic device, an input device, a secondary storage device, and an output device. For example, these devices can be realized by a computer device configured to be commonly connected via a common bus.

このようなコンピュータ装置において、少なくとも実施の形態1の手段10〜14(実施の形態2の手段30〜34)あるいは実施の形態1のステップ(a) 〜(c)( 実施の形態2のステップ(a) 〜(c))の処理は、例えば、演算装置がコンピュータを機能させるプログラムに基づき動作することによって実現可能である。また、上記プログラムは主記憶装置あるいは二次記憶装置に格納可能である。   In such a computer apparatus, at least the means 10 to 14 of the first embodiment (the means 30 to 34 of the second embodiment) or the steps (a) to (c) of the first embodiment (the steps of the second embodiment ( The processing of a) to (c)) can be realized, for example, when the arithmetic device operates based on a program that causes a computer to function. The program can be stored in a main storage device or a secondary storage device.

また、電気鉄道用電力給電システムにおける隣接変電所のき電区間のM座もしくはT座に適合させて実施の形態1の制御装置19あるいは実施の形態2の制御装置39を設けることにより、より長いき電区間において電圧変動補償装置3(23)に対する良好な無効電力補償を効率的に行うことができる。   Further, by providing the control device 19 according to the first embodiment or the control device 39 according to the second embodiment so as to be adapted to the M seat or the T seat in the feeding section of the adjacent substation in the electric power supply system for electric railway, it is possible to increase the length. Good reactive power compensation for the voltage fluctuation compensator 3 (23) can be efficiently performed in the live power section.

1,21 三相/二相変換変圧器、2,22 列車負荷、3,23 (電気鉄道用)電圧変動補償装置、4,24 M座側単相変圧器、5,25 T座側単相変圧器、6,26 M座インバータ、7,27 T座インバータ、8 M座側負荷、9,29 負荷検出手段、10,30 M座側無効電力補償用算出手段、11,31 融通有効電力用算出手段、12,32 T座側無効電力補償用算出手段、13,33 M座インバータゲート制御手段、14,34 T座インバータゲート制御手段。   1,21 Three-phase / two-phase conversion transformer, 2,22 Train load, 3,23 (For electric railway) Voltage fluctuation compensation device, 4,24 M-seat side single-phase transformer, 5,25 T-seat side single phase Transformer, 6, 26 M seat inverter, 7, 27 T seat inverter, 8 M seat side load, 9, 29 Load detection means, 10, 30 M seat side reactive power compensation calculation means, 11, 31 For interchangeable active power Calculation means, 12, 32 T seat side reactive power compensation calculation means, 13, 33 M seat inverter gate control means, 14, 34 T seat inverter gate control means.

Claims (6)

電気鉄道用の電圧変動補償装置を制御する電圧変動補償装置の制御装置であって、前記電圧変動補償装置は、電気鉄道用三相/二相変換変圧器により第1及び第2のき電線から供給される第1及び第2の単相交流電力のうち、前記第1の単相交流電力を前記第1のき電線を介して電車負荷に供給する電気鉄道用電力給電システムにおける有効電力及び無効電力を、前記第1及び第2のき電線に接続される第1及び第2のインバータを用いて補償し、
前記第1のき電線の無効電力を少なくとも検出する負荷検出手段と、
前記無効電力に基づき、前記第1のき電線の無効電力を補償するための第1の補償用無効電力を算出し、該第1の補償用無効電力によって前記第1のき電線の無効電力がゼロに近づくように、前記第1のインバータを制御する第1のインバータ無効電力制御手段とを備え、前記第1のインバータにおける前記第1の補償用無効電力の最大値が、電流耐量以内の出力に制限するリミッタ制限手段により前記第1のインバータを構成する容量によって予め制限されており、
前記第1の補償用無効電力によって前記無効電力を完全に補償できない場合、前記無効電力及び前記第1の補償用無効電力間の差分値に基づき前記第1の補償用無効電力の位相と正反対となる逆方向の位相を有する第2の補償用無効電力を算出し、前記第2の補償用無効電力によって前記第2のき電線に無効電力を発生させるように、前記第2のインバータを制御する第2のインバータ無効電力制御手段をさらに備える、
電気鉄道用電圧変動補償装置の制御装置。
A voltage fluctuation compensator for controlling a voltage fluctuation compensator for electric railway, wherein the voltage fluctuation compensator is connected to the first and second feeder lines by a three-phase / two-phase conversion transformer for electric railway. Of the supplied first and second single-phase AC power, active power and invalidity in the electric railway power supply system that supplies the first single-phase AC power to the train load via the first feeder. Compensating power using first and second inverters connected to the first and second feeders,
Load detecting means for detecting at least reactive power of the first feeder line;
Based on the reactive power, a first compensating reactive power for compensating the reactive power of the first feeder is calculated, and the reactive power of the first feeder is calculated by the first compensating reactive power. First inverter reactive power control means for controlling the first inverter so as to approach zero, and an output in which the maximum value of the first compensation reactive power in the first inverter is within a current withstand capability Is limited in advance by the capacity constituting the first inverter by the limiter limiting means for limiting to
When the reactive power cannot be completely compensated by the first compensation reactive power, the phase of the first compensation reactive power is opposite to the phase based on the difference value between the reactive power and the first compensation reactive power. A second compensation reactive power having a phase in the opposite direction is calculated, and the second inverter is controlled so that the second compensation reactive power generates reactive power in the second feeder line. further comprising a second inverter reactive power control means,
Control device for voltage fluctuation compensation device for electric railway.
請求項1記載の電圧変動補償装置の制御装置であって、
前記第1の単相交流電力はM座電力を含み、
前記第2の単相交流電力はT座電力を含む、
電気鉄道用電圧変動補償装置の制御装置。
It is a control apparatus of the voltage fluctuation compensation apparatus of Claim 1, Comprising:
The first single-phase AC power includes M seat power,
The second single-phase AC power includes T-seat power,
Control device for voltage fluctuation compensation device for electric railway.
請求項1記載の電圧変動補償装置の制御装置であって、
前記第1の単相交流電力はT座電力を含み、
前記第2の単相交流電力はM座電力を含む、
電気鉄道用電圧変動補償装置の制御装置。
It is a control apparatus of the voltage fluctuation compensation apparatus of Claim 1, Comprising:
The first single-phase AC power includes T-seat power,
The second single-phase AC power includes M seat power,
Control device for voltage fluctuation compensation device for electric railway.
電気鉄道用の電圧変動補償装置を制御する電圧変動補償装置の制御方法であって、前記電圧変動補償装置は、電気鉄道用三相/二相変換変圧器により第1及び第2のき電線から供給される第1及び第2の単相交流電力のうち、前記第1の単相交流電力を前記第1のき電線を介して電車負荷に供給する電気鉄道用電力給電システムにおける有効電力及び無効電力を、前記第1及び第2のき電線に接続される第1及び第2のインバータを用いて補償し、
(a) 前記第1のき電線の無効電力を少なくとも取得するステップと、
(b) 前記無効電力に基づき、前記第1のき電線の無効電力を補償するための第1の補償用無効電力を算出し、該第1の補償用無効電力によって前記第1のき電線の無効電力がゼロに近づくように、前記第1のインバータを制御するステップとを備え、前記第1のインバータにおける前記第1の補償用無効電力の最大値が、電流耐量以内の出力に制限するリミッタ制限手段により前記第1のインバータを構成する容量によって予め制限されており、
(c) 前記第1の補償用無効電力によって前記無効電力を完全に補償できない場合、前記無効電力及び前記第1の補償用無効電力間の差分値に基づき前記第1の補償用無効電力の位相と正反対となる逆方向の位相を有する第2の補償用無効電力を算出し、前記第2の補償用無効電力によって前記第2のき電線に無効電力を発生させるように、前記第2のインバータを制御するステップをさらに備える、
電気鉄道用電圧変動補償装置の制御方法。
A method for controlling a voltage fluctuation compensator for controlling a voltage fluctuation compensator for an electric railway, wherein the voltage fluctuation compensator is connected to the first and second feeder lines by a three-phase / two-phase conversion transformer for an electric railway. Of the supplied first and second single-phase AC power, active power and invalidity in the electric railway power supply system that supplies the first single-phase AC power to the train load via the first feeder. Compensating power using first and second inverters connected to the first and second feeders,
(a) obtaining at least reactive power of the first feeder line;
(b) calculating a first compensation reactive power for compensating the reactive power of the first feeder based on the reactive power, and using the first compensation reactive power, And a step of controlling the first inverter so that the reactive power approaches zero, and a limiter for limiting a maximum value of the first compensation reactive power in the first inverter to an output within a current withstand capability. Limited in advance by the capacity of the first inverter by the limiting means,
(c) When the reactive power cannot be completely compensated by the first compensation reactive power, the phase of the first compensation reactive power is based on a difference value between the reactive power and the first compensation reactive power. The second inverter is configured to calculate a second compensation reactive power having a phase opposite to that of the second compensation reactive power, and to generate a reactive power in the second feeder by the second compensation reactive power. Further comprising the step of controlling
A method for controlling a voltage fluctuation compensator for an electric railway.
請求項4記載の電圧変動補償装置の制御方法であって、
前記第1の単相交流電力はM座電力を含み、
前記第2の単相交流電力はT座電力を含む、
電気鉄道用電圧変動補償装置の制御方法。
A control method for a voltage fluctuation compensator according to claim 4,
The first single-phase AC power includes M seat power,
The second single-phase AC power includes T-seat power,
A method for controlling a voltage fluctuation compensator for an electric railway.
請求項4記載の電圧変動補償装置の制御方法であって、
前記第1の単相交流電力はT座電力を含み、
前記第2の単相交流電力はM座電力を含む、
電気鉄道用電圧変動補償装置の制御方法。
A control method for a voltage fluctuation compensator according to claim 4,
The first single-phase AC power includes T-seat power,
The second single-phase AC power includes M seat power,
A method for controlling a voltage fluctuation compensator for an electric railway.
JP2009117334A 2009-05-14 2009-05-14 Control device and control method for voltage fluctuation compensation device for electric railway Expired - Fee Related JP5289178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009117334A JP5289178B2 (en) 2009-05-14 2009-05-14 Control device and control method for voltage fluctuation compensation device for electric railway

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009117334A JP5289178B2 (en) 2009-05-14 2009-05-14 Control device and control method for voltage fluctuation compensation device for electric railway

Publications (2)

Publication Number Publication Date
JP2010264857A JP2010264857A (en) 2010-11-25
JP5289178B2 true JP5289178B2 (en) 2013-09-11

Family

ID=43362257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009117334A Expired - Fee Related JP5289178B2 (en) 2009-05-14 2009-05-14 Control device and control method for voltage fluctuation compensation device for electric railway

Country Status (1)

Country Link
JP (1) JP5289178B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058884A (en) * 2016-07-06 2016-10-26 国网山东省电力公司无棣县供电公司 Reactive compensation device for three-phase power grid and control method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051465A (en) * 2010-09-01 2012-03-15 Toshiba Mitsubishi-Electric Industrial System Corp Control device of power compensating device for electric railroad
JP2014083900A (en) * 2012-10-22 2014-05-12 Mitsubishi Electric Corp Control device of electric power supply system for electric railroad
KR101742515B1 (en) 2016-10-27 2017-06-15 중앙제어 주식회사 An Electric Vehicle Charging System for Three Phase
CN107834539A (en) * 2017-10-13 2018-03-23 上海电力学院 A kind of excess load compensation method based on railway electric energy quality comprehensive treatment device
CN109256785B (en) * 2018-11-20 2023-09-29 西南交通大学 In-phase power supply comprehensive compensation device and method based on single-phase transformation and YNd compensation
CN109510213B (en) * 2018-11-20 2024-02-06 成都尚华电气有限公司 In-phase power supply comprehensive compensation device and method based on traction-compensation transformer
JP7436417B2 (en) 2021-05-07 2024-02-21 東芝三菱電機産業システム株式会社 Power compensator and AC feeding system equipped with it

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3263281B2 (en) * 1995-07-07 2002-03-04 東日本旅客鉄道株式会社 Control method of inverter device
JP3508347B2 (en) * 1995-12-11 2004-03-22 株式会社明電舎 Feeder voltage compensation system and equipment
JP4399392B2 (en) * 2005-04-28 2010-01-13 東海旅客鉄道株式会社 Power interchange device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058884A (en) * 2016-07-06 2016-10-26 国网山东省电力公司无棣县供电公司 Reactive compensation device for three-phase power grid and control method thereof
CN106058884B (en) * 2016-07-06 2018-11-23 国网山东省电力公司无棣县供电公司 A kind of reactive power compensator and its control method for three phase network

Also Published As

Publication number Publication date
JP2010264857A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
JP5289178B2 (en) Control device and control method for voltage fluctuation compensation device for electric railway
Gao et al. Modeling and impedance analysis of a single DC bus-based multiple-source multiple-load electrical power system
JP4664699B2 (en) Parallel operation controller for power converter
JP2012051465A (en) Control device of power compensating device for electric railroad
US20140054965A1 (en) System and method for efficient power distribution and backup
JP2014500698A5 (en)
JP2007244068A (en) Power converter
JP5367252B2 (en) AC voltage control method
CN110492499B (en) Coordinated optimization control method for multi-feed-in direct-current auxiliary power/frequency combined controller
JP5047278B2 (en) Power quality compensator
JP4399392B2 (en) Power interchange device
JP4973139B2 (en) Feeder voltage compensation device
JP2007083989A (en) Electric railroad alternating current feeder system
Ni et al. Asynchronized synchronous motor-based more electric ship—Less power electronics for more system reliability
CN210617908U (en) Power supply structure of traction substation
JP2014083900A (en) Control device of electric power supply system for electric railroad
JP4207640B2 (en) AC feeder system
Salim et al. Cascaded controller for a standalone microgrid‐connected inverter based on triple‐action controller and particle swarm optimisation
JP5611009B2 (en) Unbalance compensator
CN105870963A (en) Frequency voltage slope control-based VSC convertor station control method
JP2001047894A (en) Alternate current feeding device and control method for the same
JP2014108010A (en) Power compensation system
CN102868182A (en) Method and device for controlling average current of wind driven generator
JP4892459B2 (en) Control device for voltage fluctuation compensator for railway
JP2010110120A (en) Ac power supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130604

R150 Certificate of patent or registration of utility model

Ref document number: 5289178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees